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Abstract

In contrast to forwards and futures on storable commodities, prices of long-term
electricity forwards exhibit a dynamics different to that of short-term and mid-term
prices. Since electricity cannot be stored, the supply and demand shocks in the spot
prices are not transferred to the long-term forward prices, as it is usual in the case of
storable commodities. While forward prices of storable commodities can be modelled
sufficiently with spot prices and storage costs, other factors are needed to explain
the dynamics of long-term electricity forward prices.

We design a model for long-term electricity forward prices dependent on vari-
ables that influence the supply and demand for electricity and the risk premium. A
specific model for long-term electricity forwards from Nord Pool is conditioned on
information that includes long-term forward prices of crude oil, coal, natural gas,
emission allowances, imported electricity and aluminium. Risk premium is modelled
as a function of time-to-maturity. All variables have weekly resolution.

Based on the variables in the information set we set up a vector autoregressive
model. The variables are non-stationary and we find that all of them are cointe-
grated, except for natural gas price. This indicates that although these prices may
wander away from each other in the short-run due to the impact of random forces,
in the long-run, they are drawn together due to the effect of long-run equilibrium
forces. The Nord Pool price increases approximately 1:1 with oil price, a bit more
than 1:1 with aluminium price, and a bit less than 1:1 with coal price. On the other
hand, the Nord Pool price falls a bit more than 1:1 when EEX price increase, and
falls by 0.15% if the emission allowance price rises by 1%. A presence of cointegration
could be considered as evidence against the semi-strong form of market efficiency.
However, cointegration could also be a result of a volatile risk premium. We also
find that crude oil, coal, natural gas and aluminium prices influence the prices of
emission allowances and both electricity prices, but not vice versa.

We find strong causality of all variables on emission allowance price and both
electricity prices. Most of this is captured by the long-run relationship. Residual
covariances show that there is also a strong contemporaneous relationship between
variables. The system is therefore governed by the dynamics shorter than one week
and by long-run dynamics in which the steady state after the shock is achieved in
approximately 5 weeks. The structural model reveals that most of the permanent
price components come from the crude oil price, which is by far the most dominant
variable in the system. We find that time-to-maturity is significant only in emission
allowance prices and EEX forward price. This indicates that during the analysed
period, the risk premium dynamics in the long-term electricity forward prices from
Nord Pool can be considered as constant with respect to time-to-maturity.

Key words: electricity prices, electricity markets, long-term forward prices, funda-
mental models, vector autoregressive models, cointegration, structural VAR.
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Povzetek

Cene kratkoročnih in dolgoročnih terminskih pogodb dobrin, ki jih lahko shran-
jujemo, se obnašajo zelo podobno. Te lastnosti ne opazimo pri cenah električne
energije, saj se cene dolgoročnih terminskih pogodb električne energije obnašajo
drugače, kot cene kratkoročnih ali srednjeročnih terminskih pogodb. Ker električne
energije ni mogoče shraniti, se vplivi šokov v ponudbi in povpraševanju na promptno
ceno ne morejo prenesti na terminske cene, kot pri dobrinah, ki jih lahko shranju-
jemo. Medtem ko lahko terminske cene dobrin, ki se lahko shranjujejo, dovolj dobro
modeliramo s promptno ceno in stroški skladǐsčenja, je potrebno pri modeliranju
dolgoročnih terminskih cen električne energije upoštevati druge faktorje.

V tej disertaciji predstavljamo model dolgoročnih terminskih pogodb na pod-
lagi spremenljivk, ki vplivajo na ponudbo in povpraševanje po električni energij in
na premijo tveganja. Specifični model za dolgoročne terminske cene električne en-
ergije iz skandinavske borze Nord Pool pogojuje informacijska množica, ki vsebuje
dolgoročne terminske cene surove nafte, premoga, zemeljskega plina, emisijskih do-
volilnic, uvožene električne energije ter aluminija. Premijo tveganja modeliramo kot
funkcijo časa trajanja do dobave. Vse spremenljivke imajo tedensko resolucijo.

Na podlagi spremenljivk v informacijski množici sestavimo vektorski avtoregre-
sijski model (VAR). Kointegracijska analiza razkrije eno kointegracijsko povezavo
med spremenljivkami, v kateri so vse spremenljivke značilne razen cene zemeljskega
plina. Zaradi naključnih sil se cene teh dobrin kratkoročno lahko gibljejo neodvisno
od drugih cen, vendar med njimi obstaja dolgoročno ravnotežje, ki sili te cene k
skupnemu dolgoročnemu ravnovesju. Cena z borze Nord Pool se poveča približno v
razmerju 1:1 s ceno surove nafte, malo več kot v razmerju 1:1 s ceno aluminija in malo
manj kot v razmerju 1:1 s ceno premoga. Po drugi strani cena z borze Nord Pool pade
v razmerju 1:1, ko cena z borze EEX naraste in pade za 0.15% , ko cena emisijskih do-
volilnic naraste za 1%. Kointegracija sicer nakazuje neučinkovitost trga dolgoročnih
terminskih pogodb električne energije, vendar je ta lahko tudi posledica nihanja
premije tveganja. Ugotovimo tudi, da cene surove nafte, premoga, zemeljskega plina
in aluminija vplivajo na cene emisijskih dovolilnic in obeh cen električne energije,
vendar obratni vpliv ne obstaja.

Strukturna analiza razkrije močno enosmerno Grangerjevo vzročnost vseh spre-
menljivk na cene emisijskih dovolilnic in na obe ceni električne energije. V sis-
temu prevladuje dolgoročna dinamika, medtem ko je kratkoročna dinamika precej
šibka. Kovariančna matrika preostankov kaže na zelo močno sočasno dinamiko, kar
nakazuje da se večina kratkoročnih nihanj dogaja v času kraǰsem od enega tedna.
Strukturni VAR pokaže, da večina dinamike dolgoročnih terminskih cen električne
energije izhaja iz šokov v ceni surove nafte, ki je najbolj dominantna spremenljivka
v sistemu. Ugotovimo tudi, da je čas trajanja do dobave značilen samo pri ceni
emisijskih dovolilnic in ceni električne energije iz borze EEX. To nakazuje, da je v
obdobju, ki ga analiziramo, dinamika premije tveganja v cenah iz borze Nord Pool
konstantna glede na čas trajanja do dobave.

Ključne besede: cene električne energije, trg električne energije, dolgoročne ter-
minske cene, temeljni modeli, vektorska avtoregresija, kointegracija, strukturni VAR.
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Introduction

Electric power system has always been regarded as natural monopoly due to the
huge and expensive grid system necessary for its operation. Only in the last decade
of the 20th century, the electricity market has been partially deregulated. While
electricity supply, demand, and trading is deregulated, the transmission and dis-
tribution grid operation is still under strong regulation. Electricity has become a
traded commodity, but with a few important distinctions, which require electricity
to be treated at least slightly different from other commodities. Most electricity
markets are still evolving and we have witnessed a large progress in competition
since the beginning of the deregulation process. Because of the limitations in elec-
tricity production, transport and storage the price of electricity has become one of
the most volatile among traded commodities. High uncertainty of electricity prices
put a strong incentive on the investors to reduce the price-related risks.

Deregulation brought forth another important aspect of energy markets. In more
mature markets, we can observe a significant connection between different prices of
energy, which serve either as fuel for generating electricity or as a substitute in
electricity use. This strongly indicates that energy markets are integrated both in
terms of price and geographical inter-dependence. High energy prices and hence
increasing price elasticity have significantly strengthened the integration between
different energy markets. Electricity market therefore cannot be treated as individual
anymore. Therefore, they require to be modelled as a part of regional or global energy
market.

When it comes to decision-making (trading, investment, portfolio and asset man-
agement, etc.), each market is dominated by information, which influences individual
decisions. The quality of this information largely depends on market transparency,
which has, in case of electricity market, improved significantly with the introduction
of electricity exchanges. Although some still struggle with low liquidity in the spot
market and even low trading frequency in forward market, they do provide at least
some information about the competitive market price. Investors in electricity mar-
ket are trying to reduce the price-related risk with forwards and options. Instead
of waiting till the start of delivery period and risk unfavourable price outcomes,
the investors are rather willing to enter contracts long before the delivery period if
expectations about the price during that delivery period are favourable. A variety
of forward and option contracts are traded on the exchange with time-to-delivery
spanning from one week to several years, giving investors a variety of choices to
hedge against the price-related risk. The volume of forward trading on electricity
exchanges is increasing in general and in some markets the volume of forward trading
far exceeds the volume of physical trading on the spot market. Still, a high liquidity
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of the spot market is the first prerequisite for a successful operation of the forward
market.

Motivation

The environment that investors face in electricity market is changing rapidly. Since
deregulation, the excess capacity in electricity market has gradually been reduced
and the investments in new capacity could not follow the growth in consumption.
This caused the overall trend of increasing wholesale prices in this period. In recent
years, we have also witnessed a shift in electricity production technology - from tra-
ditional coal and nuclear to natural gas and renewable sources. The shift is therefore
from fuels with reasonably stable fuel prices to fuels with very unstable fuel prices.
The market also changed dramatically with the introduction of emission allowances,
which have a strong influence on the operation of carbon emitting power plants. Such
structural changes in the market increases the long-term uncertainty of electricity
prices, hence the risks in portfolio and asset management increase.

We identify four motives to study the dynamics of long-term electricity forward
prices:

1. Long-term positions in electricity market can only be properly hedged
by entering long-term electricity forward markets.

Commodity forward markets are normally focused on contracts with time-to-
maturity up to 1.5 years. Since the correlation between short-term and long-
term prices is high in many markets, long-term risks can be hedged with roll-
over hedging using short-term and mid-term forwards and futures. Unlike most
commodities, electricity cannot be stored to any great extent. In the empirical
analysis of forwards from Nord Pool, Koekebakker and Ollmar [1] show that
the correlation between short-term and long-term electricity futures is low.
They conclude that short-term contracts are not appropriate for hedging long-
term exposures in electricity markets, such as long-term procurement costs and
production revenues. While far-maturity exposures can normally be hedged
with short-term positions, electricity companies can only properly hedge them
with long-term trading.

2. Existing short-term models fail to properly capture the dynamics of
long-term electricity forward prices. Due to different dynamics between
short- and long-term electricity forward prices, a model designed to capture
the dynamics of electricity spot prices or short-term forward prices cannot be
applied in forecasting long-term forward prices. Prices of long-term and short-
term forward contracts are driven by different market forces, and therefore a
model to capture the long-term forward prices should be designed differently
from short-term electricity price models.

3. Investors could benefit from models that would be able to forecast
the expected price changes in long-term electricity forwards.

While the efficient market hypothesis states that future changes in asset value
cannot be forecasted [2], prices of similar commodities are often found to be
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cointegrated, which reflects the temporary arbitrage opportunities between
the markets [3]. If such arbitrage opportunities exist, the future changes of
electricity prices could be forecasted by, for example, looking at the past values
of prices of similar commodities. Investors could thus benefit from identifying
how the expected changes are influenced by these prices. Hence, they would be
able to find a model that converts this information to a forecast of the future
change.

4. Modern asset valuation prefers using forward prices instead of fore-
casted future spot prices.

Investors in electricity market need to have relevant information on electric-
ity prices in future, in order to properly value existing and planned assets.
Long-term information about electricity prices is one of the most important
variables in these asset valuations. Investors in new production capacity need
to estimate the long-term expected spot prices. Alternatively, modern asset
pricing suggests using forward prices instead of expected spot prices, since for-
ward prices already incorporate the appropriate level of market price of risk.
Unfortunately, the current information on prices in distant future, e.g. 10 years
ahead, cannot be observed in the market, since forward contracts with these
delivery periods are not traded on the exchange. The term structure of for-
ward contracts typically ends 5 to 6 years ahead. Investors usually follow two
basic strategies when estimating the value of the long end of any price term-
structure. The first would be to perform technical analysis of past electricity
prices movements and use e.g. extrapolation to estimate the value of forward
contracts beyond the traded horizon. This strategy is often referred to as tech-
nical analysis or chartism [4]. Since the prices of forward contracts beyond the
traded horizon may be driven by different or additional market forces than the
prices of exchange traded contracts, fundamentalist predict these prices and
make trading decisions with the help of underlying fundamental factors, which
govern the prices beyond the traded horizon (see, e.g. Povh et al. [5]). In case
of electricity, the later strategy usually gives better results [6].

The most accurate information about the value of electricity with a certain de-
livery period can only be obtained in case of liquid forward market. The absence of
accurate information indicates a need for trading horizons on electricity exchanges
to be extended to future as far as possible. This would result in better market
transparency, which is important not only for the purpose of investment analyses
mentioned above, but also for the purpose of global benchmarking. Publicly avail-
able long-term price indicators in a particular electricity market would also be useful
for investors and other institutions outside the market.

Goals

We define the following major goals of this thesis:

1. The most important goal of this thesis is to identify what drives the dynamics
of the long-term forward prices. Most of the previous research in this area is
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focused on the short-term forward market, while the long-term forward market
is usually ignored, since the reliable long-term data was usually insufficient
for serious analysis, till recently. Identification of dynamics is important to
understand the price behaviour of long-term forward prices in the past as well
as for better forecasting price dynamics in future.

2. In order to capture the dynamics of long-term electricity forward prices we
need to set up a theoretical framework of the underlying process in terms
of expected electricity supply and demand as well as risk premium. The in-
formation set, which the expected price change is conditioned upon should
include fundamental variables that influence the expected supply and demand
for electricity as well as the risk premium. Since some of these variables may
be unobservable, our goal is to find suitable proxies for their values. The goal
is not to identify each and every variable that expected price changes are con-
ditioned upon, but to identify only the main drivers and variables that can
capture them.

3. Depending on information set we intend to design a model that should be able
to capture the underlying dynamics of the long-term electricity forward price
formation. The model should capture the short-run dynamics, so that it is able
to forecast short-term expected changes, as well as the long-run dynamics in
order to forecast forward prices beyond the traded horizon.

4. The obtained model will be useful for identifying the hidden structure of the re-
lationships between the variables in the information set. We intend to identify
these relationships and what they can tell us about the future price dynamics.

The lack of reliable market data is the greatest drawback, when focusing on the
long-term markets. Information which influences the long-term electricity forward
prices is often not reliable and asymmetric or private. We design a specific model
for Nordic electricity market, which is one of the oldest electricity markets with
high transparency and easily accessible financial and operational data needed for
the analysis.

Contributions

In this thesis the results of the above mentioned work are presented and the contri-
butions of our work can be summarised as follows:

1. Stochastic model for long-term electricity forward price. Theoreti-
cal background on long-term forward price process is presented in terms of
expected supply and demand for electricity as well as of the risk premium.
For each of these components, we find suitable variables that capture most of
the influences as implied by the theory. The model is general enough to be
upgraded with additional information.

2. Estimation procedure for model parameters. Our model is based on
variables that influence each other. To avoid a priori assumptions on causal
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structure and exogeneity, we design a vector autoregressive model with 7 en-
dogenous variables, one exogenous variable and 8 intervention dummy vari-
ables. We show that this model is suitable for empirical tests and analyses.

3. Modelling the uncertainty structure for long-term electricity for-
ward prices. The uncertainty structure is identified with the detailed analy-
sis of the residuals obtained from the vector autoregressive model. We identify
the common trends and cycles driving the permanent and transitory part of
long-term electricity forward prices. Impulse response analysis, forecast error
variance decomposition and identification of structural shocks are used to iden-
tify the hidden structural relationships between the variables in the short- in
long-run.

4. Stochastic model for long-term electricity supply, demand and gen-
eration fuel prices. We set up a theoretical framework in which these three
components influencing the long-term electricity forward prices are formed. We
define the variables which influence these components as implied by the the-
ory. These variables are then divided into three types of information. The first
we call high resolution common-knowledge information, which we use to set
up the long-term electricity forward price model. The second is low resolution
common knowledge information, which could be used in the model, but would
require larger estimation sample. The third we call asymmetric information,
which involves private information and thus cannot be used for modelling.

These contributions are also appearing in two papers. The first titled Modelling
long-term electricity forward prices was published in IEEE Transactions on Power
Systems [7], while the second titled Modelling the structure of long-term electricity
forward prices at Nord Pool was accepted for publication in Power System Handbook
[5]. Both papers are attached at the end of this thesis.

Outline

In the next chapter, we briefly present the works related to the modelling of long-
term electricity forward prices. We restrict ourselves mainly valuation of assets,
commodities and commodity derivatives. At the end of the chapter, we present the
basic idea behind this thesis and how it differs from related works. The Chapter 2
provides a basic introduction to electricity markets and asset valuation. We then
present theoretical concepts of modelling commodity forward prices and briefly dis-
cuss some of the main challenges for the case of electricity forwards.

Chapter 3 provides our definition of long-term electricity forward prices and the
data generating process behind them. This is followed by the model setup based on
the risk adjustment of the expected spot price. This approach separates the mod-
elling of forward price into modelling the expected spot price and modelling the risk
premium. The formation of expected spot price is further elaborated into modelling
expected long-term electricity supply and demand and into general framework how
to model them. Next, we present the fundamental factors which influence the sup-
ply and demand. We also provide an overview of the risk premium in the long-term
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electricity forwards and review the empirical findings on the risk premium in the
electricity market. The chapter ends with the definition of the information set, the
variables that are included and their unconditional distribution.

In Chapter 4, we discuss and present the data we choose for variables in the
information set. The basic descriptive statistics is included along with a principal
component analysis. At the end of this chapter the variables are tested for their order
of integration. Chapter 5 centers around the model setup based on the multivariate
autoregressive framework. The main focus of this chapter is on the cointegration
test followed by the identification of cointegration space and testing the restrictions
on cointegration and adjustment dynamics.

In Chapter 6, we perform several structural analyses on the given model. These
include Granger causality test, impulse response analysis, variance decomposition
and identification of common trends and cycles. The results of these analyses are used
to identify the structural representation of the model. Structural VAR framework is
then presented and two types of structural identifications are estimated. The first
focuses solely on the contemporaneous interdependencies between variables, while
the second identification separates the structural shocks into permanent and transi-
tory shocks. Economic interpretation of the resulting structural shocks is discussed
and possible implications of this structure are given. At the end of Chapter 6, we
focus on the short-run structure of the model and possible applications of the model.
Based on the findings in previous chapters, a simplified model is estimated, which
captures only the most important and significant short-run and long-run features of
the model. In Chapter 7, we summarise the main findings of this thesis and provide
possible directions for future work.

6



Chapter 1

Related Work

Modelling long-term commodity forward prices is not often discussed in academic
literature. In most markets, the focus on long-term forward market is not essen-
tial since the long-term risks can be hedged with the so-called roll-over hedging.
Consequently, the feasibility of hedging long-term forward commitments with short-
term futures contracts has received an increased attention in the last decade. Un-
der certain conditions roll-over hedging has several important advantages and this
provides some explanation for the lower liquidity and large bid-ask spreads in the
available long-term forward contracts. Koekebakker and Ollmar [1], however, show
that the correlation between the prices of short-term and long-term electricity for-
ward contracts is very low. This suggests that hedging long-term commitments with
short-term forward contracts may prove disastrous in case of the electricity market.

Modelling short dated commodity derivatives received a lot of academic attention
in past. However, the literature on energy and energy derivatives is quite recent.
Among them, the focus on long-term evolution of oil prices is worth mentioning.
Schwartz [8] employs multi-factor models estimated on short-term oil futures and
tests the performance of these models on the available long-term oil futures obtained
from Enron. Pindyck [9] models long-term evolution of oil, coal and natural gas prices
with mean reversion models, using the theory of depletable resources. Schwartz
and Smith [10] use long-term forward prices as an equilibrium to which short-term
prices revert. They assume that commodity prices are mean reverting in general,
but there is also the uncertainty about the equilibrium (long-term) price to which
(short-term) prices revert. In case of electricity derivatives, the research literature
can be summoned into three groups. One line of research is focused purely on the
empirical analysis of observable electricity futures and forward prices. Byström [11]
investigates the hedging performance of electricity futures from Nordic electricity
market using the minimum variance hedge ratio. Solibakke [12] uses GARCH model
specification for prices of one-year-ahead forward contracts from Nord Pool.

The second line of research in electricity prices is the use of multi-factor mod-
els. The state variables in these papers are modelled as non-observable, where the
first variable is needed to capture randomness in the short-term movement and the
second variable to capture the randomness in the long-term price trend (reverting
level). Lucia and Schwartz [13] were probably the first to use multi-factor models
for electricity spot prices. They extended the model from Schwartz and Smith [10]
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by incorporating seasonality with deterministic sinusoidal function. Further exten-
sion of this model is presented in Villaplana [14] with the inclusion of jump diffusion
process with non-constant intensity, while the risk premium is captured with season-
ally dependent jump intensity. Bjerksund et al. [15] and Koekebakker and Ollmar
[1] were the first to use Heath, Jarrow and Morton [16] framework to model the
electricity forward curve. Koekebakker and Ollmar [1] show that unlike the other
commodity markets where two or three factors successfully explain over 95% of vari-
ations in forward curve, a two factor model can explain only about 75% of variations
in electricity forward curve.

The third line of research is based on more fundamental approach that orig-
inates in valuation of electricity with production cost models. Unlike the use of
non-observable state variables in the works mentioned above, the movements in
electricity prices can be explained with several (mostly) observable state variables
that influence the supply and demand. These variables have strong theoretical back-
ground; their interpretation is much easier, while models based on these variables
usually lead to the results that are more consistent with observable market prices.
This line of research is pursued by Eydeland and Geman [17], Pirrong and Jer-
makyan [18], Barlow [19], Eydeland and Wolyniec [6], Bessembinder and Lemmon
[20], Longstaff and Wang [21], Skantze and Ilic [22], Johnsen [23] and Skantze et al.
[24]. Pirrong and Jermakyan [18] present a supply/demand model with two state
variables; fuel price (natural gas) and electricity demand. They introduce the risk
premium with the explicit time and load dependent function. They find that the
price skewness induced by spikes is the main driver of the risk premium. Right
skewness which dominates during high demand induces the long hedging pressure,
whereas higher price variance which dominates during low demand induces the short
hedging pressure. Similar results were obtained by Bessembinder and Lemmon [20]
who presented the risk supply/demand model with fuel price and demand as state
variables. One of their main findings is that forward price tends to be higher than
expected spot price whenever the expected demand or volatility is high due to the
right skewness of the spot price distribution. Eydeland and Wolyniec [6] go a step
further and present a model where (beside fuel prices and demand) the outages,
weather and emission allowances are also considered as stochastic variables. The
purpose of this so-called hybrid model is to incorporate all the basic drivers that
influence the electricity production costs, while the transformation from production
costs to spot prices or forward prices can be obtained by multiplication and scaling
parameters, which are calibrated on real market data. Longstaff and Wang [21] tried
to establish the relationship between the risk premium and the difference between
available generating capacity and expected demand. Finally, Barlow [19], Skantze
and Ilic [22], Johnsen [23] and Skantze et al. [24] use models with similar state vari-
ables without any consideration of forward contracts. It should be noted that one
possible problem in this class of models is the unavailability of consistent historical
data on state variables.

Apart from long-term oil model from Pindyck, or short-term models applied on
long-term contracts by Schwartz [8] and Schwartz and Smith [10], there are not any
serious publications on modelling long-term forward prices. Niemeyer, however, [25]
reports on a forward price and volatility forecasting model that combines the risk

8



adjustment and external long-term electricity price forecasting models. He points out
the huge importance of reliable long-term information on electricity forward prices
for asset valuation; however, no details about the model structure are presented.
This indicates that such models, if successful, are often considered as corporate
comparative advantage and therefore often kept secret.

In this thesis, we base our research on fundamental models. We follow a general-
to-specific approach (see Hendry and Mizon [26]), where a general theoretical model
that drives the long-term electricity forward prices is defined first. We assume that
the dynamics in the long-term forward prices can partly be explained with observable
fundamental factors influencing long-term supply, demand and risk premium. The
other part of the dynamics is treated as completely stochastic, and can be described
as independently identically distributed error process. The general model is then
designed to match the specifics of the long-term forward prices from Nord Pool.
Hence, fundamental variables are chosen to best represent the theoretical influences.
While the short-run relationship between fundamental drivers is of the main interest
in some of the works outlined above, our contribution is to analyse how the same or
similar fundamental drivers interact in the long-run, and whether they can be used
to predict a part of the future dynamics of the long-term electricity forward prices.
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Chapter 2

Theoretical background

Forward contract is a type of security in a term market, which guaranties the owner a
future delivery of the underlying at an agreed price. In Nordic electricity market this
does not imply physical delivery of electricity, only the difference between realised
spot price during the delivery period and the contract price is exchanged. Unlike
other commodities where forwards are specified for a delivery at specific future date,
electricity is a flowing commodity and electricity forwards are specified for a delivery
period. Since the underlying in these contracts is the electricity spot market price,
with hourly resolution, electricity forwards can be viewed as a portfolio of individual
forwards with delivery time at a specific hour. Hence, the underlying of electricity
forwards is a time average of the electricity spot prices during the delivery period.
Futures contract is a more standardised type of forward contract, usually traded
on an exchange. While forwards are settled only during delivery period, futures are
settled during trading and delivery period through the use of margin accounts.

Since futures with long delivery periods require significant amount of cash in
margin accounts, investors seem to prefer forward type of settlement for long-term
contracts. To increase the liquidity of these contracts, Nord Pool provides trading
with standardised forward contracts with delivery period of a month, a quarter
and a year, whereas weekly and daily contracts are traded as futures. Forwards
from Nordic electricity market are therefore not typical forward contracts, since the
settlement occurs periodically during delivery period, e.g. monthly. These contracts
therefore correspond to the definition of swaps in which two counterparties agree on
the exchange of periodic payments on a given notional amount of money for a given
length of time. These payments for example depend on the difference between a
fixed interest rate and a particular market determined floating rate. Since forwards
and futures differ only in terms of settlement, they can be treated as the same if
deterministic interest rate is assumed (Cox, Ingersoll & Ross [27]).

2.1 Why are forward prices important?

Securities like forwards, futures or swaps are primarily intended to offer investors
an opportunity to hedge the uncertain future price of the underlying. In electric-
ity term markets, investors are motivated by hedging uncertain future cash flows
or they are speculating on various derivative markets and spot market. Electricity
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producers are typically facing uncertain future production revenues, while electric-
ity consumers (retailers) are facing uncertain future procurement costs. Producers
and consumers are therefore motivated to invest in the forward market in order to
decrease the risk associated with the uncertainty of the future spot price. In case
forwards are purely financial contracts without obligation of physical delivery, this
attracts outside speculators who are willing to bear some of the future spot price
risk for a hope of receiving a risk premium.

Since risk management is the driving force of each forward market, risk premium
depends on the risk preferences of investors, whereas the liquidity of the forward
market depends also on the specifics of the underlying. While commodity forward
markets are normally focused on contracts with time-to-maturity up to 1.5 years,
the focus horizon of some electricity forward markets is up to 5 years into future and
still increasing. Since the correlation between the short-term and long-term prices is
high in many markets, long-term risks can be hedged with roll-over hedging using
short-term and mid-term forwards and futures. Unlike most commodities, electricity
cannot be stored to any great extent. In an empirical analysis of forwards from
Nord Pool, Koekebakker and Ollmar [1] show that the correlation between short-
term and long-term electricity futures is low and conclude that short-term contracts
are not appropriate for hedging long-term exposures in electricity markets, such as
long-term procurement costs and production revenues. While far-maturity exposures
can normally be hedged with short-term positions, electricity companies can only
properly hedge them with long-term trading.

2.1.1 Modern asset pricing

Forward prices can also serve as important information carriers in that they provide
valuation signals for strategic decisions like investments and mergers & acquisitions.
Modern asset or project evaluation methods like Modern Asset Pricing (MAP) (see,
e.g. Salahor [28]) or the theory of real options (Dixit and Pindyck [29]) suggest using
forward prices instead of projected future spot prices. Investments are traditionally
valued with Discounted Cash-Flows (DCF), in which projected future spot prices
are used to estimate the expected future cash-flows of an investment. The main
drawback of DCF is that it considers the risk in ad hoc through the choice of a
discount rate, while the influence of risk on the value is often assessed with some
sensitivity analysis of valuation results. Although some organizations use Capital
Asset Pricing Model (CAPM) to determine their corporate discount rate or cost
of capital, CAPM is not always successful in measuring the market price of risk.
Forward prices, on the other hand, represent the market value of future delivery,
and they properly measure the risk related to the uncertainty of the future spot
prices. The use of forward prices therefore bypasses the problem of ad hoc selection
of appropriate discount rates, allowing the assets to be valued over time with a
risk-free interest rate.

11



2.2 Valuation of commodity forwards

Valuation of commodity derivatives originates from Keynes hypothesis that investors
who are motivated to hedge unfavourable future price movements sell futures con-
tracts to speculators [30]. He and Hicks developed a theory of normal backwardation,
that is, futures prices tend to rise over the life of a futures contract, because hedgers
tend to be short in the futures market and since speculators must be motivated
to sell futures [31], [32]. Since then, several views on commodity forwards were in-
troduced and developed. Fundamentally they differ only in terms of modelling the
expected value of future payoffs, and in terms of adjustment of this expected value
for a time value of risk. A classic view on the value of commodity and commodity
forwards is given by risk-return finance models. Among them, Capital Asset Pricing
Model (CAPM) and its variants are most widely applied. Option pricing theory of-
fers another view on the value of commodity forwards. Cox and Ross [33] made an
important contribution with their method of risk neutral valuation. By definition, a
risk-neutral probability measure is a measure under which the current price of a se-
curity equals the present value of the discounted expected value of its future payoffs
given a risk-free interest rate. While the risk neutral dynamics of commodity prices
is not directly observable, one can infer some information about this dynamics from
the observable prices of commodity forward and spot prices. Risk neutral dynamics
is therefore obtained, based on certain assumptions about the evolution of commod-
ity spot prices, while derivative prices are obtained through no-arbitrage principle
and convenience yield. Equilibrium models offer alternative solution to model risk
neutral dynamics. They involve modelling equilibrium spot prices from the under-
lying fundamentals of supply and demand. Commodity forward prices can also be
valued with the theory of storage. The value of storable commodities is transferred
between periods which inherently influence the equilibrium in commodity prices.

2.3 Modelling risk neutral price dynamics

A complex structure of observed commodity prices has lead to different approaches
to the problem of identifying the risk neutral probability distribution. These ap-
proaches can be broadly classified as parametric and nonparametric. Parametric
methods choose a distribution family and then try to identify functional specifi-
cation and parameters for this distribution that are consistent with the observed
prices. Non-parametric techniques do not pre-specify functional relations and offer
more flexibility by allowing more general functional forms. Regardless of the ap-
proach how to obtain the risk neutral probability distribution, the success of these
techniques is always measured against the observed prices of commodities and their
properties. Empirical research on commodity prices has documented the following
properties (adapted from Seppi [34]):

• mean reversion in prices (Bessembinder et. al [35], Schwartz [8])

• random backwardation (when spot prices are high and revert down to mean)
and contango (when spot prices are low and revert up to mean) in futures
prices (Litzenberger and Rabinowitz [36])
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• less than perfect correlation between short- and long-term forward prices
(Clewlow and Strickland, [37])

• higher volatility in short-term forward prices and lower volatility of long-term
forward prices (Bessembinder et. al [35])

Electricity prices show similar properties. However, few distinct properties are worth
mentioning:

• strong mean reversion with seasonal and weather dependent mean price and
volatility (Kaminski [38])

• high (low) volatility when prices are high (low) suggesting heteroscedasticity
(Kaminski [38])

• price spikes (jumps followed by strong mean reversion to normal levels) and
skewed price distribution (Kaminski [38])

• low correlation between short- and long-term forward prices (Koekebakker and
Ollmar [1]).

2.3.1 Single factor models

A classic model for risk neutral dynamics, proposed by Black and Scholes [39] identify
the risk-neutral dynamics as a Geometric Brownian motion

dSt
St

= µdt+ σdwt (2.1)

where St is the spot price, µ is the drift rate of St equal to risk-free interest rate,
σ the volatility equal to true annualised standard deviation and wt is the Wiener
process. Black and Scholes formula does not involve mean reversion, seasonality,
heteroscedasticity, or price spikes and is therefore hardly appropriate to model elec-
tricity prices. Generalizations of Black-Scholes formula may include replacing σ with
time and price dependent volatility v(St, t) and adjusting µ for a convenience yield
δt

dSt
St

= (µ− δt)dt+ v(St, t)dwt. (2.2)

or mean reversion
dSt
St

= a(b(t)− St)dt+ v(St, t)dwt. (2.3)

which is known as Ornstein-Uhlenbeck process. In (2.3) b(t) is the time-varying re-
verting price, while a is the speed of reversion. These generalizations of Black-Scholes
formula are still largely incompatible with prices observed in electricity markets.
The specifics of electricity prices outlined at the beginning of this section, call for a
risk-neutral process that would accommodate and interpret most properties of the
observable market and empirical data. An extension of mean reverting model (2.3)
is the mean-reverting jump-diffusion model (MRJD)

dSt
St

= a(b(t)− St)dt+ v(St, t)dwt + φ(St, t)dJt (2.4)
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where φ(St, t) is the jump magnitude and dJt the Poisson process (see, e.g. Clewlow
and Strickland [37]). MRJD model therefore explain the stochastic dynamics of St
with two sources of randomness dwt and dJt. This models is better in replicating
the skewed distribution of observable electricity spot prices, however it requires a
high speed of mean reversion in order to reduce the spot price following a large
positive jump. This has the effect of removing too much variability accompanying
the dynamics when electricity spot prices are high.

2.3.2 Multifactor models

The true dynamics of different derivative prices obtained on risk neutral dynamics of
single-factor models are highly correlated, since the underlying risk neutral dynamics
is driven by only one random process. Schwartz [8] show that commodity derivatives
are better explained with multiple sources of randomness, while Koekebakker and
Ollmar [1] show that perhaps up to 10 factors would be needed to capture 95% vari-
ation in electricity forwards. The idea of multifactor models is that prices, although
driven by a variety of information, can always be summarised with a relatively small
number of factors.

Gibson and Schwartz [40] present a two-factor model in which the commodity
spot price (St) is given by a Geometric Brownian motion whose rate of growth is
corrected by a stochastic mean-reverting convenience yield (δt):

dSt = (rt − δt)Stdt+ σsStdws
dδt = aδ(bδ − δt)dt+ σδStdwδ

(2.5)

where rt is interest rate, aδ the mean reversion speed of convenience yield, bδ the
mean reverting convenience yield, σs and σδ volatility of both factors, while dws and
dwδ are correlated increments of Brownian motion processes.

A model from Schwartz and Smith [10] is also based on two factors, the first
(Xt) representing the short-run price deviations and the second (ξt) representing
the long-run equilibrium price level:

dXt = −axXtdt+ σxdwx
dξt = −µξdt+ σξdwξ

(2.6)

where ax is the speed of mean reversion, µξ the drift in equilibrium price, σx and σξ
volatility of both factors, while dwx and dwξ are correlated increments of Brownian
motion processes. Schwartz [8] extend the Gibson and Schwartz model with a third
factor representing a stochastic instantaneous interest rate. He finds that including
stochastic interest rates does not explain a lot of additional variation in commodity
prices. Examples of multi-factor spot price models are also structural models where
demand and supply are modelled separately with stochastic factors. A three-factor
electricity price model from [34] models the temperature, fuel costs and capacity as
stochastic variables

dxt = µx(xt, t)dt+ vx(xt, t)dwx
dyt = µy(yt, t)dt+ vy(yt, t)dwy

dmt = am(bm(t)−mt)dt+ vm(mt, t)dJt

(2.7)
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where xt and yt are temperature and fuel costs respectively, whereas mt is capacity
modelled as mean reverting process with Poisson jump volatility. Similarly Eydeland
and Geman [17], Eydeland and Wolyniec [6] and Pirrong and Jermakyan [18] also
use multiple factors which represent different components of electricity supply and
demand.

Next step in modelling commodity forward prices is to model the whole forward
curve rather than the price of a single contract. A class of multi-factor continuous
forward price models such as Heath, Jarrow, and Morton [16] model generally has
the following form

dFt,T = µ(Ft, t, T )dt+
∑
j

σj(Ft, t, T )dwjt , 0 ≤ t ≤ T (2.8)

where µ(Ft, t, T ) is the risk neutral drift function and σj(Ft, t, T ) is the j-th factor
sensitivity of the forward price to a common set of uncorrelated Wiener processes
dwjt . For each forward price and each delivery date a separate specification of (2.8)
is be made.

Under Efficient Market Hypothesis (EMH) developed by works of Samuelson
[41] and Fama [42], efficient markets make forward prices a random walk. EMH
implies that market prices fully reflect the information that is available to investors.
Expected future changes can therefore only be the result of completely unpredictable
events i.e. random walk. EHM implies that µ(Ft, t, T ) = 0, which leads to the general
Heath, Jarrow and Morton (HJM) model framework

dFt,T =
∑
j

σj(Ft, t, T )dwjt , 0 ≤ t ≤ T (2.9)

This representation allows that the empirical changes in forward prices are not
perfectly correlated along the forward curve or with the spot prices. The short-term
forward prices can thus be more sensitive than long-term forward prices

σ(Ft, t, T ) > σ(Ft, t, τ), T < τ. (2.10)

The HJM model evolution of forward prices implicitly induces the spot price dy-
namics, since the spot price is a special case of the forward price when t = T . The
factors with bigger influence have larger sensitivities which allow the prices to be
heteroscedastic. Sensitivities can also change over time, taking into account season-
alities or the current shape of the forward curve Ft itself. They can be calibrated
directly from empirical correlations of forward price changes.

2.4 Cost-of-carry

Prices on storable commodities can also be set up based on the assumption that
a rational, profit maximizing investor can carry the good as inventory from the
current to future periods. Deaton and Laroque [43] show that in the absence of
inventory, the spikes observed in commodity prices are solely determined by the
production and consumption at that time. Commodity futures prices, on the other
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hand, are often backwardated indicating that they decline with time-to-maturity.
Backwardation implies that immediate ownership of the physical commodity entails
some benefit or convenience which a deferred ownership via a long forward position
does not. This benefit is expressed as convenience yield and the relationship between
the ownership of physical commodity and forward position can be expressed with
the standard cost-of-carry model

Ft,T = Ste
(r+c−y)(T−t) (2.11)

where r is the risk-free interest rate, c the storage costs and y the convenience yield
all expressed in relative (i.e. percentage) values. The case r + c − y < 0 gives rise
to backwardation and may be interpreted as a positive net convenience yield, and
vice versa. The theory of storage of Kaldor [44] and Working [45], [46] explains con-
venience yields in terms of a time option, since the holder of a storable commodity
can decide when to consume it. If it is optimal to store a commodity for future
consumption, then it can be priced as an asset, but if it is optimal to consume it
immediately, then it can be priced as consumption good. Thus, a storable commod-
ity’s spot price is the maximum of its current consumption value and asset value.
In contrast, forward prices of storable commodities represent solely the asset value
of the deferred right to consume at the time of delivery. Inventory decisions are
important for commodities because by influencing the relative current and future
scarcity of the good they link its current consumption and expected future asset val-
ues. Since inventory is always physically constrained, this is link imperfect. Deaton
and Laroque (1992) model the spikes in commodity prices as arising from stockouts.
Thus, stockouts break the link between the current consumption and expected fu-
ture asset values of a good, which results in backwardation and positive convenience
yields. Due to physically constrained inventory, the probability of stockouts tends
to increase with time-to-delivery. This implies that the link between the spot and
forward commodity price gets weaker with increasing time-to-delivery.

2.5 Risk adjustment

The risk adjustment involves changing the distribution of the underlying price (spot
price) St in a way that it includes the risk associated with its uncertainty. Assuming
the price St follows a geometric Brownian motion (2.1), the price of risk, defined as
the excess return per unit of volatility, is then

λ =
µ− r
σ

(2.12)

where r is the risk-free interest rate, while µ and σ are the drift and volatility in
(2.1). The value of λ depends solely on the dynamics of St and not on the specifics
of the derivative. The derivatives with the underlying variable St should therefore
be valued with following risk neutral process

dS∗t
S∗t

= (µ− λσ)dt+ σdwt. (2.13)
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This risk neutral process therefore entails implicit specification of risk, since the risk
neutral probability measure already incorporates the effect of risk. Eydeland and
Wolyniec [6] argue that electricity forward price process should have the explicit
parameterization of the risk premia. The default assumption of zero risk-neutral
drift function in (2.9) relies on the ability to replicate the payoff of the forward
contract with trading on the spot market. This ability also relies on the assumption
that the forward price and the spot price converge at expiration. In case of electricity,
this is not true in the strict sense, since the average spot price during the delivery
period can be very different than the forward price at expiration. In this case, it
would be beneficiary to express the risk premium explicitly that is estimating the
expected value of the spot price during the delivery period Et[ST ] and adjusting this
value for risk rpt,T

Ft,T = Et[ST ] + rpt,T . (2.14)

Since electricity cannot be stored, this implies that it cannot be valued as an asset.
Therefore the risk neutral dynamics used for asset valuation is different than the
one in valuation of options on non-storable commodities. While the risk-neutral
expected return in asset valuation equals the risk-free interest rate, the expected
risk neutral return in options on non-storable commodities have no connection to
the risk-free rate, since these commodities cannot be carried from one time period to
another [34]. Hence, instead of cost-of-carry model (2.11), forwards on non-storable
commodities are more appropriately valued with

Ft,T = Et[ST ]e(r−λ)(T−t) (2.15)

where λ is the risk premium (in relative value), also referred to as the market price of
risk. In (2.15) the risk premium is therefore expressed explicitly indicating that one
needs to first obtain the expected future evolution of the spot price and then based
on the probability distribution of this expectation and based on the risk preferences
of investors estimate the risk premium λ. We outline two approaches to estimate
λ. The first is based on explicit parametric modelling, where the risk premium is
expressed as a function of different variables, while the parameters are calibrated
on real market data. The second is based on Capital Asset Pricing Model (CAPM)
and its variants.

2.5.1 Capital Asset Pricing Model

Capital Asset Pricing Model describes the relationship between the expected payoff
of a security and its risk. CAPM says that investors in risky term contracts, such as
electricity forwards, need to be compensated for the time value of money and risk.
The risk premium is defined as the difference between the expected spot price and
forward price

rpt,T = Ft,T − Et[ST ]. (2.16)

Black [47] shows that, in CAPM, the risk premium for term contracts is

rpt,T = βs(E(rm)− r) (2.17)

17



where E(rm) is the expected return in a general capital market, r the risk-free interest
rate, while βs is beta of the security defined as

βs =
cov(Et[ST ], rm)

var(rm)
. (2.18)

In case of electricity, beta is therefore the sensitivity of electricity price to a return
in the general capital market. For CAPM, forward price is therefore

Ft,T = Et[ST ] + βs(E(rm)− r). (2.19)

A risk associated with the ownership of an asset is comprised of systematic or un-
diversifiable risk and unique or diversifiable risk (see, e.g. Brealey and Myers [48]).
The first cannot be avoided, since it is correlated with the movements in general eco-
nomic activity and leads to non-zero risk premium. The second is not correlated to
the movements in general economic activity, has no influence on diversified investors
and leads to zero risk premium. Thus, securities with highly non-diversifiable risk
will have beta close to 1, while securities with completely diversifiable risk will have
beta around 0.

Although CAPM is able to capture the price of risk, it is not well suited for
pricing electricity forwards, since it assumes that (financial) electricity market is
also used for diversification of general investors. In financial electricity markets, the
participation of investors outside the industry is weak; hence, the dynamics of the
risk premium is mainly driven by producers and consumers, who are motivated by
hedging production and consumption. Bessembinder and Lemmon [20] show that
in the absence of outside speculators, different levels of risk aversion of producers
and consumers lead to non-zero risk premium in electricity forwards. Non-zero risk
premium attracts participants from outside the industry to include forwards in their
portfolios, which would gradually decrease the level of risk premium. Since financial
electricity markets are still in the process of removing the barriers to attract more
outside participation, one cannot expect that CAPM betas, which are estimated on
electricity prices, to properly measure the actual risk premium in electricity forwards.
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Chapter 3

Long-term electricity forward
price process

Electricity term markets consist of various contracts with different delivery periods
and times-to-delivery. In general, the prices of these contracts depend on the vari-
ables that influence the expected supply, demand and the risk premium. The fact
that electricity term prices behave differently in the short- and the long-run should
not be taken as evidence that both are conditioned on different variables. Deaton
and Laroque [43], [49] and Chambers and Bailey [50] show that the possibility of
storage tend to smooth the impact of supply and demand shocks on the spot price.
This smoothing, in turn, has an impact on the unconditional volatility of forward
prices. The costs of storage in case of electricity can be considered as extremely
high, therefore, one would expect even zero correlation between the short- and the
long-term forward prices. Small correlation which can be observed between these
prices is the result of the fact, that electricity can be partly stored at least indi-
rectly, by storing fuels or water for which the storage costs are considerably lower.
The transmission of supply and demand shocks in the spot price to forward prices
therefore depends on the possibilities of storing the supply and demand variables. In
case these variables are also traded as long-term forwards, the information on their
storage possibilities is already included in their forward prices. However, if there is
no trusted long-term information on these variables, the shocks they are causing to
spot prices is transferred to forward price only up to the time when their reserves
are expected to deplete. Beyond this horizon these variables have no influence on
the long-term forward prices.

3.1 Definition

In many commodity term markets, the prices of short-maturity contracts and prices
of far-maturity contracts behave similarly. In such case market participants can
hedge long-term risks with roll-over hedging using short-maturity contracts. When
maturity date closes, they are replaced with the next closest contract. Empirical
findings from Nordic electricity markets report that electricity term prices do not
behave that way [1]. Although prices always reflect the expected supply and demand
at the time of maturity, in case of electricity one cannot store electricity in times of
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low prices to hedge against the high prices in future. For this reason, the investors
facing the long-term electricity price risk can only properly hedge these risks by
entering the long-term electricity market.

In Nordic electricity exchange Nord Pool, electricity is traded on spot market
and derivatives market. Here, the spot market is referred to day-ahead market where
market participants buy or sell contracts for physical delivery of electricity for each
delivery hour in the next day. For this reason the day-ahead market is sometimes also
referred to as short-term forward market. The Nord Pool forward market consists
of forward contracts with time-to-maturity ranging from 1 day to 5 years. Con-
tracts with shorter times-to-maturity and delivery periods are called futures, while
contracts with longer times-to-maturity and delivery periods are called forwards. Be-
side time-to-maturity and delivery periods, they also differ in terms of settlement,
since futures are settled during delivery period as well as trading period, whereas
forwards are settled only during delivery period. The relevant benchmark for these
contracts is the spot price. Therefore, their cash flow depends on the difference be-
tween the realised spot price and the fixed contract price. Since forwards are not
settled during trading period and are traded till the beginning of delivery period,
they actually correspond to the definition of swaps, although we will continue to
denote them forwards.
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Figure 3.1: Electricity spot price and long-term forward price dynamics from Nord
Pool.

Figure 3.1 presents an example of the price dynamics for a forward contract
from Nord Pool with the delivery year T = 2007. Figure 3.1 demonstrates that
the forward-price dynamics is different from the spot-price dynamics when time-
to-maturity is high. As the maturity closes, the forward-price dynamics becomes
more similar to the spot-price dynamics. Long-term forward prices and short-term
forward prices (spot prices), therefore, appear to be governed by different laws, which
indicate the need to model them separately. The prices of short-maturity contracts
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are obviously very volatile due to short-term influence of weather, which influences
the production of hydro-power plants and also electricity demand. Their influence
is particularly high in markets with large share of hydro-power plants and their
possibility to store water for longer periods of time. Such is the Nordic electricity
market where hydro-power plants can store water up to one 1 year and more. Far-
maturity contracts are not influenced by weather since weather forecasts are not
available that far ahead and the influence of present precipitation on water storage
is insignificant that far in future. For this reason, we define long-term electricity
forward prices as prices of electricity forward contracts with a delivery period of one
year and time-to-maturity of more than one year (T − t ≥ 1 year).

3.2 Data generating process

In this thesis, we consider electricity forward prices as an outcome of the actively
traded financial electricity market, where investors are motivated by hedging pro-
duction and consumption or by speculation. Producers and consumers who face
uncertain future cash flows that depend on future evolution of electricity prices are
motivated to hedge their positions by trading on financial electricity market. Spec-
ulators, on the other hand, include electricity derivatives in their portfolios with the
sole expectation of profit. Both types of motivation generate supply and demand for
forward contracts. Both are influenced by information that, according to investors,
influence either the expected evolution of the future spot prices or the risk premium
assessed on the basis of their risk preference over the estimated probability distribu-
tion of the future spot prices. These preferences may also depend on the correlation
between these expected prices with the general capital market.

We assume the investors operate in a noisy rational expectation economy in which
some investors are better informed than others. Investors have rational expectation
about the link between the current signals and the current price, as in Grossman
and Stiglitz [51] and Admati [52], and the link between the current signals and the
next period’s price, as in Lucas [53]. When it comes to linking the current signals
to next period’s price, we distinguish between two types of investors:

• Uninformed investors. They possess only public information, usually referred
to the common knowledge of the unconditional distribution of the asset value.
We assume all uninformed investors possess common public information set
comprising mostly of market data, such as past prices and volumes and publicly
available information on fundamental factors.

• Informed investors. They possess private information about the asset’s funda-
mental value and observe its price. Informed investors’ information set there-
fore consists of public information set as well as individual private information.

A state when investors have different information about the current and future
value is called asymmetry of information. Information asymmetry is not the only
source of diversity in the trading process. We also assume that the structure of
the data generating process is not perfectly known to all investors; therefore some
investors may interpret the information in their information sets differently. While
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some investors have homogeneous beliefs, others have heterogeneous beliefs and this
divergence of beliefs does not vanish in time. In equilibrium, the outputs of the
trading process are signals that show diverse private information of investors as well
as heterogeneous beliefs.

We assume that any realised price change ∆ft+∆t is the sum of two unobservable
components

∆ft+∆t = ∆at+∆t + ∆bt+∆t (3.1)

where ∆at+∆t is expected component driven by public information set and ho-
mogenous beliefs, while ∆bt+∆t is random component driven by private information
and heterogeneous beliefs (see Figure 3.2). In efficient market, the expected com-
ponent ∆at+∆t evolves as a random walk in which each innovation reflects updates
to the public information set. The expected component can therefore be termed as
efficient price. Assuming investors are rational in a way that they learn from past
experience and use all available information to get the best expectation of the price
change, the random component of the price change should be identically and inde-
pendently distributed (iid). When the realised price change is known, it becomes a
part of new information set available to all investors. Information sets are continu-
ously updated and the forward prices are continuously adapted to new information
sets. Market participants are continuously trying to guess the future evolution of the
forward price by seeking as much possible information that could influence the future
evolution and continuously trying to update their beliefs based on past experience.
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Figure 3.2: Data generating process

3.3 Setup

The forward price data generating process is governed solely by demand and supply
for forward contracts. Therefore, an investor trying to predict the future change
in the forward price must interpret the information that influences supply and de-
mand. For valuation of forward contracts, we decompose the forward price into to
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aggregate market expectation about the future evolution of the spot price, which we
denote as expected spot price, and the aggregate risk preference over the probability
distribution of the future spot prices, which we denote as risk premium. While the
cost-of-carry arbitrage is usually applied in valuation of commodity forwards, it can-
not be used in case of electricity forwards, since electricity cannot be bought today
at the spot price St and stored for subsequent sale at the forward price Ft,T . As an
alternative to the cost-of-carry arbitrage, we use risk-adjusted valuation where one
needs to model the expected spot price against which the forward price is settled
and adjust it with the risk premium. We set up the model for electricity forward
prices with discrete-time version of (2.15) (see, e.g. McDonald [54])

Ft,T = St,T (1 + r − λ)(T−t) (3.2)

where the forward price Ft,T is the expected spot price during delivery period St,T
discounted with the risk premium λ and the risk-free interest rate r. The risk-free
interest rate is included, if the payment at delivery T is assumed. Transforming (3.2)
to logs gives

lnFt,T = lnSt,T + (T − t)ln(1 + r − λ). (3.3)

Assuming the constant risk-free interest rate r and λ and writing time-to-maturity
T − t as Tm, (3.3) can be rewritten to

lnFt,T = lnSt,T + ξTm (3.4)

where ξ we call a risk premium parameter, while the risk premium is modelled as
a function of time-to-maturity ξTm. In (3.4) the forward price process is therefore
the sum of expected spot price and risk premium. The expected spot price is an
equilibrium process between the expected supply and demand for electricity during
delivery period, whereas the risk premium is an equilibrium process between the
supply and demand for bearing risk related to the uncertainty of the expected spot
price.

3.4 Expected long-term electricity spot price

We define the long-term electricity forward price as the price of yearly forward
contracts with time-to-maturity of more than 1 year. Based on this definition, the
correct interpretation of the expected long-term spot price St,T in (3.4) is the ex-
pected price of 1 MW of base-load electricity during the delivery year T . Expected
electricity spot price some years ahead is influenced by the expected supply and
demand at the delivery period T . The supply and demand, however, are not observ-
able variables and therefore need to be modelled themselves. We will not attempt to
model supply and demand directly, but instead we define the information influencing
supply and demand and consequently the expected spot price.

3.4.1 Long-term electricity demand

In this thesis, electricity demand is considered as a function of electricity price with
other factors influencing demand being constant. The electricity consumption is an
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equilibrium quantity at a given price and is therefore the realised consumption given
the realised price. We define the long-term consumption as the total demand during
a delivery period of T = 1 year, whereas the long-term electricity demand is a total
quantity within T as a function of average electricity price within T . In electricity
markets short- and long-term electricity consumption is a well-understood process
(see, e.g. Stoll [55]), since one of the key issues in regulated electricity markets was
the short- and long-term planning of the power system. The electricity demand, on
the other hand, has traditionally been viewed as completely inelastic, thus electricity
consumption always equals electricity demand. Long-term consumption is observable
variable, since exact data on historical long-term consumption is available. There is,
however, no transparent information on the long-term expected consumption, and
different market players use different models and forecasts to obtain this information.
Long-term electricity consumption is often tackled academic literature (see, e.g.
Taylor [56]) and it mostly depends on the following information:

1. Economic activity (gross domestic product, income. . . )

2. Demographics (population, migration. . . )

3. Weather (temperature, wind, humidity, luminosity. . . )

4. Prices of alternative energy sources (oil price, natural gas price. . . )

5. Consumption of energy intensive industries (aluminium and steel smelters. . . )

To convert the long-term consumption to long-term demand, one needs to include
the long-term price elasticity for electricity and to allow a possibility that electricity
export can also be a part of demand. To estimate the expected long-term electricity
demand, it is necessary to build a model that includes the above information.

3.4.2 Long-term electricity supply

We assume the long-term electricity supply is influenced by similar information
as long-term electricity cost function, which is commonly used in production cost
models (Baleriaux, Jamoulle and Guertechin [57]). The long-term cost function is
represented by generation units sorted in ascending order according to their variable
generation costs. In typical production cost model, cost function consists of average
long-term production costs and respective annual production quantity of generating
units (see Figure 3.3). Supply function can be obtained with simple multiplication
and scaling of the cost function (Eydeland and Wolyniec [6]) and also allowing the
possibility that part of the demand can be met with the import. Equivalently to cost
function, we define the long-term electricity supply based on the long-term average
supply costs and operational constraints.

Long-term average supply costs

Each supplying unit has different supply costs that depend on the type of fuel and
fuel costs or import prices. Some production units have very low or no costs of fuel
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Figure 3.3: Typical long-term cost function of electricity market

at all (e.g. wind, hydro, nuclear), while other units have considerable and uncer-
tain costs of fuel (e.g. coal, natural gas, oil derivatives). Similar to Eydeland and
Wolyniec [6], we distinguish between three groups of supply cost variables. In the
first group, there are non-tradable fuels such as water, uranium, wind and biomass.
Because there is no liquid market and no long-term price information for these fuels,
we assume that the costs for these fuels are constant i.e. their long-term production
costs are the same as in present. The second group constitutes of tradable fuels,
mostly coal, natural gas and oil derivatives. These fuels are traded on several in-
ternational exchanges, whereas for some of these fuels fairly liquid forward market
is also developed. Forwards on these fuels provide transparent information on the
expected value of long-term fuel prices. The third group of supply cost variables
includes other costs of supply, namely emission allowances and imported electricity.
The European Emission Trading Scheme (EU ETS), which started in 2005 intro-
duced restrictions on CO2 emissions for all industrial emitters including electricity
producers. This increased the production costs for fossil-fuel producers and conse-
quently electricity prices. The forward contracts of CO2 allowances are traded on
major European electricity exchanges. Their expected long-term prices are there-
fore readily available. Imported electricity plays an important part in the supply
function, since electricity markets and prices are still modelled regionally due to
limited cross-border capacities and different market rules. Neighbouring market can
be modelled as a specific type of producer. The price of this producer can be the
average price in the market from which the electricity is imported, while the size of
such a producer can be defined as the available border capacity between markets.
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Operational constraints

Operational constraints reflect the total amount of electricity that can be supplied
(generated or imported) to the market during a particular period. For each power
plant, existing or planned, the available annual production can be specified and
derived from historical utilization data, which depends on water reservoir storage,
maintenances, outages, etc. Similarly, the available amount of imported electricity
can also be defined, based on forecasted available border capacity between neigh-
bouring markets. To estimate the available production and import, the average reser-
voir storage, maintenances and outages are considered as well as other operational
constraints such as reserves, transmission constraints and import cross-border ca-
pacities. The operational constraints therefore include the following information:

1. Installed capacity,

2. Water reservoir resources,

3. Available cross-border capacity between price zones,

4. Maintenance including generation reserve margins,

5. Outages,

6. Operational constraints of generators.

This information includes historic and present data on existing assets as well as
forecasted data on planned investments, such as new generator units or new power
lines.

3.5 Risk adjustment

In modelling fixed income markets, foreign exchange markets or commodity markets
ξ in (3.4) is commonly modelled as constant, implying that the risk premium depends
only on time-to-maturity. Assuming the risk premium represents mostly the supply
and demand for hedging uncertain future electricity price outcomes and not so much
the correlation of electricity prices with the general capital market, a negative ξ
would indicate a backwardation, i.e. the forward price is below the expected future
spot price, while positive ξ would indicate contango i.e. the forward price is above
the expected future spot price.

Similarly, in case of electricity, a constant risk premium assumption is often
applied [61], despite some empirical findings which indicate that the risk premium
in short-term electricity forwards might be time-varying. Besides time-to-maturity,
the following information regarding the expected spot prices might be influencing:

1. Probability of price spikes - strongly related to load seasonality (Bessembinder
and Lemmon [20], Longstaff and Wang [21]) and capacity shortage,

2. The level of expected spot prices (Ollmar [58]),

3. Seasonal observation time i.e. time of the year from January 1st (Ollmar [58]).
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Empirical findings from electricity term markets indicate that short-term contracts
are mainly used for hedging uncertain future consumption and electricity price
spikes. This results in an excess demand for futures contracts and translates into a
positive risk premium [58], [59], [60].1 While some findings also indicate that this
is true for long-term contracts [60], other indicate that these are mainly used for
hedging long-term production of producers and therefore a negative risk premium is
found [58]. Investigations, focused on far-maturity electricity contracts, also indicate
that the magnitude and the variability of the risk premium in these forwards are low
[58], [62]. In this thesis, we assume that the risk premium in long-term electricity
forwards is a function of time-to-maturity only.

3.6 Information sets

In a perfect market, all investors possess perfect information set It that includes all
variables that influence the forward price in the next period t+∆t. Such information
set would include all the information discussed in Section 3.4. Real financial markets
are not perfect and not all investors have access to all information from the per-
fect information set It. For example, some investors may obtain certain information
as private or inside information, while others may acquire some information before
other investors do. The information set, known to general investors at time t, is
therefore incomplete and investors, in such case, are called incomplete information
investors. An incomplete information set will generally vary from one investor to
another, since they result from investors’ private information acquisition activity.
Since some information that influences the forward price is public, we assume that
this information is common knowledge to all investors. Each information set there-
fore includes a part of information that is symmetric and therefore available in all
information sets, while the other part of information is asymmetric and is the result
of investors’ private information acquisition. There is also a third kind of information
that is used only by a limited pool of investors. This information is either accessible
only to some investors or alternatively to all investors, however, only some of them
believe that this information has an influence on the forward price. We denote this
type of information as partly symmetric information.

3.6.1 Symmetry of information

An information to be classified as symmetric or partly symmetric must satisfy two
conditions. Firstly, it must be accessible to all investors, implying that such informa-
tion, when it becomes available, also becomes common knowledge among investors.
Secondly, the information must also be reliable. Different information on the same
influencing factors is sometimes provided by different institutions. Based on past
experience, investors use only information which they believe is the most reliable.
We assume information to be asymmetric if it is neither accessible to all investors
nor is it reliable. To model the long-term electricity forward prices, we use only

1Since some studies use different definitions of risk premium, we adapt these results to match
our definition.
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symmetric and partly symmetric information from the information sets. We divide
all information discussed in previous chapter in three groups with respect to the
degree of symmetry.

1. High-resolution common-knowledge information. This information is
completely public and usually the result of market forces, such as commodity
exchange trading, OTC indexes or common knowledge information such as
time-to-maturity. We assume this information is completely symmetric and
can be used for broad high-resolution statistical analysis.

2. Low-resolution common-knowledge information. Changes of rules, de-
cisions, policy interventions, aggregated data and estimated information, such
as forecasted electricity consumption and gross domestic product are also pub-
lic information and can therefore be termed as symmetric or partly symmetric.
While this information is commonly used in analyses spanning the period of
few decades, the usefulness of this data in high resolution statistical analysis
is limited, since such analyses are focused on a period of only a few years,
in which this information changes only a few times. With this respect, these
changes can often be captured with intervention dummy variables.

3. Asymmetric information. This information is either too unreliable to be
generally found in significant number of investors’ information sets or it is com-
pletely private information obtained through private information acquisition
activity. Such information cannot be used for broad statistical analysis.

To model the long-term forward prices we therefore use only the high-resolution
common-knowledge information. Our information set includes the following infor-
mation:

1. Electricity forward prices
The dynamics of electricity forward price up to time t helps to explain the
expected change in t+ ∆t. Electricity forward price also serves as a proxy for
expected long-term spot price, which has an influence on long-term electricity
demand, assuming long-term price elasticity of demand. It can also have an
influence on the risk premium as a proxy to the general level of electricity
forward prices.

2. Crude oil prices
Crude oil price serves as a global indicator for the value of all oil derivatives.
Oil derivatives influence the supply costs of electricity, since they are seldom
used as marginal sources of electricity production. Alternatively, oil derivatives’
prices also serve as a heating source alternative to electricity and therefore they
influence the long-term electricity demand.

3. Coal prices
Coal is an important source in electricity production and therefore its price has
a significant impact on electricity price. Despite the fact that most coal-fired
power plants use local coal resources, the value of this coal is measured by
benchmarking it with global coal prices usually valid for major nearby ports.
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4. Natural gas prices
Similar to oil derivatives, natural gas price also has an important influence
since some of electricity is produced from natural gas. A lot of reserve units
use natural gas as the generating source. Natural gas can be found as an alter-
native to electricity in heating and it has the influence on long-term electricity
demand.

5. Emission allowance prices
In case emissions produced by generating units are limited, such as CO2 emis-
sions in Europe, the price for additional emission allowances represents the
additional costs when generating electricity from these units.

6. Prices of electricity in neighbouring markets
Part of the electricity supply can also be the electricity imported from neigh-
bouring markets. As a result, the imported electricity increases, which will
likely increase local electricity price. Alternatively, part of the demand that is
supplied by local generators can also come from electricity export. The choice
whether neighbouring electricity price influences electricity demand or supply
depends on the connectivity between the two markets.

7. Aluminium price
Although expected electricity consumption, provided as a forecast by some
institutions, cannot be used in the information set due to its low resolution,
aluminium price is a proxy for a significant part of electricity consumption,
particularly when a significant share of electricity is consumed for aluminium
smelting. We expect that increased price of aluminium indicates a higher elec-
tricity consumption.

8. Time-to-maturity
According to our model, we expect the time-to-maturity to have an influence
on the risk premium.

3.6.2 Unconditional distribution of variables

When estimating the expected spot price in the long-term, we seek reliable informa-
tion on the expected values of the fundamental variables influencing the expected
spot price. In the short-term T ≈ t these fundamental variables can be predicted
with high, though not complete, accuracy. As the time-to-maturity increases T � t,
the variance of these variables increases and their mean values are harder to pre-
dict. Still, there is a difference between variables that are considered stationary and
integrated variables. With stationary variables, their unconditional distribution is
bounded and the unconditional mean is based on the historical average value and the
expected growth. Hydro reservoir levels, supply capacity and electricity consump-
tion can be predicted on the basis of historical average value and expected long-term
growth. Integrated variables, on the other hand, have no unconditional distribution
in the long-run. The shocks in these variables will persist and their unconditional
distribution is therefore unbounded. In our case these are fuel prices, prices of elec-
tricity in neighbouring markets and possibly emission allowance prices. Fortunately,
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the market offers securities to hedge their uncertain future evolution. Among these
securities, we use long-term forward prices of fuels, emission allowances and electric-
ity in neighbouring markets to explain the dynamics of long-term electricity prices.
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Chapter 4

Data analysis

In the previous section, we define a general long-term forward price process condi-
tional on information set that includes the variables that influence either the ex-
pected long-term electricity supply and demand or the long-term risk premium. In
this chapter, we transform a general model to specific one by finding the exact in-
formation set that influences the dynamics of long-term electricity forwards from
Nord Pool. Our aim is to find observable variables, which prices of long-term for-
wards from Nord Pool are conditioned upon. Although the real information set may
include variables, which are not observable, some variables can be replaced by proxy
variables, for which the correlation between the real variables and these proxies is
sufficiently high. Ideally, the information set should contain the variables which are
also used by investors (or at least majority of them) when estimating their individual
expectations on the future price changes.

4.1 Data

To model the long-term electricity forward price, we use the data valid for the com-
mon Nordic electricity market. The market comprises 4 countries; Norway, Sweden,
Finland and Denmark, and is one of the oldest electricity markets, with Nord Pool,
the oldest electricity exchange. In 2005, most of the electricity in the Nordic electric-
ity market was supplied by hydroelectric plants (54%), with the rest coming from
nuclear (22%), renewable (8%), coal (6%), natural gas (5%), imports (3%), oil (1%)
and other sources (1%). In 2007, the Nord Pool financial market volume was 1060
TWh, physical volume was 292.2 TWh, whereas the total production in the mar-
ket was 397.3 TWh, while the consumption was 400.9 TWh. The Nordic electricity
market is convenient for modelling purposes due to the following reasons:

• The market is very isolated with less than 10% of electricity imported or
exported. This allows a simpler identification of variables that influence elec-
tricity prices and their interpretation.

• The transparency of the market is fair.

• High share of hydro production with big storage reservoirs and small concen-
tration on the supply side gives market participants an insignificant power to
influence prices individually.
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• The liquidity of the spot market and forward market at Nord Pool is fair,
giving enough trust in the quoted prices.

The market went through a number of structural changes, the latest being the intro-
duction of European emission trading scheme (ETS) in 2005. Since our information
set includes also the emission allowance prices, we analyse only the prices of contracts
traded from the start of 2005 to the end of 2007. Our data sample is constructed
in a way to include only prices of yearly contracts with time-to-maturity between 1
year and 2 years (as shown in Table 4.1). For observation period 2005, ENOYR07
is used, and this contract is replaced with ENOYR08 with the start of 2006 and
with ENOYR09 with the start of 2007. This way, we avoid the price shift when
two consecutive contracts are rolled over. Since contracts with delivery period of 2
and 3 years ahead move very similarly, the difference between them is very small.
Thus, the price shift at roll-over dates is minimal. For other variables, defined in the
following of the thesis, we use forward prices with the same observation time and
maturity period as electricity forwards. The analysis of high-resolution financial data

Table 4.1: Sample construction

Contract Maturity period T Observation period t

ENOYR-07 2007 2005
ENOYR-07 2008 2006
ENOYR-07 2009 2007

often involves the problem of non-synchronous trading. The prices in our analysis
are quoted at different times, and due to the time mismatch the integration between
them is not clear. We use a weekly resolution instead of daily resolution since the
relative time mismatch is much lower in the case of weekly sampling. Although the
weekly sampling tends to smooth out the magnitude of price jumps, the volatility
structure should not be significantly different to that when using daily sampling.
We use the closing price from each Wednesday as the reference weekly price for all
the variables, giving the sample size of N = 156. As shown in Figure 4.1, there are
no significant shifts at the time of rollover. The sample, however, shows a significant
price shock in April 2006 corresponding to observations 67 to 70. Before this shock,
CO2 emission allowance prices were pushing electricity prices up significantly. When
the report on actual emissions in EU was published in April 2006, the prices of emis-
sion allowances dropped dramatically, which had a significant effect on electricity
prices (see Figure 4.1). We will investigate this effect by testing whether this shock
can be considered as a structural break in the relationship between the variables.

Crude oil price

For the crude oil price we use the New York Mercantile Exchange (NYMEX)
West Texas International (WTI) light sweet crude oil data. Although the Brent
crude oil data from the Intercontinental Exchange (ICE) might be a better choice
for Nordic countries, availability of long-term oil prices is better at NYMEX. The
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Figure 4.1: Estimation sample for long-term electricity forward price.

long-term crude oil price is influenced by the global long-term supply and demand.
The long-term NYMEX WTI price therefore represents a global price indicator of
the world oil price.

Coal price

The steam-coal market cannot be characterised as a global market like crude oil.
The majority of coal is still traded over the counter, mostly because coal is hard
to standardise due to its different energy values. Exchange forward trading with
coal is still in its early stages. Instead, we use the TFS API2 index as a reference
for coal prices in the Nordic area. TFS API2 is a price index for coal delivered in
Amsterdam, Rotterdam and Antwerp harbour and should, therefore, also represent
the coal prices in OTC market in the Nordic area.

Natural gas price

The natural gas consumed in the Nordic area comes mainly from the North Sea
resources. Natural gas forwards of the North Sea gas is also traded on ICE. We use
the ICE quarterly prices of natural gas forwards to construct the yearly forward
prices for natural gas.

Emission allowance price

The European emission trading scheme (ETS) was introduced in 2005 for carbon
oxide (CO2) emissions. Electricity producers received a limited amount of free CO2

allowances, whereas additional allowances can be purchased in the market. Since
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there are no other major environmental constraint products traded in the market,
the price of emission allowances in our model is, therefore, simply the price of the
European CO2 emission allowance. We use the data on EUA prices from Nord Pool,
which is available in daily resolution. Since Nord Pool began trading with EUAs in
March 2005, we use the Spectron EUA prices, which precede that date. Combining
the EUA price from two different exchanges is possible, since CO2 allowance is a
global commodity that can be purchased and used anywhere in Europe. The differ-
ence in the EUA prices between Spectron and Nord Pool is negligible.

Imported electricity price

The Nordic electricity market imports electricity from Russia, Germany and
Poland. We have no information on import prices from Russia, so we use only the
European Energy Exchange (EEX) long-term forward price as a reference price for
the electricity imported from Germany and Poland. The neighbouring-market price
is, therefore, the EEX long-term electricity forward price, which is available in daily
resolution. We expect that the EEX price represents a rich source of information.
Firstly, it influences the total market price through import and export and secondly,
it could be influenced by similar information that influences the Nord Pool electric-
ity price.

Aluminium price

London Metal Exchange (LME) is world’s biggest and most important metal
exchange. For aluminium price we use aluminium futures from LME.

Time-to-delivery

Time-to-maturity, also addressed to as time-to-delivery, is the time to date at
which the forward contract expires. Since electricity is a commodity with continuous
delivery, the term delivery period is used instead delivery time. The expiration date
is therefore defined as the average date during the delivery period and time-to-
maturity is therefore

Tm =
ts + te

2
− t (4.1)

in which ts is the delivery start date, te the delivery end date and t the observation
time. Tm is expressed in years.

All data originally quoted in currencies other than EUR are converted to EUR
using forward exchange rates.

4.2 Descriptive analysis

In Figure 4.2, we present a time series plot for variables in our information set. We
denote Nord Pool electricity forward price as np, NYMEX WTI crude oil forward
price as oil, TFS API2 steam-coal forward price index as coal, ICE natural gas
forward price as gas, EU ETS emission allowance forward price from Nord Pool as
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Figure 4.2: Time-series plot for variables in levels, logarithms and logreturns
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eua, EEX electricity forward price as eex and LME aluminium forward price as alu.
At certain observation time, all variables have the same delivery period. The three
categories in the figure represent the plot of variables in ordinary levels, logarithms
(logs) and in logreturns (first differences of logarithms). The variables have a clear
upward time trend during the period we analyse. Among other similarities, a similar
trend between np and eex stands out and eua price shock in April 2006 is also seen
in eex.

Tables 4.2 to 4.4 give a descriptive statistics for variables in levels, logs, and
logreturns respectively. In all three cases, the normality can be clearly rejected.
In case of levels and logs, all variables except coal are negatively skewed, whereas
kurtosis depends on the type of transformation. In case of logreturns all variables
except oil and coal are strongly leptokurtic, i.e. a strong peak around mean and fat
tails. Logreturns of np, eua, eex and alu are negatively skewed, while the logreturns
of oil, coal and gas are positively skewed.

Table 4.2: Descriptive statistics for data in levels

Statistic np oil coal gas eua eex alu

Mean 40.378 48.641 51.453 63.449 19.634 50.056 1661.09
Standard deviation 6.708 6.764 4.769 13.638 4.694 7.783 235.27
Skewness -0.439 -1.325 0.920 -0.392 -0.591 -0.781 -0.694
Kurtosis -0.793 1.431 0.828 -0.700 0.952 -0.830 -1.134

Correlation matrix

Variable np oil coal gas eua eex alu

np 1.000 0.877 0.800 0.434 0.452 0.964 0.885
oil 0.877 1.000 0.590 0.747 0.667 0.879 0.784
coal 0.800 0.590 1.000 0.074 0.287 0.697 0.603
gas 0.434 0.747 0.074 1.000 0.696 0.504 0.388
eua 0.452 0.667 0.287 0.696 1.000 0.440 0.351
eex 0.964 0.879 0.697 0.504 0.440 1.000 0.945
alu 0.885 0.784 0.603 0.388 0.351 0.945 1.000

Correlation matrices show the most interesting properties of the variables in the
information set. As expected, the correlation matrix for levels and logs in general in-
dicates a positive correlation between all the variables. Particularly high correlation
is found between np, eex and alu, whereas gas is significantly correlated only with oil
and eua. The later is probably more of a coincidence rather than showing any theo-
retical meaning. A more conservative correlation structure is obtained by checking
the correlation matrix of logreturns. Here, a strong correlation only between np, eua
and eex is found. Other correlations seem less significant in this case. The correlation
structure implies a strong interdependence of np, eua and eex, indicating that these
variables are likely to influence each other.

Figure 4.3 presents autocorrelation function (ACF) and partial autocorrelation
function (PACF) for logreturns. ACF explains how a series is correlated with its own
lags, therefore ACF value for lag s represents a correlation between all observations
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Table 4.3: Descriptive statistics for data in logs

Statistic np oil coal gas eua eex alu

Mean 3.683 3.873 3.937 4.124 2.941 3.900 7.404
Standard deviation 0.177 0.158 0.090 0.236 0.292 0.169 0.151
Skewness -0.706 -1.702 0.653 -0.836 -1.703 -0.923 -0.776
Kurtosis -0.479 2.462 0.411 0.056 3.514 -0.572 -1.044

Correlation matrix

Variable np oil coal gas eua eex alu

np 1.000 0.886 0.781 0.539 0.546 0.972 0.905
oil 0.886 1.000 0.574 0.811 0.762 0.882 0.790
coal 0.781 0.574 1.000 0.151 0.336 0.694 0.620
gas 0.539 0.811 0.151 1.000 0.765 0.584 0.462
eua 0.546 0.762 0.336 0.765 1.000 0.524 0.419
eex 0.972 0.882 0.694 0.584 0.524 1.000 0.955
alu 0.905 0.790 0.620 0.462 0.419 0.955 1.000

Table 4.4: Descriptive statistics for data in logreturns

Statistic np oil coal gas eua eex alu

Mean 0.004 0.005 0.002 0.005 0.007 0.004 0.002
Standard deviation 0.026 0.027 0.019 0.034 0.071 0.019 0.022
Skewness -0.911 0.192 0.198 0.821 -0.658 -0.410 -0.240
Kurtosis 3.487 0.759 0.516 2.140 3.250 3.809 2.473

Correlation matrix

Variable np oil coal gas eua eex alu

np 1.000 0.275 0.255 0.264 0.611 0.746 0.099
oil 0.275 1.000 0.187 0.300 0.198 0.235 0.288
coal 0.255 0.187 1.000 0.360 0.186 0.213 0.154
gas 0.264 0.300 0.360 1.000 0.404 0.399 0.075
eua 0.611 0.198 0.186 0.404 1.000 0.714 0.094
eex 0.746 0.235 0.213 0.399 0.714 1.000 0.107
alu 0.099 0.288 0.154 0.075 0.094 0.107 1.000
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Figure 4.3: Autocorrelation and partial autocorrelation function

in a series with a distance of s. PACF also estimates the same correlation, however,
only after removing the correlation at lags 1 to s− 1. Here, two standard deviations
are used as a measure of significance of correlation, which accounts for approximately
95% of confidence interval. The plot reveals a low degree of autocorrelation and
partial autocorrelation in all variables. Since we use weekly observations, most of
autocorrelation, if present, has probably already died out between two consecutive
observations. A barely significant autocorrelation is found at first lag in eua, at
second lag in eex and at fourth lag in coal.

Since our interest is in the influence of the variables in the information set on the
Nord Pool long-term forward price, we are also interested in the cross-correlation
function (CCF). CCF represents how two series are correlated between different
lags. CCF value for lag s therefore represents how observations in two series with
a distance of s observations are correlated. Cross-correlation at lag 0 is therefore
equal to correlation coefficient presented in Table 4.4. Here again, two standard
deviations are used to indicate a confidence interval. CCF plot in Figure 4.4 reveals
only a first lag cross-correlation in some variables. A model constituting only of
logreturns would therefore have low explanatory power, which is also evident from
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Figure 4.4: Cross-correlation function (CCF) for np

the correlation in levels and logs.

4.3 Principal component analysis

The principal component analysis models the variance structure of a set of variables
using linear combinations of the variables. These linear combinations, or compo-
nents, may be used in the subsequent analysis, whereas the combination coefficients
may be used in interpreting the components. The principal components of the set of
variables are obtained by computing the eigenvalues decomposition of the observed
variance matrix. The first principal component is the unit-length linear combination
of the original variables with the maximum variance. Subsequent principal compo-
nents maximise variance among unit-length linear combinations that are orthogonal
to the previous components.

In Tables 4.5 and 4.6, the principle component analysis results are presented for
variables in logs only. The results show that the first principal component (PC1)
accounts for 73% of the total, while the second contributes with 17%, and the third
with 7% of the total variance. Only the first two components have eigenvalues higher
than 1.0, whereas the first three components together generate 96% of the global
variance.

Weights of the first three components show that all variables have a significant
impact on the variance structure and none can be excluded at this point. Inter-
estingly, in all three components variations in coal have the highest impact on the
variance. Since weights for all variables are of quite similar magnitude and the vari-
ables represent price from different markets, any economic interpretation of these
three components is not possible. The first three principal components are also pre-
sented in Figure 4.5. No resemblance to any of the variables plotted in Figure 4.2 is
found.
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Table 4.5: Principal component analysis for variables in logs

Eigenvalues %Variation %Cumulative

PC1 5.077 72.53 72.53
PC2 1.193 17.04 89.56
PC3 0.463 6.61 96.17
PC4 0.171 2.44 98.62
PC5 0.054 0.77 99.39
PC6 0.034 0.48 99.87
PC7 0.009 0.13 100.00

Table 4.6: Eigenvectors and weights for variables in logs

Eigenvectors Weights

Variable PC1 PC2 PC3 PC1 PC2 PC3

np -0.426 -0.214 0.034 -2.418 -1.215 0.191
oil -0.428 0.169 0.027 -2.717 1.073 0.175
coal -0.312 -0.485 -0.657 -3.485 -5.420 -7.334
gas -0.318 0.584 0.177 -1.354 2.486 0.755
eua -0.318 0.503 -0.518 -1.093 1.730 -1.781
eex -0.426 -0.176 0.262 -2.534 -1.050 1.559
alu -0.393 -0.254 0.446 -2.618 -1.692 2.966
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4.4 Testing for unit roots

Chapter 3 also discusses the difference in unconditional distribution of stationary
and integrated variables. A variable is said to be stationary if its mean, variance,
and covariance are all invariant with respect to time. If a variable must be differ-
enced d times to become stationary, such variable is said to be integrated of order
I(d). In this section, we test each variable in the information set for their order
of integration, which equals the number of unit roots. Integration of variables has
tremendous impact on the modelling strategy, since any shock that occurs in sta-
tionary variable will eventually die out, whereas in integrated variable the shock will
persist. Consequently a regression of integrated variables is likely to result in spuri-
ous regression implying a false identification of a meaningful economic relationship.
Standard regression estimators are valid only for stationary variables; therefore, in-
tegrated variables must be differenced as many times as the number of unit roots
until they become stationary.

In principle, there are two types of stationarity, the first being stationarity with
intercept and the second stationarity with time trend. A stationary series will cross
their mean value (intercept stationary) or trend value (trend stationary) frequently,
whereas the integrated series experience that only occasionally. A first look at the
variables in Figure 4.2 shows that variables in logs appear to be integrated, whereas
logreturns clearly look stationary. A more sophisticated method to detect station-
arity is the testing for a unit root. Here we employ two most widely used tests for a
unit root. The first is the standard Augmented Dickey-Fuller (ADF) test of a unit
root (see Dickey and Fuller [63], [64]). This test is based on the t-statistic for a2 = 0
in the regression given by

∆yt = a0 + a1t+ a2yt−1 +
s∑
j=1

cj∆yt−j + ut. (4.2)

Typically, the rejection of the null hypothesis H0 : a2 = 0 would be taken as a
strong evidence of trend stationarity, whilst the non-rejection would infer that the
series is non-stationary. The second test is Phillips-Perron (PP) test for a unit root,
which is similar to standard Dickey-Fuller test; however, it involves a non-parametric
correction of the t-statistics to account for the autocorrelation in residuals (see
Phillips and Perron [65] for details).

Table 4.7 present the results of testing for a unit root for variables in levels,
logs and logreturns. Trend stationary test is employed in all cases except for oil
and eua , for which the test with intercept only is applied. Results for levels and
logs consistently show that all variables are integrated, except perhaps for oil and
eua, which may be stationary, but close to unit root. The logreturns are strongly
stationary in all cases indicating that none of the variables are integrated of order
I(2) and all variables except oil and eua are therefore integrated of order I(1).
Since unit root test results may also suffer from the low power of both tests, we
will treat all variables as I(1) even though oil and eua may be stationary and
close to unit root. Unit root test for Tm show that Tm is also non-stationary with
ADF = −2.49 and PP = −2.54, while ∆Tm is stationary (ADF = −12.49** and
PP = −12.49**). This is not in line with the expectations since according to the
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Table 4.7: Results of testing for unit root (t-values)

Levels Logs Logreturns

Variable ADF PP ADF PP ADF PP

np -2.42 -2.37 -2.33 -2.21 -12.08** -12.36**
oil -2.58 -2.60 -3.46* -3.50** -12.58** -12.58**
coal -1.70 -1.61 -2.03 -2.01 -13.29** -13.45**
gas -1.97 -1.97 -2.32 -2.28 -10.79** -10.87**
eua -3.08* -2.68 -3.84** -2.94* -8.77** -9.99**
eex -1.49 -1.58 -1.54 -1.52 -10.76** -11.27**
alu -1.66 -1.45 -1.46 -1.28 -14.77** -14.80**

*reject the null at 5% significance **reject the null at 1% significance

data sample, the values of Tm is always between 2.5 years and 1.5 years, therefore in
theory Tm should be stationary. Obviously, unit-root tests fail to identify stationarity
in this case, since the data series crosses its mean value only 3 times, hence using
larger sample for Tm would surely result in stationary series. We will continue to
treat Tm as stationary.

4.5 Conclusion

In this chapter, we condition the long-term forward prices from Nord Pool on long-
term forward prices of crude oil, coal, natural gas, emission allowances, imported
electricity, aluminium price and time-to-maturity. Descriptive statistics shows non-
normality and positive skewness, whereas correlation structure shows strong corre-
lation between variables in levels and weak correlation between logreturns. This is a
combination typically found in integrated and/or cointegrated time series, which will
be tested in the next chapter. The autocorrelation and partial autocorrelation func-
tion reveal a rather poor autocorrelation structure, which is somewhat sensible since
weekly observation time resolution is used and most of the autocorrelation might
die out in one week. We also find no significant cross-correlations between variables
except at lag 0. Unit root analysis shows that all variables are integrated of order
I(1), except oil and eua which may be near integrated processes. A proper mod-
elling strategy is therefore to use variables in their first differences for subsequent
analyses.
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Chapter 5

Multivariate model

While our theoretical model focuses on identifying the economic relationships be-
hind the long-term electricity forward price process, the data analysis in the previous
chapter reveal that the variables on which these prices are conditioned are likely to
be influenced by other variables in the system including the long-term electricity for-
ward prices. This is known as the endogeneity between variables and is often found
in co-dependent and substitutable commodity prices. Endogeneity does not allow
for a variable of interest to be modelled with univariate regression models in which
the dependent (endogenous) variable is modelled as a linear function of present
and past values of independent (exogenous) variables and past values of depen-
dent variable. Assuming the “true”economic model underlying behaviour satisfies a
first-order linear approximation, endogeneity is typically handled with multivariate
regression models. Simultaneous Equation Model (SEM) and Vector Autoregressive
Model (VAR) are the two most representative members of this class of regression
models.

5.1 Vector autoregressive model

Based on data analysis we employ Vector Autoregressive model framework devel-
oped by Sims [66]. Before the wide-spread use of VAR, the relationships between
endogenous variables were typically modelled with Simultaneous Equation Models.
Major problems with SEM’s are the identification restrictions, which require for each
equation in SEM at least one exogenous variable. SEM therefore requires the ad-hoc
assumptions on exogeneity. Hence, the variables need to be pre-tested for exogeneity
using for instance Hausman test or Granger-causality testing framework. Sims [66]
raised several objections to the traditional way of identifying macro econometric
models:

• Exclusion restrictions were routinely imposed and the decision whether a vari-
able should be regarded as exogenous with respect to the system was made
rather arbitrarily.

• Identification was often achieved without solid economic or econometric argu-
ments.
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• No economic variable can be deemed as exogenous in a world of rational for-
ward looking investors.

VAR is a powerful tool to model the relationship between variables, since it does
not require any ex-ante assumptions on endogeneity or exogeneity of variables. All
variables in VAR are treated as endogenous and exogeneity can be tested in ex-
post analysis. In the unrestricted general form, the VAR model is essentially only
a reformulation of the covariances of the data. VAR also allows a powerful testing
for cointegration using Johansen cointegration test, which can result in more than
just one cointegrating relationship, usually found in univariate regression models.
However, VAR has also some drawbacks and among them interpretability of results
and a large number of parameters are most serious. A standard reduced form n
dimensional k-th order VAR is

Yt = A0 + A1Yt−1 + A2Yt−2 + . . .+ AkYt−k + ut (5.1)

where Yt is the vector of endogenous variables (in e.g. levels), A0 is the (n × 1)
vector of intercept terms allowing the possibility of non-zero mean E(Yt), A is the
(n × n) coefficient matrix, and ut is the (n × 1) dimension vector of error terms
satisfying:

E(ut) = 0
E(utu

′
t) = Ω

E(utu
′
t−k) = 0

(5.2)

According to Hendry and Richard [67], the conditional mean µt in VAR model is

µt = Et−1(Yt|Yt−1, ...,Yt−k) = A1Yt−1 + ...+ AkYt−k (5.3)

and it represents the investors’ expectations at time t− 1 given the available infor-
mation at that time Yt−1, . . . ,Yt−k. Assuming investors are rational in the sense
that they use all information when they make plans for time t and do not make sys-
tematic forecast errors, the difference between the expected value and realizations
should be normally independently identically distributed errors (Niid), also called a
white noise process.

Yt − µt = ut ∼ Niid(0,Ω) (5.4)

A white noise process simply implies that there is no information left in residuals ut
that could be used for better forecast of the conditional mean. If such information
exists, rational investors would use this information for better forecasts and such
information would thus diminish in the long-run.

VAR in (5.1) does not include any contemporaneous influences. To include con-
temporaneous influences suppose a following bivariate VAR(1)[

Y1,t

Y2,t

]
=

[
A10

A20

]
+

[
A11 A12

A21 A22

] [
Y1,t−1

Y2,t−1

]
+

[
−a12 0

0 −a21

] [
Y1,t

Y2,t

]
+

[
u1,t

u2,t

]
(5.5)

which has the same form as the simultaneous equation model. This model is not
identified since both dependent variables appear on the right hand side (RHS).
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To overcome the identification problem a zero restriction on at least one of the
coefficients a12, a21 must be imposed. Alternatively, one can rewrite (5.5) to[

1 a12

a21 1

] [
Y1,t

Y2,t

]
=

[
A10

A20

]
+

[
A11 A12

A21 A22

] [
Y1,t−1

Y2,t−1

]
+

[
u1,t

u2,t

]
(5.6)

or
AYt = A0 + A1Yt−1 + ut. (5.7)

Multiplying both sides in (5.7) with A−1 gives

Yt = A−1A0 + A−1A1Yt−1 + A−1ut (5.8)

or
Yt = A∗0 + A∗1Yt−1 + εt (5.9)

which is known as a Structural VAR (SVAR) with residuals εt = A−1ut, and A∗0 =
A−1A0, A∗1 = A−1A1. Structural VAR residuals εt must satisfy conditions (5.2) as
well as orthogonality E(uitu

′
jt) = 0 in order for SVAR to be identified. Identification

restrictions are imposed on matrix A−1. Structural VAR therefore freely estimates
only some contemporaneous relations, while other relations must be restricted in
order to achieve identification. The application of Structural VAR will be discussed
further in Chapter 6.

5.2 VAR setup

Defining a vector Yt of n potentially endogenous variables, a general Gaussian vector
autoregressive model takes the following form

Yt = A0 +
k∑
i=1

AiYt−i + ΨZt + ut (5.10)

in which Zt is a vector of variables that are a priori known to be exogenous, A0, Ai

and Ψ are parameter matrices and ut the matrix of residuals. Each variable in Yt

is therefore regressed on lagged values of both itself and other endogenous variables
as well as exogenous variables.

At this point, we form a seven dimensional VAR (n = 7) in which Yt includes
seven potentially endogenous variables, whereas Zt include only time-to-maturity
Tm for which we know to be exogenous. All variables are in log-levels, while Tm
is in levels. We could also assume that oil is exogenous, since one cannot expect
that supply and demand on local electricity market can influence global crude oil
price. These assumptions are however not necessary and treating all variables as
endogenous should have no influence on the final outcome of the model.

Table 5.1 includes the diagnostic test for seven dimensional VAR with lag length
k = 2. In order to assure that VAR residuals indeed satisfy the conditions in (5.2), we
perform several diagnostic tests which involve the following single equation residual
tests (adopted from Doornik and Hendry [68]):
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• F -test on variable significance (Fsig). Under the null hypothesis all coefficients
belonging to a variable under test are zero, so these test whether the variable
at hand is significant in the system. The test statistic is distributed with
F (n,N − k + 1− n).

• F -test on residual autocorrelation (Far), against 4th order autocorrelation.
This is Breusch-Godfrey Lagrange-multiplier test for serial correlation, where
the null hypothesis is no autocorrelation up to tested order of autocorrelation.
The F -statistic is NR2, where test R2 is estimated on auxiliary regression of
residuals on original variables and its own lags. The test is distributed with
F (s,N −nk−s), where s is the number of tested residual lags in the auxiliary
regression and k is the lag length.

• χ2 test normality (χ2
nd). This test is described by Doornik and Hansen [69]

and it involves a joint test that transformed skewness and kurtosis are 0 and
3 respectively. The test is approximately distributed with χ2(2), since two
parameters are jointly tested.

• F -test on heteroscedasticity (Fhet). This is based on White [70] and involves
an auxiliary regression of residuals on a constant, original regressors and all
their squares. The null hypothesis is unconditional homoscedasticity against
the alternative that residuals are heteroscedastic. The test is distributed with
F (s,N − s − 1 − k), where s + 1 is the number of regressors in the auxiliary
regression.

• F -test on autoregressive conditional heteroscedasticity (Farch), against 4th or-
der. This is a Lagrange-multiplier test with the null hypothesis that the vari-
ance is independent of the squared residuals up to the tested order. The test
statistic and the corresponding distribution have the same form as Far. ARCH
effects are however not detrimental for the cointegration analysis as shown by
Dennis, Hansen, and Rahbek [71].

• Residual skewness. Gonzalo [72] shows that non-normality of residuals is more
of a problem if residual skewness diverges from the normality assumption
rather than kurtosis. The non-normality problem also tends to decrease with
large sample size since t, F and χ2 statistic will converge to normal distribution
asymptotically.

Single equation tests focus on residuals of each single equation as if they are
estimated in a single equation. These tests are valid only if other residuals in the
system are also without problems. Besides single equation tests, vector tests are also
presented. These involve testing the misspecification of the system as a whole, thus
all tests are performed on all residuals in the system, giving a more general picture
of the system properties. Vector tests involve:

• F -test on vector error autocorrelation (Far). This is a Lagrange-multiplier test
based on Godfrey [73] and uses Rao’s F -approximation (see Doornik [74] for
details). Under the null hypothesis the residuals of the system are serially
correlated.
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• χ2 test for vector normality (χ2
nd). This test involves transforming the residuals

from single equations. Then, univariate transformed skewness and kurtosis of
residuals are used in vector test statistic, distributed with χ2(2n).

• F -test on vector heteroscedasticity (Fhet). This test is based on Kelejian [75]
extension of White’s test [70] developed for simultaneous equations framework.
It is a Lagrange-multiplier test with Rao’s F -approximation.

Table 5.1: VAR(2) diagnostic tests

Variable Far(4, 135) χ2
nd(2) Skewness Fhet(28, 110) Farch(4, 131) SE

np 1.756 20.39** -0.283 3.772** 7.023** 0.0248
oil 1.331 2.09 -0.107 1.010 0.404 0.0264
coal 3.981** 5.56 0.280 0.838 0.585 0.0193
gas 0.905 20.42** 0.722 0.878 5.805** 0.0314
eua 0.550 9.54** 0.159 1.686* 4.247** 0.0620
eex 1.268 26.32** 0.457 1.806* 7.859** 0.0168
alu 1.287 8.92* -0.042 1.133 2.719* 0.0215

Vector tests: Far(196, 727) = 1.258*, χ2
nd(12) = 63.93**, Fhet(784, 1780) = 1.054

Constant: Fsig(7, 132) = 5.726**, Tm: Fsig(7, 132) = 1.218, LLF = 2615.1

*reject the null at 5% significance **reject the null at 1% significance

The results in the Table 5.1 show that all endogenous variables are significant. Sig-
nificance tests (Fsig) show that the constant is strongly significant, while exogenous
time-to-maturity Tm is not significant. Misspecification tests reveal several problems
in residuals, particularly when vector tests are considered. Significant autocorrela-
tion is present in coal, which also has the effect on the vector autocorrelation test.
Heteroscedasticity is found in np, eua and eex. The vector test on heteroscedastic-
ity is, however, just below significance. Autoregressive conditional heteroscedasticity
(ARCH) test and non-normality are strongly significant in all equations except for
oil and coal. Since VAR specification is more sensitive to skewness than to kurtosis,
skewness of residuals is also reported, showing that skewness is not a big problem.
This indicates that residuals are more or less normally skewed, thus the kurtosis is
the major source of non-normality.

Autocorrelation and heteroscedasticity are of particular concern, since they imply
that there is still some information left in residuals which could be used for better
forecasting. Autocorrelation can often be removed by increasing the lag length of
VAR, however, in our case it cannot, since the second lag is barely significant and
the higher lags have no significance at all. On the other hand, autocorrelation and
heteroscedasticity in residuals can generally imply two of the following:

1. Omission of important explanatory variable. If a part of the process is
influenced by some other variables, which are not included in the model, this
will reflect itself in autocorrelated and heteroscedastic residuals. In practice,
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commodity prices are complex processes influenced by a large number of vari-
ables and it is often difficult to find an information set that would include all
relevant variables. In case such information set is found, the number of vari-
ables might lead to huge number of parameters and problems with the degrees
of freedom.

2. Influence of policy shocks, structural breaks, statistical outliers etc.
These undesired properties are usually found in real application data and
some measures exist to overcome them. Particularly in low resolution data
samples spanning through the period of several years or decades are often
subject to changes in market rules, policy interventions, changes in regulation
or structural changes in the influence between variables. Such would be the
case if investors find that their perception on how certain variable influence
other variables was wrong in the past and they adjust their expectations. This
is called a structural break.

We believe that there is still some information that is omitted from our infor-
mation set that may have a significant impact on the price dynamics of electricity
forwards. We also believe that a large part of this information is, however, low res-
olution information. Although it may have a permanent impact on the variables in
the system, we hope their influence is marginal compared to the variables chosen
in our information set. At this point we could not find any additional high resolu-
tion common knowledge variables that we could potentially include in the model.
Another aspect of residual autocorrelation is that some variables may in fact be
exogenous. Our system is, of course, not designed to capture the dynamics in, e.g.
coal prices, therefore the autocorrelation in coal price could be removed by including
some variable that influence only the coal price. Alternatively, adding such variables
would not be necessary if coal prices are exogenous with respect to electricity prices,
since in this case there would be no need to model the coal price itself.

Besides checking for variable omission, we also scan the data for presence of policy
shocks, structural breaks and statistical outliers. First, we introduce a blip dummy
to set the residuals from 67 to 70, to zero, which corresponds to eua price shock
in April 2006. A blip dummy Db67 of a type (. . . 0,1,0. . . ) with three lags is used
for this purpose. As seen in Figure 4.2 this shock had also a significant impact on
the Nord Pool forward price and the EEX forward price. Since shocks are known to
induce erratic behaviour and nonlinear dynamics, it is best to remove their influence
in linear model applications with dummy variables. A smaller shock also occurred in
week 27 in 2005. This is a typical transitory shock when price increases for a period
of time and then decrease again to previous levels. To account for this, we add one
transitory dummy Dtr of a type (. . . 0,1,0,-1,0. . . ) to remove the effect of transitory
shock in observations 27 and 29. Additionally, three blip dummies Db33, Db57 and
Db117 are used to remove the largest outliers. Using these additional dummies, we
adapt 5.10 to form the following VAR specification

Yt = A0 +
k∑
i=1

AiYt−i + ΨZt + ΘDt + ut (5.11)

48



in which Dt are the intervention dummies to render the residuals well-behaved and
Θ the vector of dummy parameters. The diagnostics of VAR(2) that includes these
additional intervention dummies is presented in Table 5.2.

Table 5.2: VAR(2) diagnostic tests

Variable Far(4, 126) χ2
nd(2) Skewness Fhet(39, 90) Farch(4, 122) SE

np 1.124 13.61** -0.195 0.825 0.478 0.0201
oil 2.311 4.41 -0.111 0.768 0.427 0.0256
coal 2.856* 4.15 0.027 0.886 1.350 0.0183
gas 0.272 19.40** 0.126 0.718 0.403 0.0289
eua 0.950 4.12 0.224 0.856 1.443 0.0536
eex 0.578 4.61 0.075 1.144 0.222 0.0136
alu 2.732* 10.13* 0.004 0.676 1.063 0.0210

Vector tests: Far(196, 665) = 1.125, χ2
nd(12) = 43.43**, Fhet(784, 1780) = 0.691

Constant: Fsig(7, 132) = 7.542**, Tm: Fsig(7, 132) = 1.857, LLF = 2731.0

*reject the null at 5% significance **reject the null at 1% significance

Intervention dummies significantly improve the properties of VAR in Table 5.2.
Most single equation and vector misspecification tests are improved. There is still a
slight autocorrelation present in coal and alu, but we will not pursue this further,
since we expect these two variables are weakly exogenous and they do not have
to be modelled themselves. The vector tests, on the other hand, in overall reject
the autocorrelation and heteroscedasticity in residuals. While strict normality is
still not achieved, single equation and vector tests are improved a little. We also
managed to reduce the skewness, which is more critical than the kurtosis. This
model specification is now adequate for trusting the statistical inferences on tests
we perform in the following of this thesis.

5.2.1 Parameter constancy

We test the specification in Table 5.2 for parameter constancy. In particular, we
are interested in the influence of eua price shock in April 2006. The shock had a
significant effect on the Nord Pool forward price as seen in Figure 4.1 and also on
the EEX forward price. To test whether this shock or any other shock experienced
during the period in our sample changed the overall structure of the data generating
process, we use the Chow test for structural break [76]. A single equation recursive
Chow break-point test has the following form of F -test (see Doornik and Hendry
[68])

(RSSN −RSSt−1)(t− k − 1)

RSSt−1(N − t+ 1)
(5.12)

where k is the lag length, RSSN the residual sum of squares estimated on the
whole sample N , while RSSt−1 is estimated recursively on series of a subsamples
1, . . . , t, t = M, . . . , N , where M represents a break point. The test is distributed
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with F (N−t+1, t−k−1). A system breakpoint F -test uses Rao’s F -approximation
(see, e.g. Doornik [74]) with R2 computed as

1− e(−2l̂t−1+2l̂N ), t = M, . . . , N. (5.13)

where l̂t is a following log-likelihood function

l̂t = −1

2
log

∣∣∣∣∣ tN Ω̂t

∣∣∣∣∣. (5.14)

Figure 5.1 shows recursive break-point Chow test for each equation in the system
and for the system as a whole. The statistics in (5.12) and (5.13) are scaled by 1%
critical values from F -distribution as an adjustment for changing degrees of freedom,
so that significance values become a constant line throughout the sample. The 1%
significance level of the break-point test is never exceeded indicating that parameters
of individual equations and of the system as a whole are constant throughout the
sample. The eua price shock can therefore be considered as a transitory shock, which
can be removed with intervention dummies, rather than a structural break.
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Figure 5.1: Recursive break-point Chow test
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5.2.2 VAR stability

A general VAR(k) can always be expressed in the so-called companion form where
the n-dimensional VAR(k) in (5.1) is written as (n× k) dimensional VAR(1)

Yt

Yt−1
...

Yt−k+2

Yt−k+1

 =


A0

0
...
0
0

+


A1 A2 . . . Ak−1 Ak

In 0 . . . 0 0
0 In . . . 0 0
...

...
. . .

...
...

0 0 . . . In 0




Yt−1

Yt−2
...

Yt−k+1

Yt−k

+


ut
0
...
0
0

 (5.15)

or
yt = a+ φyt−1 + ut (5.16)

If |φ| < 1 there exists a covariance stationary process with finite variance. The
stability of a VAR can be examined by checking the eigenvalues (or the roots) of
the companion matrix φ in (5.15), therefore

φ =


A1 A2 . . . Ak−1 Ak

In 0 . . . 0 0
0 In . . . 0 0
...

...
...

...
...

0 0 . . . In 0

 . (5.17)

The roots of companion matrix give the necessary information about the stability
and stationarity of VAR. The necessary and sufficient condition for stationarity is
that all the roots of the companion matrix lie inside the unit circle. In case some
roots lie inside the unit circle and some roots on the unit circle, then VAR is non-
stationary. If any root is outside the unit circle, then VAR is explosive and therefore
unstable. There are k×n = 14 roots of the companion matrix and Table 5.3 presents
10 largest roots with their modulus.

Table 5.3: Roots of the companion matrix

Roots Real Imaginary Modulus

1 0.981 -0.025 0.982
2 0.981 0.025 0.982
3 0.948 -0.066 0.950
4 0.948 0.066 0.950
5 0.895 0.000 0.895
6 0.854 0.000 0.854
7 0.361 -0.309 0.476
8 0.361 0.309 0.476
9 -0.294 0.000 0.294
10 -0.052 -0.264 0.269

None of the roots of the companion matrix lie outside the unit circle indicating
that this specification of VAR is stable. This is consistent with our expectation that
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the system is not I(2). At least four roots are close to unity while additional two
roots are at the borderline of unity (0.9). This indicates that the system as a whole
is I(1) and the variables should therefore be differenced once to get the stationary
process I(0). The roots of the companion matrix also suggest that there is between
1 and 3 stationary linear relationships between the variables in the system; however,
to define the exact number additional tests are necessary.

5.3 Vector equilibrium correction model

Converting VAR specification (5.11) to first difference model would simply require
using logreturns in Yt instead of log levels. Such model would sufficiently explain
the short-run dynamics of the system, however the long-term relationships between
variables, if they exist, would be lost. The long-term relationships between variables
are important when variables are cointegrated. The principle of cointegration is that
if two variables are cointegrated, they may “wander away” from each other in the
short-run due to the impact of random forces, but they will eventually approach
each other again due to the effect of long-run equilibrium forces. This means that
even if the unconditional distribution of variables is unbounded, the difference be-
tween them is bounded. A first difference model that is able to capture the long-run
relationship between variables is called vector equilibrium correction model (VECM)
which is obtained by converting (5.11) to

∆Yt = A0 + ΠYt−1 +
k−1∑
i=1

Γi∆Yt−i + Ψ∆Zt + ΘDt + ut. (5.18)

VECM in (5.18) has the same innovation process ut, since no restrictions have been
imposed by this transformation. A0 is unrestricted constant which accounts for a
constant in the short-run model (trend in levels) and a constant in cointegration
space. In (5.18) the RHS contains information about the short- and the long-run
adjustment to changes in Yt.

VECM formulation has several advantages over VAR. It significantly reduces
the problem of multicollinearity, since the first differences are much more orthogo-
nal than the levels. The interpretation of the results is much more intuitive, since
parameter estimates can be classified into short-run and long-run effects, which en-
ables to explain what drives the realised changes between two periods. Finally, all
the long-run dynamics in VECM is summarised in the matrix Π, which is very con-
venient since the problem of cointegration is then focused only on the properties of
Π. In (5.18) we also convert Tm to first differences, since the unit root test on this
variable show non-stationarity. While a non-stationary exogenous variable could in
principle be restricted to cointegration space, Tm is the risk premium parameter and
therefore should not be cointegrated with variables in Yt since it is in fact stationary.
For this reason, Tm is not restricted to cointegration space.
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5.4 Cointegration test

If Yt in (5.18) contains I(1) variables, then ∆Yt−i is I(0), while ΠYt−1 must also
be I(0) for ut to be a white noise process. Obviously, Π cannot have a full rank
r = n, since this would imply inconsistency that each stationary variable ∆Yt is a
linear combination of non-stationary variables Yt−1 and other components in (5.18),
which are all stationary. Π must therefore have a reduced rank r ≤ n− 1. Matrix
Π can be decomposed to Π = αβ′ where α represents the speed of adjustment to
disequilibrium and α is the matrix of long-run coefficients such that β′Yt−1 rep-
resents up to n − 1 stationary cointegrating relationships, which ensure that Yt

converge to their long-run steady state solution. A note, however, is necessary that
since Yt contains two variables that are possibly I(0) in levels, they may form a
cointegrating relation by itself adding to the total number of cointegrating relations.
To test for cointegration between variables, we employ Johansen maximum likeli-
hood approach [77] which provides n eigenvalues λ1 > λ2 > . . . > λn and their
corresponding eigenvectors V = (v1, v2, . . . vn) of matrix Π. Johansen cointegration
test concentrates on testing which eigenvalues of matrix Π in (5.18) are signifi-
cantly different from 0. These eigenvalues form linear combinations of stationary
relationships β = (β1, β2, . . . , βr). Cointegration is present if Π has a reduced rank
r ≤ (n−1), indicating that there are r stationary cointegrating relationships between
non-stationary variables in VAR. If r = n, this would indicate that all variables are
stationary, while r = 0 would indicate no stable cointegrating relationships and the
VAR with first differences only would be adequate. To determine the rank r, we use
the trace test statistics and maximum eigenvalues statistics. Trace test statistics is
defined as

λtrace = −N
n∑

i=r+1

log(1− λ̂i), (5.19)

whereas maximum eigenvalue test statistic is defined as

λmax = −N log(1− λ̂r+1), (5.20)

where N is the sample size and λ̂i are the eigenvalues of Π, estimated using the
Maximum Likelihood Estimator (MLE) developed by Johansen [78]. Eigenvalues
1 > λ̂1 > λ̂2 > . . . > λ̂n, λ̂n+1 = 0 solve

|λS11 − S10S
−1
00 S01| = 0 (5.21)

where

Sij =
1

N

N∑
t=1

RitR
′
jt, i, j = 0, 1 (5.22)

are the product moment matrices of the residuals R0t and R1t obtained from re-
gressing ∆Yt and Yt−1 on the lagged differences ∆Yt−1, . . . ,∆Yt−k+1, exogenous
variables and unrestricted deterministic variables (see Johansen [78] for details).

Both tests (5.19) and (5.20) involve the test of null hypothesis that there are
r cointegration vectors against the alternative that there are r + 1 cointegration
vectors. The asymptotic critical values for trace test and maximum eigenvalue test
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are reported in Doornik [79], although these are rather indicative if the sample size is
small compared to the number of parameters estimated or if additional unrestricted
dummy variables are used in the model. Table 5.4 presents the MLE eigenvalue
estimates sorted in descending order and the corresponding log-likelihood functions
(LLF ) for each rank r. The magnitude of eigenvalues shows that only the first
eigenvalue appears to be significant, while other eigenvalues are below the indicative
borderline of significance, which is around 0.2.

Table 5.4: Eigenvalues of matrix Π

Rank Eigenvalues LLF

0 2644.8
1 0.3715 2680.5
2 0.1955 2697.3
3 0.1766 2712.2
4 0.1140 2721.5
5 0.0739 2727.5
6 0.0272 2729.6
7 0.0184 2731.0

The results of the trace test, presented in Table 5.5, show that the first hypothesis
r = 0 is strongly rejected in both tests. The second hypothesis r = 1 is marginally
rejected in case of trace test, whereas with maximum eigenvalue test this hypothesis
is not rejected. The third hypothesis r = 2 is not rejected in neither of them. The
trace test therefore suggests two cointegrating vectors, although the second is only
marginally significant. Maximum eigenvalue test, on the other hand, suggests only
one cointegrating vector.

Table 5.5: Trace and maximum eigenvalue statistic

H0 : r ≤ λtrace Prob. λmax Prob.

0 172.50 0.000** 71.52 0.000**
1 100.98 0.019* 33.50 0.236
2 67.47 0.074 29.92 0.140
3 37.55 0.326 18.63 0.456
4 18.92 0.509 11.82 0.578
5 7.11 0.572 4.25 0.827
6 2.85 0.091 2.85 0.091

*reject the null at 5% significance **reject the null at 1% significance

Apparent contradiction of results in Table 5.5 is not uncommon in cointegration
analysis, since the interventions dummies tend to influence the underlying distribu-
tion of the test statistic such that the critical values of these tests depend on the
number of intervention dummies included in the model. The problem of small sample
compared to the number of estimated parameters is also reported by Reimers [80],
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in which case the critical values of Johansen cointegration test tend to over-reject
the null hypothesis when true. Reimer suggests adjusting the degrees of freedom to
the number of estimated parameters and thus replacing the sample size N in (5.19)
and (5.20) with N − nk, where n is the model dimension and k the lag length of
VAR. Table 5.6 presents the result of adjusted trace and maximum eigenvalue test.
Using Reimer’s adjustment of degrees of freedom, both test show that there is only
one cointegrating vectors in the system, therefore r = 1.

Table 5.6: Adjusted trace and maximum eigenvalue statistic

H0 : r ≤ λtrace(N − nk) Prob. λmax(N − nk) Prob.

0 156.82 0.000** 65.02 0.000**
1 91.80 0.089 30.46 0.409
2 61.34 0.197 27.20 0.261
3 34.14 0.499 16.94 0.595
4 17.20 0.634 10.74 0.680
5 6.46 0.646 3.87 0.866
6 2.59 0.107 2.59 0.107

*reject the null at 5% significance **reject the null at 1% significance

As asymptotic distribution critical values suffer from small sample sizes and
a number of deterministic variables, a bootstrapping simulation is often used as
an alternative method for test statistic of the null hypothesis (see, e.g. Davidson
and MacKinnon [81]). In the bootstrap test, one first computes a test statistic ŝ
obtained from the underlying test and estimates whatever parameters are needed
to obtain a data generating process (DGP) that satisfies the null hypothesis. The
distribution of the random variable s of which ŝ is a realization under this “bootstrap
DGP” serves to define the theoretical or ideal bootstrap p-value, p∗(ŝ), which is just
the probability that s > ŝ under the bootstrap DGP. Normally, this probability
cannot be calculated analytically, and it is thus estimated by simulation, as follows.
One draws B bootstrap samples from the bootstrap DGP, each of which is used to
compute a bootstrap test statistic s∗j in exactly the same way as the real sample
was used to compute ŝ. For a one-tailed test with a rejection region in the upper
tail, the bootstrap p-value may then be estimated by the proportion of bootstrap
samples that yield a statistic greater than ŝ:

p̂∗(ŝ) ≡ 1

B

B∑
j=1

I(s∗j > ŝ), (5.23)

where I(·) is the indicator function. As B → ∞, the estimated bootstrap p-value
p̂∗(ŝ) will approach to the ideal bootstrap p-value p∗(ŝ). We estimate the boot-
strapped critical values on a reduced rank VAR, where H0 : β = βc, generating the
pseudo data on the basis of the estimated reduced rank parameter estimates and a
set of random noises.

Table 5.7 gives the estimated bootstrapped critical values for the trace test statis-
tics with B = 1000 simulations for each hypothesis in question. The critical values
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and the corresponding p-values show that the bootstrapping method gives more
strict critical values than asymptotic distribution. The corresponding p-value for the
trace statistic in Table 5.7 shows that H0 : r < 1 is not rejected with the bootstrap
p-value of 0.074, whereas to the asymptotic p-value in Table 5.5 was 0.019. Similar
to Reimer’s small sample adjustment, these results again indicate one significant
cointegrating relationship, while the second is marginally rejected.

Table 5.7: Bootstrap critical values for trace statistic

H0 : r ≤ 1% 5% 10% p-value

0 147.50 135.99 129.51 0.000
1 115.75 104.65 97.50 0.074
2 82.04 74.04 70.35 0.129
3 60.76 51.05 47.34 0.446
4 37.68 32.33 29.63 0.622
5 20.42 15.61 13.08 0.563
6 10.06 6.30 5.32 0.317

Since the choice of cointegration rank is crucial in modelling cointegrated sys-
tems, we look for additional indicators for determining r. Juselius [82] outline three
additional indicators which might help to choose the right cointegration rank.

First indication lies in the moduli of the largest roots of the companion matrix,
and how they are changing for the hypotheses in question, i.e. r = 1, 2, . . . , n − 1.
Table 5.8 shows the moduli of the characteristic roots for all hypotheses in question.
Only at the first hypothesis the largest moduli is clearly away from the unit circle,
whereas moduli of 0.871 or 0.910 could be considered as close to unit root. These
results again indicate one strong cointegrating relationship, whereas the second is
on the borderline of significance.

Table 5.8: Moduli of the characteristic roots

Rank r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

0 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 0.967
2 1.000 1.000 1.000 1.000 0.954 0.967
3 1.000 1.000 1.000 0.962 0.954 0.949
4 1.000 1.000 0.910 0.962 0.946 0.822
5 1.000 0.871 0.910 0.786 0.815 0.477
6 0.405 0.431 0.478 0.471 0.466 0.477

The second indication suggested by Juselius are the t-values of αi coefficients
of the rth + 1 cointegrating vector. If any loading matrix coefficient for rth + 1
cointegrating vector is significant, then including this vector in the model might help
to improve the explanatory power. The critical values for loading matrix coefficients
αi follow Student’s t distribution only if the corresponding vector βiYt is stationary,
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Table 5.9: t-values of loading matrix coefficients

Variable αi,1 αi,2 αi,3 αi,4 αi,5 αi,6

np -4.946 -0.231 0.212 -0.273 0.316 1.045
oil 1.180 -4.199 0.850 0.082 -0.820 1.108
coal 1.429 0.430 -1.708 -0.811 1.907 1.319
gas -1.059 -2.284 0.632 -3.277 1.165 0.380
eua -3.791 -1.628 -3.311 -1.939 -0.512 0.035
eex -7.291 -0.851 -0.527 -1.053 0.106 0.831
alu 1.190 1.306 0.250 -1.854 -2.139 0.980

otherwise Dickey-Fuller critical values are more appropriate. Table 5.9 reports t-
values of loading matrix coefficients. The significance of loading matrix coefficients
give less intuitive results compared to the findings above. The second cointegrating
vector is found significant only in oil equation, the third only in eua equation and
the fourth only in gas equation.

Finally, we look at the graph of the first six cointegrating vectors presented
in Figure 5.2. The first cointegrating vector looks stationary and the last four are
clearly not. The second cointegrating vector looks stationary but may be close to
unit root. Figure 5.2 does not provide additional support at the difficult choice
between r = 1 and r = 2. The choice with the cointegration is often difficult when
near-integrated variables are in the model. Johansen [78] argues that there is little
need to pre-test the variables in the system to establish their order of integration,
since the cointegration space is spanned by the number of stationary variables in
the model. Many authors, however, show that this is valid only for a pure unit-root
assumption, but not in case of near-integrated variables. Based on the unit root test
in Table 4.7, we have a reason to believe that at least one of the variables in our
system is near-integrated and this has a strong influence on the trace test and the
maximum eigenvalue test statistics. Although our sample shows that oil or eua are
near-integrated, forward prices are usually found to be purely integrated processes
(see, e.g. Messe and Singleton [83]) so we treat them as such. If oil or eua would
be considered as stationary, the right choice for cointegration rank would be r = 2,
however, based on the tests reported above, r = 1 better reflect the data and the
economic theory behind it.

5.5 Restrictions on β and α

5.5.1 Identification of cointegration space

Setting r = 1, we estimate the cointegrating vector β and loading vector α. Since
no restrictions are imposed on cointegrating vector at this point, β is not identified.
To achieve exact identification, β is normalised with respect to np. In Table 5.10
we present the values of cointegrating vector β normalised with respect to np and
coefficients of loading vector α. Together with coefficient values, Student distribution
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Figure 5.2: Cointegrating vectors

t-values are also reported to get the indication of the significance of parameters.
Based on t-values in Table 5.10 all variables in cointegrating vector appear sig-

nificant except gas. Parameters and corresponding t-values in loading vector α show
that, in the short-run model, only np, eua and eex might be important, since
weights of the other variables appear statistically insignificant. While asymptotic
t-distribution might be a good indication of significance of each parameter in coin-
tegrating vector and loading vector, a proper way to test their significance is by
imposing restrictions on certain parameters and performing a standard LR test.
Restrictions in cointegration space can be imposed by defining a restricted cointe-
grating vector αc as follows

βc = (βc1, . . . , β
c
r) = (H1ϕ1, . . . ,Hrϕr) (5.24)

in which Hi are design matrices and ϕi are coefficient matrices. Since r = 1 we
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Table 5.10: Normalised cointegrating vector βi,1 and loading vector αi,1

Variable βi,1 t-value αi,1 t-value

np 1.000 -0.147 -5.013
oil -1.003 -5.236 0.045 1.119
coal -0.920 -6.304 0.039 1.408
gas -0.106 -1.395 -0.045 -1.012
eua 0.147 3.336 -0.301 -3.626
eex 1.191 4.831 -0.147 -7.350
alu -1.161 -5.694 0.037 1.166

impose the restriction on β4,1 = 0 by setting

βc1 = H1ϕ1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

ϕ16

 (5.25)

This restriction is not rejected with LR = 1.214 and p-value based on χ2(1)-
distribution is p = 0.271. Gas price is therefore indeed insignificant in the long-run
model. This reflects the well known fact from energy markets that natural gas price
follows the (possibly delayed) information about the crude oil price. Since long-term
crude oil price is also included in the model, the additional information on natural
gas price does not help to explain the long-run dynamics of the model. Restricting
any other parameter in the cointegration space leads to a rejection of LR test.
This way the cointegrating vector composing of all variables expect gas is exactly
identified.

The structure and parameters of cointegrating vector are interesting since this
vector represents a linear combination of np, oil, coal, eua, eex and alu. The Nord
Pool price increases approximately one to one with oil price, a bit more than one
to one with aluminium price and a bit less than one to one with coal price. On
the other hand, the Nord Pool price falls a bit more than one to one when EEX
price increases and falls by 0.15% if the emission allowance price rises by 1%. The
parameters of the cointegrating vector do not imply that there is a negative long-run
relationship between np, eua and eex. Since Nord Pool and EEX price are strongly
positively correlated, this is rather an indication that if a positive shock occurred in
the EEX price in the last period, then a similar positive shock is also likely to have
occurred in the Nord Pool price. The cointegrating vector would then pull the Nord
Pool price back down in the next period.

We do not test additional restrictions, such as the long-run price homogeneity,
since these variables come from different commodity markets and their relationship
is established on purely technical basis when investors compare the value of different
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assets. The price homogeneity would therefore have no theoretical meaning in this
case.

5.5.2 Weak exogeneity test

Variables can be classified as weakly exogenous when they have a significant influence
on other variables in the long-run, however, they are not influenced by them. Weak
exogeneity test is performed on the loading matrix α by testing the restrictions
that a particular row in the estimated loading matrix α is insignificantly different
from zero. The parameters of α explain how the short-run model is adjusted to the
disequilibrium represented by the cointegrating vectors β′Yt−1. If the entire row in
α is zero this indicates that none of the cointegrating vectors enter the equation
associated with this row. The following hypotheses is of interest

H0(r) : α = Hαc (5.26)

in which α is the estimated unconstrained loading matrix, H is the design ma-
trix and αc is the constrained loading matrix containing only non-zero coefficients.
Based on the results in Table 5.10 we test the hypothesis that oil, coal, gas and
alu are weakly exogenous in our system. The design matrix therefore includes four
restrictions leaving only three free parameters to estimate:

H1 =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0


. (5.27)

Testing this hypothesis using restricted βc estimated in the previous section shows
that the null is not rejected, since LR = 10.035 and p-value based on χ2-distribution
is p = 0.074. The results of weak exogeneity test are presented in Table 5.11.

Table 5.11: Weak exogeneity test results

Variable βi,1 t-value αi,1 t-value

np 1.000 -0.202 -6.015
oil -0.958 -6.790 0
coal -0.654 -6.740 0
gas 0 0
eua 0.129 3.491 -0.365 -3.938
eex 0.714 3.579 -0.179 -8.248
alu -0.863 -5.515 0

Variables oil, coal, gas and alu are therefore weakly exogenous, while np, eua
and eex are endogenous. Fuel prices and aluminium prices therefore have a signif-
icant impact on electricity prices and consequently on emission allowance prices,
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whereas the feedback influence of electricity prices on fuels and aluminium prices
is negligible. This is somewhat expected for oil and also gas, which is highly corre-
lated with oil. Obviously global oil and consequently gas prices follow global supply
and demand, for which electricity production industry is the marginal consumer of
these fuels compared to other consumers. The results, on the other hand, are not so
intuitive for coal and aluminium prices. Most of the coal produced today is used for
electricity production and aluminium production costs depend mostly on electricity
prices. One would therefore expect coal prices and aluminium prices to be tightly
connected to electricity prices in a way that electricity prices also influence coal
and aluminium prices. Weak exogeneity test results therefore indicate that long-
term coal and aluminium prices are governed by other market forces and that the
long-term electricity price is not one of them.

The loading parameters in Table 5.11 for np, eex and eua are strongly signifi-
cant, with eex and np having a similar speed of adjustment to equilibrium. Around
20% of disequilibrium in np and eex is corrected in one period, whereas the speed
of adjustment for eua is significantly higher with about 37% of disequilibrium in
cointegrating vector corrected in one period.

Table 5.12 presents the long-run impact matrix Π, estimated with constrained
α and β, while the t-values of the parameters are given in brackets below. The
interpretation of these parameters is rather easy since α and β are both n×1 vectors,
therefore the parameter values are the simple product of the two respective elements
in α and β. Endogenous variables adjust negatively to disequilibrium caused by
endogenous variables and positively to disequilibrium caused by weakly exogenous
variables.

Table 5.12: Π matrix

Variable np oil coal gas eua eex alu

np −0.202
(−6.015)

0.193
(6.015)

0.132
(6.015)

0
(−)

−0.026
(−6.015)

−0.144
(−6.015)

0.174
(6.015)

oil 0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

coal 0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

gas 0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

eua −0.365
(−3.938)

0.350
(3.938)

0.239
(3.938)

0
(−)

−0.047
(−3.938)

−0.261
(−3.938)

0.316
(3.938)

eex −0.179
(−8.248)

0.172
(8.248)

0.117
(8.248)

0
(−)

−0.023
(−8.248)

−0.128
(−8.248)

0.155
(8.248)

alu 0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

5.6 Conclusion

In this chapter, we set up a vector autoregressive model conditional on information
set defined in Chapter 4. Due to residual autocorrelation and heteroscedasticity we
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include additional dummies to make the residuals well behaved. Stability and pa-
rameter constancy test reveal that VAR is stable and that parameters are constant
throughout the sample. This provides an adequate grounds for testing for cointe-
gration using Johansen cointegration testing framework for I(1) system. Trace and
maximum eigenvalue test, together with other indicators, reveal that there is only
one significant cointegrating relationship between the variables in the model, while
two additional cointegrating vectors are marginally rejected. We estimate the coin-
tegrating vector β and loading matrix α and find that cointegrating vector is not
influenced by gas, whereas adjustment coefficients for oil, coal, gas and alu are in-
significant in loading matrix α, implying that these variables are weakly exogenous.

Granger [2] postulates that asset prices, determined in efficient markets, cannot
be cointegrated. Fama [84] distinguishes between three forms of market efficiency.
Weak-form efficiency implies that future changes in market prices cannot be pre-
dicted by analysing only the past values of these prices, therefore technical analysis
or chartism cannot not yield any extra returns. Semi-strong efficiency implies that
the future prices cannot be predicted with any publicly available information, indi-
cating that neither technical nor fundamental analysis based on public information
would yield returns above the risk-free return. Finally, strong-form efficiency implies
that all information, public and private, is already included in the price, therefore
even the investors with private information cannot predict the future prices. Since we
model the long-term forward prices with fundamental variables from other commod-
ity markets, the presence of cointegration could give evidence against semi-strong
market efficiency. If prices of two assets are cointegrated, then the price movements
of one asset will convey information about the future movements of the other. In
this case, it will be profitable to trade across markets of different assets, exploiting
movements in the prices of one asset to predict movements in the prices of another
asset. Hence, this would imply arbitrage opportunities between markets, known also
as cross-sectional market inefficiency. Are therefore electricity and energy markets
in general inefficient? Many authors argue that cointegration does not necessarily
imply inefficient markets. Copeland [3] shows that cointegration between spot and
forward exchange rate is not sufficient condition for market inefficiency, since this
might be the result of time varying risk premium. However, under the assumption of
risk neutrality, cointegration between different types of asset is in general still con-
sidered as enough condition to indicate cross-sectional inefficiency (see, e.g. Dwyer
and Wallace [85]). Cointegration found between prices of different sources of energy
therefore provides some evidence against the semi-strong form of efficiency. However,
it may also imply very volatile risk premium, which we were unable to explain with
the variables in the information set.
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Chapter 6

Structural analysis

The interpretation of VAR and VECM models is very limited and does not provide
all the insight into the dynamics under investigation. Additional concepts and tools
were developed to interpret VAR/VECM models more easily. The most important
are the causality concepts, impulse response analysis and forecast error variance
decomposition. We test one-step-ahead Granger causally, which centers on the iden-
tification of how changes in variables cause changes in other variables. While this
notion gives short-run causal structure, impulse response analysis and forecast er-
ror variance decomposition provide an overall picture of the system dynamics, both
in the short- and the long-run. A more advanced structural relationship is given
by Beveridge-Nielsen decomposition, which provides the answer on which part of
the individual variable is the result of permanent dynamics and which part is only
transitory without permanent effect. While permanent components in variables are
driven by a few common trends, the transitory components are driven by a few com-
mon cycles. We also estimate the Structural VAR, which includes contemporaneous
relationships between variables. We identify structural shocks and try to give them
a theoretical meaning. At the end of the chapter, we reduce the model size and
estimate the short-run structure of the model. Possible applications of the model
are also discussed.

6.1 Granger causality

Causality between variables refers to a relationship between two variables, where
one variable is a direct consequence of the other variable, therefore one variable can
be used to forecast the other. A time series variable x is said to fail to Granger-
cause another variable y, if the mean squared error (MSE) of a forecast of yt+s
based on information set It = {xt, xt−1, . . . , yt, yt−1, . . .} is equal to the MSE of a
forecast yt+s based on information set It = {yt, yt−1, . . .}, s > 0. The conventional
Granger-causality test based on a standard VAR-model is defined conditional on the
assumption of stationarity. In case of VECM representation, Dolado and Lütkepohl
[86] propose a modified Wald statistic which also accounts for rank restrictions.
Granger causality can be characterised by specific zero constraints on the VECM
coefficients. Thus, if we want to test for Granger-causality in the estimated VECM,
we need to test zero constraints for the coefficients that describe the influence of
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variable Yi on variable Yj. Hence, these zero restrictions apply to matrix of short
run coefficients Γ as well as to the long-run matrix Π in VECM representation
(5.18). In case rank r is reduced, the long run matrix is Π = αβ′. However, when α
or β are restricted and the corresponding parameters in Π are zero, then the zero
restriction only applies to Γ. Let G be a N × (nk+d) matrix of variables as follows

G =


1

Dt

∆Yt−1

∆Zt

βYt−1

 (6.1)

where d is the number of deterministic variables plus the number of exogenous
variables. Defining Φ as

Φ =

[
In(nk+d−r) 0

0 β⊗ In

]
(6.2)

and Ξ is a vector of estimated VECM parameters

Ξ = vec([Â0 Θ̂ Γ̂ Ψ̂ α̂β̂]) (6.3)

then the Wald statistic for Granger causality test is

λW = R′Ξ′[RΣΞR′]−1RΞ,
d−→ χ2(k) (6.4)

where ΣΞ is a variance-covariance matrix of VECM parameter estimates

ΣΞ = Φ((ZZ′)−1 ⊗Ω)Φ′ (6.5)

and Ω is a variance-covariance matrix of residuals

Ω =
1

N
utu

′
t. (6.6)

In (6.4) R is a k × (n(n + k + d)) selection matrix with 1 at the corresponding
parameters of Ξ, such that parameters Γi,j, Πi,j, i 6= j are selected, and 0 otherwise.
The Wald statistic in (6.4) is distributed with χ2 distribution with k degrees of
freedom.

Tables 6.1 to 6.3 give the results for Granger causality tests for three different
cases. The first causality test is performed on unrestricted VECM without the rank
restriction (r = 7). The second test is applied on reduced rank VAR with r = 1,
whereas the third test applies for reduced rank VAR (r = 1) with restrictions on α
and β as in Section 5.5. The purpose of three different tests is to identify how rank
reduction and constraints on α and β influence causality between variables. The
results in Table 6.1 show only few cases of unidirectional causality. These results
should, however, be treated only as indicative, since unrestricted VAR still exhibits
non-stationarity. Therefore, the conventional Granger-causality cannot be trusted in
this case.
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Table 6.1: Granger causality test for unrestricted VECM (r = 7)

H0: Variable i does not Granger-cause

Variable i np oil coal gas eua eex alu

np 1.05 0.62 0.83 5.02 11.32** 2.15
oil 7.83* 0.23 5.97 8.84* 13.86** 1.34
coal 13.23** 2.98 2.37 5.54 20.94** 6.42
gas 0.18 5.97 11.06** 0.83 0.43 4.34
eua 2.53 3.67 2.85 4.62 5.62 0.90
eex 0.93 2.89 0.75 1.14 3.61 2.63
alu 9.30** 0.08 2.57 1.37 8.08* 27.98**

*reject the null at 5% significance **reject the null at 1% significance

Table 6.2: Granger causality test for unrestricted VECM (r = 1)

H0: Variable i does not Granger-cause

Variable i np oil coal gas eua eex alu

np 1.74 2.53 1.48 15.62** 61.96** 3.78
oil 28.82** 2.59 8.87* 17.08** 61.30** 2.05
coal 28.47** 3.37 4.59 16.79** 63.28** 2.10
gas 29.17** 7.60* 7.11* 14.90** 61.28** 4.65
eua 31.00** 1.72 2.41 1.25 61.28** 2.20
eex 29.82** 4.78 2.27 1.49 15.02** 1.55
alu 28.49** 1.44 5.52 1.97 14.90** 62.67**

*reject the null at 5% significance **reject the null at 1% significance

Table 6.3: Granger causality test for restricted VECM (r = 1)

H0: Variable i does not Granger-cause

Variable i np oil coal gas eua eex alu

np 0.31 0.28 0.31 18.28** 77.81** 2.22
oil 41.34** 0.34 7.65* 19.77** 77.15** 0.51
coal 40.98** 1.93 3.40 19.47** 79.13** 0.55
gas 0.42 6.12* 4.80* 0.00 0.01 3.08
eua 43.52** 0.30 0.17 0.09 77.13** 0.65
eex 42.33** 3.33 0.03 0.32 17.67** 0.01
alu 41.00** 0.02 3.22 0.80 17.55** 78.51**

*reject the null at 5% significance **reject the null at 1% significance
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Restricting r = 1 produces very different results of causality test, which are
presented in Table 6.2. These results show that all variables Granger-cause np, eua
and eex, whereas oil, coal, gas and alu are not Granger-caused by any of them,
except for some marginal causality between oil, coal and gas. This is consistent with
weak exogeneity test results, which show that oil, coal, gas and alu influence np, eua
and eex, but are not influenced by them. Surprisingly, gas also Granger-cause np,
eua and eex even though the restrictions on α and β show that gas is insignificant.
Obvious contradiction of results can be explained by the very nature of both tests.
While weak exogeneity test focuses on the long-run causality, the Granger causality
test reveals only the short-run causal structure. Luintel and Khan [87] have shown
that long-run causality can be examined by testing the cointegrating vectors in
the Johansen testing framework for weak exogeneity. Weak exogeneity is sometimes
also referred to as long-run Granger non-causality. In the context of cointegrated
systems, weak exogeneity is a long-run notion of exogeneity implying that the long-
run relations between variables are block triangular. Weak exogeneity means no
long-run feedback (insignificance of speed of adjustment coefficients) towards the
relevant variable exists and implies a “weak” form of Granger non-causality. Finally,
weak exogeneity of a variable in conjunction with absence of Granger-causality in the
short-run establishes strong exogeneity for that particular variable (Engle, Hendry
and Richard [88]).

Table 6.3 gives the results of Granger-causality test for restricted rank r = 1 with
additional restrictions on α and β estimated in Section 5.5. Compared to results in
Table 6.2, the restrictions on α and β significantly influence the causal structure for
gas, since the Granger non-causality on other variables is no longer rejected except
for the case of oil and coal. Restrictions imposed on α and β therefore produce a
consistent casual structure in the short- and long-run.

6.2 Impulse response analysis

Impulse response analysis is often used to analyse the dynamic interactions between
endogenous variables of a VAR/VEC process. In this analysis, exogenous and deter-
ministic variables are treated as fixed and may therefore be dropped from the system.
Denoting adjusted endogenous variables as Yt, estimated VECM parameters as in
(5.18) can be converted to VAR(k), while exogenous and deterministic variables can
be dropped at this point since these have no influence on impulse responses.

Yt = A1Yt−1 + . . .+ AkYt−k + ut (6.7)

This can be further expressed with the following Wold moving average (MA) repre-
sentation

Yt =
∞∑
s=0

Φsut−s (6.8)

where Φ0 equals the impulse function IK and the Φs can be computed recursively
with

Φs =
s∑

m=1

Φs−mAm, s = 1, 2, . . . (6.9)
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in which Am = 0 for m > k. The elements of Φs represent the impulse responses of
the components of Yt with respect to the innovations ut. More specifically, parameter
Φij,s represents the expected response of variable i to an unit impulse in variable
j occurring s-th period ago. These impulse responses are sometimes called forecast
error impulse responses because the ut are the 1-step ahead forecast errors (see
Lütkepohl [89]).

Figure 6.1 presents impulse response analysis in which the response in endoge-
nous variables is measured as a function of unit impulse in endogenous and weakly
exogenous variables in our model. A response of a variable to its own impulse al-
ways equals one at the first step and then gradually decreases. Since all variables
except gas are present in cointegrating vector, the signs of parameters in cointegrat-
ing vector influence the signs of the response to an impulse. The impulse in weakly
exogenous variables oil, coal and alu induces a positive impulse in endogenous vari-
ables. The response to the impulse in np, eua and eex is in all cases negative, since
their cointegrating vector parameters have all positive signs. The magnitude of long-
term response in endogenous variables is directly proportional to the parameters in
cointegrating vector multiplied with loading matrix parameters. The short-run re-
sponses are also influenced by matrix of short run parameters Γ, hence the first
step response presents the combination of the long-run response governed by Π and
short-run response governed by Γ, whereas a unit impulse in gas is governed only
by the respective short-run parameters in Γ.

A major drawback of ordinary impulse response function is the assumption that
the underlying shocks are to occur in isolation and therefore the covariance matrix
Ω is assumed to be diagonal. In most real world cases, the covariance matrix is not
diagonal and the shocks to the system are not likely to occur in isolation. Table
6.4 presents the covariance matrix of residuals taken from the restricted VAR. The
table shows that Ω cannot be considered diagonal in our case, since particularly high
covariance can be found between np and eua and between eua and eex residuals.

Table 6.4: Covariance matrix Ω (×10−6)

Variable np oil coal gas eua eex alu

np 350 141 97 142 392 149 25
oil 141 648 56 233 184 78 133
coal 97 56 309 195 113 55 29
gas 142 233 195 813 618 169 63
eua 392 184 113 618 2729 348 128
eex 149 78 55 169 348 162 45
alu 25 133 29 63 128 45 408

To take into account the interdependence of shocks, a real covariance matrix
must be considered in impulse response function. A popular way how to achieve
this is to use Cholesky decomposition of the covariance matrix Ω. Denoting P a
lower triangular matrix such that Ω = PP′, the orthogonalised shocks are given by
εt = P−1ut, for which the covariance matrix is diagonal. Hence, in the stationary
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Figure 6.1: Impulse responses. In the upper left corner a unit impulse in np results in
decreasing long-run response of np to approximately 0.5, while no short-run response
is visible. In the middle figure of the upper row a unit impulse to np results in a
positive short-run response in eua, while the negative long-run response prevails
from the second week forward.
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case we get

Yt =
∞∑
s=0

Ψo
sεt−s. (6.10)

Here the response function for an impulse in variable j is given with

Ψo
j,s = ΦsPej (6.11)

where ej is an m×1 selection vector with unity at j-th element and zeros elsewhere.
Since P is a lower triangular, a shock εt in the first variable may have an instan-
taneous effect on all variables, whereas a shock in the second variable cannot have
an instantaneous impact on the first variable, but only on the other variables and
so on. Cholesky decomposition therefore imposes a recursive causal structure from
the top variables to the bottom variables, but not the other way around. Hence, the
effects of a shock may depend on the way the variables are arranged and the results
may be very different if non-diagonal values of covariance matrix are high.

In the view of this non-uniqueness of the impulse responses, Pesaran and Shin [90]
proposed the generalised impulse response function (GIRF), for which the (scaled)
response to an impulse in variable j is given with

Ψg
j,s =

ΦsΩej√
σjj

(6.12)

where σjj is j-th diagonal element of covariance matrix Ω. Instead of controlling
the impact of correlation among residuals, GIRF follows the idea of nonlinear im-
pulse response function and computes the mean impulse response function. When
Ω is diagonal, GIRF equals the impulse response function, whereas when compared
to the orthogonalised impulse response function, GIRF does not depend on vari-
able ordering. Figure 6.2 presents the generalised impulse responses together with
their confidence intervals for the three endogenous variables. In general, the results
show similar impulse responses as in Figure 6.1. However, their interdependence is
changed. In contrast to orthogonalised impulses or unit impulses, generalised im-
pulses are the corresponding columns of the residual covariance matrix scaled by
the standard deviation of the of impulse variable residuals. Generalised responses
can therefore be directly compared in relative terms. The generalised impulse re-
sponses also provide us with measure how quickly the long-run relations converge to
their steady state values. Figure 6.2 shows that in all cases, responses to generalised
impulses are the highest in eua and lowest in eex. Steady state or the long-run gen-
eralised impulses are achieved after approximately 5 weeks. Their values together
with t-values are also presented in Table 6.5.

6.3 Forecast error variance decomposition

The dynamic interactions between the variables in the system can also be sum-
marised with the Forecast Error Variance Decomposition (see, e.g. Hamilton [91],
Franses [92], Chapter 9, and Lütkepohl [93]). While the impulse response function
records the effects of a shock in one variable on other variables in VAR, the Fore-
cast Error Variance Decomposition (FEVD) separates variation in an endogenous
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Figure 6.2: Generalised impulse response with confidence intervals. In contrast to
Figure 6.1 these responses do not start with 1 or 0, since the system is hit simulta-
neously by a generalised impulse in all variables, which is proportional to residual
covariances.
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Table 6.5: Long-run generalised impulse responses (×10−4), t-values in brackets

Impulse

Response np oil coal gas eua eex alu

np 100
(5.76)

149
(7.33)

83
(4.26)

84
(4.18)

10
(0.46)

52
(3.05)

80
(4.07)

oil 83
(3.58)

238
(9.52)

9
(0.33)

101
(3.75)

56
(2.05)

60
(2.70)

44
(1.69)

coal 55
(3.47)

30
(1.56)

166
(10.37)

87
(4.77)

23
(1.22)

49
(3.25)

1
(0.06)

gas 98
(3.11)

178
(4.76)

88
(2.43)

320
(9.79)

129
(3.51)

152
(5.24)

45
(1.26)

eua 110
(1.64)

358
(4.50)

95
(1.36)

314
(4.56)

493
(7.30)

171
(2.74)

236
(3.29)

eex 15
(0.95)

126
(6.97)

52
(2.97)

87
(4.94)

21
(1.13)

67
(4.55)

96
(5.68)

alu 11
(0.69)

43
(2.36)

19
(1.06)

38
(2.12)

22
(1.24)

37
(2.60)

158
(10.71)

variable into component shocks to the system. Using the elements Φs of the impulse
response function in (6.9) and denoting the ij-th element of the impulse response co-
efficient matrix as Φij,s, the relative contribution of variable j to the s-step forecast
error variance of variable i is

θoij,s =

∑s−1
m=0(e′iΦmPej)

2∑s−1
m=0(e′iΦmΩΦ′mei)

(6.13)

where P is the lower triangular of Cholesky decomposition of the covariance matrix
Ω, whereas ei and ej are twom×1 selection vectors with unity at i-th an j-th element
respectively and zeros elsewhere. The numerator in (6.13) can be interpreted as the
contribution of variable j to the s-step forecast error variance of variable i, whereas
the denominator is the sum of contributions from all variables to the forecast error
variance of variable i.

Similar as orthogonalised impulse response function, FEVD also uses Cholesky
decomposition of the covariance matrix and the resulting variance decomposition
very much depends on ordering of variables. Following the work on GIRF, Koop et
al. [94] and Pesaran and Shin [90] developed Generalised Forecast Error Variance
Decomposition (GFEVD), which is invariant to variable ordering. In GFEVD, the
relative contribution of variable j to the s-step forecast error variance of variable i
is

θgij,s =

∑s−1
m=0(e′iΦmΩej)

2

σjj
∑s−1

m=0(e′iΦmΩΦ′mei)
. (6.14)

Important difference between FEVD and GFEVD is that, in case of orthogonalised
variance decomposition, the sum of relative contributions to s-step forecast error
variance of variable i always equals one, whereas in GEFVD it does not.

n∑
j=0

θoij,s = 1,
n∑
j=0

θgij,s 6= 1. (6.15)
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Figure 6.3: Generalised forecast error variance decomposition

Figure 6.3 presents the generalised forecast error variance decomposition for np,
eua and eex. In short-run, the variance of variables is mostly influenced by its own
shocks, particularly in case of np and eex, in which more than 50% of the variance
is caused by its own shocks. In eua, the short-run forecast error variance is smaller
than the long-run forecast error variance. In the long-run, the variance structure is
more equally distributed among all the variables. While the variation in eua has the
smallest impact on variation of variables, the impacts of other variables are quite
significant. Oil, coal and alu have similar if not higher influence on the variance
structure, compared to the influence of np, eua and eex. This indicates that there is
no dominating variable in any of the endogenous variable forecast error variances.
Among weakly exogenous variables, the influence of coal is consistently higher than
the influence of oil and alu. A small difference can also be observed when compared
to the influence between np and eex. The influence of eex on np forecast error
variance is higher than the influence of np on eex forecast error variance. Also the
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forecast error variance of eua is influenced more by eex than it is by np. Thus, in
terms of forecast error variance, eex is more important than np.

6.4 Permanent and transitory decomposition

6.4.1 Permanent and transitory components

Any non-stationary series can be decomposed into permanent (or trend) and transi-
tory (or cycle) components. Several permanent-transitory decompositions have been
developed and used in empirical and theoretical analyses. These include multivariate
extension of Beveridge-Nelson decomposition proposed by Stock and Watson [95],
the observable permanent-transitory decomposition of Gonzalo and Granger [96]
where the components are identified as being the combinations of observable prices,
while Engle and Kozicki [97] introduced the concepts of serial correlation common
features in cointegrated VAR model. Here, we employ a permanent-transitory de-
composition proposed by Gonzalo and Granger [96] that focuses on identifying n−r
I(1) common stochastic trends.

Consider an n-dimensional stochastic process Yt of integrated variables and its
error correction (VECM) representation

Γ(L)∆Yt = δΛ + ΠYt−1 + ut (6.16)

where Γ(L) = In−
∑k−1

i=1 ΓiL
i, ∆ = 1−L is the difference operator, and L the lag

operator, Λ is a matrix of deterministic variables Λ = [1 Dt] and δ is the matrix
of their corresponding parameters, while ut is a vector of random disturbances from
individual equations with variance-covariance matrix Ω. Since the elements of Yt

are I(1), the Wold theorem assures that its first differences have an infinite vector
moving average representation, showing the way disturbances of previous periods
affect the current value of variables:

∆Yt = C(L)(δΛ + ut) (6.17)

where C(L) = In +
∑∞

i=1 CiL
i. Defining

C∗(L) = (C(L)−C)(1− L)−1 (6.18)

(6.17) can be expressed as:

∆Yt = CδΛ + Cut + C∗(L)∆ut. (6.19)

Johansen [78] has demonstrated that C is the long-run impact matrix defined as

C = β⊥(α′⊥(I−
k−1∑
i=1

Γi)β⊥)−1α′⊥, (6.20)

where α⊥ and β⊥ are orthogonal complements to α and β, such that α′α⊥ = 0 and
β′β⊥ = 0. Integrating (6.19) gives a multivariate version of the Beveridge-Nelson
decomposition of Yt

Yt = Y0 + Cδ
t∑
i=1

Λt + C
t∑
i=1

ui + C∗(L)ut. (6.21)
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Here, α⊥ gives the vectors defining the space of the common stochastic trends, and
therefore should be informative about the key driving variable(s) in the system. The
β⊥ vector gives the loadings associated with α⊥ i.e. the series which are driven by
the common trends. Thus, the C matrix measures the combined effects of these two
orthogonal complements.

Equation (6.21) shows the decomposition of matrix polynomial C(L) into a per-
manent part C and a transitory lag distribution C∗(L)∆εt. The second term on the
right-hand side of (6.21) consists of n random walks

∑t
i=1 ui which are multiplied by

a matrix C of rank n−r. Thus, there are actually n−r stochastic trends driving the
system. One may call Yt an I(1) process if there are actually I(1) trends (random
walks) in the representation (6.21).

Following (6.21), the permanent component of Yt, adjusted for exogenous vari-
ables is

YP
t = Y0 + Cδ

t∑
i=1

Λt + C
t∑
i=1

ut + FΨ
t∑
i=1

∆Zt (6.22)

where F is

F = J [In+r −A]−1

[
Ψ

βΨ

]
(6.23)

J is a selection matrix J = [In 0] and A is (n+ r)× (n+ r) matrix

A =

[
Γ α

β′Γ β′α

]
. (6.24)

The transitory component can thus be estimated with

YT
t = Yt −YP

t . (6.25)

The C matrix contains useful information on the overall effects of the stochastic
driving forces in the system. The columns show how the cumulated residuals from
each VAR equation load into the variables individually. Hence, a column of insignifi-
cant coefficients means that the corresponding variable has only exhibited transitory
effects on the variables in the system and significant coefficients in a column mean
that the variable in question has affected some variables of the system permanently.
The rows of the C matrix show the weights with which each of the variables in the
system have been affected by cumulated empirical shocks.

Table 6.6 presents the parameters of the C matrix with their Students’s t-values
below in brackets. The variable np is permanently influenced by all shocks and
among them the permanent influence of shocks in unp, uoil and ueex appears to
be the highest and most significant. Similarly, we can find a significant permanent
influence of shocks in endogenous variables on all endogenous variables, except for
the case of shocks in ueua, which does not seem to have a permanent impact on
eex. Shocks in weakly exogenous variables also permanently influence endogenous
variables, with the exception of ucoal with insignificant permanent influence on eua.
Shocks in ugas also seem to have significant permanent influence on endogenous
variables, although the parameter values are small and t-values are slightly above
significance.
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Table 6.6: C matrix (with t-values below)

Variable unp uoil ucoal ugas ueua ueex ualu

np 0.464
(5.27)

0.425
(6.55)

0.224
(2.62)

0.157
(2.91)

−0.091
(−2.35)

−0.338
(−2.78)

0.257
(3.90)

oil 0.145
(1.29)

0.904
(11.43)

−0.218
(−1.94)

0.150
(2.09)

0.034
(0.67)

−0.232
(−1.48)

−0.075
(−0.88)

coal 0.025
(0.32)

0.021
(0.38)

0.880
(11.36)

0.104
(2.09)

−0.018
(−0.50)

0.008
(0.07)

−0.076
(−1.29)

gas 0.042
(0.28)

0.328
(3.06)

−0.256
(−1.67)

1.103
(11.32)

−0.016
(−0.23)

−0.016
(−0.07)

−0.030
(−0.26)

eua −0.682
(−2.03)

1.187
(4.46)

0.159
(0.52)

0.291
(1.54)

1.035
(7.83)

−1.341
(−2.95)

0.594
(2.45)

eex −0.356
(−4.61)

0.408
(7.20)

0.160
(2.12)

0.122
(2.55)

−0.048
(−1.42)

0.499
(4.66)

0.298
(5.15)

alu −0.040
(−0.54)

−0.012
(−0.24)

−0.010
(−0.13)

0.082
(1.75)

−0.014
(−0.43)

0.074
(0.72)

0.773
(13.93)

Figures 6.4, 6.5 and 6.6 present the actual, permanent and transitory component
for three endogenous variables np, eua and eex. The permanent and actual compo-
nents are closely related in all three cases. The permanent components therefore
show a common long-run (permanent) impact due to the shocks in all variables.

A closer look at permanent components reveals that permanent components are
somehow preceding the movements of the actual component. In 2005 and in most of
2006, when energy prices were increasing, the actual components were lagging behind
the permanent components and the transitory components were negative on average.
At the end of 2006 and in beginning of 2007, a period of decreasing prices was
again preceded by the permanent components and the transitory components were
positive on average during this period. Only in the second half of 2007, the actual
and the permanent components were closely related. The transitory component in
eua is approximately 5 times higher than the transitory components in np and eex.
A similarity can be observed in the movements of all three transitory components.
This implies that they are governed by few common cycles.

6.4.2 Common trends and cycles

The decomposition of the C matrix is similar to that of the Π matrix and establishes
the dual property between the C matrix and Π matrix. If we set

β∗⊥ = β⊥(α′⊥(I−
k−1∑
i=1

Γi)β⊥)−1 (6.26)

then we can rewrite
C = β∗⊥α′⊥ (6.27)

which is similar to decomposition of Π. In the Π matrix form, β determines the com-
mon long-run relationships and α the loadings, whereas in the moving average repre-
sentation α′⊥ determines the common stochastic trends driving the long-run relation
out of equilibrium and β∗⊥ defines the loadings (Juselius [82]). The non-stationarity

75



Actual and permanent component for np

3.2

3.4

3.6

3.8

4

0 50 100 150

Actual component
Permanent component

−0.1

−0.05

0

0.05

0.1

0 50 100 150
Observation time / weeks

Transitory component for np

Figure 6.4: Permanent and transitory component for np
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Figure 6.5: Permanent and transitory component for eua

76



Actual and permanent component for eex

3.4

3.6

3.8

4

4.2

0 50 100 150

Actual component
Permanent component

−0.1

−0.05

0

0.05

0.1

0 50 100 150
Observation time / weeks

Transitory component for eex

Figure 6.6: Permanent and transitory component for eex

of the Yt therefore originates from the cumulative sum of n − r combinations of
α′⊥
∑t

i=1 ut. These are the common driving trends of the variables in Yt. A note
however is necessary, that these trends are just one of many possible representations
of non-stationarity, since the linear combinations of these common stochastic trends
also form a common stochastic trend. In (6.28) and (6.29), we present n−r matrices
α′⊥ and β∗⊥. A zero row in α corresponds to a unit vector in α′⊥.

α′⊥ =


0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−0.804 0 0 0 0.552 −0.220 0
−0.395 0 0 0 −0.220 0.892 0

0 0 0 0 0 0 1

 (6.28)

β∗⊥ =



0.425 0.223 0.157 −0.349 −0.465 0.257
0.904 −0.218 0.149 −0.046 −0.272 −0.075
0.020 0.880 0.103 −0.031 0.001 −0.076
0.328 −0.256 1.103 −0.039 −0.027 −0.030
1.187 0.159 0.291 1.415 −1.154 0.594
0.408 0.160 0.122 0.150 0.597 0.298
−0.012 −0.010 0.082 0.008 0.085 0.773


(6.29)

Among the n− r stochastic trends, two represent a linear combination of cumulated
shocks unp, ueua and ueex. The remaining stochastic trends represent the cumulated
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shocks in weakly exogenous variables uoil, ucoal, ugas and ualu. β∗⊥ represents the
loading weights how each of the n − r stochastic trends enter each equation in
(6.22). Results in (6.29) show that stochastic trends in weakly exogenous variables
are mostly influenced by its own cumulated shocks. Endogenous variables, however,
show a strong influence of the two combined stochastic trends and to a less degree
the influence of cumulated shocks in weakly exogenous variables. Among them,
the shocks in ualu have a particularly significant influence on common trends in
endogenous variables.

In 6.30 and Table 6.7 we present a restricted β∗⊥ and the corresponding C matrix.
The estimates are obtained by restricting the least significant coefficients in β∗⊥, until
the LR test on restricted log-likelihood function is rejected. Since these restrictions
apply only to β∗⊥, α⊥ is unchanged. The results in equation 6.30 and Table 6.7 are
obtained with 23 over identifying restrictions on β∗⊥ which gives 27 zero parameters
in the C matrix. The LR-test statistic is LR = 27.651 and the corresponding p-
value is p = 0.275. The results of the restricted C show interesting features of the
common stochastic trends in the system. Cumulated shocks ugas have significant
influence only on gas. The cumulated shocks in three weakly exogenous variables
influence all endogenous variables, except for the insignificant influence of ucoal on
eua. Beside the influence on endogenous variables and its own, the cumulated shocks
uoil also influence gas, but not coal. Weakly exogenous variables oil, coal and alu
are therefore influenced only by own cumulated shocks. The influence of cumulated
shocks uoil and ualu on eex and np show strikingly identical impact to both variables.
Cumulated shocks in ucoal however have a bit higher impact on np compared to the
impact on eex.

The cumulated shocks in the three endogenous variables influence all three en-
dogenous variables and none of the weakly exogenous variables. Due to restrictions
on α this is rather expected. While the impact of own cumulated shocks on en-
dogenous variables is positive, the impact of the other two endogenous variables
is negative. This corresponds to the strong contemporaneous correlation between
these three variables and implies that these three variables strongly cointegrate. A
similar influence is found in cointegrating vector β, which was in our case normalised
with respect to np. However, normalizing β with respect to eua or eex would yield
negative parameters for the remaining two variables. The parameters in Table 6.7
also show that eua is more prone to shocks in other variables since the parameters
in eua row are at least two times higher than the parameters in np and eex. Variable
eex also has higher a influence of cumulated shocks compared to np, indicating that,
among the three endogenous variables, eua is the most sensitive to shocks in the
system, while the sensitivity of np is the lowest. A relative interdependence of np
and eex also provides an interesting result. The impact of ueex on eex is about 39%
higher than the impact of unp on eex, whereas the impact of unp on np is about 70%
higher compared to the impact of ueex on np. This implies that, in relative terms,
the common trend in eex is more prone to the shocks in np than common trends
in np to the shocks in eex. A part of this can be explained by the fact that eex
price is constantly higher than np due to tighter supply in continental Europe. This
indicates that the elasticity of supply might be lower in continental Europe.
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Table 6.7: C matrix

Variable unp uoil ucoal ugas ueua ueex ualu

np 0.385
(10.30)

0.407
(9.05)

0.410
(10.41)

0
(−)

−0.102
(−7.66)

−0.226
(−4.74)

0.332
(10.22)

oil 0
(−)

0.891
(13.50)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

coal 0
(−)

0
(−)

0.934
(14.83)

0
(−)

0
(−)

0
(−)

0
(−)

gas 0
(−)

0.302
(3.71)

0
(−)

0.882
(17.20)

0
(−)

0
(−)

0
(−)

eua −0.791
(−3.54)

1.239
(5.92)

0
(−)

0
(−)

1.059
(11.67)

−1.266
(−4.11)

0.665
(3.70)

eex −0.394
(−10.75)

0.401
(10.64)

0.282
(7.71)

0
(−)

−0.049
(−3.62)

0.544
(11.80)

0.336
(9.46)

alu 0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0.762
(14.87)

β∗⊥ =



0.407 0.410 0 −0.316 −0.331 0.332
0.891 0 0 0 0 0

0 0.934 0 0 0 0
0.302 0 0.882 0 0 0
1.239 0 0 1.500 −1.049 0.665
0.401 0.282 0 0.170 0.652 0.336

0 0 0 0 0 0.762


(6.30)

Figure 6.7 presents a graph of the six common stochastic trends as defined by
α⊥. A visual inspection shows that the first three and the last common trend have
very similar dynamics to oil, coal, gas and alu respectively, which are presented in
Figure 4.2. These common trends are therefore mainly influenced by own cumulated
errors. Weak exogeneity restrictions on α imply that the dynamics in these variables
is explained only by the short-run matrix Γ and deterministic variables which are
all I(0). The source of integration in these variables therefore cannot be explained
by any other variable but its own past values, adjusted for the I(0) components. A
small exception is gas, which is also partly influenced by residuals in oil. Contrary
to this, the three endogenous variables show the influence of all common stochastic
trends except the third (gas) and the second (coal) in case of eua.

While permanent components in variables can be reduced down to few common
stochastic trends, the transitory components can also be reduced to few common
stochastic cycles. Vahid and Engle [98] gave conditions under which the transitory
component of the multiple time series can be represented by few common stochastic
cycles. Warne [99] shows that testing for s common cycles is equivalent to testing for
a rank of matrix Θ = [Γ1, . . . ,Γk−1,α]. Assuming that Yt is subject to s common
cycles, it follows that Θ has less than n(n(k−1) + r) unique parameters. To test for
the null hypothesis that Θ has rank s against the alternative that it has rank s+ g,
restrictions have to be imposed on Γi and α. Warne [99] shows that the number of
restrictions is q = g(nk + r − 2s − g) for 1 ≤ s ≤ n − s and that q > 0 only when
k ≥ 2. Using the two stage algorithm proposed by Warne [99], a standard LR testing
framework can be used to test the hypotheses. The test for the null hypothesis that
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Figure 6.7: Common trends

there are at most s common cycles in the system against the alternative that there
are more than s common cycles is presented in Table 6.8. The results show that our
system has at most 3 common cycles, although the hypothesis s ≤ 3 is marginally
accepted. This indicated that transitory components in Figures 6.4, 6.5 and 6.6 are
composed of three components (cycles). The identification of these common cycles
is discussed in works of Vahid and Engle [98], Hecq et al. [100], [101], Kugler and
Neusser [102], Vahid and Issler [103] and Paruolo [104]. We leave this for future
work.

Table 6.8: Test for common cycles

s ≤ LR df p-value

1 97.931 48 0.000
2 61.136 35 0.004
3 34.938 24 0.069
4 18.653 15 0.230
5 6.015 8 0.646
6 3.156 3 0.368
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6.5 Structural VAR

The impulse response analysis uncovered important relations between the variables
in our VECM model, while on the other hand, there are some obstacles in their in-
terpretation. In particular, impulse responses are generally not unique and it is often
not clear which set of impulse responses actually reflects the ongoings in the sys-
tem. Vector autoregressive models are actually reduced form models and structural
restrictions are required to identify the relevant innovations and impulse responses.
In this chapter, we introduce contemporaneous influences in our VECM specifica-
tion and impose some identifying restrictions on these relations in order to identify
the structural shocks driving the system. While these restrictions can only be set
arbitrarily, they must at least follow some economic theory and expectations behind
the model.

6.5.1 Setup

A conventional approach to finding a model with instantaneously uncorrelated resid-
uals is to model the instantaneous relations between the observable variables directly.
In Section 5.1, we have shown that contemporaneous influences can be modelled di-
rectly with a following Structural VAR (SVAR) model:

Yt = A0 +
k∑
i=1

AiYt−i + ΨZt + A−1ut (6.31)

where A is a matrix of contemporaneous influences with ones on diagonal (diagA =
1). The A matrix converts the VAR residuals ut to SVAR residuals εt with:

εt = A−1ut (6.32)

where VAR residuals can be correlated with the residual covariance matrix Ωu i.e.
ut ∼ (0,Ωu), whereas the SVAR residuals are assumed to be uncorrelated, standard-
ised normal variables with zero mean εt ∼ (0,AΩuA

′). Thus, for a proper choice of
A, εt will have a diagonal covariance matrix. From the relation

Ωε = AΩuA
′ (6.33)

and the requirement that Ωε is a diagonal matrix, we need to impose exactly
n(n − 1)/2 restrictions on A. Since the diagonal elements of A are assumed to
be normalised to 1, additional restrictions can be imposed on the upper off-diagonal
elements of A. If they are restricted to 0, matrix A has the following form

A =


1 0 . . . 0
a21 1 . . . 0
...

...
. . .

...
an1 an2 . . . 1

 . (6.34)

This indicates that variable Y1,t can have contemporaneous impact on all other
variables, variable Y2,t can have contemporaneous impact on all other variables,

81



except Y1,t and so on. If (6.31) is transformed to MA representation such as (6.7), the
resulting impulse responses are qualitatively the same as the orthogonalised impulse
responses based on the Cholesky decomposition of (6.11) which were considered in
Section 6.2. The only difference is that, for the latter case, the impulses have unit
variances which is not the case for the presently considered impulses.

Alternative formulation of Structural VAR model is represented by matrix B
which is obtained by relaxing the definition of A so that the diagonal elements of
A are no longer assumed to be normalised to have unitary coefficients

Yt = A0 +
k∑
i=1

AiYt−i + ΨZt + Bεt (6.35)

The B matrix converts the VAR residuals ut to SVAR residuals εt, usually called
structural shocks, with:

εt = B−1ut (6.36)

where Ωu = BΩεB
′. Normalizing the variances of the structural shocks to one i.e.

assuming εt ∼ (0, In) gives
Ωu = BB′. (6.37)

Similar to matrix A, we need to impose n(n − 1)/2 restrictions on B in order
for SVAR in (6.35) to be identified. Again, choosing B to be lower-triangular, for
example, provides sufficiently many restrictions. Such identifying restrictions are,
however, different to Cholesky decomposition used in orthogonal impulse response
function. The recursive structure of B is chosen only if it has some theoretical
justification, so that εt can be regarded as orthogonal structural shocks, which can
be labelled with some real or theoretical variables. This specification also allows
zero restrictions in B, other than the one needed for exact identification, leading to
over-identified Structural VAR. Using the VECM MA representation we can rewrite
(6.21) to:

Yt = Y0 + Cδ
t∑
i=1

Λt + CB
t∑
i=1

εi + C∗(L)Bεt. (6.38)

Since the term CB
∑t

i=1 εi measures the permanent common trends in Yt, then
C = CB is a total impact matrix, which measures the long-run effects of the struc-
tural shocks. Imposing the restrictions directly on matrix B is in fact not necessary
for identifying the structural innovations and impulse responses. Another type of
restrictions is followed by Blanchard and Quah [105]. They considered the accu-
mulated effects of structural shocks to the system by focusing on the total impact
matrix C. They assumed that some shocks do not have any total long-run effects,
which corresponds to zero restrictions in matrix C. If restrictions are placed solely
on B or C, in both cases exactly n(n− 1)/2 restrictions are needed for exact identi-
fication. Combining the restrictions on B and C is also possible. If, for example, m
structural shocks have no long-run effect on p variables, this corresponds to mp zero
restrictions on C, while the remaining n(n−1)/2−mp restrictions must be imposed
on B. Matrix B and C are estimated with the Maximum Likelihood estimation
algorithm proposed by Amisano and Giannini [106].
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6.5.2 Contemporaneous restrictions

In the following, we try to identify the structural shocks and their meaning by plac-
ing different restrictions on B and C, which are subject to theoretical expectations.
In first case, we assume only contemporaneous restrictions i.e. all structural shocks
are assumed to have long-run impact. We use standard recursive restrictions on B by
assuming some recursive causal structure between variables. Here, we use the find-
ings from Granger causality test, impulse response analysis, variance decomposition
and covariance matrix. Granger causality test gives a clear signal that endogenous
variables np, eua and eex are Granger caused by all other variables, therefore these
variables should come last in the causal structure. Among the weakly exogenous
variables, bidirectional causality is found between oil and gas. To set their causal
order, we use a standard assumption that oil influences gas and not vice versa. Since
gas may also Granger cause coal we place oil first, gas and coal third, whereas alu is
not Granger caused by any variable in the system, therefore it can be placed fourth.

Determining the causal structure among endogenous variables is less straightfor-
ward. We place eua fifth, since we assume that, theoretically, eua should influence
both electricity prices more than vice versa. The same causal ordering was derived
and assumed by Fezzi [107]. The last choice between eex and np is quite arbitrarily
since we have found no strong indicators of unidirectional causality between them.
For this reason, we estimate two different B matrices, using the same causal struc-
ture from oil to eua, and with two different ordering between np and eex.

The results of the contemporaneous restrictions on B, using the causal structure
described above are presented in Table 6.9. The table presents parameters of B with
their t-values below in brackets. The first structural shock is a direct replication of oil
reduced form residuals. This shock can be termed as oil shock. The second shock is
a linear combination of oil and gas reduced form residuals and both parameters are
significant. It represents the residual information in gas residuals which is not already
present in oil residuals. A similar structure can be found in the third and the fourth
structural shock. They appear to be a linear combination of corresponding reduced
form residuals and oil or gas residuals. Since these variables are weakly exogenous,
their reduced form residuals consists mostly of their past shocks. Therefore, the
first four structural shocks represent mainly the shocks in oil, gas, coal and alu
respectively. However, the second, the third, and the fourth structural shock are
slightly corrected for the instantaneous influence of oil or gas. Without any loss of
generality, these three structural shocks can be labelled as residual gas, coal and alu
shocks respectively.

A similar, though more complex, picture can be observed in the last three struc-
tural shocks. They are, again, dominated by the respective reduced form residuals,
however, adjusted for the structural shocks above the causal chain. Therefore, we
cannot label them in any other way than residual eua, eex and alu shocks. Another
way of looking at this structure is to explain how much of the variation in reduced
form residuals is the result of new information in own variable and how much of
variation is simply the result of variation in other variables above the causal chain
structure. We can observe that alu shocks have no significant contemporaneous in-
fluence on any other variable, while coal shocks influence only np. Oil and gas shocks
have contemporaneous influence on all variables except for coal and alu, respectively.
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We can also observe that the amount of variation in np and eex reduced form resid-
uals due to own shocks is relatively small, compared to other reduced form residuals.
This is partly explained by the chosen causal structure; however, any other causal
structure would have less theoretical meaning.

Table 6.9: B matrix (×10−3)

Variable ε1 ε2 ε3 ε4 ε5 ε6 ε7

uoil 25.4
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

ugas 9.1
(4.10)

26.9
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

ucoal 2.2
(1.57)

6.5
(4.77)

16.2
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

ualu 5.2
(3.25)

0.6
(0.36)

0.8
(0.52)

19.4
(17.55)

0
(−)

0
(−)

0
(−)

ueua 7.2
(1.73)

20.4
(5.10)

−2.2
(−0.57)

4.1
(1.08)

47.2
(17.55)

0
(−)

0
(−)

ueex 3.0
(3.02)

5.2
(5.48)

0.9
(0.98)

1.3
(1.44)

4.6
(5.36)

10.1
(17.55)

0
(−)

unp 5.5
(3.75)

3.4
(2.37)

3.9
(2.77)

−0.4
(−0.32)

6.2
(4.65)

8.2
(6.89)

13.6
(17.55)

In Figure 6.8 the graph of the cumulated structural shocks, estimated as
∑t

i=1 εi,
is presented. It represents two cases of different causal ordering between np and eex,
where the first corresponds to the matrix B in Table 6.9. The first four structural
shocks, therefore, represent mostly the cumulation of oil, gas, coal and alu reduced
form residuals, multiplied by the respective parameters in B−1. The figure shows that
different causal structure does not influence the first five structural shocks. The last
two shocks, however, have switched places and the difference between them is rather
small. This indicates that the causal ordering between eex and np has little influence
on structural shocks. This indicates that a direct contemporaneous influence between
these two variables is significant, however, because these two variables have very
similar dynamics, the causal chain between them does not significantly change the
results. The long-run impact matrix C with t-values, which corresponds to B matrix
in Table 6.9 is presented in Table 6.10. The parameters show that weakly exogenous
variables are permanently influenced mostly by the corresponding residual structural
shocks, except for gas, where oil shocks are also quite significant. The situation in
case of endogenous variables is quite the opposite. Variable eua is permanently
influenced by residual oil and eua by all residual shocks except residual coal shocks.
Variables eex and np are dominated by oil shocks, whereas the influence of other
residual shocks is less significant or not significant at all. Interestingly, while residual
eex shocks have significant contemporaneous influence on np residuals, it has no
long-run impact on np.

In Figure 6.9 we present a graph of the cumulated shock components for np,
estimated as C

∑t
i=1 εi. These show how estimated structural shocks influence np.

As shown in Table 6.10, all parameters in row 7 are significant, except for residual
eex shock parameter. Consequently, the 6th component is very small compared to
other components. Changing the causal structure between eex and np has little
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Figure 6.8: Structural shocks
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Figure 6.9: Shock components for np
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Table 6.10: C matrix (×10−3)

Variable ε1 ε2 ε3 ε4 ε5 ε6 ε7

oil 23.8
(9.52)

2.6
(1.46)

−3.3
(−1.77)

−1.7
(−0.98)

1.4
(0.74)

−1.2
(−1.03)

2.0
(1.29)

gas 17.8
(4.76)

27.8
(9.80)

−4.0
(−1.58)

−0.7
(−0.30)

−0.6
(−0.21)

0.2
(0.13)

0.6
(0.28)

coal 3.0
(1.56)

8.2
(4.76)

14.3
(9.43)

−1.5
(−1.32)

−0.6
(−0.48)

0.3
(0.38)

0.3
(0.32)

alu 4.3
(2.36)

2.5
(1.52)

0.4
(0.25)

15.1
(10.76)

−0.6
(−0.46)

0.4
(0.59)

−0.5
(−0.54)

eua 35.8
(4.50)

21.0
(3.59)

−3.0
(−0.50)

14.4
(2.42)

38.5
(6.04)

−19.1
(−4.00)

−9.3
(−2.01)

eex 12.6
(6.97)

4.9
(3.59)

2.0
(1.42)

6.4
(4.97)

−2.2
(−1.56)

2.1
(2.21)

−4.9
(−4.46)

np 14.9
(7.33)

3.8
(2.50)

5.5
(3.53)

4.0
(2.78)

−2.9
(−1.83)

0.4
(0.37)

6.3
(5.04)

effect on the impact of residual np shocks. However, the impact sign of the residual
eex shock is negative (−2.9× 10−3), while the parameter t-value is more significant
(t = 2.74) in case the np is ordered before eex. This indicates that, in terms of
contemporaneous influences, these two variables are equal. However, when the long-
run impact is considered, residual eex shocks have no long-run impact on np, whereas
the residual np shocks have significant long-run impact on eex.

6.5.3 Permanent and transitory shocks

In previous section, we have shown that C has rank n − r corresponding to n − r
common trends in the system having a permanent impact on Yt. Since εt represents
a regular random vector with non-singular covariance matrix, the matrix B has to
be non-singular. Hence, from C = CB it follows that C has also rank n − r and
there can only be r zero columns in this matrix. If there are r transitory shocks, we
can restrict r columns of C to zero. Since C has reduced rank n − r, each column
of zeros stands for n − r independent restrictions only. The r transitory shocks
therefore represent only r(n− r) independent restrictions on C, while the remaining
(n(n − 1)/2 − r(n − r)) must be imposed on contemporaneous matrix B. Based
on the results of previous section, we set the restrictions on C such that the first 6
structural shocks may have a permanent effect on all variables, while the last shock is
assumed to be transitory i.e. without any permanent impact. This corresponds to the
following 6 restrictions Ci,7 = 0, i = 1...6. The remaining restrictions are imposed on
B using the same causal structure as in previous section, however, leaving parameters
in the last column free. Tables 6.11 and 6.12 present the resulting B and C. Matrix
B is unchanged from oil to alu, while significant changes can be observed in the
parameters and their significance in the last three rows. It is important to note that
different restrictions on B and C do not change structural shocks as long as these
restrictions provide exact identification (i.e. exactly n(n−1)/2 linearly independent
restrictions). The interpretation of these shocks may however be changed, since in
this case they represent a different combination of reduced form residuals. For this

87



reason, giving structural shocks some theoretical meaning is in most cases arbitrary.
Structural shocks represent some hidden dynamics, which cannot be observed on

the market. Therefore, in best case, they represent some uncorrelated unobservable
variables that jointly influence the variables in the system. The interpretation of the
first four structural shocks in Table 6.11 remains unchanged, while the interpretation
of the last three structural shocks is even more difficult than in the previous section.
When B−1 is considered, these represent a linear combination of all reduced form
residuals, although the last three are statistically most significant. Since reduced
form residuals are correlated, the same structural shocks can be obtained through the
different linear combinations of reduced form residuals. In general, the interpretation
of all structural shocks should remain the same, regardless of the restrictions and
corresponding linear combinations of reduced form residuals. Among the last three
structural shocks, one therefore represents the residual eua shock, while the last two
represent residual long-term information on electricity supply and demand, which
is not included in previous structural shocks. The first is less significant and has a
permanent impact on eex and np, while the second, which is more significant, has
only transitory impact.

Table 6.11: B matrix for permanent and transitory shocks (×10−3)

Variable ε1 ε2 ε3 ε4 ε5 ε6 ε7

uoil 25.4
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

ugas 9.1
(4.10)

26.9
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

0
(−)

ucoal 2.2
(1.57)

6.5
(4.77)

16.2
(17.55)

0
(−)

0
(−)

0
(−)

0
(−)

ualu 5.2
(3.25)

0.6
(0.36)

0.8
(0.52)

19.4
(17.55)

0
(−)

0
(−)

0
(−)

ueua 7.2
(1.73)

20.4
(5.10)

−2.2
(−0.57)

4.1
(1.08)

41.6
(10.76)

0
(−)

22.1
(4.57)

ueex 3.0
(3.02)

5.2
(5.48)

0.9
(0.98)

1.3
(1.44)

−0.6
(−0.40)

1.9
(1.20)

10.9
(16.55)

unp 5.5
(3.75)

3.4
(2.37)

3.9
(2.77)

−0.4
(−0.32)

0.5
(0.23)

−11.9
(−6.63)

12.2
(8.15)

Table 6.12 presents the long-run impact matrix C subject to restrictions on the
last structural shock which corresponds to zero last column. Again the impact of first
four structural shocks remains unchanged. The fifth column is changed only a little,
hence the shock components in Figure 6.10 are almost the same as in Figure 6.9.
The sixth column now includes significant long-term impacts for both eex and np,
while in case of contemporaneous restrictions only, the sixth shock had no long-run
impact on np. An interesting case is presented in the value of the long-run impact
parameters for eex and np for sixth structural shock which, according to Table 6.11,
represents only the residual information in np. This shock has long-run impact on
both variables and changing the variable ordering between them does not change
these findings. This indicates that part of the contemporaneous variation in np helps
explaining the long-run variation in eex and not vice-versa i.e. the contemporaneous
variation in eex has only transitory impact on np. Interestingly, the parameters
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of both long-run impacts for sixth structural shock have different sign, which is a
response to the cointegrating relationship. We have shown in the impulse response
analysis that a positive shock in np has a negative long-run response in eex and np.

Table 6.12: C matrix for permanent and transitory shocks (×10−3)

Variable ε1 ε2 ε3 ε4 ε5 ε6 ε7

oil 23.8
(9.52)

2.6
(1.46)

−3.3
(−1.77)

−1.7
(−0.98)

1.6
(0.74)

−2.1
(−1.38)

0
(−)

gas 17.8
(4.76)

27.8
(9.80)

−4.0
(−1.58)

−0.7
(−0.30)

−0.6
(−0.21)

−0.5
(−0.25)

0
(−)

coal 3.0
(1.56)

8.2
(4.76)

14.3
(9.43)

−1.5
(−1.32)

−0.7
(−0.48)

−0.3
(−0.26)

0
(−)

alu 4.3
(2.36)

2.5
(1.52)

0.4
(0.25)

15.1
(10.76)

−0.7
(−0.46)

0.6
(0.59)

0
(−)

eua 35.8
(4.50)

21.0
(3.59)

−3.0
(−0.50)

14.4
(2.42)

43.6
(7.03)

5.6
(1.02)

0
(−)

eex 12.6
(6.97)

4.9
(3.59)

2.0
(1.42)

6.4
(4.97)

−2.5
(−1.58)

5.2
(4.79)

0
(−)

np 14.9
(7.33)

3.8
(2.50)

5.5
(3.53)

4.0
(2.78)

−3.3
(−1.85)

−6.1
(−4.70)

0
(−)

6.6 Short-run structure

The focus of analyses in previous sections was mostly on the long-run relation-
ships between the variables in the model. We also analysed few short-run indicators,
namely Granger causality, impulse response analysis, forecast error variance decom-
position and structural shocks. These indicators explain how the variables in the
system respond to instantaneous changes in the variables or to changes in variables
a few time periods before. Our VAR model consists of k = 2 lags, whereas in VECM
representation only k−1 lags of variables in first differences are sufficient to capture
the short-run dynamics. Since the observation time resolution is one week, k = 2
indicates that the short-run dynamics consists of two weeks. The above mentioned
analyses show a rather poor short-run structure and a very strong long-run dynam-
ics governed by one cointegrating relationships. In this section, we focus only on the
short-run structure and treat cointegrating relationship as predetermined variable.

6.6.1 Identification and estimation

In Chapter 5, we estimate r = 1 cointegration relations between n = 7 variables.
While the cointegration relations explain how the variables interact in the long-run,
the short-run structure consists of n equations between n variables ∆Yt which are
explained by n(k−1) lagged (predetermined) variables ∆Yt−i, r lagged equilibrium
errors β′Yt plus the exogenous variables and deterministic terms. In the identifi-
cation of the long-run structure, there are no predetermined components, whereas
in case of the short-run structure ∆Yt−i and β′Yt are predetermined, as well as
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Figure 6.10: Shock components for np with permanent and transitory shocks
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exogenous and deterministic variables. VECM parameters are estimated with two

stage estimation, where in the first stage β̂ is estimated, while in the second stage
the following VAR is estimated

∆Yt = A0 + αβ̂′Yt−1 +
k−1∑
i=1

Γi∆Yt−i + Ψ∆Zt + ΘDt + ut. (6.39)

Estimated β̂ is called superconsistent estimator of β, since the speed of conver-
gence to the true value β is proportional to N as N → ∞, while the convergence
speed of the estimators of parameters in (6.39) is proportional to

√
N as N →∞. If

β̂ is superconsistent estimator, it can be substituted for the true β and all the other
parameters may be estimated in the second stage. Second stage estimation can also
be used in case the individual restrictions are put on α, Γi, Ψ and Θ.

Based on cointegration test and weak exogeneity test, we form a VAR as in
(6.39). Since oil, coal, gas and alu were found to be weakly exogenous, there is no
necessity for these variables to be modelled themselves. Hence, the vector of endoge-
nous variables Yt now includes only np, eua and eex, while Zt includes the first lag
of weakly exogenous variables oil, coal, gas and alu in first differences, and time-to-
maturity in first differences ∆Tm. Estimation of (5.18) therefore includes one lag of
three endogenous variables in first differences, the first lag of cointegrating vector,
the first lag of differences in three exogenous variables, ∆Tm, eight dummy variables
and a constant, giving 9, 3, 12, 3, 24 and 3 parameters respectively, a total of 54
parameters to estimate. Table 6.13 reports the block significance F -tests for individ-
ual variables. These tests reveal that among the lags of endogenous and exogenous
variables only the first lag of ∆np is close to being significant. Furthermore, coin-
tegrating vector, constant and time-to-maturity in first differences are all strongly
significant. Among the dummy variables, only the shock dummies are significant,
whereas outlier dummies are not.

Table 6.13: VECM significance test

Variable Fsig(3, 134) p-value Variable Fsig(3, 134) p-value

∆npt−1 2.452 0.066 Db67 4.689 0.004**
∆oilt−1 1.677 0.175 Db68 5.954 0.001**
∆coalt−1 1.224 0.304 Db69 6.750 0.000**
∆gast−1 0.403 0.751 Db70 9.017 0.000**
∆euat−1 1.930 0.128 Dtr 16.608 0.000**
∆eext−1 0.394 0.757 Db33 0.493 0.688
∆alut−1 0.939 0.423 Db57 1.471 0.225
Const. 16.911 0.000** Db117 1.242 0.297

β̂′Yt−1 17.044 0.000** ∆Tm 5.902 0.001**

LLF = 1149.2 R2(LR) = 0.738 N = 154 m = 54

*reject the null at 5% significance **reject the null at 1% significance

The results in Table 6.13 indicate that among the lags of endogenous and weakly
exogenous variables only the first lag on np in first differences is close to statistical
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significance in equations for np, eua and eex. We find that gas is also insignificant
in the short-run structure; therefore, it can be completely removed from the system.
This implies that the long-term electricity forwards respond only to prices of crude
oil, whereas a gas price is already included within crude oil prices. Also, the gas
price used in our model is from the U.K. market, which might not be entirely correct
future price indicator for the Nordic market after all. Another reason for the gas price
insignificance may be the relative immaturity of the long-term gas market, which
might not give enough trust to investors’ expectations. Predetermined cointegration
vector is strongly significant, with similar value of F -test as constant. Time-to-
maturity ∆Tm is also strongly significant in the system. The three outlier dummies
Db33, Db57 and Db117 are insignificant, which indicates that these were necessary to
remove the outliers in weakly exogenous variables. Eua shock dummies Db67, Db68,
Db69 and Db70 as well as transitory dummy Dtr are all strongly significant, since
they were included to remove the shocks in two electricity price variables and eua.

6.6.2 Reduction

Based on the results in Table 6.13, we reduce the model size with the standard
F -test, by excluding the insignificant variables from the system. The reduction is
performed sequentially by removing the variable with the lowest block significance
in each step until the likelihood ratio test on reduction is rejected. The final model
specification is presented in 6.14. The 3-dimensional model now includes only 27
parameters and the value of F -test on reduction is F (27, 391) = 1.077 with p-value
p = 0.364. The reduction test is therefore not rejected, whereas further reductions
are rejected at 5% significance level. The reduced model includes the first lag of

∆np, cointegrating vector β̂′Yt−1, a constant, ∆Tm and five dummies only.

Table 6.14: VECM parameters and their significance

Equation np eua eex

Variable Coeff. p-value Coeff. p-value Coeff. p-value

Const. -0.899 0.000** -2.137 0.000** -0.780 0.000**
∆npt−1 -0.059 0.381 0.474 0.011* 0.062 0.181

β̂′Yt−1 -0.155 0.000** -0.367 0.000** -0.134 0.000**
∆Tm -0.007 0.633 -0.100 0.011* -0.031 0.001**
Db67 0.077 0.000** 0.085 0.124 0.035 0.012*
Db68 0.062 0.003** 0.080 0.155 0.052 0.000**
Db69 -0.080 0.000** -0.155 0.007** -0.014 0.329
Db70 -0.104 0.000** -0.235 0.000** -0.070 0.000**
Dtr 0.057 0.000** 0.213 0.000** 0.061 0.000**

*reject the null at 5% significance **reject the null at 1% significance

Table 6.14 gives the parameter values and their corresponding p-values for in-
dividual equations in VECM. These results show important properties of system
dynamics. Constant and cointegrating vector are strongly significant in all three
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equations. The influence of ∆npt−1 is significant only in eua equation, indicating that
changes in np price cause changes in eua price in the next period. Other variables
therefore significantly influence the endogenous variables only through cointegrat-
ing relationship. Most of the dynamic structure is, therefore, either instantaneous
or long-run. The first is defined with strong correlation between the variables in the
system, while the second is described with the cointegrating relationship and the
respective weights for each equation. Due to the reduction of the short-run struc-
ture and different estimation technique, the values of the adjustment parameters for
the cointegrating vector have changed significantly for np and eex, compared to the
values in Table 5.11. On a contrary, the adjustment parameter for eua remained
approximately the same. Parameter for ∆Tm is significant only in ∆eua and ∆eex
equation. Assuming that time-to-maturity Tm directly represents the influence of
the risk premium, this indicates that the influence of the risk premium can be found
only in eex and eua, while the significance is strongly rejected in np (p = 0.633).
The remaining five dummy variables are all statistically significant, although not in
each equation.

6.6.3 Diagnostics

We perform diagnostic test for reduced VECM model in Table 6.14 using the same
tools as in Section 5.2. The diagnostic tests presented in Table 6.15 show that
after reduction from 54 to 27 parameters, the main properties of residuals remained
unchanged with standard errors very close to values in Table 5.2.

Table 6.15: Reduced VECM diagnostic and significance test

Variable Far(4, 141) χ2
nd(2) Skewness Fhet(12, 132) Farch(4, 137) SE

∆np 1.067 18.726** 0.146 0.890 1.042 0.0197
∆eua 1.615 4.145 0.402 0.355 5.122** 0.0541
∆eex 1.461 8.219* 0.141 2.016* 1.151 0.0134

Vector tests: Far(36, 387) = 1.351, χ2
nd(6) = 23.42**, Fhet(72, 696) = 1.097

∆npt−1 : Fsig(4, 141) = 4.119** Constant : Fsig(7, 132) = 15.30**

β̂′Yt−1 Fsig(7, 132) = 15.46** ∆Tm : Fsig(4, 141) = 5.346**

LLF = 1133.1 R2(LR) = 0.677 N = 154 m = 27

*reject the null at 5% significance **reject the null at 1% significance

Since oil, coal, alu and gas equations are removed from the system, the autocor-
relation in the coal and alu is no longer a problem. Vector autocorrelation shows
a slightly higher autocorrelation, yet still insignificant. Small heteroscedasticity is
found in eex residuals, which might be due to the reduction and removal of three
outlier dummies. Since vector heteroscedasticity is still below significance, we do
not consider this as a problem. Normality tests show little improvement and this
only due to removal of some variables from the system. Skewness in eua residu-
als increased a little. Vector normality test is decreased notably; however, it is still
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Figure 6.11: Recursive break-point Chow test for reduced VECM

rejected. Contrary to VAR(2) specification in Table 5.2, significant autoregressive
conditional heteroscedasticity is found in eua residuals. Since eua residuals also have
a high standard error this implies that with the variables in the system we were un-
able to explain a large part of eua dynamics. Trading with EUA CO2 emission
allowances began only in 2005, implying that the market was more or less immature
during this period and proper pricing mechanisms were probably not established for
quite some time. The eua price shock in April 2006 is also an indication that eua
market was lacking proper information and knowledge on the part of investors that
could establish efficient pricing of EUA CO2 emission allowances.

To test for the parameters constancy we again perform recursive breakpoint
Chow test. Figure 6.11 presents for each equation the results for recursive F -test
scaled by 1% critical values from F -distribution as an adjustment for changing de-
grees of freedom, so that significance values become a constant line throughout the
sample. The figure shows that parameters in each individual equation and in the
system as a whole are constant regardless of the position of the break-point.

6.7 Applications

The estimated model with long-run structure estimated in Chapter 5 and short run-
structure estimated in previous section is mainly designed to capture the dynamics
of long-term electricity forwards from Nord Pool. The model could also be applied to
model and forecast the other two endogenous variables. It should be noted, however,
that the variables in the information set were chosen to match the data valid for
Nordic electricity market; therefore it might be the case that different variables
would be more appropriate when focusing on EEX electricity market or EU CO2
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emission allowance market. Additional variables might also be beneficial, although
we show that the residuals of these two equations satisfy white noise conditions.
Regardless of the possibility that all endogenous variables could be modelled and
forecasted with this model, in this section we outline only two possible applications
of this model with respect to the long-term electricity forwards from Nord Pool.

6.7.1 One-step-ahead forecast

.
Cointegration between the variables in the system implies that variables do not

fluctuate freely without regard to the other variables, but are instead bound together
by a long-run equilibrium. If due to random forces some variable deviates from
the equilibrium defined by the cointegrating vector β, the adjusting vector α has a
tendency to decrease the disequilibrium until the equilibrium state is achieved again.
This can have significant implications on the short-term strategy when buying or
selling electricity forwards on the exchange. The model could thus be able to estimate
the expected value for the next period i.e. the next Wednesday’s closing price in our
case, based on the information from the current week. We show that this expected
value is composed of the long-run equilibrium adjusted with the loading vector α as
well as the short-run structure. Besides the expected value, the information on the
long-run equilibrium and the disequilibrium existing in current week prices is also
very valuable.

The sign of disequilibrium shows the expected sign of the price change in the
next week. The realised price might, however, be of different sign, due to random
forces or the short-run structure. In Figure 6.12, we present the actual and forecasted
value for np in log-returns and log-levels. The figure shows that a large part of the
realised one-step-ahead change in np cannot be forecasted. However, the model is
able to forecast a small part of the realised change. The target of the model is not
to correct the while disequilibrium in one week, since we show that only about 20%
of the disequilibrium in np is adjusted in each week. Since the sign of the expected
change is also important, we compare the sign of the realised and forecasted one-
step-ahead price change. Out of N − k = 154 observations the model produces the
correct sign of the change in 102 cases. This result must, however, be considered as
an in-sample test result, since the short-run parameters and cointegrating vector are
estimated on the whole sample.

A true picture of the forecasting performance can only be given by the out-of-
sample test. We also perform an out-sample test which is presented in Figure 6.13.
While the most accurate picture would be obtained if at each one-step-ahead forecast
the model parameters would be updated to match the latest data, we estimate the
model parameters only on the in-sample consisting of data from 2005 and 2006,
and test the performance of the model on the out-sample consisting of data from
2007. We find that out of 52 out-sample observations the model gives correct sign
of the price changes in 32 cases. Figure 6.13, however, shows that the forecasting
performance is significantly worse on the out-sample. Based on price dynamics in
2006 and 2007 the model gives slightly higher forecasted prices through most of the
2007. Nonetheless this is only one part of the conclusion. We can also observe that
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Figure 6.12: In-sample one-step-ahead forecast for np. In the upper picture the actual
data and one-step-ahead forecast is presented. Out of 154 observations, the sign of
actual and forecasted value are the same in 102 cases.

at the end of the year the model is able to return to the realised price level. Even
though the cointegrating relationship was estimated one year ago (end of 2006), the
model does not make a systematic error in the long-run.

6.7.2 Multi-step-ahead forecast

The estimated model can also be used for multistep-ahead forecast. These forecasts
are used to estimate the expected price far in the future, e.g. 5 years ahead. Since
the model is in the first differences, price changes are estimated recursively, i.e. the
n-step-ahead forecast result is used for forecasting the price change at n+ 1.

In Figure 6.14, we present an example for multi-step ahead forecast with n = 260
weeks, which equals approximately to 5 years. Here we make no assumptions on the
dynamics of the weakly exogenous variables, i.e. their values are the same as at the
end of our in-sample. In this case, the slope of the forecast is therefore dependent
only on the constant and time-to-maturity parameter. Although we show that time-
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Figure 6.13: Out-sample one-step-ahead forecast for np. In the upper picture the
actual data and one-step-ahead forecast is presented. The model is estimated on
the in-sample consisting for data from 2005 and 2006 and tested on the out-sample
consisting on data from 2007. Out of 52 out-sample observations, the sign of actual
and forecasted value are the same in 32 cases. In the lower picture the same values
are presented in log-levels.

to-maturity is insignificant in np equation it is still included in the model with
parameter value of −0.007, which influences the discrete change in the forecast at
the beginning of each year. Alternatively, we could also take a look at the existing
forward curve of weakly exogenous variables and include this data in the forecast.
The resulting forecast could be compared to the existing electricity forward price
curve observed on e.g. Nord Pool. One could also include the information on the
existing forward curves for endogenous variables, in which case the model would
be useful to forecast the forward curve beyond the traded horizon. This forecasting
method would be the alternative to a simple regression model presented in [5].
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Figure 6.14: Multi-step-ahead forecast for np. The forecast assumes no price changes
in weakly exogenous variables, therefore the slope of the forecast is determined only
by the constant, while the shifts at the beginning of each year are caused by a small
time-to-maturity parameter.

6.8 Conclusion

In this chapter we investigate the dynamics driving the VECM system estimated in
Chapter 5. First, we perform Wald tests for Granger causality between individual
pairs of variables in the system. Granger causality concept, which measures the
short-run causal structure, show that endogenous variables are Granger caused by all
variables, however, when VECM based on restricted α and β is tested, causality from
gas is rejected. We also find some causality influences between exogenous variables.
Next, impulse response analysis is performed, based on single unit impulse responses
and generalised impulse responses. Impulse response analysis shows that the system
is mainly governed by long-run impact matrix Π, while short-run coefficient matrix
Γ significantly dominates the system only in the first week, after which the long-run
impact matrix prevails. After an impulse, a steady state of the system is reached
in approximately 5 weeks. A similar situation is found with generalised forecast
error variance decomposition. The short-run variance is influenced mostly by the
past variance in own variable, whereas in the long-run, all the variables have similar
influence on the forecast error variance and there is no dominating variable in this
respect.

Next we focus on identification of permanent and transitory variable components
and system cycles. We identify permanent and transitory components for each vari-
able using multivariate Beveridge-Nielsen decomposition. These show that endoge-
nous variables are mostly governed by permanent components. The identification
of common trends shows that four common trends represent cumulated shocks in
weakly exogenous variables residuals, whereas two trends represent a linear combi-
nation of cumulated shocks in the three endogenous variables residuals. We also find
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that the former load into weakly exogenous variables, whereas all of them, except
cumulated shocks in gas , load into endogenous variables. A test for the common
cycles shows that transitory variable components compose of at most three common
cycles.

A classic reduced form VAR analysed in previous chapters was upgraded in this
chapter to Structural VAR representation. The sole purpose of SVAR is to identify
the uncorrelated structural shocks, which fundamentally influence the variation in
variables in contrast to reduced form residuals which are assumed to be only a
linear combination of structural shocks. To identify these structural shocks, we adopt
two kinds of causal structure, the first being the contemporaneous causal structure
only, while the second identification is obtained by partial restrictions on long-run
structural shock impact matrix. Since the last structural shock should have no long-
run impact, we restrict the last column of the long-run impact matrix to zero. Both
identification structures yield the same structural shocks, since these are independent
on the type of identification. The shock components give a slightly different structure
for the two types of identification. The results show that the structural shocks cannot
be given a specific theoretical meaning. Our interpretation is that they represent
the residual or additional information present in each variable that is not already
included in the variables above the causal chain structure. We find that these results
are relatively robust to different causal structure, since the first four variables are
weakly exogenous, whereas the last three structural shocks, representing additional
information in np, eua and eex have a minor influence on the variation of these
variables. We also find that residual information in np has a long-run impact on np
and eex, while residual information in eex has only transitory impact on both.

At the end, we identify the short-run structure of our VECM model. The block
significance test shows that this structure is very poor when it comes to the influence
of past realised changes of exogenous and endogenous variables on future changes
of endogenous variables. We reduce the model from 18 parameters in each equation
down to 9 parameters. Only the first lag of np in first differences is significant
in explaining the future changes in eua. This indicates that the data generating
process might actually be governed by the dynamics shorter than one week since we
have shown this by examining the contemporaneous relations between the variables.
While choosing a finer observation time resolution might result in richer short-run
structure, it would also bring up a number of other difficulties associated with high-
resolution data in inefficient markets. The resulting model might have to include a
lot more variables to get rid of the serial correlation and heteroscedasticity. Since
our focus is more on the long-run structure, we do not attempt to decrease the
observation time resolution. The long-run structure captured in cointegrating vector
is very significant in these three variables. We also show that time-to-maturity is
significant in eex and eua equation, but not in np equation. This implies that during
the period we analyse, the risk premium in np can be considered as a constant with
respect to time-to-maturity.
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Chapter 7

Conclusions and future work

In this thesis we model the dynamics of long-term electricity forward prices. In
contrast to other commodity markets, the term structure of electricity prices displays
no connection between spot- or short-term forward prices and long-term forward
prices. Although they are governed by the same laws of supply and demand, the
obvious difference is caused by the impossibility of storage, which implies that the
supply and demand shocks in the spot market cannot be transferred to the forward
market. Instead, the long-term electricity forward prices with certain delivery period
are conditioned on the expected values of variables influencing supply, demand or risk
premium, with the same delivery period. Since the expected value and unconditional
distribution of these variables may be different in the short- and the long term, the
resulting expectations about short and long-term electricity forward prices can differ
a lot.

We define a general and specific model based on the information set, which
includes the past values of variables influencing electricity supply (prices of crude oil,
steam coal, natural gas, CO2 emission allowances and imported electricity), demand
(aluminium prices) and past values of long-term prices from Nord Pool themselves.
Risk premium is modelled as a function of time-to-maturity only. We use vector
autoregressive modelling framework to study the dynamics and interactions between
these variables.

We find the following evidences:

1. Cointegration test reveals one significant cointegrating relationship between
all variables except gas. This implies that investors rather use oil as a proxy
for the future value of natural gas. However, the share of natural gas in elec-
tricity production is also very low in Nordic electricity market. The presence
of cointegration gives some evidence against the semi-strong form efficiency
of long-term electricity forward market, although, the apparent temporary ar-
bitrage opportunities that seem to exist between different commodity prices
could also be the result of very volatile risk premium, in which case the cointe-
gration is not sufficient condition to imply that this market is inefficient. Weak
exogeneity test reveals that np, eua and eex are endogenous, whereas oil, coal,
gas and alu are weakly exogenous. These variables therefore influence np, eua
and eex, but are not influenced by them.

2. Granger causality tests show that, in the short-run, endogenous variables are
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Granger caused by all other variables, while marginally significant causality be-
tween exogenous variables is found only between oil and gas. Impulse response
analysis reveals that the system is dominated by long-run equilibrium forces,
while short-run forces dominate the system only in the first step. Steady state
of the system after a shock is reached after approximately 5 weeks. Forecast er-
ror variance decomposition shows that short-run variance is influenced mostly
by the past variance in own variable, whereas in the long-run, all the variables
have similar influence on the forecast error variance and there is no domi-
nating variable in this respect. Multivariate Beveridge-Nielsen decomposition
shows that endogenous variables are mostly governed by permanent compo-
nents. Six common trends are identified; four represent cumulated shocks in
weakly exogenous variables’ residuals, whereas two represent a linear combi-
nation of cumulated shocks in three endogenous variables’ residuals. We also
find that the former load only into weakly exogenous variables, whereas all of
them except cumulated shocks in gas load into endogenous variables. The test
for common cycles shows that transitory variable components compose of at
most three common cycles.

3. We estimate Structural VAR and identify uncorrelated structural shocks, which
fundamentally influence the variation in variables, whereas reduced form resid-
uals are assumed to be only a linear combination of structural shocks. We adopt
two kinds of causal structures, the first being the contemporaneous causal
structure only, while the second identification is obtained by combining the
contemporaneous structure and long-run impact structure. While both iden-
tification structures yield the same structural shocks, the shocks’ components
for each variable give a slightly different structure for both types of identifi-
cation. The results show that the structural shocks cannot be given a specific
theoretical meaning. Our interpretation is that they represent the residual or
additional information present in each variable that is not already included in
the variables above the causal chain structure. We find that these results are
relatively robust to different causal structures, since the first four variables are
weakly exogenous, whereas the last three structural shocks, representing addi-
tional information in np, eua and eex , have a minor influence on the variation
of these variables. We also find that residual information in np has a long-run
impact on np and eex, while residual information in eex has only transitory
impact on both.

4. In contrast to long-run structure, the short-run structure of the system is
very poor. Among the variables only the first lag of np in first differences is
significant in explaining the future changes in eua. This indicates that the data
generating process might actually be governed by dynamics shorter than one
week, since we show that contemporaneous relations between the variables are
very strong. We also show that time-to-maturity is significant in eex and eua
equation, but not in np equation. This implies that the risk premium in np
can be considered as constant with respect to time-to-maturity.
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Future work

Our model is specifically designed to capture the dynamics of long-term electricity
forward prices from Nord Pool. An interesting task for the future would be to design
the information set and the respective model to match other electricity markets. Per-
haps even in the case of EEX market, the information set might include slightly dif-
ferent or even additional variables. An interesting case would be to analyse how using
different proxy variables influences the results and modelling accuracy. A major fu-
ture challenge would also be the incorporation of low-resolution common-knowledge
information as discussed in section 3.6. This would at least require converting this
information to higher resolution. However, for the proper inference on results the
sample size would need to increase too.

Alternatively to modelling weekly dynamics, we expect the focus on daily dy-
namics would yield richer short-run structure and perhaps a more accurate model
for day-ahead forecasting purposes. Such model could be based on daily resolution
data or perhaps even intra-day resolution data if available. As already pointed out,
higher resolution sampling brings up a number of difficulties with the data con-
struction. Since such model would typically involve a lot of autoregressive terms,
the structural interpretation might be even more difficult.

The forecasting properties of the resulting model were only briefly presented in
this thesis. Forecasting is particularly interesting for day-to-day trading as well as
extending the existing term structure beyond the traded horizons on the exchange.
As we outlined in the introduction, term-structure for electricity prices 10 years
ahead or even more would be beneficiary for modern asset pricing methods, in
which forward prices instead of forecasted future spot prices play a central role.
Although we present a simple forecast example in which we assume the future prices
of weakly exogenous variables are constant, we could also use existing forward curves
on exogenous and endogenous variables to produce a long-term forecast of electricity
forward prices.

More analytical work could also be done in risk premium dynamics. In this thesis
we assume simple time-to-maturity dependence, however, at least in the short-term
forward prices the risk premium dynamics is much richer, and many authors find
additional driving forces. The result of this search might not produce any additional
long-term risk premium drivers, since as we show that reduced form residuals do
not display significant signs of autocorrelation or heteroscedasticity. Nevertheless
additional tests could be performed in order to identify whether a cointegration
between the commodity prices in our information set implies arbitrage opportunities
or is this only the result of time-varying risk premium.

Although VAR modelling framework is most widely used in multivariate sys-
tems, there are a number of promising alternatives to analyse the dynamics and
relationships between the variables in our information set. Extensions of classic
VAR are Bayesian Vector Autoregression (BVAR), Time-varying Vector Autore-
gressive model (TVAR), Vector Autoregressive Moving Average models (VARMA)
or Markov-switching Autoregressive Model (MVAR). More sophisticated techniques
are State-Space models and Kalman Filters which can be used to fit unobserved
component time series models, Dynamic Factor Models (DFM), Factor Augmented
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VAR (FAVAR) and Dynamic Stochastic General Equilibrium models (DSGE). These
may give different additional information about the system dynamics, since some of
them are not bound by stationarity, normality or heteroscedasticity.
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Chapter 8

Razširjen povzetek

8.1 Uvod

Lastnǐstvo premoženja je neločljivo povezano z njegovim vrednotenjem. Vrednost
premoženja je v splošnem odvisna od pričakovanih finančnih tokov v prihodnosti, ki
jih to premoženje ustvarja. Finančni tokovi povezani z lastnǐstvom premoženja so
skoraj vedno negotovi, saj nanje vpliva vrsta zunanjih dejavnikov na katere lastnik
nima vpliva. Ker imajo tveganja povezana s temi negotovostmi za lastnike (fizične ali
korporacije) lahko zelo hude posledice, na trgu obstaja povpraševanje po zavarovanju
teh tveganj. To povpraševanje lahko zadostijo investitorji z nasprotnim tveganjem
ali finančne institucije, ki so takšna tveganja pripravljeni sprejemati v zameno za
neko dodatno premijo. Ponudba in povpraševanje po zavarovanju tovrstnih tveg-
anj imenujemo terminski trg, udeležence tega trga pa v tej disertaciji imenujemo
investitorji.

Investitorji na terminskem trgu dobrin se vseskozi ukvarjajo s vprašanjem kakšna
je današnja cena določene dobrine z dobavo v prihodnosti? Ta je neločljivo povezana
z današnjo ceno (v nad. promptna cena) in stroški skladǐsčenja. Deaton and Laroque
[43], [49] pokažeta, da v kolikor so stroški skladǐsčenja dobrine majhni se nihanja
promptne cene, ki jih povzročijo šoki v trenutni ponudbi in povpraševanju, zelo
močno prenašajo na terminske cene, zato je v teh primerih gibanje terminskih cen za
nekaj let v prihodnosti zelo podobno gibanju promptne cene. Investitorji to zakoni-
tost izkorǐsčajo tako da izpostavljenost dolgoročnim tveganjem cene dobrin zavaru-
jejo s kratkoročnimi izvedenimi finančnimi instrumenti, čemur pravimo strategija
obnovitve (ang. roll-over).

Električne energije žal ni mogoče ekonomsko učinkovito shranjevati, saj so stroški
skladǐsčenja izredno visoki. Posledica tega je, da se šoki v trenutni ponudbi in
povpraševanju ne morejo prenašati na terminski trg. Koekebakker in Ollmar [1]
pokažeta, da je korelacija med kratkoročnimi in dolgoročnimi cenami električne en-
ergije majhna, kar pomeni da je lahko strategija zavarovanja dolgoročnih tveganj s
kratkoročnimi terminskimi pogodbami ve primeru električne energije zelo tvegana.
Kljub visokim stroškom direktnega shranjevanja, je del električne energije možno
dokaj poceni shraniti posredno in sicer preko shranjevanja vode ali goriv za proizvod-
njo električne energije. To pomeni da se šoki na promptnem trgu električne energije
vseeno delno prenašajo na terminski trg, zato korelacija med temi cenami obstaja,
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vendar je ta precej manǰsa kot pri terminskih trgih dobrin, ki jih lahko skladǐsčimo.
V tej disertaciji raziskujemo dinamične zakonitosti oblikovanja dolgoročnih ter-

minskih cen električne energije. Ker je dinamika teh cen drugačna od kratkoročnih
terminskih cen, predstavljamo splošen model za dolgoročne terminske cene elek-
trične energije. Ta je v nadaljevanju nadgrajen v specifičen model za modeliranje
dolgoročnih terminskih cen električne energije iz skandinavske borze Nord Pool.

8.2 Dolgoročne terminske cene električne energije

Eksplicitna definicija dolgoročnih terminskih cen ne obstaja, zato v tej disertaciji
definiramo dolgoročne terminske cene električne energije kot cene terminskih pogodb
električne energije, ki imajo čas trajanja do dobave T − t večji od enega leta. Ta
definicija je odvisna od specifičnih razmer posameznega trga, predvsem pa od tega
kakšne so zmožnosti trga pri posrednem shranjevanju električne energije, kot je
shranjevanje vode ali goriv. Definicija dolgoročnosti je v tem primeru torej odvisna
od funkcije stroškov shranjevanja v odvisnosti od obdobja hranjenja. Dlje časa, ko
je možno poceni shranjevati vodo ali goriva, dlje v prihodnost se šoki na promptnem
trgu prenašajo na terminski trg. Definicijo dolgoročnih terminskih cen zato pogoju-
jemo na čas trajanja do dobave T − t, ko se šoki na promptnem trgu že iznihajo,
kar pomeni da gre za takšen čas trajanja do dobave, pri katerem se shranjevanje
današnjih zalog vode ali goriv več ne izplača.

Terminske cene električne energije lahko pravilno vrednotimo le tako, da izračuna-
mo pričakovano ceno električne energije za čas dobave in to pričakovanje prilagodimo
za premijo tveganja. Odnos med njima podaja enačba (3.2). Na ta način pro-
ces oblikovanja terminske cene ločimo na dva dela. V prvem delu se pričakovana
promptna cena St,T oblikuje na podlagi ravnotežja med pričakovano ponudbo in
povpraševanjem po električni energiji v obdobju dobave. V drugem delu na podlagi
negotovosti pričakovane promptne cene in na podlagi odnosa investitorjev do te ne-
gotovosti definiramo ponudbo in povpraševanje po zavarovanju tveganj povezanih
s temi negotovosti, kar v ravnotežju privede do ravnotežne premije tveganja, ki jo
imenujemo tudi tržna cena tveganja.

8.2.1 Model

Za modeliranje pričakovane dolgoročne cene električne energije sledimo konceptu
temeljnih modelov. Dolgoročno ponudbo in povpraševanje modeliramo s temeljnimi
faktorji, ki vplivajo na ponudbo in povpraševanje. Na tej podlagi sestavimo model
pričakovane promptne cene, ki ga nato nadgradimo s premijo tveganja, da dobimo
model dolgoročnih terminskih cen električne energije. Ker ponudba in povpraševanje
nista opazni spremenljivki, ju zato ni mogoče modelirati eksplicitno. Namesto tega
sestavimo ravnotežni model dolgoročnih terminskih cen električne energije na pod-
lagi temeljnih faktorjev, ki vplivajo na ponudbo, povpraševanje in premijo tveganja.
Takšna strategija modeliranja omogoča iskanje neposrednih povezav med opazn-
imi spremenljivkami. S tem se izognemo modeliranju neopaznih spremenljivk, ki
so v samem bistvu zgolj teoretične kategorije, ki sicer pomagajo razložiti ozadje
določenega procesa, a v realnem svetu pogosto nimajo posebnega pomena.
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Pričakovano dolgoročno povpraševanje po električni energiji definiramo kot priča-
kovano dolgoročno porabo električne energije, ki jo prilagodimo z dolgoročno cen-
ovno elastičnostjo porabe. Proces dolgoročne porabe električne energije je precej
dobro poznan iz časov reguliranega trga. Nanj vplivajo, ekonomska aktivnost (bruto
domači proizvod, prihodki), demografija (prebivalstvo, migracije), vreme (temper-
atura, veter, vlažnost, osvetljenost), cene alternativnih virov energije (cene nafte,
zemeljskega plina) in poraba energetsko intenzivne industrije (tovarne aluminija,
železarne).

Pričakovano dolgoročno ponudbo modeliramo z dvema globalnima spremenljivka-
ma in sicer s pričakovanimi dolgoročnimi stroški dobave in z obratovalnimi omejit-
vami. Podobno kot Eydeland in Wolyniec [6], pričakovane dolgoročne stroške dobave
razdelimo v tri skupine. V prvi skupini so netrgovana goriva, ki predstavljajo goriva
pri proizvodnji električne energije, ki se ne trgujejo na odprtem trgu, zato o njihovi
vrednost ne obstaja transparenten in tržno določen cenovni signal. V to kategorijo
spadajo veter, voda, obnovljivi viri energije ipd. V drugi skupini so trgovana goriva,
ki predstavljajo goriva pri proizvodnji električne energije, ki se v različnih oblikah
trgujejo na svetovnih trgih. Mednje spadajo surova nafta in naftni derivati, zemeljski
plin, premog in uran. V tretji skupini so drugi stroški dobave, med katere uvrščamo
stroške uvoza električne energije in dodatne stroške proizvodnje, kot so cene emisi-
jskih dovolilnic, koncesij ipd.

Obratovalne omejitve vplivajo na pričakovano skupno količino električne en-
ergije, ki jo je možno v določenem obdobju dobaviti na trg. Nanjo vpliva instali-
rana moč, velikost in stanje bazenov hidroelektrarn, razpoložljive čezmejne prenosne
zmogljivosti, načrtovani in naključni izpadi, zahtevane rezerve elektroenergetskega
sistema, ter tehnične omejitve generatorjev. Te informacije vključujejo zgodovinske
in sedanje podatke o elementih elektroenergetskega sistema (elektrarne, elementi
omrežja) in podatke o pričakovanih parametrih novih elementov elektroenergetskega
sistema.

Na podlagi dolgoročne ponudbe in povpraševanja lahko v ravnotežju izračunamo
dolgoročno ceno električne energije. Za modeliranje dolgoročne terminske cene elek-
trične energije uporabimo (3.2), ki ob logaritmiranju postane (3.4). To pomeni, da
k pričakovani dolgoročni ceni električne energije prǐstejemo premijo tveganja, ki je
v tem primeru funkcija časa trajanja do dobave T − t, ki ga v tej disertaciji kraǰse
označujemo s Tm. Empirične raziskave o premiji tveganja na trgu električne energije
ugotavljajo različne vplivne dejavnike na premijo tveganja. Poleg časa trajanja do
dobave so različni avtorji kot vplivne dejavnike identificirali še verjetnost nastopa
cenovnih konic [20], [21] ter splošni nivo cen električne energije in čas opazovanja
[58]. Nekateri avtorji, ki v svojih raziskavah delno analizirajo tudi dolgoročne ter-
minske cene, ugotavljajo, da je pri teh cenah dinamika premije tveganja relativno
majhna [58], [62].

8.2.2 Informacijska množica

Dolgoročna terminska cena električne energije Ft,T je pogojena s teoretično informa-
cijsko množico It−1. Ta vsebuje vse informacije, ki vplivajo na Ft,T , kar v splošnem
vključuje vse spremenljivke navedene zgoraj. Teoretična informacijska množica je de-
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jansko presek vseh individualnih informacijskih množic, ki jih investitorji uporabljajo
pri oceni Ft,T . Te se lahko med investitorji precej razlikujejo, saj vsebujejo informa-
cije, ki so splošno znane, kot tudi zasebne ali notranje informacije, ki se posled-
ica zasebnih aktivnosti pridobivanja informacij. Neenakost informacijskih množic
imenujemo nesimetrija informacij. V tej disertaciji gibanje Ft,T pogojujemo z infor-
macijsko množico, ki vsebuje samo simetrične informacije z visoko resolucijo. Izmed
zgoraj naštetih vplivnih faktorjev smo v našo informacijsko množico vključili nasled-
nje informacije:

• Terminska cena električne energije z borze Nord Pool, ki jo označujemo z np.
Bodoče gibanje terminske cene električne energije je pogojeno tudi z gibanjem
te cene v preteklosti.

• Terminska cena surove nafte WTI z borze NYMEX, ki jo označujemo z oil.
Ta predstavlja nadomestek za cene naftnih derivatov, ki se uporabljajo pri
proizvodnji električne energije.

• Cenovni indeks premoga TFS API2, ki ga označujemo kot coal. Ta predstavlja
pričakovano ceno premoga za dobavo v nizozemskih pristanǐsčih, kar pred-
stavlja dovolj dober približek za skandinavski trg.

• Terminska cena zemeljskega plina z borze ICE, ki jo označujemo z gas. Ta
predstavlja pričakovano ceno zemeljskega plina iz območja Severnega morja.

• Terminska cena emisijskih dovolilnic CO2 z borze Nord Pool, ki jo označujemo
z eua. Ta predstavlja pričakovano ceno emisijskih dovolilnic CO2 za celotno
Evropo.

• Terminska cena električne energije z borze EEX, ki jo označujemo z eex. Ta
predstavlja terminsko ceno električne energije z dobavo v Nemčiji in je dober
približek za vrednost izvožene in uvožene električne energije iz Srednje Evrope
v Skandinavijo.

• Terminska cena aluminija z borze LME, ki jo označujemo z alu. Preceǰsen del
električne energije v Skandinaviji se porabi za proizvodnjo aluminija, zato cena
aluminija predstavlja preceǰsen del informacije o pričakovani porabi električne
energije v prihodnosti.

• Čas trajanja do dobave, ki ga označujemo s Tm. Ta predstavlja vpliv premije
tveganja, kot funkcije Tm.

Pri modeliranju uporabljamo tedensko resolucijo spremenljivk. Ker se te spre-
menljivke trgujejo ob različnih časih, je pri uporabi dnevne ali manǰse resolucije
potrebno upoštevati točno časovno zaporedje informacij, kar privede do problemov
z interpretacijo medsebojnih vplivov. V tej disertaciji zato uporabljamo zaključne
vrednosti spremenljivk za vsako sredo.
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8.3 Multivariantni model

8.3.1 Analiza podatkov

Opisna analiza spremenljivk pokaže, da imajo vse spremenljivke v povprečju poz-
itiven časovni trend in nenormalno porazdelitev. S korelacijsko analizo zaznamo
visoko korelacijo med spremenljivkami pri absolutnih in logaritemskih absolutnih
vrednostih, medtem ko pri prvih diferencah logaritmov najdemo visoko korelacijo
le med np, eua in eex (Tabele 4.2, 4.3 in 4.4). Avtokorelacijska (ACF) in križno
korelacijska (CCF) analiza na Slikah 4.3 in 4.4) zaznata neizrazito avtokorelacijo in
križno korelacijo pri vseh spremenljivkah. Z analizo glavnih komponent, ki je podana
v Tabelah 4.5 in 4.6 ugotovimo, da prve tri glavne komponente pojasnjujejo okoli
95% vseh nihanj, medtem ko imata samo prvi dve komponenti lastni vrednosti večji
od 1. Uteži spremenljivk, ki pojasnjujejo kako te vplivajo na glavne komponente,
kažejo relativno podobne vplive na prve tri komponente, zato te glavne komponente
ni mogoče označiti z imenom kakšne opazne spremenljivke.

Stacionarnost spremenljivk testiramo z razširjenim Dickey-Fullerjevim [63], [64]
(4.2) in Phillips-Perronovim testom [65]. Rezultati obeh testov v Tabeli 4.7 pokažejo,
da so vse spremenljivke integrirane in torej vsebujejo 1 enotski koren (integrirane
reda I(1)). Testa stacionarnosti za oil in eua pokažeta, da sta ti dve spremenljivki
blizu meje stacionarnosti.

8.3.2 Model vektorske avtoregresije

Na podlagi analize podatkov, posebej korelacijske analize, je spremenljivke potrebno
obravnavati kot endogene. To pomeni, da te vplivajo druga na drugo, zato ene spre-
menljivke ni možno eksplicitno izraziti kot funkcijo preostalih. Spremenljivke je zato
potrebno analizirati v sistemu, ki zajema tudi medsebojne in povratne vplive. V tej
disertaciji uporabimo model vektorske avtoregresije (VAR), pri katerem vsako spre-
menljivko zapǐsemo kot funkcijo preteklih lastnih vrednosti in preteklih vrednosti
drugih spremenljivk (5.2). Ker so spremenljivke nestacionarne, jih v obliki absolutnih
vrednosti ni mogoče uporabiti za linearno regresijo, ker bi ta privedla do fenomena
neprave regresije. V tem primeru je potrebno spremenljivke odvajati (uporabimo
prve diference), in sicer tolikokrat, kolikor je enotskih korenov v spremenljivkah. Pri
linearni regresiji diferenc izgubimo informacijo o dolgoročni povezanosti oz. koin-
tegraciji med spremenljivkami. Kointegracija je lastnost sistema dveh ali več spre-
menljivk, ki so integrirane reda I(r), vendar med njima obstaja vsaj ena linearna
kombinacija, ki je integrirana reda I(r − 1). Kointegracijo najlažje testiramo na
VAR modelu z absolutnimi vrednostmi spremenljivk z Johansenovim testom koin-
tegracije [78]. Če ta pokaže da med spremenljivkami ni kointegracije, nadaljujemo
z VAR modelom, ki vsebuje samo diference, v kolikor pa kointegracija obstaja pa
VAR v (5.2) pretvorimo v vektorski model popravljanja napak (VECM).

Najprej definiramo model VAR(k) (5.2), kjer je k = 2 število avtoregresijskih
členov, Yt sestavlja sedem endogenih spremenljivk np, oil, coal, gas, eua, eex in
alu, medtem ko Zt vsebuje čas trajanja do dobave Tm, za katerega vemo da je ek-
sogena spremenljivka. Analiza VAR modela je ključno odvisna od tega ali imajo
preostanki regresije lastnosti belega šuma, t.j. da so neodvisno, enakomerno in nor-
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malno porazdeljeni. Diagnostika VAR(2) v Tabeli 5.1 kaže, da ima takšna speci-
fikacija modela nekaj težav z avtokorelacijo (Far), normalno porazdelitvijo (χ2

nd), het-
eroskedastičnostjo (Fhet) ter avtoregresijsko pogojno heteroskedastičnostjo (Farch).
Model zato nadgradimo z 8 umetnimi spremenljivkami in dobimo (5.11). Prve štiri
odpravljajo nelinearnost eua šoka v aprilu 2006 (glej Sliko 4.1), peta umetna spre-
menljivka odpravlja prehodni šok v točkah 27 in 29, tri umetne spremenljivke pa
odpravljajo tri največje regresijske osamelce. Diagnostika tako popravljenega mod-
ela v Tabeli 5.2 kaže precej bolǰso sliko, saj testi preostankov precej bolje nakazujejo
lastnosti belega šuma. Nenormalnost porazdelitve (predvsem zaradi sploščenosti)
in majhna avtokorelacija v enačbah coal in alu nimata pomembnega vpliva na Jo-
hansenov test kointegracije.

Stabilnost VAR modela preverimo z lastnimi vrednostmi pridružene matrike
(5.17). VAR je stabilen, če vse lastne vrednosti ležijo znotraj enotskega kroga. V
kolikor nekatere lastne vrednosti ležijo na enotskem krogu je VAR nestacionaren,
v kolikor pa nekatere lastne vrednosti ležijo izven enotskega kroga, potem je VAR
eksploziven in torej nestabilen. Lastne vrednosti pridružene matrike v Tabeli 5.3
kažejo, da šest največjih lastnih vrednosti leži blizu enotskega kroga, ostale pa zno-
traj enotskega kroga, kar pomeni da je VAR stabilen a nestacionaren. Konstant-
nost parametrov preverimo z rekurzivnim Chow-ovim testom preloma. Ta temelji
na rekurzivnem izračunu parametrov modela in kako se ti spreminjajo v odvisnosti
od velikosti izbranega vzorca. Slika 5.1 prikazuje da 1% verjetnost testa nikoli ni
presežena, torej so parametri posameznih enačb in celotnega sistema konstantni
skozi celoten vzorec.

8.3.3 Kointegracija

VAR model (5.11) pretvorimo v VECM (5.18), kjer matrika Π = αβ′ zajema dol-
goročne povezave med spremenljivkami, β je matrika koeficientov kointegracijskih
vektorjev tako da β′Yt−1 predstavlja do n − 1 linearnih kombinacij Yt reda I(0),
α pa predstavlja naložno matriko, ki pove kako kointegracijski vektorji popravljajo
odklon dolgoročnega ravnovesja v vsaki VAR enačbi.

Johansenov test kointegracije temelji na statističnem izračunu ranga matrike Π.
Rang matrike določimo na podlagi cenilke največjega verjetja (ang. Maximum Like-
lihood Estimator - MLE ) za hipotezo, da je največ r lastnih vrednosti matrike Π
statistično različnih od 0, proti alternativni hipotezi, da je teh največ r + 1. Lastne
vrednosti matrike Π izračunamo z enačbama (5.21) in (5.22), na podlagi katerih
lahko izračunamo test sledi (ang. trace test) (5.19) in test maksimalne lastne vred-
nosti (ang. maximum eigenvalue test) (5.20). Rezultati obeh testov so prikazani v
Tabeli 5.5. Test sledi kaže, da med spremenljivkami obstajate dve stacionarni koin-
tegracijski povezavi, medtem ko test maksimalne lastne vrednosti kaže da obstaja
samo ena. Zaradi dodatnih umetnih in eksogenih spremenljivk kritične asimptotične
vrednosti obeh testov niso povsem natančne, zato opravimo še dva dodatna testa.
Prvi je Reimerjeva prilagoditev za izgubo prostostnih stopenj [80], pri katerem v
enačbah (5.19) in (5.20) zamenjamo T s T −nk, kjer je n dimenzija VAR modela in
k število avtoregresijskih členov. Rezultati te prilagoditve prikazani v Tabeli 5.6 pri
obeh testih kažejo na eno samo kointegracijsko povezavo. Za test sledi izračunamo
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tudi kritične vrednosti z metodo samovzorčenja (ang. bootstrap) [81]. Na podlagi tako
določenih kritičnih vrednosti hipoteza r ≤ 1 ni zavrnjena z verjetnostjo p = 0.074.

Juselius [82] za pomoč pri odločitvi glede kointegracijskega ranga predlaga do-
datne indikatorje. Prvi je velikost lastnih vrednosti pridružene matrike (5.17) in kako
se te spreminjajo ob različnih hipotezah r = 1, 2, . . . , n−1. Rezultati tega indikatorja
v Tabeli 5.8 ne dajejo jasnega signala, saj ni mogoče natančno vedeti ali modul lastne
vrednosti 0.871 statistično leži znotraj enotskega kroga ali na enotskem krogu. Drugi
indikator so statistične t vrednosti koeficientov matrike α, ki so prikazane v Tabeli
5.9. Te kažejo da je v prvih štirih stolpcih vsaj en koeficient statistično različen od 0.
Tretji indikator leži v samem grafu kointegracijskih vektorjev, ki so prikazani na Sliki
5.2. Iz slike je razvidno, da samo prvi vektor izgleda stacionaren (velikokrat prečka
svojo srednjo vrednost), medtem ko je drugi nekje na meji stacionarnosti. Čeprav ti
indikatorji ne pomagajo pri odločitvi, verjamemo da hipoteza r = 1 najbolje odraža
skupno ugotovitev vseh testov.

Na podlagi določenega ranga matrike Π lahko izračunamo vrednosti vektorjev
α in β in postavimo omejitve za koeficiente njihovih vrednosti. V prvem koraku
najprej normaliziramo vektor β, tako da ima parameter np vrednost 1 in omejimo
parameter gas na 0. Ta omejitev, ki jo testiramo s standardnim testom razmerja
obetov (ang. Likelihood Ratio - LR), ni zavrnjena, medtem ko nadaljnje omejitve
parametrov katerekoli druge spremenljivke so zavrnjene. V drugem koraku, skupaj z
omejitvijo gas parametra omejimo še parametre oil, coal, gas in alu v α na vrednost
0. Tudi vse te omejitve skupaj niso zavrnjene, pri čemer je vrednosti razmerja obetov
LR = 10.035 in verjetnost p = 0.074. Spremenljivke oil, coal, gas in alu so torej
šibko eksogene, kar pomeni da v dolgoročnem smislu endogene spremenljivke nanje
ne vplivajo, zato jih ni potrebno eksplicitno modelirati v VAR modelu.

Vrednosti omejenih α in β so prikazani v Tabeli 5.11, medtem ko Tabela 5.12
prikazuje vrednosti parametrov Π, skupaj s statističnimi t-vrednostmi spodaj v
oklepajih. Vrednosti parametrov β so posebej zanimivi. V dolgoročnem smislu np
narašča približno v razmerju 1:1, nekoliko močneje z alu in nekoliko šibkeje s coal.
Po drugi strani np z naraščanjem eex pada v nekoliko večjem razmerju kot 1:1 in
ob porastu eua za 1% pa pade približno za 0.15%. Ker so np, eua in eex močno
korelirane, to pomeni, da je ob pozitivnem šoku eex po vsej verjetnosti v istem
trenutku narasla tudi np, zato v tem primeru kointegracijski vektor vleče np nazaj
k dolgoročnemu ravnovesju.

8.4 Strukturna analiza

8.4.1 Dinamična analiza

Namen strukturne analize je ugotoviti dolgoročno in kratkoročno strukturo in di-
namiko sistema. Grangerjev test vzročnosti odkriva kratkoročne vzročno-posledične
povezave med spremenljivkami. V primeru VAR ali VECM modela, ta temelji na
Waldovi statistiki za ničelno hipotezo, da so parametri matrik Γ in Π, ki podajajo
medsebojne vplive med spremenljivkami, enaki 0 (glej enačbe (6.1) do (6.6)). Tabeli
6.2 in 6.3 podajate rezultate Grangerjevega testa vzročnosti za primer omejenega
VECM (r = 1) brez in z omejitvami na α in β. Rezultati kažejo da spremembe
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šibko eksogenih spremenljivk povzročajo spremembe endogenih spremenljivk, tudi
v primeru gas. Obratne vzročnost nismo našli. Najdemo tudi manǰso dvosmerno
vzročnost med oil in gas ter enosmerno vzročnost od coal proti gas. V primeru
omejenih α in β, gas ne povzroča sprememb v nobeni izmed spremenljivk. Ti rezul-
tati dajejo nekoliko drugačno sliko, kot test šibke eksogenosti, saj Grangerjev test
vzročnosti zaznava kratkoročno vzročnost, medtem ko test šibke eksogenosti zaznava
dolgoročno vzročnost.

Medsebojne povezave spremenljivk v sistemu lahko odkrijemo tudi z impulzno
odzivno analizo. Ta podaja odziv vseh spremenljivk na enotski impulz v vseh spre-
menljivkah, ki ga izračunamo s pretvorbo VAR/VECM modela v obliko drsečega
povprečja. Slabost te analize je, da predpostavlja izolirane impulze v spremenljivkah,
čeprav kovariančna matrika ostankov v Tabeli 6.4 kaže, da so impulzi oz. šoki med
seboj korelirani in torej ni verjetno, da bi se šok v sistemu pojavil izolirano. To prob-
lem rešujeta ortogonalna impulzno odzivna funkcija (6.10), (6.11) in posplošena im-
pulzno odzivna funkcija (6.12). Ker prva zelo zavisi od vrstnega reda spremenljivk,
na Sliki 6.2 prikazujemo samo posplošeno impulzno odzivno analizo. Odzivi endo-
genih spremenljivk na impulze vseh spremenljivk kažejo, da je eua najbolj občutljiva
na impulze spremenljivk, medtem ko sta eex in eua približno enako občutljiva. Na-
jvečje odzive povzročajo impulzi v lastni spremenljivki in v oil, kar kaže na ta da oil
zelo močno vpliva na dinamiko sistema. Stabilno stanje sistema je doseženo približno
v 5 tednih po impulzu.

Razčlenitev variance je še eno pomembno orodje za analizo dinamike sistemov.
Temelji na izračunu relativnega prispevka neke spremenljivke v varianci napake
napovedi neke druge spremenljivke. Podobno kot pri impulzno odzivni analizi, tudi
tu ločimo med ortogonalno razčlenitvijo variance (6.13) in posplošeno razčlenitvijo
variance (6.14). Iz Slike 6.3, ki prikazuje posplošeno razčlenitev variance za tri en-
dogene spremenljivke, je razvidno, da imajo vse spremenljivke pomemben delež
pri varianci napake napovedi, le eua povzroča nekoliko manǰso varianco napake
napovedi.

8.4.2 Skupni trendi in cikli

Nestacionarne časovne serije je v splošnem možno razčleniti na trajne komponente
(trende) in prehodne komponente (cikle). Ena od možnih razčlenitev je trajno-
prehodna razčlenitev tipa Gonzalo in Granger [96], ki identificira n− r, I(1) skup-
nih stohastičnih trendov, kombinacija katerih predstavlja trajno komponento vsake
spremenljivke. Metoda temelji na ortogonalnih vrednostih α⊥ and β⊥, ki tvorita
matriko dolgoročnih vplivov C (6.20). C je možno zapisati tudi kot (6.27), tako
da α′⊥

∑t
i=1 ut predstavlja (n − r) skupnih trendov, kjer so ut preostanki sistema.

β∗⊥, ki jo izračunamo z enačbo (6.26), predstavlja utežno matriko, ki določa trajne
komponente kot linearne kombinacije skupnih trendov.

Slike 6.4, 6.5 in 6.6 prikazujejo dejansko, trajno in prehodno komponento za np,
eua in eex. Iz slik je razvidno, da trajna komponenta v povprečju nekoliko prehiteva
dejansko komponento. Opazimo, da je v času naraščanja cen prehodna komponenta
v povprečju negativna, v času padanja cen pa v povprečju nekoliko pozitivna. To
nakazuje, da dejanska cena potrebuje nekaj časa da ujame trajno komponento, ki
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predstavlja stabilno stanje. Oblika prehodnih komponent je pri vseh treh cenah zelo
podobna, kar nakazuje da so te komponente linearna kombinacija nekaj skupnih
ciklov.

Identifikacija skupnih trendov je podana z matriko α⊥ v (6.28). Vidimo da štirje
skupni trendi predstavljajo kumulativne preostanke v enačbah štirih šibko eksogenih
spremenljivk, ostala dva skupna trenda pa predstavljata linearno kombinacijo ku-
mulativnih preostankov v enačbah treh endogenih spremenljivk. Obliko teh skupnih
trendov prikazuje Slika 6.7, njihov vpliv na vsako spremenljivko podaja β∗⊥ v (6.29),
njun produkt pa predstavlja matriko C, ki je podana v Tabeli 6.6. Če v matriki C
omejimo parametre z najnižjimi t-vrednostmi na 0, dobimo omejeno matriko C in
pripadajočo omejeno β∗⊥, medtem ko je α⊥ indiferentna na te omejitve. Četrti in peti
skupni trend vplivata samo na endogene spremenljivke. Preostali skupni trendi, ki
predstavljajo zgolj kumulativne preostanke v oil, coal, gas in alu, vplivajo večinoma
na lastno spremenljivko in endogene spremenljivke, le pri prvem trendu opazimo
tudi vpliv na gas, medtem ko drugi trend nima vpliva na eua. To pomeni da oil po-
leg endogenih spremenljivk vpliva tudi na gas, medtem ko coal nima vpliva na eua.
Podobno kot so trajne komponente sestavljene iz skupnih trendov, so tudi prehodne
komponente sestavljene iz skupnih ciklov. Test za število skupnih ciklov pokaže, da
so prehodne komponente sestavljene iz največ 3 skupnih ciklov. Identifikacijo teh
ciklov prepuščamo bodočim raziskavam.

VAR v (5.11) predstavlja skrčeno obliko (ang. reduced form) bolj splošnega struk-
turnega vektorskega avtoregresijskega modela (SVAR). Ta poleg avtoregresijskih
členov na desni strani vsebuje še člene, ki predstavljajo sočasne vplive. SVAR je
mogoče izraziti z matriko A (6.31) ali z matriko B (6.35). Matrika B pretvori kore-
lirane preostanke skrčene oblike ut v ortogonalne strukturne preostanke oz. struk-
turne šoke (6.36). Ker matrika B podaja tudi sočasne povezave med endogenimi
spremenljivkami, sistem (6.35) ni identificiran, saj B vnaša n2 dodatnih parametrov
in samo n(n + 1)/2 dodatnih enačb, kar pomeni da moramo v matriki B postaviti
najmanj n(n − 1)/2 dodatnih omejitev, ki omogočajo natančno identifikacijo (glej
Lütkepohl [89]). Medtem ko omejitve matrike B, predstavljajo kratkoročne vzročne
povezave, ki smo jih predstavili v Grangerjevi vzročni analizi, pa je omejitve mogoče
postaviti tudi na matriko dolgoročnih vplivov C = CB, če kateri od strukturnih
šokov nima dolgoročnega vpliva na katero od spremenljivk.

V prvem koraku postavimo omejitve samo na matriko B, in sicer tako da pred-
postavljamo vzročno strukturo, ki najbolje odraža rezultate dinamične analize, to je
naslednjo smerno vzročnost: oil, gas, coal, alu, eua, eex in np. Ta vzročnost pomeni,
da oil lahko sočasno vpliva na vse spremenljivke, gas na vse razen na oil in tako
dalje. Ob tako razvrščenih spremenljivkah omejimo zgornjo izvendiagonalno trikotno
matriko B na 0, kar predstavlja n(n − 1)/2 omejitev. Tako omejena matrika B in
pripadajoča matrika C sta predstavljeni v Tabelah 6.9 in 6.10, Slika 6.8 pa prikazuje
strukturne šoke εt = B−1ut. Prvi štirje strukturni šoki predstavljajo preostalo in-
formacijo spremenljivk, ki ni vsebovana v spremenljivkah nad vzročno strukturo. To
pomeni da drugi strukturni šok predstavlja preostale šoke v gas, ki niso že vsebovani
v oil. Interpretacija zadnjih treh šokov je bolj težavna. Tudi v tem primeru gre za
preostalo informacijo spremenljivk glede na vzročno strukturo, vendar je njihova ob-
lika nekoliko bolj občutljiva na vzročno strukturo. Kljub temu je velikost komponent
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teh šokov majhna za np (Slika 6.9), kar pomeni, da imajo zadnji trije strukturni šoki
majhen vpliv na gibanje np. Če zamenjamo vzročno strukturo eex in np, ugotovimo
da eex nima dolgoročnega vpliva na np, medtem ko dolgoročni vpliv v obratni smeri
obstaja.

Na podlagi lastnosti kointegriranih sistemov, vemo da ima samo n − r struk-
turnih šokov trajni vpliv na spremenljivke medtem ko ima r strukturnih šokov zgolj
prehodni vpliv (glej Juselius [82]). Na podlagi te zakonitosti omejimo zadnji stolpec
matrike C na 0, preostale omejitve pa postavimo na matriko B. Rezultati takšnih
omejitev so podani v Tabelah 6.11 in 6.12. Oblika strukturnih šokov ostane nespre-
menjena, le nekoliko se spremeni struktura zadnjih treh šokov. Tudi v tem primeru
šoki v np trajno vplivajo na eex, obratni vpliv pa je zgolj prehoden. Čeprav je
poimenovanje strukturnih šokov skoraj v vseh primerih zelo poljubno, lahko z zago-
tovostjo rečemo da prvi štirje šoki predstavljajo preostalo informacijo spremenljivk,
ker smo podobne medsebojne vplive našli tudi z dinamično analizo. Interpretacija
zadnjih treh šokov je precej bolj komplicirana, zato jo puščamo odprto za prihodnje
raziskave.

8.4.3 Kratkoročna struktura

Kratkoročna struktura se sestoji iz treh enačb endogenih spremenljivk, ki so funkcija
treh avtoregresijskih členov ∆Yt−1, enega člena avtoregresijskih ravnovesnih napak
β′Yt, štirih členov šibko eksogenih spremenljivk, enega člena eksogene spremenljivke,
konstante, ter osmih umetnih spremenljivk. Takšen model ima tako 18 parametrov v
vsaki enačbi, kar skupno znaša 54 parametrov. Kratkoročno strukturo VECM mod-
ela izračunamo z dvo-stopenjskim izračunom, pri katerem v prvi stopnji izračunamo

cenilko β̂, v drugi stopnji pa izračunamo (6.39). Rezultati testa značilnosti spre-
menljivk (Fsig) v Tabeli 6.13 kažejo, da so statistično značilne samo konstanta,
kointegracijski vektor, ∆Tm in 5 umetnih spremenljivk, medtem ko je avtoregresi-
jski člen np na robu značilnosti.

Model skrčimo s standardnim testom razmerja obetov, in sicer tako da sekvenčno
izločamo člene z najmanj značilnim parametrom, dokler test razmerja obetov ni
zavrnjen. Na ta način iz modela (6.39) izločimo 9 spremenljivk, statistična značilnost
zgoraj naštetih spremenljivk pa je tako potrjena. Model ima na koncu samo 27
parametrov, vrednost test razmerja obetov pri krčenju pa je F (27, 391) = 1.077 in
p-vrednost p = 0.364. Vrednosti parametrov v Tabeli 6.14 kažejo, da je gas povsem
nepomembna spremenljivka v sistemu, medtem ko imajo oil, coal, eua, eex in alu
samo dolgoročni vpliv na endogene spremenljivke. Parameter ∆Tm je značilen samo
v enačbi za eua in eex, kar pomeni da je premija tveganja v teh dveh cenah odvisna
od Tm, medtem ko je v np konstantna glede na čas trajanja do dobave. Diagnostika
skrčenega modela v Tabeli 6.15, kaže da so glavne lastnosti belega šuma preostankov
ostale nespremenjene, medtem ko so se vektorski testi nekoliko izbolǰsali, saj sistem
ne vsebuje več preostankov šibko eksogenih spremenljivk. Rekurzivni Chow-ov test
preloma, prav tako kaže, da parametri modela ostajajo konstantni skozi ves vzorec.
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8.5 Zaključek

Model dolgoročnih cen električne energije smo ga zgradili na podlagi sedmih spre-
menljivk, ki vplivajo na pričakovano dolgoročno ceno električne energije in časom tra-
janja do dobave, ki podaja vpliv premije tveganja. Vse spremenljivke so integrirane,
med njimi pa najdemo eno kointegracijsko povezavo, v kateri je cena zemeljskega
plina statistično neznačilna. Izmed sedmih spremenljivk so štiri šibko eksogene, pre-
ostale tri pa endogene. Z vzročno analizo ugotovimo da v kratkoročnem smislu cena
surove nafte vpliva tudi na ceno zemeljskega plina, medtem ko cena premoga ne
vpliva na ceno CO2 emisijskih dovolilnic. Strukturni VAR model razkrije, da na cel
sistem dominantno vplivajo šoki v ceni surove nafte, šoki v cenah premoga, alu-
minija, CO2 emisijskih dovolilnic in električne energije iz borze Nord Pool pa so
nekoliko manj izraziti a imajo kljub temi trajen vpliv. Šoki v dolgoročnih termin-
skih cenah električne energije iz borze EEX nimajo trajnega vpliva na nobeno izmed
spremenljivk. Kointegracija med spremenljivkami lahko pomeni, da je del gibanja
dolgoročnih terminskih cen električne energije mogoče predvideti, kar nakazuje da bi
lahko bili trgi dolgoročnih terminskih pogodb električne energije neučinkoviti, čeprav
je prisotnost kointegracije lahko tudi posledica variabilne premije tveganja. Čeprav
bi model, ki ga predstavljamo v disertaciji, zgrajen za modeliranje cen električne
energije na drugih trgih lahko vseboval drugačne spremenljivke, je ta dovolj splošen,
da je mogoče te ugotovitve posplošiti tudi za druge trge električne energije.

8.6 Izvirni prispevki disertacije

Izvirne prispevke disertacije lahko strnemo v naslednje točke:

• stohastični model dolgoročnih terminskih cen električne energije,

• razvoj postopka za kalibracijo modela dolgoročnih terminskih cen električne
energije,

• modeliranje strukture negotovosti dolgoročnih terminskih cen električne en-
ergije,

• stohastični model dolgoročne ponudbe, dolgoročne porabe, cene goriv in pre-
mije tveganja.

114



Bibliography

[1] Koekebakker, S. and Ollmar F. (2005). Forward curve dynamics in the Nordic
electricity market, Managerial Finance 31(6): 74-95.

[2] Granger, C. W. J. and Newbold, P. (1986). Forecasting Economic Time Series,
2nd edn, Academic Press, New York.

[3] Copeland, L. S. (1991). Cointegration tests with daily exchange rate data, Ox-
ford Bulletin of Economics and Statistics 53: 185-198.

[4] Batten, D. F. (2000). Discovering artificial economics, Westview Press, 5500
Central Avenue, Boulder, Colorado.

[5] Povh, M., Golob, R. and Fleten, S.-E. (2009). Modelling the structure of long-
term electricity forward prices at Nord Pool. Accepted for publication in Power
Systems Handbook, S. Rebennack, P. M. Pardalos, M. V. Pereira and N. A.
Iliadis (eds.), Springer, 2009.

[6] Eydeland, A. and Wolyniec, K. (2003). Energy and Power Risk Management,
John Wiley & Sons, Chichester, UK.

[7] Povh, M. and Fleten, S.-E. (2009). Modelling long-term electricity forward
prices. IEEE Transactions on Power Systems 24(4):1649-1656.

[8] Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implica-
tions for valuation and hedging, Journal of Finance 52: 923-973.

[9] Pindyck, R. S. (1999). The long-run evolution of energy prices, The Energy
Journal 20: 1-27.

[10] Schwartz, E. and Smith, J. E. (2000). Short-term variations and long-term
dynamics in commodity prices, Management Science 46: 893-911.

[11] Byström, H. N. (2003). The hedging performance of electricity futures on the
Nordic power exchange, Applied Economics 35: 1-11.

[12] Solibakke, P. B. (2006). Describing the Nordic forward electric-power market:
A stochastic model approach, International Journal of Business 11(4): 345-366.

[13] Lucia, J. J. and Schwartz, E. S. (2002). Electricity prices and power derivatives:
Evidence from the Nordic power exchange, Review of Derivative Research 5(1):
5-50.

115



[14] Villaplana, P. (2003). Pricing power derivatives: A two-factor jump-diffusion
approach, Working Paper, Universidad Carlos III de Madrid.

[15] Bjerksund, P., Rasmussen, H. and Stensland, G. (2000). Valuation and risk
management in the Nordic electricity market. Working paper, Institute of fi-
nance and management sciences, Norwegian School of Economics and Business
Administration.

[16] Heath, D., Jarrow, R. and Morton, A. (1992). Bond pricing and the term
structure of interest rates: A new methodology for contingent claims valuation,
Econometrica 60: 77-105.

[17] Eydeland, A. and Geman, H. (1998). Pricing Power Derivatives, RISK, Octo-
ber.

[18] Pirrong, C. and Jermakyan, M. (2008). The price of power: The valuation of
power and weather derivatives, Journal of Banking & Finance 32(12): 2520-
2529.

[19] Barlow, M. T. (2002). A diffusion model for electricity prices, Mathematical
Finance 12: 287-298.

[20] Bessembinder, H. and Lemmon, M. L. (2002). Equilibrium pricing and optimal
hedging in electricity forward markets, Journal of Finance 57(3): 1347-1382.

[21] Longstaff, F. and Wang, A. (2004). Electricity forward prices: A high-frequency
empirical analysis, The Journal of Finance 59(4): 1877-1900.

[22] Skantze, P. L. and Ilic, M. (2001). Valuation, Hedging And Speculation In Com-
petitive Electricity Markets: A Fundamental Approach, Kluwer Academic Pub-
lishers, October.

[23] Johnsen, T. A. (2001). Demand, generation and price in the Norwegian market
for electric power, Energy Economics 23: 227-251.

[24] Skantze, P. L., Ilic, M. and Gubina, A. (2004). Modeling locational price spreads
in competitive electricity markets: Applications for transmission rights valua-
tion and replication, IMA Journal of Management Mathematics 15: 291-319.

[25] Niemeyer, V. (2000). Forecasting long-term electric price volatility for valua-
tion of real power options, In Proc. of the 33rd Annual Hawaii International
Conference on System Sciences. Hawaii, 2000.

[26] Hendry, D. F. and Mizon, G. E. (1993). Evaluating econometric models by
encompassing the VAR, in P. C. B. Phillips (ed.), Models, methods and ap-
plications of econometrics: Essays in Honor of A.R. Bergstrom, MIT Press,
Cambridge, Massachusetts.

[27] Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1981). The relationship between
forward prices and futures prices, Journal of Financial Economics 9: 321-346.

116



[28] Salahor, G. (1998). Implications of output price risk and operating leverage
for the evaluation of petroleum development projects, Energy Journal 19(1):
13–46.

[29] Dixit, A. and Pindyck, R. (1994). Investment Under Uncertainty, Princeton
University Press.

[30] Keynes, J. M. (1923). Some aspects of commodity markets, The Manchester
Guardian Commercial reconstruction Supplement March 29, Reprinted in The
Collected Writings of John Maynard Keynes, Vol. 12, London, Macmillan
(1983).

[31] Keynes, J. M. (1930). A Treatise on Money, Vol. 2, London, Macmillan,
Reprinted in The Collected Writings of John Maynard Keynes, Vol. 12, London,
Macmillan (1983).

[32] Hicks, J. R. (1946). Value and Capital, 2nd edn, London, Oxford University
Press.

[33] Cox, J. and Ross, S. (1976). The valuation of options for alternative stochastic
processes, Journal of Financial Economics 3: 145-166.

[34] Seppi, D. (2002). Risk-neutral stochastic processes for commodity derivative
pricing: An introduc- tion and survey, in E. Ronn (ed.) Real Options and En-
ergy Management Using Options Methodology to Enhance Capital Budgeting
Decisions, Risk Publications, London, UK.

[35] Bessembinder, H., Coughenour, J., Seguin, P. and Smeller, M. (1995). Mean
reversion in equilibrium asset prices: Evidence from the futures term structure,
Journal of Finance 50(1): 361-375.

[36] Litzenberger, R. H. and Rabinowitz, N. (1995). Backwardation in oil futures
markets: Theory and empirical evidence, The Journal of Finance 50(5): 1517-
1545.

[37] Clewlow, L. and Strickland, C. (2000). Energy Derivatives: Pricing and Risk
Management, Lacima Publications.

[38] Kaminski, V. (1997). The Challenge of pricing and risk managing electricity
derivatives, in The US Power Market, Risk Publications, London, pp. 149-171.

[39] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities,
Journal of Political Economy 81: 637-659.

[40] Gibson, R. and Schwartz, E. S. (1990). Stochastic convenience yield and the
pricing of oil contingent claims, Journal of Finance 45(3): 959-976.

[41] Samuelson, P. A. (1965). Proof that properly anticipated futures prices fluctuate
randomly, Industrial Management Review 6: 41-49.

117



[42] Fama, E. F. (1965). The behavior of stock market prices, The Journal of Busi-
ness 38(1): 34-105.

[43] Deaton, A. and Laroque, G. (1992). On the behaviour of commodity prices,
Review of Economic Studies 59: 1–23.

[44] Kaldor, N. (1939). Speculation and economic stability, Review of Economic
Studies 7: 1–27.

[45] Working, H. (1948). Theory of the inverse carrying charge in futures markets,
Journal of Farm Economics 30: 1–28.

[46] Working, H. (1949). The theory of the price of storage, American Economic
Review 39: 1254–1262.

[47] Black, F. (1976). The pricing of commodity contracts, Journal of Financial
Economics 3: 167-179.

[48] Brealey, R. A. and Myers, S. C. (2003). Principles of Corporate Finance, 7th

edn, McGraw-Hill, Boston.

[49] Deaton, A. and Laroque, G. (1996). Competitive storage and commodity price
dynamics, Journal of Political Economy 104: 896–923.

[50] Chambers, M. J. and Bailey, R. E. (1996). A theory of commodity price fluc-
tuations, Journal of Political Economy 104: 924–957.

[51] Grossman, S. and Stiglitz, J. (1980). On the impossibility of informationally
efficient markets, American Economic Review 70: 393–408.

[52] Admati, A. (1985). A noisy rational expectations equilibrium for multiple asset
securities markets, Econometrica 53: 629–657.

[53] Lucas, R. (1978). Asset prices in an exchange economy, Econometrica 46:
1429–1445.

[54] McDonald, R. L. (2006). Derivatives Markets, 2nd edn, Addison-Wesley Series
in Finance, Boston, MA.

[55] Stoll, H. G. (1989). Least-Cost Electric Utility Planning, John Wiley & Sons,
New York.

[56] Taylor, L. D. (1975). The demand for electricity: A survey, Bell Journal of
Economics and Management Science 6(1): 74-110.

[57] Baleriaux, H., Jamoulle, E. and de Guertechin, Fr. L. (1967). Simulation de
l’Exploitation d’un parc de machines thermiques de production d’electricite
couple a des stations de pompage, in Revue E, (edition SRBE) 5: 225-245.

[58] Ollmar, F. (2003). Empirical study of the risk premium in an electricity market,
Working paper, Norwegian School of Economics and Business Administration.

118



[59] Botterud, A., Bhattacharyya, A. K. and Ilic, M. (2002). Futures and spot prices
- an analysis of the Scandinavian electricity market, Proceedings of North Amer-
ican Power Symposium, 2002, Tempe, Arizona.

[60] Benth, F. E., Cartea, A. and Kiesel, R. (2008). Pricing forward contracts in
power markets by the certainty equivalence principle: Explaining the sign of
the market risk premium, Journal of Banking & Finance 32(10): 2006-2021.

[61] Wilkens, S. und Wimschulte, J. (2007). The pricing of electricity futures: Ev-
idence from the European Energy Exchange, The Journal of Futures Markets
27: 387-410.

[62] Diko, P., Lawford, S. and Limpens, V. (2006). Risk premia in electricity forward
prices, Studies in Nonlinear Dynamics & Econometrics 10(3): 1358-1358.

[63] Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autore-
gressive time series with a unit root, Journal of American Statistical Association
74: 427-431.

[64] Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autore-
gressive time series with a unit root, Econometrica 49: 1057-1072.

[65] Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series
regression, Biometrika 75: 335-346.

[66] Sims, C. A. (1980). Macroeconomics and reality, Econometrica 48: 1-48.

[67] Hendry, D. F. and Richard, J. F. (1983). The econometric analysis of economic
time series (with discussion), International Statistical Review 51: 111-163.

[68] Doornik, J. A. and Hendry, D. F. (2007). Modelling Dynamic Systems Using
PcGive 12, Vol. 2, London, Timberlake Consultants Press.

[69] Doornik, J. A. and Hansen, H. (1994). A practical test for univariate and mul-
tivariate normality. Discussion paper, Nuffield College.

[70] White, H. (1980). A heteroskedastic-consistent covariance matrix estimator and
a direct test for heteroskedasticity, Econometrica 48: 817–838.

[71] Dennis, J. G., Hansen, E. and Rahbek, A. (2002). ARCH innovations and their
impact on cointegration rank testing. Working paper, Centre for Analytical
Finance, University of Copenhagen.

[72] Gonzalo, J. (1994). Five alternative methods of estimating long-run equilibrium
relationships, Journal of Econometrics 60: 203-233.

[73] Godfrey, L. G. (1981). On the invariance of the Lagrange multiplier test with
respect to certain changes in the alternative hypothesis, Econometrica 49:
1443–1455.

[74] Doornik, J. A. (1996). Object-Oriented Matrix Programming using Ox, Interna-
tional Thomson Business Press and Oxford, London.

119



[75] Kelejian, H. H. (1982). An extension of a standard test for heteroskedasticity
to a systems framework, Journal of Econometrics 20: 325–333.

[76] Chow, G. (1960). Tests on equality between sets of coefficients in two linear
regressions, Econometrica 28(3): 591-605.

[77] Johansen, S. (1998). Statistical analysis of cointegrating vectors, Journal of
Economic Dynamics and Control 12(2): 231-254.

[78] Johansen, S. (1996). Likelihood-Based Inference in Cointegrated Vector Autore-
gressive Models, Advanced Texts in Econometrics, Oxford University Press,
Oxford.

[79] Doornik, J. A. (1998). Approximations to the asymptotic distribution of coin-
tegration tests, Journal of Economic Surveys 12: 573-593.

[80] Reimers, H. (1992). Comparisons of tests for multivariate cointegration, Statis-
tical Papers 33: 335-359.

[81] Davidson, R. and MacKinnon, J. G. (2000). Bootstrap tests: How many boot-
straps?, Econometric Reviews 19: 55-68.

[82] Juselius, K. (2006). The Cointegrated VAR Approach: Methodology and Appli-
cations, Advanced Texts in Econometrics, Oxford University Press, Oxford.

[83] Meese, R. A. and Singleton, K. J. (1982). On unit roots and the empirical
modeling of exchange rates, The Journal of Finance 37(4): 1029-1035.

[84] Fama, E. (1970). Efficient capital markets: A review of theory and empirical
work. Journal of Finance 25: 383–417.

[85] Dwyer, Jr., G. P. and Wallace, M. S. (1992). Cointegration and market efficency.
Journal of International Money and Finance 11: 318–327.

[86] Dolado, J. J. and Lütkepohl, H. (1996). Making Wald tests work for cointegrated
VAR systems, Econometric Reviews 15: 369–386.

[87] Luintel, K. B. and Khan, M. (1999). A quantitative reassessment of the finance-
growth nexus: Evidence from a multivariate VAR, Journal of Development Eco-
nomics 60: 381-405.

[88] Engle, R. F., Hendry, D. F. and Richard, J. F. (1983). Exogeneity, Econometrica
51: 277–304.

[89] Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis,
Springer-Verlag, Berlin Heidelberg.

[90] Pesaran, M. H. and Shin, Y. (1998). Generalised impulse response analysis in
linear multivariate models, Economics Letters 58: 17-29.

[91] Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press,
Princeton, New Jersey.

120



[92] Franses, P. H. (1998). Time Series Models for Business and Economic Fore-
casting, Cambridge University Press, Cambridge, UK.

[93] Lütkepohl, H. (1993). Testing for causation between two variables in higher di-
mensional VAR models, in H. Schneeweißand K. F. Zimmermann (eds.), Studies
in Applied Econometrics, Physica, Heidelberg, pp. 75–91.

[94] Koop, G., Pesaran, M. H. and Potter, S. M. (1996). Impulse response analysis
in nonlinear multivariate models, Journal of Econometrics 74: 119–147.

[95] Stock, J. H. and Watson, M. W. (1988). Testing for common trends, Journal
of the American Statistical Association 83: 1097–1107.

[96] Gonzalo, J. and Granger, C. W. J. (1995). Estimation of common long-memory
components in cointegrated systems, Journal of Business and Economic Statis-
tics 13: 27-35.

[97] Engle, R. F. and Kozicki, S. (1993). Testing for common features, Journal of
Business and Economic Statistics 11: 369–380.

[98] Vahid, F. and Engle, R. F. (1993). Common trends and common cycles, Journal
of Applied Econometrics 8: 341–360.

[99] Warne, A. (2008). Estimation and Testing for Common Cycles. Working Paper,
www.texlips.net/download/common-cycles.pdf.

[100] Hecq, A., Palm, F. C. and Urbain, J.-P. (2000). Permanent-transitory decom-
position in VAR models with cointegration and common cycles, Oxford Bulletin
of Economics and Statistics 62: 511-532.

[101] Hecq, A., Palm, F. C. and Urbain, J.-P. (2006). Testing for common cyclical
features in VAR models with cointegration, Journal of Econometrics 132(1):
117-141.

[102] Kugler, P. and Neusser, K. (1993). International real interest rate equalization:
A multivariate time-series approach, Journal of Applied Econometrics 8:163-
174.

[103] Vahid, F. and Issler, J. V. (2002). The importance of common cyclical features
in VAR analysis: A Monte-Carlo study, Journal of Econometrics 109: 341-363.

[104] Paruolo, P. (2006). Common trends and cycles in I(2) VAR systems, Journal
of Econometrics 132(1): 143-168.

[105] Blanchard, O. and Quah, D. (1989). The dynamic effects of aggregate demand
and supply disturbances, American Economic Review 79: 655–673.

[106] Amisano, G. and Giannini, C. (1997). Topics in Structural VAR Econometrics,
2nd edn, Springer, Berlin.

[107] Bunn, D. and Fezzi, C. (2007). Interaction of european carbon trading and
energy prices, FEEM Working Paper, No. 63.

121



Izjava
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Modeling Long-Term Electricity Forward Prices
Martin Povh and Stein-Erik Fleten

Abstract—In contrast to forwards and futures on storable
commodities, prices of long-term electricity forwards exhibit a
dynamics different to that of short-term and midterm prices. We
model long-term electricity forward prices through demand and
supply of electricity, adjusted with a risk premium. Long-term
prices of electricity, oil, coal, natural gas, emission allowance,
imported electricity, and aluminum are modeled with a vector
autoregressive model (VAR). For estimation, we use weekly
prices of far-maturity forwards relevant for the Nordic electricity
market. Although electricity prices experienced a few substantial
shocks during the period we analyzed, there is no evidence of a
structural break. Cointegration analysis reveals two stationary
long-run relationships between all variables except the gas price,
indicating that these variables move together over time. We find
some influence of the risk premium, however not on the long-term
electricity forwards at Nord Pool.

Index Terms—Cointegration, electricity prices, long-term for-
ward prices, vector autoregressive (VAR) modeling.

I. INTRODUCTION

C OMMODITY forward markets are normally focused on
contracts with time to maturity up to 1.5 years. Since the

correlation between the short-term and long-term prices is high
in many markets, long-term risks can be hedged with roll-over
hedging using short-term and midterm forwards and futures.
Unlike most commodities, electricity cannot be stored to any
great extent. In an empirical analysis of forwards from Nord
Pool, Koekebakker and Ollmar [1] show that the correlation
between short-term and long-term electricity futures is low
and conclude that short-term contracts are not appropriate for
hedging long-term exposures in electricity markets such as
long-term procurement costs and production revenues. While
far-maturity exposures can normally be hedged with short-term
positions, electricity companies can only properly hedge them
with long-term trading. Although the liquidity of long-term
electricity forwards is still often low, their maturities lie up to
six years in the future.

Long-term electricity forward prices also serve as important
information carriers, since they provide valuation signals for
strategic decisions like investments, mergers and acquisitions,
and financing of new long-term generation assets. In recent
years, these decisions are also influenced by the environmental
pressure on the technology shift from traditional coal and
nuclear to natural gas and renewable sources. Investment and

Manuscript received April 30, 2007; revised January 16, 2009. First published
September 22, 2009; current version published October 21, 2009. The work of
S.-E. Fleten was supported by the Research Council of Norway under project
178374/S30. Paper no. TPWRS-00300-2007.

M. Povh is with the Faculty of Electrical Engineering, University of Ljubl-
jana, Ljubljana SI-1000, Slovenia (e-mail: martin.povh@fe.uni-lj.si).

S.-E. Fleten is with the Norwegian University of Science and Technology
Department of Industrial Economics and Technology Management, Trondheim
NO-7491, Norway (e-mail: stein-erik.fleten@iot.ntnu.no).

Digital Object Identifier 10.1109/TPWRS.2009.2030285

disinvestment decisions are triggered by changes in the relative
economics of technologies, driven by changes in underlying
commodity prices. The real options theory comprehensively
described in [2] is appropriate for analyzing such decisions.
The real option theory suggests using forward prices instead of
projected future spot prices. The use of forward prices bypasses
the problem of risk adjustment of the discount interest rates,
allowing the assets to be valued over time with a risk neutral
pricing.

Since forward contracts are not traded far enough to be used
in real asset valuation, the forward prices beyond the traded
horizon need to be forecasted. Extrapolation of quoted forward
prices might not give the best estimate, since it ignores the avail-
able information about the long-term supply and demand. For-
ward contracts towards the end of the term structure are often
illiquid, reducing the trust in extrapolation. More sophisticated
models that focus on modeling long-term supply and demand
and risk adjustment are therefore necessary to produce a better
estimate of forward prices beyond the term structure. Since such
models involve the understanding of what influence the prices
of traded far-maturity forwards, they might also prove useful in
speculative trading.

Long-term electricity prices are traditionally modeled with
long-term production-cost models [3], [4]. In a restructured
market, however, electricity prices do not necessarily equal pro-
duction costs. Different extensions of production cost models
were proposed to better reflect the real prices observed in the
deregulated market. A hybrid approach, in which bottom-up
models based on production cost variables are calibrated on
market data, has gained increasing attention in recent years
[5], [6]. Nonetheless, the literature on long-term electricity
forwards is still scant, due to the lack of trusted long-term
market data. Long-term forward prices are more often modeled
as an extension of short-term forward-price modeling. Schwartz
[7] uses models estimated on short-term oil futures and tests
their performance on the available long-term oil futures.
The correlation between long-term electricity forward prices
and short- or midterm electricity forward prices, as shown in
Koekebakker and Ollmar [1], is, however, low in many markets.
This indicates that short-term models are unable to explain the
dynamics of long-term electricity forward prices. An example
of long-term electricity forward price modeling is provided in
[8], which reports on a forward-price and volatility-forecasting
model that combines risk adjustment and external long-term
forecasting models.

In this paper, we focus on modeling the dynamic structure
of long-term electricity forwards. To model these prices, we
try to identify the long-term information that influences the ex-
pected long-term electricity supply, demand, and risk premium.
We analyze the weekly prices of Nord Pool’s long-term elec-
tricity forwards and how these are influenced by long-term for-
ward prices of fuels, emission allowances, and imported elec-

0885-8950/$26.00 © 2009 IEEE
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Fig. 1. Electricity spot price and long-term forward price dynamics from Nord
Pool.

tricity. Due to possible endogeneity, we use vector autoregres-
sive model, which do not require any ad-hoc assumptions on
exogeneity.

This paper is organized as follows. Section II identifies the
long-term electricity forward price process. The use of the data
and univariate model representation is presented in Section III.
Section IV starts with descriptive analysis of variables and mul-
tivariate representation. This is followed by cointegration anal-
ysis and estimation of vector error correction model. Section V
draws the conclusions.

II. LONG-TERM FORWARD PRICE FORMATION

We define long-term electricity forward prices as prices of
electricity forwards with a delivery period of one year and a
time to maturity of more than one year year . Fig. 1
presents an example of the price dynamics for a forward contract
from the Nordic electricity exchange Nord Pool with delivery in
2007. These contracts, though named forwards, correspond to
the definition of swaps, having a stream of cash flows that de-
pends on the difference between the realized spot price and the
fixed contract price. We will continue to denote them forwards.
Fig. 1 demonstrates that the forward-price dynamics is different
from the spot-price dynamics when . As the delivery pe-
riod closes , the forward-price dynamics becomes more
similar to the spot-price dynamics. Long-term forward prices
and short-term forward prices (spot prices) are, therefore, gov-
erned by somewhat different laws, which indicate the need to
model them separately.

A. Setup

The nonstorability of electricity has important implications
on electricity trading and the valuation of forward contracts.
While the cost-of-carry arbitrage is usually applied in valuation
of commodity forwards, it cannot be used in case of electricity
forwards, since electricity cannot be bought today at the spot
price and stored for subsequent sale at the forward price .
As an alternative to the cost-of-carry arbitrage, one can use an
equilibrium approach [9]

(1)

where the forward price is the (rational) expectation about
the spot price at delivery time, (or simply ) dis-
counted with the risk-free interest rate and the risk premium .
Due to the uncertainty of the expected spot price, , market
participants require a compensation for bearing the spot-price
risk, i.e., they determine their own risk premium. When indi-
vidual risk preferences are matched (e.g., on the exchange), the
aggregated risk premium is obtained; this is also referred to as the
market price of risk. In (1), the forward price formation is there-
fore an equilibrium process. If one is able to obtain an unbiased
estimate of the expected spot price , the supply and demand
for bearing the spot price risk determines the risk premium .

Transforming (1) to logs gives

(2)

Assuming constant risk-free interest rate and risk premium
and writing time to maturity as gives

(3)

where is the risk premium parameter defined as .
In (3), the risk premium therefore depends only on time to ma-
turity, which is a very common assumption in modeling fixed
income markets, foreign exchange markets, or commodity mar-
kets. In case of electricity, an assumption that risk premium de-
pends only on time to maturity is also often applied [10], despite
some empirical findings, which indicate that the risk premium in
short-term electricity forwards might be influenced by the prob-
ability of price spikes (load seasonality) and the level of prices
[11], [12]. However, some investigations, which also extend to
far-maturity contracts indicate that the magnitude and the vari-
ability of the risk premium in far-maturity electricity forwards
is low [13], [14].

In (3), the forward prices are therefore mainly driven by the
expected spot prices, subject to information sets available to
market participants. We assume that information sets in our case
include past information about as well as the information
that influence the expected spot price , i.e., variables that
influence the expected supply and demand. We assume all par-
ticipants (i.e., producers, buyers, and traders) have the same in-
formation set.

B. Modeling the Long-Term Expected Spot Price

We define the long-term forwards as the contracts with de-
livery period of one year, having a payoff that depends on the
realized spot price over the delivery year. The long-term ex-
pected spot price therefore represents the expected price of
1 MW of annual base-load electricity. Expected electricity spot
prices a few years into the future are influenced by the expected
supply and demand at the delivery time . The supply and de-
mand are however not observable variables. Instead we can use
fundamental variables that influence the supply and demand to
estimate their influence on the expected spot price. Electricity
demand can sufficiently be explained with weather, economic
activity, and demography, whereas the variables influencing the
supply can be grouped into five groups:

1) fuel prices (coal, natural gas, oil);
2) water-reservoir level in hydro-rich systems;
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3) emission allowance prices ;
4) supply capacity (market structure, available capacity);
5) electricity prices in neighboring markets (in the case that a

significant share of electricity is imported or exported).
When estimating the expected spot price in the long-term, we
seek reliable information about the expected values of the fun-
damental variables mentioned above. In the short term ,
the fundamental variables can be predicted with high, though
not complete, accuracy. As the time to maturity increases, the
variance of these variables increases and their mean values are
harder to predict. Still, there is a difference between variables
that are considered stationary and integrated variables. With sta-
tionary variables, the unconditional variance is bounded and the
unconditional mean is based on historical average and expected
growth. Such are the hydro reservoir levels, supply capacity,
and electricity demand, which can be predicted based on his-
torical average value and expected long-term growth. Integrated
variables on the other hand have no unconditional distribution
since the shocks in these variables will persist and their uncon-
ditional variance is therefore unbounded. In our case, these are
fuel prices, emission allowance prices, and prices of electricity
in neighboring markets. Fortunately the market offers securities
to hedge their uncertain future evolution. Among these secu-
rities, we use long-term forward prices of fuels, emission al-
lowances, and electricity in neighboring markets to explain the
dynamics of long-term electricity price.

Information on the forward prices of fuels, emission al-
lowances, and imported electricity changes on a daily basis,
since these forwards are usually traded each working day. In-
formation on the long-term expected demand and the expected
supply capacity changes only when new information on the
underlying factors (GDP, construction, and retirement plans)
becomes available; this information changes less frequently
(e.g., monthly, quarterly, or yearly). The problem with this data
is also that it is not as reliable as market-based information.
Unless it is published as a part of exchange information, market
participants need to estimate the expected demand and supply
capacity themselves. The expected spot price is, therefore, in-
fluenced by high-resolution market-based information (forward
prices of fuels, emission allowances, and neighboring-market
electricity) and by low-resolution estimated information (ex-
pected demand and supply capacity).

Due to the different resolutions of both types of infor-
mation, an estimation of the influence of these variables on
electricity forward prices is challenging. In this paper, we
use only high-resolution market-based information, whereas
low-resolution estimated information is the additional source of
uncertainty and it influences the variance structure of expected
long-term electricity spot prices. Our model for the expected
long-term spot price of electricity is therefore

(4)

where is the expected electricity spot price, is the
forward price of fuel , is the forward price of the emis-
sion allowance , and the forward price of electricity in a
neighboring market .

TABLE I
SAMPLE CONSTRUCTION

III. DATA AND DESCRIPTIVE ANALYSIS

We test the proposed model on the long-term electricity for-
wards from the Nordic electricity exchange Nord Pool. Nord
Pool is one of the oldest electricity exchanges, covering the area
of four Nordic countries: Norway, Sweden, Finland, and Den-
mark. In 2005, most of the electricity in the Nordic electricity
market was supplied by hydroelectric plants (54%), with the rest
coming from nuclear (22%), renewable (8%), coal (6%), nat-
ural gas (5%), imports (3%), oil (1%), and other sources (1%).
In 2005, the Nord Pool financial market volume was 786 TWh,
physical volume was 176 TWh, whereas the total production in
the market was 404 TWh. The market went through a number
of structural changes, the latest being the introduction of the
European emission trading scheme (ETS) in 2005. Since this
changed the overall price formation, we choose to analyze only
the prices from the start of 2005 to the end of 2007. Our data
sample is constructed in a way to include only prices of yearly
contracts with time to maturity between one year and two years
as shown in Table I. For observation period 2005, ENOYR07 is
used, and this contract is replaced with ENOYR08 with the start
of 2006 and with ENOYR09 with the start of 2007. This way, we
avoid the price shift when two consecutive contracts are rolled
over. Since contracts with delivery period two and three years
ahead move very similarly, the difference between them is very
small. For other variables, defined in the following of the paper,
we use forward prices with the same observation and maturity
period as electricity forwards.

The analysis of high-resolution financial data often involves
the problem of nonsynchronous trading. The prices in our anal-
ysis are quoted at different times, and due to the time mismatch,
the integration between them is not clear. We use weekly res-
olution instead of daily resolution, since the relative time mis-
match is much lower in the case of weekly sampling. Although
the weekly sampling tends to smooth out the magnitude of price
jumps, the volatility structure should not be significantly dif-
ferent to that when using the daily sampling. We use the closing
price from each Wednesday as the reference weekly price for all
the variables, giving the sample size of .

As shown in Fig. 2, there are no significant shifts at the time of
rollover. The sample, however, shows a significant price shock
in April 2006 corresponding to observations 67 to 70. Before
this shock, emission allowance prices were pushing elec-
tricity prices up significantly; however, when the report on ac-
tual emissions in EU was published in April 2006, the prices of
emission allowances dropped dramatically, which had a signif-
icant effect on electricity prices. We will investigate this effect
by testing whether this shock can be considered as a structural
break in the relationship between the variables.
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Fig. 2. Estimation sample for long-term electricity forward price.

A. Fuel Prices

Fuel prices can be divided into two groups. In the first group
are the fuels that are not traded on an exchange, and so no trans-
parent information about their prices exists. These fuels are ura-
nium, biomass, water, wind, solar, and other renewable sources.
Prices of these fuels are uncertain and they influence the vari-
ance structure of electricity prices. In the second group are the
fuels that are traded on an exchange, and at least some infor-
mation about their long-term prices is available. These are oil
derivatives, natural gas, and coal. Although their use in elec-
tricity production in the Nordic market is small, they are often
the marginal source of production and can have a significant in-
fluence on electricity prices. We model the fuel price with
the forward prices for coal , natural gas , and crude
oil , which also represents the price of all oil derivatives:

(5)

For the crude-oil price, we use the NYMEX WTI light sweet
crude oil data. Although the Brent crude oil data from the Inter-
continental Exchange (ICE) might be a better choice for Nordic
countries, the availability of long-term oil prices is much better
at NYMEX. The long-term NYMEX WTI price represents a
global price indicator of the world oil price in the long-term.

The steam-coal market cannot be characterized as a global
market like crude oil. The majority of coal is still traded over
the counter, mostly because coal is hard to standardize, due to
its different energy values. Exchange forward trading with coal
is still in its early stages. Instead, we use the TFS API2 index
as a reference for coal prices in the Nordic area. TFS API2 is
a price index for coal delivered in Amsterdam, Rotterdam, and
Antwerp harbor and should, therefore, also represent the coal
prices in the Nordic area.

The natural gas consumed in the Nordic area comes mainly
from North Sea resources. Natural gas forwards of North Sea
gas is also traded on ICE. We use the ICE quarterly prices of
natural gas forwards to construct the yearly forward prices for
natural gas.

B. Emission Allowance Prices

The price of emission allowances in our model include only
the price of the European emission allowance (EUA)
which were introduced by ETS in 2005 for carbon oxide
emissions. The second part of (4) is therefore

(6)

where is the forward price of the EUA. We use the data
on EUA prices from Nord Pool. Since Nord Pool began trading
with EUAs in March 2005, we use the Spectron EUA prices
which precede that date. The difference between different EUA
prices is negligible, since allowance can be purchased and
used anywhere in Europe.

C. Neighboring-Market Price

The Nordic electricity market imports electricity from Russia,
Germany, and Poland. We have no information on import prices
from Russia, so we use only the European Energy Exchange
(EEX) long-term forward price as a reference price for the elec-
tricity imported from Germany and Poland. The neighboring-
market price is, therefore, the EEX long-term electricity forward
price:

(7)

Combining (3)–(7) gives the following regression model
describing the long-term electricity forward prices from Nord
Pool:

(8)

In (8), we include an error term , which represents the un-
certainty in the expected spot price and the uncertainty in ex-
planatory variables. We assume the error term follows a
normal distribution.

IV. MULTIVARIATE MODEL

Model (8) defines the univariate relationship between a de-
pendent variable on the left and explanatory variables on the
right-hand side. The drawback of such a representation is that
explanatory variables are assumed to be exogenous, which is an
assumptionthatshouldbetestedrather thanassumedapriori.An-
other drawback of the representation in (8) is that it fails to validly
estimate all the long-term relationships between the variables,
particularly when variables are nonstationary and cointegration
between variables is present. In our model, we cannot assume
exogeneity or stationarity, since the prices of interdependent
commodities are often cointegrated and nonstationary. A model
that overcomes the deficiencies of single equation models is a
vector autoregressive model (VAR). A VAR model assumes that
all variables are endogenous; hence, all variables are modeled as
a function of own past values and past values of other endogenous
variables. We define a general Gaussian vector autoregressive
model

(9)
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TABLE II
DESCRIPTIVE ANALYSIS OF VARIABLES

rejects the null at 5% significance. rejects the null at 1% significance.

TABLE III
VAR(2) DIAGNOSTIC TESTS

rejects the null at 5% significance. rejects the null at 1% significance.

where is a vector of endogenous variables, vector of ex-
ogenous variables, and intervention dummies to render the
residuals well-behaved. We use the logs of , , ,

, , and as endogenous variables, and we denote
them as , , , , , and , respectively. Time to
maturity is considered exogenous.

A. Sample Analysis

Table II gives descriptive analysis of variables in (9). The
variables are not normally distributed; particularly the skewness
and excess kurtosis and are very high. Nonstationarity
cannot be rejected in all cases except for and . Both sta-
tionarity tests strongly reject the nonstationarity in first differ-
ences (not presented here). Variables , , , and are
therefore integrated of order , while and may be of
order , although the results are not strongly significant.

B. VAR Setup

Based on stationarity test, we will assume that none of the
variables is and the system is therefore adequately modeled
as .

The model (9) with lag length set to is estimated, and
results together with diagnostics are presented in Table III. No
intervention dummies are included at this point. All en-
dogenous variables in VAR are significant. A significance test

on deterministic components show that the constant is
marginally significant, while time to maturity is not sig-
nificant. The diagnostic tests involve -tests that there is no
residual autocorrelation ( , against 4th-order autoregression),
that residuals are normally distributed , that there is no het-
eroscedasticity , and that there is no autoregressive con-
ditional heteroscedasticity ( , against 4th order). Misspec-

TABLE IV
VAR(2) DIAGNOSTICS TESTS

rejects the null at 5% significance. rejects the null at 1% significance.

ification tests reveal significant problems with all of these tests,
particularly when vector tests are considered. Since VAR esti-
mates are more sensitive to skewness than kurtosis, residuals
skewness is also reported.

To overcome the undesired properties of residuals in Table III,
we first focus on the structural specification of the model. In-
creasing the lag length doesnothelp to removeresidual autocor-
relation. Since residual autocorrelationalsosuggests an omission
of important variables that influence the dynamic structure of our
model, we analyze the price movement during this period and
search for additional variables that might also be included in the
model. Among much nonquantifiable information, we find that
aluminum prices also affected the prices of electricity in Scan-
dinavia and Europe during this period. Aluminum prices rose
significantly during this period, and this triggered some decisions
to postpone the decommissioning of some aluminum smelters,
which could sell aluminum under increased long-term aluminum
prices, with long-term electricity forwards as hedging instru-
ments. The long-term aluminum prices therefore reflect changes
in part of future electricity consumption and influence the de-
mand for long-term electricity forwards. Descriptive analysis for
aluminum forward price from London Metal Exchange
also show a non-normal distribution, while the values of ADF
and Phillips-Peron test are 1.46 and 1.28
indicating integration of order .

We also introduce a few dummies to the system to account
for the shocks, which are known to induce erratic behavior
and nonlinear dynamics. First we introduce a blip dummy to
set the residuals from 67 to 70, to zero, which correspond to

price shock in April 2006. A blip dummy of a type
with three lags is used for this purpose. Next we

add one transitory dummy of a type
to remove the effect of transitory shock in observations 27 and
29. Additionally three blip dummies , , and
are used to remove the largest outliers. The diagnostics of VAR
that include these changes is presented in Table IV.

The results show that aluminum price and dummies help to
improve the properties of VAR. Most single equation and vector
misspecification tests are improved. There is a still slight au-
tocorrelation present in and , but we will not pursue
this further, since we expect these two variables are weakly ex-
ogenous and they do not have to be modeled themselves. The
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Fig. 3. Recursive break-point Chow test.

vector tests on the other hand reject the autocorrelation and het-
eroscedasticity in residuals. While strict normality is still not
achieved, we managed to reduce the skewness, which is more
critical than kurtosis.

We test this specification for parameter constancy. In partic-
ular, we are interested in the influence of price shock in
April 2006. The shock had a significant effect on the Nord Pool
forward price as seen in Fig. 2 and also on the EEX forward
price. To test whether this shock, or any other shock during
this period, changed the overall structure of the data generating
process, we use the Chow test for structural break [15]. Fig. 3
shows recursive break-point Chow test for each equation in the
system and for the system as a whole. The 1% significance level
of the break-point test is never exceeded indicating that param-
eters of individual equations and the system as a whole are con-
stant throughout the sample. The price shock can therefore
be considered as a transitory shock, which can be removed with
intervention dummies, rather than a structural break.

VAR in Table IV is also tested for stability by checking the
roots of the companion matrix. All the roots lie inside the unit
circle with the moduli of the three largest roots being 0.981,
0.981, and 0.948, respectively indicating that this representation
of VAR is stable.

C. Cointegration Analysis

Since unit root testing indicates that first differences are ,
we convert the model (9) to first difference model. This model
explains only the short-run dynamics of the system, while the
long-run relationship between variables, which is important if
variables are cointegrated, is lost. Cointegration between non-
stationary variables can be captured with vector equilibrium
error correction model (VECM):

(10)

which has the same innovation process , since no restrictions
have been imposed by transformation from (9) to (10). In (10),

TABLE V
COINTEGRATION RANK TEST AND CHARACTERISTIC ROOTS

rejects the null at 5% significance. rejects the null at 1% significance.

the right-hand side contains information about the short- and
the long-run adjustment to changes in . If contains
variables, then is , while must also be
for to be a white noise process. Matrix can be decom-
posed to , where represent the speed of adjustment
to disequilibrium and is the matrix of long-run coefficients
such that represents up to stationary cointegrating
relationships, which ensure that converge to their long-run
steady-state solution. A note, however, is necessary that since

contains two variables that are possibly in levels, they
form a cointegrating relation by itself adding to the total number
of cointegrating relations. is unrestricted constant which ac-
counts for a constant in the short-run model (trend in levels) and
a constant in cointegration space.

To test for cointegration between variables, we employ Jo-
hansen testing procedure [16] which concentrates on testing
whether the eigenvalues of the matrix in (10) are sig-
nificantly different from 0. We test whether has a reduced
rank , indicating that there are stationary cointe-
grating relationships between nonstationary variables in VAR. If

, this would indicate that all variables are stationary, while
would indicate no stable cointegrating relationships and

the VAR with first differences only would be adequate. To de-
termine the rank , we use the trace test statistics

(11)

where is the sample size and are the estimated eigenvalues
of . The results of the cointegration rank test, presented in
Table V, show that is strongly significant while and
are on the borderline of significance with values 0.019 and
0.074, respectively. It is hard to know exactly if they form a
stationary cointegrating vector or not. Since the choice of coin-
tegration rank is crucial in modeling cointegrated systems, we
look for additional indicators for determining , as specified in
[17]. First we look at the moduli of the largest characteristic
roots of the model, and see how they are changing for the hy-
potheses in question, i.e., , 2, and 3. Table V again show
indecisive results for and . It is hard to know ex-
actly whether a moduli of 0.910 represent a unit root or not. Next
we look at the significance of parameters of loading matrix .
The -value of is 4.20 and for is 3.28 indicating
that the second vector adds additional explanatory power to the
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Fig. 4. Cointegrating vectors.

equation and third cointegrating vector to the equation.
Finally we look at the graph of the first six cointegrating vec-
tors presented in Fig. 4. The first two cointegrating vectors look
stationary and the last three are clearly not. For the third cointe-
grating vector, it is hard to decide, so we test the third vector with
ADF test and Phillips-Perron test. Both of them reject station-
arity with probability of 0.115 and 0.153, respectively. Based on
these findings, we choose cointegration rank . Although
the third vector might also help to explain the long-term rela-
tionship in equation, it is not stationary.

To identify the two cointegration vectors, we test the restric-
tions on estimated and . We first rotate the cointegration
space by normalizing with respect to and . This way,
beta is exactly identified and the significance of each variable in
cointegration space can be tested by putting additional restric-
tions on parameters in . These tests based on standard LR test
show that in the second vector, only the parameter is signifi-
cant, indicating that the second vector is exactly . This is con-
sistent with the unit root test results showing being stationary
in levels. Gas price is insignificant in both cointegrating vectors
and therefore have no long-run explanatory power. Testing all
restrictions gives the following representation of , with stan-
dard errors below.

The first cointegrating vector is interesting since it represents a
linear combination of , , , , and . The Nord
Pool price therefore increases approximately one to one with
the aluminum price and less than one to one with the coal price.
On the other hand, the Nord Pool price falls almost one to one
with EEX price increase and falls by 0.13% if the emission al-
lowance price rises by 1%. Since Nord Pool and EEX price are
strongly positively correlated, this means that if a positive shock
occurred in the EEX price in the last period, then similar posi-
tive shock is also likely to have occurred in the Nord Pool price.
The cointegrating vector would then pull the Nord Pool price
back down in the next period.

TABLE VI
DIAGNOSTICS TEST OF VECM

rejects the null at 5% significance. rejects the null at 1% significance.

In the second step, we test the restrictions on loading matrix
, which is also known as the test for weak exogeneity. The test

involves testing the restrictions that particular row in the esti-
mated loading matrix is insignificantly different from zero.
The parameters of explain how the short-run model is ad-
justed to the disequilibrium represented by cointegrating vec-
tors . If the entire row in is zero, this indicates that
none of the cointegrating vectors enters the equation associated
with this row. Testing these restrictions additionally to restric-
tions on shows that and are weakly exogenous in
our model, while other variables should be treated as endoge-
nous. The values of coefficients, reported below, show that
oil and gas price have very low and also insignificant speed of
adjustment to both cointegrating vectors, even though the weak
exogeneity test for these two variables was rejected at 5% sig-
nificance. The parameters for Nord Pool, EEX, and EUA price
are strongly significant. EUA price has the highest speed of ad-
justment with about 39% of disequilibrium in the first vector
corrected in one period:

Based on cointegration test and weak exogeneity test, we
form a VECM as in (10). now includes endogenous vari-
ables , , , , and , while includes two weakly
exogenous variables and and time to maturity .
Estimation of (10) includes one lag of first differences of en-
dogenous variables, the first lag of two cointegrating vectors,
the first lag of weakly exogenous variables, eight dummy vari-
ables, and a constant, giving 25, 10, 15, 40, and 5 parameters,
respectively, a total of 95 parameters to estimate. We reduce the
model size with the standard -test. The reduced model shows
that is also insignificant in the short-run model so we com-
pletely remove from the system. The 4-D model now in-
cludes 40 parameters and the value of -test on reduction is

. The reduced model includes the first lag of
, two cointegrating vectors, a constant, , and five dum-

mies only. The diagnostic tests presented in Table VI show that
the main properties of residuals remained unchanged with stan-
dard errors very close to values in Table IV. Since , ,
and equation are removed from the system, vector auto-
correlation and heteroscedasticity tests are improved. Normality
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test, however, shows no improvement. Both cointegrating vec-
tors are highly significant, confirming that the choice of coin-
tegration rank is correct. is significant only in and

equation, indicating that the system shows some influ-
ence of the risk premium; however, the significance is strongly
rejected in , which is in our interest.

V. CONCLUSION

We have analyzed the long-term electricity forward prices
using a vector autoregressive model. The model is specified
based on variables that influence the expected long-term elec-
tricity supply, demand, and risk premium. We use the long-term
forward prices of oil, coal, natural gas, emission allowances, im-
ported electricity, and aluminum prices to model the dynamic
properties of long-term electricity forward prices. The risk pre-
mium is modeled as a function of time to maturity.

The model is estimated on weekly data from 2005 to 2007
using variables relevant for the Nordic electricity market. We
specify a 7-D VAR with two lags and few intervention dummies.
The influence of the emission allowance price shock in April
2006 is analyzed with a Chow breakpoint test, which showed
no breaks in constant or trend. The variables in the model are
all integrated of order , except oil and emission allowance
price, which are but close to unit root. The system is tested
for cointegration using the Johansen cointegration test. The test,
together with other indicators, indicates two stationary cointe-
grating vectors, the first being a linear combination of nonsta-
tionary variables. The Nord Pool price increases if aluminum
price and coal prices increase in the previous week and de-
creases if the emission allowance price and the EEX price in-
crease in the previous week. The second cointegrating vector is
exactly the oil price, which is stationary in our case. Gas price
is found insignificant in both the short-and the long-run model.
The model shows some influence of the risk premium; however,
its influence on electricity forward prices from Nord Pool is not
confirmed. This indicates that the risk premium dynamics in the
long-term electricity forwards from Nord Pool is rather low and
that the risk premium could be considered as constant. While
these results hold for the Nordic electricity market, other mar-
kets may have a different maturity level and their price dynamics
may respond to other variables. Nevertheless, the general ap-
proach could be used for analyzing other electricity markets.
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Modelling the structure of long-term electricity
forward prices at Nord Pool

Martin Povh, Robert Golob, Stein-Erik Fleten

Abstract This chapter models long-term electricity forward prices with variables
that influence the price of electricity. Long-term modelling requires consideration
of expected changes in the demand and supply structure. The model combines high-
resolution information on fuel costs from financial markets and low-resolution in-
formation on the demand/supply structure of the electricity market. We model the
latter using consumption and supply capacity, and the former with forward prices
of fuels, emission allowances and imported electricity. The model is estimated us-
ing data from the Nordic electricity market and global long-term forward prices of
energy. Owing to a lack of data on consumption and supply capacity, the estimated
results only provide the broad influence of these variables on forward prices. Though
extrapolation of the prices observed in Nord Pool may suffer from the influence of
short-term variables, such as precipitation and temperature, the model yields robust
forecasts of the prices of contracts that are not exchange traded.

1 Introduction

Since the beginning of the deregulation of electricity markets, a significant con-
nection between electricity prices and different energy prices has prevailed. This
is because the various energy sources serve either as a fuel for generating elec-
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tricity or as a substitute for electricity use. Transparency in electricity markets has
also improved significantly with the introduction of electricity exchanges. Although
electricity markets struggle with low liquidity, they do provide information about
the competitive market price, often used as an indicator in over-the-counter (OTC)
trading. Moreover, because the price of electricity is very volatile, both in the short
and the long term, participants in electricity markets attempt to reduce price-related
risk with forward trading.

A variety of forward contracts are traded on exchanges with times-to-delivery
ranging from 1 week to a few years, and these give market participants a variety of
choices for hedging against price risk. In liquid forward markets, forward trading
also conveys the present information on the expected price in the future adjusted for
the market price of risk. This information is especially important in the long term,
not only for hedging purposes but also for different strategic purposes, including
investment analysis, asset management, strategic decisions on mergers and acqui-
sitions, state energy policies, etc. Excess capacity has gradually decreased since
deregulation and investments in new capacity has not followed the growth in con-
sumption. Apart from the increasing prices of other energy commodities, this has
also had an important impact on the overall trend in increasing wholesale prices
during this period.

In recent years, we have also witnessed a shift in electricity production tech-
nology from traditional coal and nuclear to natural gas and renewable sources. This
shift in production requires investors to have relevant information about the electric-
ity market in the future in order to support investment decisions today. Long-term
information about electricity prices is one of the most important variables in these
analyses. Investors in new production capacity need to estimate long-term expected
spot prices. Alternatively, real option theory suggests the use of forward prices in-
stead of expected spot prices, as forward prices already incorporate the appropriate
market price of risk. Unfortunately, we do not have current information about prices
in the distant future, e.g., 10 years ahead, because forward contracts with these de-
livery periods are not traded on the exchange. Typically, the term structure of for-
ward contracts ends 5 to 6 years ahead.1 This, however, does not mean that there
is no forward trading beyond this horizon. For example, an OTC forward market
with 10-year forward contracts existed for a few years in the Nordic electricity mar-
ket. This provides evidence that investors seek long-term forward contracts to hedge
long-term price related risks properly.

A simple way to estimate the value of the longer end of the term structure of
electricity prices would be to extrapolate prices observable at electricity exchanges.
Investors often use different rules of thumb to estimate the value of forward con-
tracts beyond the traded horizon. These rules can be based on different historic data,
intuition and experience. However, market forces other than the prices of observ-
able exchange traded contracts may drive the prices of forward contracts beyond the
traded horizon. This leads to potential errors in these estimates. Finally, the most
accurate information about the value of electricity with a certain delivery period can

1 A forward price term structure is a set of prices of exchange traded forward contracts for various
times-to-maturity.
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only be provided by a liquid forward market. The absence of accurate information
indicates the need to extend the trading horizon on electricity exchanges into the
future as far as possible. This would result in better market transparency, which is
important not only for the investment purpose mentioned earlier but also for global
benchmarking. Publicly available long-term price indicators in a particular elec-
tricity market would also be useful for investors and other institutions outside the
market itself.

Long-term modelling of commodity forward prices is relatively new, as the avail-
ability of the long-term forward data remains low. Schwartz [1] employs models
based on short-term oil futures and tests their performance on available long-term
oil futures. Pindyck [2] models the long-term evolution of oil, coal and natural
gas prices with mean reversion models using the theory of depletable resources.
Schwartz and Smith [3] use long-term commodity prices as an equilibrium to which
short-term prices revert. Unfortunately, there is relatively little work on the mod-
elling of long-term electricity forward prices.

However, an increasing number of studies focus on the short-term electricity for-
ward market. For example, Byström [4], Lucia and Schwartz [5] and Solibakke
[6] focus on the valuation of short-term forward contracts and their hedging perfor-
mance. Johnsen [7] presents a short-term supply/demand model that we could poten-
tially use in long-term modelling. Bessembinder and Lemon [8] present a model in
which the electricity forward price is the equilibrium of the supply and demand for
forward contracts. Because electricity prices are influenced by the impossibility of
storage and high uncertainty in underlying factors, some researchers suggest a com-
bined approach to modelling electricity price. For instance, Eydeland and Wolyniec
[9], and Pirrong and Jermakyan [10], combine the properties of financial models
common in stock valuation with the properties of fundamental models where sup-
ply and demand are modelled using fundamental factors [11]. Here we follow a
similar idea to model the prices of long-term electricity forwards with a regression
approach. Our model depends on the assumption that the expected value of a com-
modity with a certain delivery period depends on expected supply and demand, as
well as the supply and demand for risk hedging associated with uncertainty relating
to its expected value. Modelling long-term supply and demand requires different
fundamental factors from the short term, while structural changes in the market also
require consideration. We identify which of these parameters influence the supply
and demand for electricity in the long term and then seek long-term information that
we can use to model these variables. We estimate the model parameters using the
market data available for the Nordic electricity market.

The chapter is organized as follows. Section 2 identifies the long-term electric-
ity forward price process with respect to supply, demand and the risk premium. We
identify three groups of variables and present a simple model for each. At the end of
this section, we present the model for long-term forward prices. Section 3 discusses
the data and parameter estimation process. In Section 4, we provide the estimation
results and some indicators of model performance. Section 5 contains some conclu-
sions and recommendations.
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2 Long-term forward price process

Modelling forward prices involves two time dimensions. The first is the observa-
tion time t, reflecting the time at which the price of a particular forward contract is
observed or settled. The second is the delivery period T , which represent a period
of time in which the forward contract matures or is delivered. The forward price is
therefore denoted as Ft,T . We can forecast unobserved forward prices using either of
these dimensions. The first strategy involves forecasting the future evolution of the
price of an observed contract and using the n-step ahead forecast to obtain the value
of a contract at time t +n. This model would typically involve autoregressive com-
ponents of dependent and explanatory variables. The expected value of the forecast
for the long-term forward price E[Ft,T ] would therefore be the average forecasted
value during the delivery period T . This strategy is less convenient for a long-term
forecast as the forecasting horizon could be very large when compared with the
estimation sample.

An alternative strategy for forecasting the price of an unobserved forward con-
tract would be forecasting with respect to the delivery period T . This strategy is
based on the assumption that the relationships between the dependent and explana-
tory variables is dimension invariant; i.e., these relationships do not change with the
observation time t or delivery period T . Under this assumption, the relationships
estimated on observed contracts with delivery period T can be used to forecast the
price of a contract with delivery period T + N. This strategy also has some advan-
tages when it comes to modelling long-term prices. First, the forecasting horizon is
very small if the delivery period T is long enough; e.g., 1 year. Second, we can use
the available long-term information on the explanatory variables directly in the fore-
cast as we assume the same relationship for the observed contracts. Third, we can
design the underlying model to match the specifics of long-term prices; for example,
constructing a specific model for a specific type of contract.

2.1 Definition

We define long-term electricity forward prices as the prices of electricity forward
contracts with a delivery period of 1 year and a time-to-delivery of more than 1
year (T − t ≥ 1 year). Fig. 1 depicts the prices of the yearly Nord Pool contracts
ENOYR1, ENOYR2 and ENOYR3 with respective times-to-delivery of 1, 2 and 3
years. Fig.1 demonstrates that the forward price dynamics depend very much on
the time-to-delivery T − t. Short-term information, such as the level of water reser-
voirs, strongly influences the price of ENOYR1. Namely, a large proportion of hy-
dropower plants in the Nordic market have the possibility of storing water up to 1
year or longer. There is also some degree of short-term information in ENOYR2 and
ENOYR3, however, we assume that the prices of these contracts are mainly driven
by the long-term information. Somewhat different laws therefore govern long-term
and short-term forward (or spot) prices, and this suggests the need for different
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Fig. 1 Average weekly price of yearly forward contracts at Nord Pool

modelling strategies. Using this definition, long-term forward prices in the Nordic
electricity market are ENOYR2 and ENOYR3, whereas ENOYR1 is the mid-term
and eventually short-term contract as time-to-delivery approaches zero.

2.2 Valuation of forwards

Electricity is a very peculiar commodity because there is no economically efficient
means of storage. This suggests that in order to estimate the relation between the
forward price and the spot price of electricity, we cannot use standard cost-of-carry
arbitrage:

Ft,T = (Pt +Cs)(1+ r− y)(T−t) (1)

where the forward price Ft,T is the sum of the spot price Pt and storage costs Cs dis-
counted by the difference between the risk-free interest rate r and the convenience
yield y. Putting counterparty risk aside, the arbitrage principle implies that there
should be no difference between buying the forward contract and buying the com-
modity in the spot market, storing it and using it during the delivery period. Using
the arbitrage principle to value electricity forward contracts is not advisable, because
electricity cannot be stored today and consumed later in the future. One possible al-
ternative for valuing electricity forward contracts is a risk-adjusted expected spot
price:

Ft,T = Et [PT ](1+ r−λ )(T−t) (2)

where the forward price Ft,T is the current expectation about the spot price during
the delivery period Et [PT ] (or simply Pt,T ) discounted by the difference between the
risk-free interest rate r and the risk premium λ .
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2.3 Risk adjustment

Assuming all investors hold the same expectation about the spot price, this approach
(2) basically seeks the equilibrium between supply and demand for reducing risk by
using an appropriate risk premium. Another interpretation of risk adjustment is the
separation of the forward price data-generating process in two subprocesses. The
underlying process of the expected supply and demand for electricity during the
delivery period generates the expected spot price during the delivery period. Using
this expectation, we obtain the probability distribution of the expected spot price,
and this generates the risk premium based on the risk preferences of investors over
this probability distribution. Transforming (2) to logs gives:

lnFt,T = lnPt,T + ln(1+ r−λ )(T − t). (3)

While risk-free interest rates can be easily determined by looking at, for example,
the prices of government bonds, the assessment of λ , or the market price of risk, has
always been a challenging task. A somewhat naive way to determine λ is to use the
Capital Asset Pricing Model (CAPM), in which the risk premium in the electricity
market depends on the risk premium in the overall capital market and the correlation
between movements in the electricity market and movements in the overall capital
market. Although CAPM is able to capture the price of risk, it is not well suited for
pricing electricity derivatives because it assumes that (financial) electricity market
is also used for diversification of general investors. In financial electricity markets,
the participation of investors outside the industry is weak; hence, the dynamics of
the risk premium is mainly driven by producers and consumers, who are motivated
by hedging production and consumption. These investors are generally not diver-
sified in the general capital market, and due to the ownership structure dominated
by governmental influence, it is natural to consider them risk-averse. For instance,
Bessembinder and Lemmon [8] show that in the absence of outside speculators,
different levels of risk aversion by producers and consumers lead to non-zero risk
premiums in electricity forwards. These non-zero risk premiums may attract partic-
ipants from outside the industry to include forwards in their portfolios, and this can
gradually decrease the level of risk premium.

To estimate the risk premium, we use past empirical findings about the risk pre-
mium in the electricity market. First, Bessembinder and Lemmon [8] and Longstaff
and Wang [12] argue that the risk premium in short-maturity electricity forwards
is influenced by the probability of price spikes (load seasonality) and the level of
prices. A few studies attempting to estimate the risk premium on far-maturity con-
tracts have found that it is much lower than in the short-maturity contracts [13, 15].
[13] also finds a connection between the risk premium and seasonal observation
time in short- and far-maturity contracts from Nord Pool. This implies that there
is a difference in supply and demand for long-term forwards at different times of
the year. One of the reasons could be the yearly liquidity cycle, as the liquidity of
yearly contracts from Nord Pool is typically lower at the beginning of the year and
increases towards the end of the year when most of the yearly delivery contracts are
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settled. While this significantly influences the price of the first yearly contract, it
also has some influence on the prices of all subsequent yearly contracts. Based on
these findings, we use the following model for risk adjustment:

lnFt,T = lnPt,T +κ0rt,T +κ1 +κ2τt (4)

where the risk premium in far-maturity contracts is a constant κ1 plus a seasonal
time-dependent term κ2τt in which τt is a seasonal time, defined as the time from
January 1 in the observation year. Although the forward price in (4) is the price of a
pure financial contract where there is no cash flow between the buyer and the seller
at settlement time, there is a strong rationale for the prices of contracts beyond
the traded horizon requiring at least some cash flow or financial guarantee at the
time of the settlement. Therefore, long-term interest rates will have an influence
on the value of the forward contract. We also believe that interest rates influence
forward prices through their influence on the fundamental variables discussed in
the following section. For this reason, the interest rate is included not only as a
discounting variable but also as an explanatory variable for the expected spot price.
The risk adjustment in (4) is no longer a function of time-to-delivery T − t. Because
of the Samuelson effect [14], the volatility of futures and forwards increases as
time-to-delivery approaches. Hence, we assume that the volatility of far-maturity
contracts does not vary significantly with time-to-delivery. The risk premium in far-
maturity contracts is therefore a constant with respect to time-to-delivery.

2.4 Modelling the long-term expected spot price

The expected spot price during a particular period is a simple average of the ex-
pected spot prices during the delivery period. To model the long-term expected spot
price, we model supply and demand using fundamental factors, whereas we obtain
the price in equilibrium by matching supply and demand.

2.4.1 Long-term demand

Electricity demand is a process driven by short-term fundamental drivers, such as
the daily and weekly cycle, temperature, the price elasticity of electricity and its sub-
stitutes, daylight hours, etc. Economic drivers (gross domestic product, household
consumption expenditure) and demographic drivers (population, migration) influ-
ence electricity demand in the long term, typically causing demand to grow over
time. Unfortunately, long-term information on short-term drivers does not exist.
However, historical averages may be a reasonable estimate of their long-term ex-
pected value. This implies that these drivers do not influence the expected value of
long-term demand, as their expected value is constant. However, we need to model
the uncertainty in these variables as a short-term non-persistent error. Contrary to
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the situation for the short-term drivers, we can predict the long-term drivers to some
extent, or alternatively, one can use existing forecasts produced by different institu-
tions. We model long-term electricity demand as long-term electricity consumption
adjusted by the price elasticity:

lnqd
t = lnct +η lnPt (5)

where qd
t is the quantity of demand, Pt is the spot price, η is the demand elasticity,

and ct is electricity consumption. Long-term consumption ct is a well-understood
process, driven by the long-term variables described earlier. However, because we
quite often adequately model expected consumption growth in developed countries
as a constant, we employ a simple linear model:

lnct = α0 +α1t (6)

and the long-term demand function is therefore:

lnqd
t = α0 +α1t +η lnPt +ud

t . (7)

In (7) a stochastic error term ud
t is included to account for short-term non-persistent

errors such as temperature, daylight hours, wind, etc.

2.4.2 Long-term supply

Electricity supply is more price elastic than electricity demand, though the underly-
ing factors influencing supply have greater uncertainty. While many variables that
influence long-term demand cannot be included in the model because we do not
have reliable long-term information, this is not the case for long-term supply. Some
important influencing variables are also traded commodities with transparent long-
term price information. Nevertheless, long-term information about some variables
that also play an important role in electricity supply does not exist. We can divide
the variables that influence the shape of the supply function into two groups. The
first group includes structural variables that influence the structure of the market. We
capture these variables with supply capacity. The second group of supply variables
consists of supply cost variables; these cause changes in electricity supply costs.

We model long-term electricity supply as a function of supply capacity, supply
costs and price elasticity:

lnqs
t = a1 lnCs

t +a2 lngt +a3 lnPt (8)

where Pt and qs
t are the spot price and the supply quantity respectively, gt is the

supply capacity and Cs
t are supply costs.

The supply function derives from the different units that supply the market. Each
unit has limited installed capacity and therefore a limited amount of electricity it
can produce in 1 year. Electricity producers also face other restrictions, including
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technical and environmental constraints and the weather. The level of precipitation
or the available water for hydro production is a variable that has a significant impact
on the supply capacity in some markets. However, we do not have any long-term
information about this. Our expectation on hydro production for a particular year
in the future instead derives from the historical average. We define supply capacity
as the sum of total installed capacity in the market including net transfer capacity.
Given that we cannot treat wind production the same as other types of capacity, we
adjust the wind capacity with the average utilization factor of 0.25. Supply from
neighbouring markets is a specific producer that participates in the market with a
net transfer capacity.

Given the current market situation, it is reasonable to assume that until the start
of the delivery period T a few years ahead, some new production units will enter
the market and some old production units will be decommissioned. In theory, the
expected change in supply capacity should depend on the spread between electricity
prices and supply costs; however, in reality, new investments are to a large degree
driven by political decisions, such as environmental pressures or the change in the
level of reserve capacity associated with deregulation. We do not claim that the
spread between electricity prices and supply costs provides no incentive for new
investments. However, we believe that it is still not a prevailing factor influencing
new investments. For this reason, we model the supply capacity gt during time t
with a simple linear model:

lngt = γ0 + γ1t +ug
t (9)

where the error term ug
t represent the uncertainty in the supply capacity. Alterna-

tively, one can use long-term information about construction plans, which is often
available, although in most cases, it is still a rough expectation.

On the supply side, each unit has different production costs, which depend on
the type of fuel, fuel costs and efficiency. While some units have very low or no
fuel costs (wind, hydro, nuclear), other units have considerable and uncertain costs
of fuel (coal, natural gas, oil). Similar to Eydeland and Wolyniec [9], we divide the
supply cost variables into three groups. The first group consists of non-tradable fuels
such as water, uranium, wind and biomass. As there is no liquid market or long-term
price information for these fuels, we assume that their expected costs do not change
with t or T . The second group consists of tradable fuels, mostly coal, natural gas
and oil derivatives. Long-term information about the prices of these fuels is avail-
able in the form of futures and forwards, sometimes traded on the exchange up to 6
years into the future. The third group of supply cost variables includes other costs of
supply such as emission allowance prices and the prices of electricity imports. We
assume that the introduction of the European Union Emission Trading Scheme (EU
ETS) in 2005 increased production costs for fossil-fuel producers, thereby increas-
ing electricity prices. Emission allowance prices should therefore have a significant
influence on electricity prices. Imported electricity is also part of the supply func-
tion, and we model this as electricity from a specific type of producer. The price
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for this producer is the average price in the market from where the electricity is
imported.

Supply costs Cs
t can then be expressed as a linear combination of the relevant

supply cost variables:

lnCs
t = b0 +b1 lnPoil

t +b2 lnPcoal
t +b3 lnPea

t +b4 lnPimport
t (10)

where Poil
t and Pcoal

t are the prices of crude oil and coal, Pea
t is the emission al-

lowance price and Pimport
t is the price of electricity in the market from which the

electricity is imported. In (10) we do not include the price of natural gas as long-
term information about the price of natural gas remains scarce and because the price
of natural gas is highly correlated with the price of crude oil. We assume that the
price of crude oil is a good proxy for the prices of all oil derivatives and natural gas.

Combining (8) and (10), we obtain the following linear supply model:

lnPt = β0 +β1 lngt +β2 lnqs
t +β3 lnPoil

t

+β4 lnPcoal
t +β5 lnPea

t +β6 lnPimport
t +us

t . (11)

To account for all uncertainties in the supply function, such as precipitation and
wind, we also include a stochastic error us

t .

2.5 Long-term forward price model

The average electricity spot price during time t is obtained by matching the supply
and demand function. In equilibrium, the demand quantity qd

t equals the supply
quantity qs

t , giving:

lnPt = β0 +β1 lngt +β2 lnqd
t +β3 lnPoil

t

+β4 lnPcoal
t +β5 lnPea

t +β6 lnPimport
t +us

t . (12)

Equation (12) is a model for expected spot price for any time t. By replacing spot
price variables in (12) with forward-looking variables, we can express the expected
spot price during delivery period T a few years ahead as follows:

lnPt,T = β0 +β1 lngt,T +β2 lnqd
t,T +β3 lnFoil

t,T

+β4 lnFcoal
t,T +β5 lnFea

t,T +β6 lnF import
t,T +us

t,T . (13)

In (13), Foil
t,T , Fcoal

t,T and Fea
t,T are the forward prices of oil, coal and emission al-

lowances respectively, whereas F import
t,T is the forward price of electricity in the mar-

ket from where the electricity is imported.
The final step in modelling long-term forward prices is the risk adjustment of the

expected spot price Pt,T , which can is obtained with (4). Combining (4), (7), (9) and
(13) gives:
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lnFt,T = δ0 +δ1(γ0 + γ1T )+δ2(α0 +α1T )+δ3 lnFoil
t,T

+δ4 lnFcoal
t,T +δ5 lnFea

t,T +δ6 lnF import
t,T +δ7rt,T +δ8τt +ut,T (14)

where δ1,...,6 equals β1,...,6 divided by 1− β2α2, whereas δ7,8 equals κ0,2 divided
by 1−β2α2. The error term ut,T is a linear combination of ud

t,T , us
t,T and ug

t,T . Ex-
pected supply capacity and expected consumption in (14) are modelled with two
linear submodels; however, the model structure allows the use of any other informa-
tion about expected consumption and supply capacity, and hence information that is
more accurate can be used if available.

3 Model estimation

The model (14) combines two important properties of long-term forward prices:
changes in the structure of the market and changes in supply costs. We estimate the
model parameters using data from the common Nordic electricity market, compris-
ing Norway, Sweden, Finland and Denmark. The Nordic electricity market is one
of the world’s oldest electricity markets, with a high level of competition and with
Nord Pool as the longest established power exchange. Nord Pool has high liquid-
ity in the spot market and fair liquidity in the forward market. Because the Nordic
electricity market is large (close to 400 TWh in yearly consumption) and the level
of concentration on the production side is small, we assume that the market is close
to efficient. Similar to most electricity markets, the Nordic electricity market still
struggles with the lack of long-term information necessary to estimate the parame-
ters of our model.

3.1 Data

All of the data discussed in this section represent the average information for de-
livery period T . Most data are available at daily resolution, except for the data on
structural variables that are only available on a monthly, quarterly or yearly basis.
As we wish to minimize the influence of short-term variations in price due to dif-
ferent short-term factors and, at the same time, produce an adequate data sample to
obtain significant results, we use a weekly resolution (t = 1 week).

3.1.1 Electricity

Yearly electricity forward contracts at Nord Pool trade up to 5 years ahead, while
contracts beyond this horizon trade on the OTC market. Because the liquidity and
trading frequency of yearly forwards decreases significantly with time-to-delivery,
we only use the prices of the 2-year ahead (ENOYR2) and 3-year ahead (ENOYR3)
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forward contracts to estimate the model parameters. To estimate the structural pa-
rameters, we use monthly average electricity spot prices from Nord Pool.

3.1.2 Electricity consumption and supply capacity

The model for the long-term electricity forward price in (14) also draws on the
expected long-term electricity consumption and supply capacity. Their influence,
however, is difficult to quantify as we have 3 years of high-resolution electricity
forward data and several years of low-resolution consumption and supply capacity
data. Instead, we assume that the expected consumption and supply capacity influ-
ence the expected spot price in the same way that actual consumption and supply
capacity influence the spot price in the past. To estimate the structural parameters,
we use historical data on yearly electricity consumption and supply capacity for
all four countries. To produce a larger sample, we use monthly frequencies for the
yearly data, where the individual observation is the sum or average of the previous
12 months. For supply capacity where only yearly data are available, we use linear
interpolation to obtain monthly observations. These data are from Nordel (Organi-
sation for Nordic Transmission System Operators). We modify the supply capacity
data to represent the total average supply capacity in the market. We adjust the influ-
ence of wind capacity with an average utilization factor of 0.25 and include the net
import capacity (available from Nordel). To estimate the demand variables in (7), we
use annual data on temperature-adjusted consumption from Nordel. Temperature-
adjusted consumption is consumption adjusted to normal temperature conditions
using a heating-degree-day index [16].

3.1.3 Oil prices

Most crude oil and oil derivatives are traded on two major international exchanges,
London’s Intercontinental Exchange (ICE), and the New York Mercantile Exchange
(NYMEX). Because there is a small difference in the quoted price of crude oil in
both exchanges, we choose NYMEX crude oil data. We also use NYMEX monthly
averages of the crude oil spot prices for estimation of the structural parameters.

3.1.4 Coal prices

The international coal market is based on coal prices offered at major shipping
ports and freight prices. As a result, there are different prices for different delivery
ports across Europe. Few institutions provide OTC coal prices based on reported
deals from traders. We use McCloskey’s North West European (NWE) Steam Coal
Marker Price. This is a respected coal price marker and is particularly valid for the
UK market. Given that long-term forward prices for coal are not available, we as-
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sume that the NWE coal marker price also provides adequate information about
future coal prices.

3.1.5 Emission allowance prices

The EU ETS was implemented in 2005. Because Nord Pool began trading with CO2
allowances in the beginning of 2005, we assume that the expected CO2 allowance
was constant and equalled approx. 8.7 EUR/ton, which is the price observed dur-
ing the first days of trading. We base this assumption on the idea that the trading
in the market usually starts at a price that is the average of different expectations
of investors. We combine European Carbon Index data from the European Energy
Exchange (EEX) and the Nord Pool data on European Emission Allowances (EUA)
forward contracts. EEX started publishing the European Carbon Index in November
2004, and Nord Pool started trading EUA in March 2005. Given that emission al-
lowances can be purchased and used anywhere in Europe, the differences in prices
between the different markets are small.

3.1.6 Imported electricity prices

The Nordic electricity market has become a net importer of electricity in recent
years. More than half of imported electricity comes from Russia and the remainder is
imported from Germany and Poland. As there is no electricity price signal in Russia,
we use only prices from EEX, which is a dominant price indicator for Germany and
more or less all of Central Europe. We use data on electricity spot prices and yearly
futures (traded up to 6 years ahead) in the estimation.

3.1.7 Interest rates

Interest rates are needed not only as explanatory variables but also for estimating
the forward exchange rates for converting US dollars and Euros to Norwegian kro-
ner. For estimation of forward exchange rates, we use interest rate parity. Long-term
government bond yields from the Bank of Norway provide the risk-free interest rate
for estimation of the forward exchange rate. For estimation of the forward exchange
rate for US dollars, we use Treasury bill long-term interest rates from the US Depart-
ment of Treasury, and for conversion from the Euro, we use Eurozone government
benchmark yields from Reuters.
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3.2 Data analysis

The data described in the previous section vary in terms of observation time and
delivery period resolution. For long-term supply capacity, we use yearly data from
1990 to 2005, whereas for long-term consumption, we use yearly data from 1996
to 2005: this is because temperature-adjusted consumption is only available after
1996. For estimation of the structural parameters δ1 and δ2, we use monthly data
from January 2001 to December 2005. Weekly parameters are estimated on weekly
data from Week 1 in 2003 to Week 52 in 2005. Table 1 presents all of the data used
for the model estimation with their observation time, sample size and resolution.

Table 1 Data observation time and sample size

Variable observation time Sample size resolution

lnFnp
t,T Week 1, 2003 – Week 52, 2005 314 Weekly

lnFoil
t,T Week 1, 2003 – Week 52, 2005 314 Weekly

lnFcoal
t,T Week 1, 2003 – Week 52, 2005 314 Weekly

lnFeua
t,T Week 1, 2003 – Week 52, 2005 314 Weekly

lnFeex
t,T Week 1, 2003 – Week 52, 2005 314 Weekly

rt,T Week 1, 2003 – Week 52, 2005 314 Weekly
τt Week 1, 2003 – Week 52, 2005 314 Weekly
lngt Jan. 2001 – Dec. 2005 60 Monthly
lnct Jan. 2001 – Dec. 2005 60 Monthly
lnwt Jan. 2001 – Dec. 2005 60 Monthly
lnPnp

t Jan. 2001 – Dec. 2005 60 Monthly
lnPoil

t Jan. 2001 – Dec. 2005 60 Monthly
lnPcoal

t Jan. 2001 – Dec. 2005 60 Monthly
lnPeua

t Jan. 2001 – Dec. 2005 60 Monthly
lnPeex

t Jan. 2001 – Dec. 2005 60 Monthly
lngy

t 1990 – 2005 16 Yearly
lncta,y

t 1996 – 2005 10 Yearly
lnPnp,y

t 1996 – 2005 10 Yearly

3.2.1 Testing for stationarity

A regression between non-stationary time series may result in a spurious regression,
and we cannot rely upon the regression parameters and their confidence intervals.
We assume that the structural data, such as the annual consumption and supply ca-
pacity, are stationary. Although the small data samples may not reveal stationarity, in
theory, these variables have more or less constant growth, and shocks in these vari-
ables will eventually die out with respect to long-term growth. Weekly variables, on
the other hand, include the forward prices of energy commodities, which in theory
are not stationary, so we perform a unit root test only on weekly variables. A stan-
dard way to test for stationarity is to run the Augmented Dickey–Fuller (ADF) test;



Modelling the structure of long-term electricity forward prices at Nord Pool 15

however, as the weekly data series comprises two contracts, there is a significant
shift in the mean where the contracts are rolled over. Here we employ an ADF test
that allows for a known structural break [17] at observation Tb = 157:

∆yt = α0 +α1DUt +d(DTb)t +β t +ρyt−1 +
p

∑
j=1

c j∆yt− j + et (15)

where yt is the series under test, DUt is a shift dummy variable DUt = 1 if t > Tb, and
0 otherwise and DTb is an impulse dummy DTb = 1 for T = Tb +1 and 0 otherwise.
The optimal number of lags p in (15) minimizes Akaike’s information criterion.
Table 2 gives the results of the Perron-type ADF test for stationarity with intercept
(β = 0) and trend stationarity. The critical value at the 5% level of significance for
the constant (β = 0) is -2.871, and -3.424 for the constant plus trend. The results
show that Fnp

t,T , Foil
t,T , Fcoal

t,T , Feua
t,T and Feex

t,T are probably non-stationary, whereas rt,T
and τt could be considered as stationary with intercept.

Table 2 Unit root test results

Variable t-value (constant) t-value (constant + trend)

lnFnp
t,T -1.463 ** -3.103 **

lnFoil
t,T 0.729 ** -2.594 **

lnFcoal
t,T -2.666 ** -0.575 **

lnFeua
t,T 0.183 ** -1.750 **

lnFeex
t,T -2.923 * -3.211 **

rt,T -4.275 -1.922 **
τt -3.502 -3.720 *

* reject the null hypothesis at the 5% level of significance
**reject the null hypothesis at the 1% level of significance

When forecasting the future evolution of a time series with respect to the obser-
vation time t, a regression between non-stationary data would require the use of first
differences, providing that the series contain only one unit root I(1) and after testing
for cointegration when the series are driven by a common source of non-stationarity.
Because stationarity is measured with respect to observation time, we believe that
when it comes to forecasting with respect to delivery period T , non-stationarity is
not an issue. Here relationships between contemporaneous values of variables with
the same delivery period T are estimated, which are then used to forecast the de-
pendent variable E[Ft,T+N ]. As these relationships are assumed to be independent
of t or T , non-stationary data will not produce inconsistent forecasts. One may, for
example, randomly rearrange the data sample with respect to t, which would signif-
icantly change the results of the stationarity test as well as E[Ft+n,T ]. However, the
coefficient estimates, their confidence intervals, and E[Ft,T+N ] are unchanged. For
this reason, we continue to employ a regression in levels, even in the presence of
non-stationary data.
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3.3 Parameter estimation

As shown in Table 1, the estimation data are available at three different resolutions.
For this reason, we estimate the model parameters sequentially. In the first step, re-
gressions (7) and (11) are estimated to obtain the expected demand parameters α0,
α1 and α2 and the expected supply capacity parameters γ0 and γ1. The expected de-
mand and supply capacity parameters are estimated using yearly data. In the second
step, the structural parameters δ1 and δ2 are estimated. These describe how the ex-
pected spot prices change because of changes in the expected supply capacity and
expected consumption. We estimate the structural parameters with monthly data. In
the third step, the weekly parameters δ0, δ3, δ4, δ5, δ6, δ7 and δ8 are estimated using
weekly data.

In the first regression, we estimate the demand parameters α0, α1 and α2
using (7). Since temperature is short-term non-persistent error, we use data on
temperature-adjusted consumption to exclude variations in consumption due to tem-
perature. This way, the demand model (7) yields the demand that would occur un-
der expected normal temperature conditions. For the electricity price Pnp

t , we use
yearly averages of the Nord Pool spot price. The demand parameters in Table 3
show growth in electricity demand equivalent to approx. 1.3% growth in annual
consumption. A negative and significant long-term demand elasticity indicates that
an important proportion of electricity consumers in the Nordic electricity market
adjust their consumption according to the electricity spot price.

Table 3 Demand parameters

Variable Parameter value Standard error p-value

α0 6.079 0.054 0.000
α1 0.013 0.001 0.000
α2 -0.052 0.012 0.003

N = 10, R2(adj.) = 0.895, SE = 0.012

reg. eq. : lncta,y
t = α0 +α1t +η lnPnp,y

t +ud
t

In the second step, we estimate the supply capacity parameters γ0 and γ1 in (11).
As shown in Fig. 2, we observe constant growth in supply capacity from the Nordic
electricity market from 1990 to 2005 except in 1999 when Sweden and Denmark
decommissioned some thermal and nuclear power plants. To take this shift into ac-
count, we add a shift dummy DUcap

1999 with 1 at t ≥ 1999 and 0 otherwise. The supply
capacity parameters in Table 4 show that the logged supply capacity annual growth
is approximately 1.2% per year.

In the third step, we estimate δ1 and δ2 with monthly parameters. The estima-
tion of these parameters is the most difficult part of our model estimation, as we
only possess annual data on supply capacity that we can only consistently use after
2000 with the formation of the final geographical scope of the Nordic market. We
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Fig. 2 Supply capacity in Nordic electricity market

Table 4 Supply capacity parameters

Variable Parameter value Standard error p-value

γ0 4.415 0.005 0.000
γ1 0.012 0.001 0.000
γ2 -0.053 0.008 0.000

N = 16, R2(adj.) = 0.946, SE = 0.008

reg. eq. : lngy
t = γ0 + γ1t + γ2DUcap

1999 +ug
t

assume that expected supply capacity gt,T and expected consumption ct,T influence
the expected spot price Pt,T in the same way as actual supply capacity gt and actual
consumption ct influence the average spot price Pt in the past. In this manner, we
can use historical average spot prices to estimate δ1 and δ2. First we estimate rough
approximations of parameters β0, β3, β4, β5, β6 in (12). These are estimated with
an auxiliary regression (14) where δ1 = δ2 = 0 is assumed, hence β1 = β2 = 0 and
δ0,3..6 = β0,3...6. The estimated approximations β̂0, β̂3, β̂4, β̂5, β̂6 are then used in
the following regression:

lnPnp∗
t = β1 lngt +β2 lnqt +ψ lnwt (16)

where lnPnp∗
t is the electricity spot price adjusted for the influence of the spot prices

of oil, coal, emission allowances, and imports:

lnPnp∗
t = lnPnp

t − β̂0− β̂3 lnPoil
t − β̂4 lnPcoal

t − β̂5 lnPea
t − β̂6 lnPeex

t (17)

and the two structural parameters are estimated with:
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δ1 =
β̂1

(1− β̂2α̂2)
, δ2 =

β̂2

(1− β̂2α̂2)
. (18)

In (16), the spot price is also adjusted for the influence of water reservoir levels wt .
In the Nordic electricity market, the levels of hydro power plant reservoirs heavily
influence electricity spot prices. We use Nordel data on the average monthly reser-
voir potential in GWh.

Table 5 Structural parameters

Variable Parameter value Standard error p-value

β1 -6.992 2.080 0.001
β2 6.487 1.600 0.000
ψ -1.680 0.146 0.000

N = 60, R2(adj.) = 0.689, SE = 0.152

reg. eq. : lnPnp∗
t = β1 lngt +β2 lnqt +ψ lnwt

Although two regressions are needed to estimate the structural parameters, only
the results of regression (16) are presented in Table 5. In addition, although both
structural parameters appear significant, they are approximations. Namely, we may
question the supply capacity parameter, as it was estimated using few data. Never-
theless, the parameters have their expected sign and therefore can at least illustrate
their influence. This is because expected forward prices decrease when expected
supply capacity increases, and increase when expected consumption increases. The
corresponding values of δ1 and δ2 when applying (18) are -5.3970 and 4.9554, re-
spectively.

In the last step of the parameter estimation, we run regression (14) in which Fnp
t,T

is adjusted for the influence of expected supply capacity and expected consumption:

Fnp∗
t,T = Fnp

t,T − δ̂1(γ̂0 + γ̂1T )− δ̂2(α̂0 + α̂1T ). (19)

Table 6 provides the estimates of the weekly parameters with their corresponding
standard errors and p-values. All parameters have their expected sign as all pos-
itively correlate with the electricity forward price. A negative constant parameter
compensates for the high values of the structural parameters. The estimated param-
eters are all significant, with none of the p-values above the 1% level. The param-
eters in Table 6 also indicate that the EEX price is the most significant parameter.
This is somewhat unexpected as only a small share of electricity in the Nordic elec-
tricity market is from Central Europe. This implies that the EEX price may serve
as a sort of marginal producer in the Nordic electricity market. The EEX price may
also serve as one of the benchmarks for investors in the Nordic electricity mar-
ket. It is also reasonable to assume that other information that we cannot quantify
similarly influences the EEX and Nord Pool prices. Specific information, including
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Table 6 Weekly parameters

Variable Parameter value Standard error p-value

δ0 -4.543 0.117 0.000
δ3 0.088 0.012 0.000
δ4 0.131 0.011 0.000
δ5 0.063 0.009 0.000
δ6 0.343 0.024 0.000
δ7 0.015 0.004 0.000
δ8 0.046 0.005 0.000

N = 314, R2(adj.) = 0.962, SE = 0.022

reg. eq. : lnFnp∗
t,T = δ0 +δ3 lnFoil

t,T +δ4 lnFcoal
t,T +δ5 lnFea

t,T +δ6 lnFeex
t,T +δ7rt,T +δ8τt +ut,T

construction plans for new generation and interconnection capacity or other politi-
cal decisions that will influence prices in the future, is likely to influence prices in
both markets. Because the same or similar variables as we use in the model may
influence the price of EEX, there is the indication of a possible problem with mul-
ticollinearity. We use Variance Inflation Factors (VIF) to detect multicollinearity in
the explanatory variables in question. As a rule of thumb, if any VIF exceeds 10,
the corresponding variable is said to be highly collinear [18], in which case, it is
inadvisable to regress one on another.

Table 7 Variance Inflation Factor

Variable VIF value

lnFoil
t,T 8.1

lnFcoal
t,T 5.1

lnFeua
t,T 7.5

lnFeex
t,T 9.2

rt,T 6.0
τt 1.2

Although none of the VIF values in Table 7 exceeds the critical value, the model
could still suffer from potential multicollinearity. A detailed analysis of the regres-
sion results, however, indicates no significant sign of multicollinearity. According
to Brooks (2003), typical problems with multicollinearity are as follows.

1. The regression is very sensitive to small changes in the specification, so that
dropping or adding one variable in the regression leads to a large change in the
level or significance of the other parameters.

2. The estimated parameters have high standard errors and wide confidence inter-
vals.
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Detailed analysis of the model specification and standard errors above shows no
such problems. Finally, if the model parameters have appropriate sign and signifi-
cance, and the selected variables have good theoretical background, Brooks suggests
that the presence of multicollinearity can be ignored. Although Feex

t,T indicates some
degree of collinearity with Fnp

t,T , we assume it also includes other valuable infor-
mation that otherwise cannot be modelled, so we choose not to remove it from the
regression.

3.4 Model testing

The main obstacle to long-term modelling and forecasting is insufficient market data
to estimate the parameters and test model performance. We use the out-of-sample
test to test the performance of the model on the available long-term contracts. We
use an out-of-sample test to see how the model behaves using data that are not
included in the estimation of the parameters. However, choosing the 2005 data for
the out-of-sample tests would not provide a true picture of the model because the
CO2 allowance price is assumed to be constant during 2003 and most of 2004, and
changes only in 2005. In this case, the model would not produce the true influence of
CO2 allowance prices that were a particularly important driver of the price increase
in 2005. Given that the model does not include any autoregressive terms and is not
intended to forecast prices with respect to t, it is in principle possible to choose any
in-sample or out-of-sample period. Here we estimate the model parameters with in-
sample data from 2004 to 2005 and test the model on the out-of-sample data from
2003. Only ENOYR3 is used to present the results of this test. As shown in Fig.
3, the model produces similar levels of prices for out-of-sample data. The standard
error of the estimate on the in-sample data is 0.0219, and the standard error of the
estimate on the out-of-sample data is 0.0258.

The problem of testing the performance of the model when predicting prices
4 to 10 years ahead offers no adequate solution, as there are no prices for us to
benchmark the forecast. To estimate this set of prices, we use the variables with the
same delivery period as the price in question. This means that for estimation of the
ENOYR5 contract, we use the forward prices of oil, imports, emission allowances
and the EEX price with delivery 5 years ahead. Interest rates are available up to
10 years ahead, and the prices of oil, emission allowances and imports are avail-
able up to 6 years ahead, whereas the coal price index we use in estimation is only
relevant for spot prices. To estimate prices up to 10 years ahead, we forecast the
missing variables needed for estimation. Here, for variables for which we have the
information available up to 6 years ahead, we extrapolate the difference between the
last two prices for the remainder of the forward curve. For the coal price, we assume
zero growth in the term structure. Fig. 3.4 provides the forward prices for ENOYR3,
ENOYR5 and ENOYR10 and the price for a 10-year contract (ENO10), derived as
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Fig. 3 Out-of sample test on ENOYR3 data

the interest-rate-weighted average price of all yearly contracts. 2 Here we assume
that settlement occurs only once a year.
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Fig. 4 The prices of ENOYR3, ENOYR5, ENOYR10 and ENO10

2 If r10 is a 10-year interest rate and k is the time to the first settlement, the value of ENO10 with
the start of delivery in January next year is given by:

ENO10 =
ENOYR1 1

(1+r10)k +ENOYR2 1
(1+r10)1+k + ...+ENOYR10 1

(1+r10)9+k

1
(1+r10)k + 1

(1+r10)1+k + ...+ 1
(1+r10)9+k

. (20)
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While the price of ENO10 suggests reasonable dynamics compared with the
ENOYR3 contract, the price level of the ENO10 is also important. ENO10 con-
tracts are only traded OTC, so there are no available data on their prices. We only
obtained OTC data on ENO10 prices for the period from Week 48, 2000 to Week 33,
2002, but could not use this in the regression as data on the other variables are miss-
ing during this period. Even though these prices are based on known OTC deals and
rough estimation, analysis shows that the ENO10 price has dynamics similar to the
ENOYR2 and ENOYR3 prices, and is on average 6.9% higher than the ENOYR3
price during that period, whereas our forecast of the ENO10 price is on average
6.6% higher than the ENOYR3 price. While there is no strong reason to believe that
the ENO10 price in 2005 should behave similarly to the ENO10 price in 2000–02,
it is the only available indicator on how the model behaves when predicting the
ENO10 year price. The slopes of the term structures of the explanatory variables
influence the differences between the prices 4–10 years ahead. Among these, the
slope of expected supply capacity and consumption are particularly important. The
expected growth in supply capacity and consumption has not changed significantly
since 2002, and therefore the difference between ENOYR3 and ENO10 should not
have changed significantly since then. Fig. 5 presents the estimated electricity for-
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Fig. 5 Estimated term structure for week 52, 2005

ward price term structure for Week 52, 2005. Here the ENOYR1 and ENOYR2
prices are higher than the ENOYR3 price, indicating the higher prices in the spot
and short-term forward market typical of low hydrological balances or temperatures.
Extrapolation of the first three yearly prices up to 10 years ahead would in this case
produce a term structure with a negative slope. As the slope of the far end of the term
structure should not depend on short-term variations in weather, we should there-
fore extrapolate prices with care. Our model, although based on rough estimates of
the structural parameters, produces a positive slope for the remainder of the term
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structure. Here the influence of the structural parameters plays an important role, as
these parameters are independent of any short-term influences.

4 Conclusions

We present a regression model for long-term electricity forward prices. We intend
the model for forecasting the prices of long-term forward contracts that we can-
not observe on the exchange. Long-term forward prices mostly depend on variables
that influence the supply costs of electricity. However, as the time horizon in long-
term modelling is very long, we also consider expected changes in the structure of
the supply and demand for electricity. We present ideas on how to combine high-
resolution data on fuel prices from financial markets and low-resolution data on the
expected structure of supply and demand, including expected electricity consump-
tion and supply capacity. Combining both types of information yields a relationship
for the expected long-term electricity spot price, which when adjusted for a risk
premium provides the model for the long-term electricity forward price. Combin-
ing data with different observation time resolution and different delivery periods
requires a work-around in parameter estimation. We estimate two submodels for ex-
pected supply capacity and consumption, whereas their influence on the expected
spot price, which is one of the critical parts of the model, is estimated only roughly
based on the historical influence of actual supply capacity and actual demand on
actual spot price. The changes in supply costs are modelled with the crude oil price,
coal prices, the emission allowance price and the price of imported electricity. Al-
though stationarity tests indicate that most variables are likely non-stationary, we
argue that this is not relevant in a model used to forecast prices with respect to the
delivery period and not with respect to the observation time. We also detect the
presence of multicollinearity between variables. However, we observe none of the
problems typically associated with multicollinearity.

The estimated model provides the rough influence of expected supply capacity,
expected consumption and long-term supply cost variables on long-term electricity
forward prices in the Nord Pool. The performance of the model is tested with out-of-
sample data on ENOYR3 contracts from Nord Pool, and the results indicate stable
parameter estimates. To test the performance of the model on contracts beyond 3
years is not possible as these contracts only trade OTC, and therefore their prices
are not publicly available. Although the models suffer from a lack of data on struc-
tural variables, particularly expected supply capacity and expected consumption, the
forecasts of the prices beyond the traded horizon provide robust and expected results
independent of short-term variations (such as precipitation or temperature), unlike
the simple extrapolation of current prices. The model also offers many possibilities
for improvement, both in the choice of variables and the data underlying them, as
well as for parameter estimation. We hope that the availability of these data in terms
of accuracy, resolution and longer horizons will improve in the future.
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