
203

Review scientific paper

 MIDEM Society

Fixed-point Multiplication and Division in the
Logarithmic Number System: a Way to Low-
Power Design
Patricio Bulić

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

Abstract: In this article we present the use of the logarithmic number system (LNS) to implement fixed-point multiplication and
division. LNS has recently attracted the interest of researchers for its low-power properties. The reduction of power dissipation in LNS
arises from the simplification of basic arithmetic operations.

In this paper we give a survey of the recently proposed digital circuits for logarithm and anti-logarithm conversion and multiplication
and division in LNS. We also compare these methods in terms of accuracy, area, time and power. Finally, we give an overview of the real
world applications that benefit form the use of LNS arithmetic.

Keywords: computer arithmetic, logarithm number system, power dissipation

Zmanjševanje porabe v vezjih z uporabo
celoštevilskega množenja in deljenja v
logaritemskem številskem sistemu
Izvleček: V tem preglednem članku predstavimo uporabo logaritemskega številskega sistema za implementacijo množenja in deljenja
v fiksni vejici. Logaritemski številski sistem zadnje čase vabi pozornost raziskovalcev zaradi lastnosti nizke disipacije moči. Glavni razlog
za manjšo porabo energije leži v lastnosti logaritemskega številskega sistema, da poenostavlja osnovne aritmetične operacije. V članku
podamo pregled predlaganih nenatančnih digitalnih vezij za množenje in deljenje v logaritemskem sistemu ter jih primerjamo glede
na natančnost ter porabo prostora, časa in moči. Na koncu podamo pregled vsakdanjih aplikacij v katerih lahko učinkovito uporabimo
nenatančno logaritemsko aritmetiko in tako zmanjšamo porabo energije, ne da bi bistveno vplivali na natančnost in zanesljivost
algoritmov.

Ključne besede: računalniška aritmetika, logaritemski številski sistem, poraba moči

* Corresponding Author’s e-mail: patricio.bulic@fri.uni-lj.si

Journal of Microelectronics,
Electronic Components and Materials
Vol. 43, No. 4 (2013), 203 – 211

1 Introduction

Real time digital signal processing applications often
use data from acquisition devices, which are corrupted
with noise. If in such applications area, power or pro-
cessing speed are more important than accuracy, then
faster, less-power and less-hardware consuming ap-
proximate solutions can be used. Multiplication and
division are among the most used arithmetic opera-
tions in digital signal processing, neural networks and
adaptive systems. A great number of repeated multipli-
cations and divisions impose a significant power and
time consumption. An approximation of these opera-

tions should not lead to considerable degradation of
applications’ performance; therefore the introduced
error should be as low as permitted by an application.

The choice of the number system affects the power
dissipation, since the number system has an effect on
several levels of the design abstraction. In particular,
the appropriate selection of the number system can
reduce power dissipation, because it can reduce the
number of the operations, the strength of the opera-
tors and the activity of the data.

204

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

This review paper is organized as follows: in the follow-
ing subsections we give an overview of the switching
power consumption in digital circuits and discuss how
the choice of the number system can affect power dissi-
pation. In Section 2 various methods for multiplication
in LNS are presented. Section 3 gives an overview of
the algorithms used in binary logarithmic and antilog-
arithmic approximations. A general logarithmic multi-
ply/divide unit is also discussed. In section 4 we give
an overview of the real world applications that benefit
from the usage of the arithmetic in the logarithm num-
ber system. We conclude the paper in Section 5.

1.1 Power dissipation

Power dissipation is a prime design issue, mainly due
to the growing need for portable electronic devices.
Low-power design requires optimization at all levels
of abstraction. Dynamic power consumption is due to
charging and discharging of capacitance. The energy
consumed for N clock cycles is

2)(DDN VCNnE ⋅⋅= 2)(DDN VCNnE ⋅⋅= 				 (1)

where n(N) is the number of 0 to 1 transitions in N clock
cycles, C is switching capacitance and VDD is supply volt-
age. The switching power is given as energy per transi-
tion and can be expressed as:

2)(
limlim DDN

N

Navg VCf
N
Nn

f
N
E

P ⋅⋅⋅=⋅=
→∞→∞

	 (2)

Where f is the clock frequency. The term

N
Nn

N

)(
lim

∞→
 re‑

presents the switching activity on a signal line, and is
denoted as 10→α :

10

)(
lim →→∞

= α
N
Nn

N
 				 (3)

The switching power dissipation in a circuit is then
given as:

10

2
→⋅⋅⋅= αVCfPavg 				 (4)

Three main principles of power reductions are:
-	 reduction of voltage,
-	 reduction of the switching activity, i.e. minimize

spurious glitches, and
-	 reduction of the area complexity, i.e. reduce the

switching capacitance.

Low-power design usually requires operation at low-
est possible voltage and clock speed. Glitches are
temporary changes in the value of the output and as

such they represent unnecessary transitions. They are
caused due to the skew in the input signals to a gate.
Gate sizing and path balancing techniques like pipelin-
ing can reduce glitches.

In this paper we will focus on two techniques that af-
fect all factors in power Eq. (4):
-	 the choice of the number system,
-	 optimization of arithmetic circuits.

1.2 Logarithmic number system

Stouraitis and Paliouras [1,2] studied the impact of the
logarithmic number system on the power dissipation.
They showed that, if the data distribution is uniform,
the probability of the i-th bit transition from 0 to 1
(probability of the bit assertion) is constant in the fixed-
point number representation, and is 0.25 for each bit in
a word. On the other side they showed that the proba-
bilities of bit assertion in LNS operands are not constant
– they depend on the significance of a bit. The prob-
ability of bit assertion for the more significant bits is
substantially lower than the probability of bit assertion
for the less significant bits. This is due to the inherent
data compression probability of the logarithm and this
behavior leads to a reduction of the average switching
activity in the entire word. The study [1] showed that
the activity savings percentage can be more than 15%.
Paliouras and Stouraitis report that approximately a
two-times reduction in power dissipation is possible
for operations with word size of 8 to 14 bits.

The logarithmic number system can simplify certain
arithmetic operation and can reduce the strength of the
operators. For example, the multiplication is reduced to
the addition and the division is reduced to subtraction.
In order tu use this benefit of the logarithm number
system, a conversion circuitry is required to perform
the conversion from the fixed-point number represen-
tation to LNS and vice-versa. The basic arithmetic oper-
ations and their counterparts are presented in Table 1.

Table 1: Basic arithmetic operations in the fixed-point
number representation and their LNS counterparts.

Fixed-point operation Logarithmic operation
A = B . C log2A = log2B + log2C

A = B / C log2A = log2B - log2C

A = B2 log2A = (log2B) << 2

Paliouras and Stouraitis in [2] claim that LNS due to sav-
ings in signal activity and the reduction of the strength
of the operators can be a successful candidate for the
implementation of low-power arithmetic circuits.

205

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

2 Multiplication in LNS

Multiplication has always been a hardware-, time- and
power consuming arithmetic operation, especially for
large-value operands. This bottleneck is even more em-
phasized in digital signal processing (DSP) applications
that involve a huge number of multiplications. In many
real-time DSP applications, speed is the prime target
and achieving this may be done at the expense of the
accuracy of the arithmetic operations. Signal process-
ing deals with signals distorted with the noise caused
by non-ideal sensors, quantization processes, amplifi-
ers, etc., as well as algorithms based on certain assump-
tions, so inaccurate results are inevitable. For example,
a frequency leakage causes a false magnitude of the
frequency bins in spectrum estimations. The signal-
compression techniques incorporate quantization
after a cosine or wavelet transform. When transform
coefficients are quantized, instead of calculating high-
precision coefficients and then truncating them, it is
reasonable to spend less resources and produce less
accurate results before the quantization. In many sig-
nal-processing algorithms, which include correlation
computations, the exact value of the correlation does
not matter; only the maximum of the correlation plays
a role. Additional small errors introduced with multipli-
ers, as mentioned in the application described and oth-
ers, do not affect the results significantly and they can
still be acceptable in practice.

Logarithmic multiplication introduces an operand con-
version from integer number system into the logarithm
number system. The multiplication of the two operands
N1 and N2 is performed in three phases, calculating the
operand logarithms, the addition of the operand loga-
rithms and the calculation of the antilogarithm, which
is equal to the multiple of the two original operands.

The main advantage of this method is the substitution
of the multiplication with addition, after the conversion
of the operands into logarithms. LNS multipliers can be
generally divided into two categories, one based on
methods that use lookup tables and interpolations,
and the other based on Mitchell’s algorithm (MA) [3],
although there is a lookup-table approach in some of
the MA-based methods [4]. Generally, MA-based meth-
ods suppressed lookup tables due to hardware-area
savings. However, this simple idea has a significant
weakness: logarithm and anti-logarithm cannot be cal-
culated exactly, so there is a need to approximate the
logarithm and the antilogarithm.

The binary representation of the number N can be writ-
ten as:

)1(2212
1

0
xbN k

k

i

ki
i

k +⋅=







⋅+⋅= ∑
−

=

− 		 (5)

where k is a characteristic number, i.e. the place of the
leading-one bit, bi is a bit value at the i-th position and
x is the fraction. The logarithm with the basis 2 of the
number N is:

)1(log))1(2(loglog 222 xkxN k ++=+⋅= 	 (6)

The expression log2(1+x) is usually approximated and
the approximation affects the accuracy. Many meth-
ods for the logarithm and anti-logarithm approxima-
tion have been proposed in the past [3,4,5,6,7,8,9].

2.1 Mitchell’s algorithm based multiplier

One of the oldest methods to approximate the multipli-
cation and division in LNS is Mitchell’s based logarithm
computation [3] that approximates the logarithm with
piecewise straight lines:

 xkN +≈2log 					 (7)

The Mitchell’s based approximation (MA) of the loga-
rithm of the product is:

 2121212)(log xxkkNN +++≈⋅ 		 (8)

Mitchell proposed the following approximation of the
product:





≥++⋅
<+++⋅

=≈⋅ ++

+

1),(2
1),1(2

)()(
2121

1
2121

21 21

21

xxxx
xxxx

xfNN kk

kk

MA

(9)

The approximation of the product requires the com-
parison of the sum of mantissas, i.e. the product ap-
proximation depends on the carry bit from the sum of
mantissas. The Mitchell’s method computes the prod-
uct using only shift and add operations. The architec-
ture of the multiplier proposed in [11] is depicted in
Figure 1.

The Mitchell’s based multiplication produces a signifi-
cant error. The relative error increases with the number
of bits with the value of ‘1’ in the mantissas. The maxi-
mum possible relative error for MA multiplication is
around 11%, and the average error is around 3.8%. The
Mitchell’s multiplier consumes only 17% of the power
consumed by a standard fixed-point multiplier.

Numerous attempts have been made to improve the
MA’s accuracy. Hall [10], for example, derived differ-

206

ent equations for error correction in the logarithm and
antilogarithm approximation in four separate regions,
depending on the mantissa value, reducing the aver-
age error to 2%, but increasing the complexity of the
realization. Among the many methods that use look-
up tables for error correction in the MA algorithm,
McLaren’s method [4], which uses a look-up table with
64 correction coefficients calculated in dependence of
the mantissas values, can be selected as one that has
satisfactory accuracy and complexity.

2.2 Operand decomposition in the Mitchell’s algo-
rithm

Mahalingam and Ranganathan [11,12] proposed a
method based on operand decomposition for improv-
ing the accuracy of Mitchell’s logarithmic multiplica-
tion. The operand decomposition is applied to the in-
puts as a preprocessing step to Mitchell’s logarithmic
multiplication in order to reduce the number of ones in
the input operands. In this method the n-bits input op-
erands X and Y are decomposed into n-bits operands:

_

_

YXD
YXC
YXB
YXA

∧=
∧=
∧=
∨=

where ∨ and ∧ denote bitwise OR and AND opera-
tions. The product is then calculated as

)()(DCBAYX ⋅+⋅=⋅ 		 (10)

and the computation requires two Mitchell-based
multipliers. The authors reported that the average rela-

tive error has been decreased to 2.1%, while the area
is doubled in comparison to MA. It has been reported
that operand decomposition based multiplier con-
sumes only 30% of the power consumed by a standard
fixed-point multiplier. The architecture of the operand
decomposition based multiplier proposed in [11] is de-
picted in Figure 2.

Figure 2: The architecture of the operand-decomposi-
tion based multiplier.

2.3 Babic’s multiplier

Babic et al. [13,14] proposed a solution that simplifies
logarithm approximation introduced by Mitchell in Eq.
(9) and introduces an iterative algorithm with various
possibilities for achieving the multiplication error as
small as required and the possibility of achieving the
exact result. By simplifying the logarithm approxima-
tion introduced in Eq. (9), the correction terms could
be calculated almost immediately after the calculation
of the approximate product has been started. In such
a way, the high level of parallelism can be achieved by
the principle of pipelining, thus reducing the complex-
ity of the logic required by Eq. (9) and increasing the
speed of the multiplier with error rectification circuits.
From the binary representation of the numbers in Eq.
(5), we can derive a correct expression for the multipli-
cation:

))2(2()2(2(2211
2121

kkkk NNNN −+⋅−+=⋅ (11)

)2)(2()2(2

)2(222

1121

1221

112

121

kkkk

kkkk

NNN

NNN

−−+−+

−+=⋅ +

 (12)

The last term)2)(2(11
11

kk NN −− requires the multipli-
cation, while all other terms can be calculated using

Figure 1: The architecture of the Mitchell’s multiplier.

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

207

only shift and add operation. Babic et. al proposed the
following approximation of the product:

)2(2)2(222 211221
2121

kkkkkk
approx NNPNN −+−+=≈⋅

(13)

Discarding the term)2)(2(11
11

kk NN −− from Eq. (12)
gives an approximate product Papprox, which can be un-
derestimated for at most 25%. The architecture of the
Babic’s multiplier is depicted in Figure 3.

Figure 3: The architecture of the Babic’s multiplier.

Babic et al. also proposed a simple scheme for er-
ror rectification. Instead of neglecting the term

)2)(2(11
11

kk NN −− in Eq. (12), we can calculate the
product)2)(2(11

11
kk NN −− in the same way as Papprox,

i.e. using Eq. (13). In such a way the error rectification
can start immediately after removing the leading ones
from the both input operands. By repeating the above
procedure we can approximate the product to an ar-
bitrary precision without using the exact multiplier.
Babi´c et al. showed that in the worst case scenario the
relative error decays exponentially with the rate 22 per
pass. The average relative error with one error rectifica-
tion has been decreased to 0.97%.

It has been reported in [13] that Babic’s multiplier con-
sumes only 30% of the power consumed by a standard
fixed-point multiplier. Area used by Babic’s multiplier is
93% of the area used by the operand decomposition
based multiplier.

3 Logarithmic converters and division

To improve the error in logarithm and antilogarithm
conversion in Mitchell’s algorithm many efficient loga-

rithm and antilogarithm converters have been pro-
posed in literature [6] [7] [8] [9]. The logarithm of the
binary number N is:

)1(loglog 22 xkN ++= 		 (14)

In order to calculate log2N we have to approximate the
term log2(1+x)

3.1 Abed-Siferd logarithm and antilogarithm ap-
proximation

Abed and Siferd [6,7,15] proposed a low-power loga-
rithmic converter where they further divided intervals
for piecewise linear curve that is used to approximate
the logarithm and anti-logarithm. They proposed a
2-region approximation of log2(1+x) as follows:

 []

[]







∈+

∈+
≈+

0.1,5.0 ,
4
1

5.0,0.0 ,
4
1

)1(log
3

_

3

2

xxx

xxx
x

MSB

MSB

 (15)

Where

)21(3
33

_ −−−= MSBMSB xx and MSBx3 represents the
tree most significant bits in the mantissa x. The pro-
posed correction equations use only the three most
significant bits of the mantissa and all coefficients are
restricted to powers of 2. The block diagram of the pro-
posed logarithmic converter is depicted in Figure 4.

Figure 4: A block diagram of the Abed-Siferd low-pow-
er logarithmic converter [6].

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

208

Abed and Siferd also proposed a low-power antiloga-
rithmic converter [7]. If the logarithm of the number N
is mkxkN +=++=)1(loglog 22 then the antilogaritm
is

 mkN 22= 				 (16)

To approximate 2m Abed and Siferd proposed the fol-
lowing 2-region approximation:









∈++

∈++++
=≈

−−

[0,0.5),
16
13

16
3

[0,0.5) ,22
16
13

16
3

)(2
7

1110
 _

7

mmm

mmm
xf

MSB

MSB
m

(17)

Where

)21(7
7

_
7

−−−= MSBMSB mm and MSBm7 represents
the seven most significant bits in the number m.

3.2 Multiplication and division using logarithmic
converters

Multiplication and division are reduced to addition and
subtraction after the input operands have been con-
verted to logarithms. The conversion from LNS to the
fixed-point notation is required after the addition or
subtraction in LNS. The general architecture of a mul-
tiplier and/or divider using LNS is depicted in Figure 5.

Figure 5: General architecture of a multiply/divide unit
in LNS.

For logarithm and antilogarithm approximation we can
use any of the methods proposed in [6] [7] [8] [9]. Us-
ing Abed-Siferd approximation, the relative error is re-
duced to 2.5% and the multiplier circuit uses only 40%
of the area used by the array multiplier.

4 The appropriateness of LNS
arithmetic in real-world applications

In this section we give an overview of the real world ap-
plications that benefit form the use of LNS arithmetic.

4.1 3-D graphics systems

In [16] a 32-bit fixed-point logarithmic arithmetic unit
(LAU) is proposed for the possible application to mo-
bile three-dimensional (3-D) graphics system. The pro-
posed logarithmic arithmetic unit performs division,
reciprocal, square-root, reciprocal-square-root and
square operations. The unit is composed of two binary
logarithmic converters, a calculation unit and a binary
antilogarithmic converter. Instead of general 2-region
piecewise-linear interpolation of the logarithm, the au-
thors proposed a new 8-region piecewise-linear inter-
polation approximation algorithm, which is used in the
proposed binary logarithmic converter block. Also, the
piecewise interpolation method is used for the binary
antilogarithmic converter.

The proposed LAU is implemented with 0.18 um CMOS
technology and is verified in the 3-D graphics process-
ing software environment before its chip is implement-
ed. The test model consisted of 1700 polygons with
lighting and texture mapping. The screen resolution
was 512x512 and the texture size was 256x256. All 3-D
graphics operations (vertex matrix transformation, ver-
tex lighting, rendering, and texture mapping are per-
formed by LAU.

The authors [16] claim that no noticeable difference
was found by naked eyes between the two images. The
small error range was within a tolerable range for the
small screen size images of the mobile system. By us-
ing the LAU in fixed-point arithmetic, the performance
is improved by five times compared with the complex
radix-4 method. The power consumption of the LAU is
2.18 mW, while the power consumption of radix-4 unit
is 4.29 mW, which is 1.97 times that of LAU’s.

4.2 Motion vector

The authors in [13] considered the calculation of mo-
tion vectors using Babic’s logarithmic multiplier. In
video compression, a motion vector is used to repre-
sent a macro-block in a picture based on the position
of this macro-block (or a similar one) in another picture,
called the reference picture. For a block from observed
frame (observed block), block-matching techniques try
to find the best matching block in the reference frame.
When the best matching is found, the displacement is

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

209

calculated and used as a motion vector, in applications
like MPEG video compression.

In order to show the usability of the Babic’s multiplier
for motion-vector calculations, the described block-
matching algorithm was applied on a selected region
of the successive CT scan frames.

The results obtained with the Babic’s multiplier with
one error correction term are compared with the re-
sults of the regular multiplication. The mismatching
percentage for the Babic’s multiplier was between 3.17
and 3.9. These results prove that the percentage of
mismatching is very low. Due to the heavy computa-
tional requirements, the block matching is often per-
formed in two stages, a rough estimation of a moving
vector and then an accurate refinement. In video com-
pression, the errors in motion vectors will only slightly
decrease the compression, but will speed up the com-
pression algorithms and minimize power dissipation.

4.3 Multilayer perceptron with a highly parallel
neural unit

Neural network processing comprises a huge number
of multiplications. To gain as much as possible from
the custom design, multiplications must be performed
in parallel. However, multiplication circuits consume a
lot of resources, time and power. Since the resources
on a chip are limited, different strategies are applied
to overcome the limitations. The first idea is to replace
the floating-point arithmetic with fixed-point arithme-
tic. However, to further increase the performance the
exact fixed-point matrix multipliers must be replaced
with some approximate solutions. The hardware neural
network presented in [17,18] is built around an iterative
logarithmic multiplier, which can use many levels of
correction circuits to iteratively approximate a product
to the arbitrary precision. It also enables the pipelined
design of correction circuits, which significantly reduce
the propagation time of a signal through a circuit. The
logarithmic multiplier with only one correction circuit
is enough to reduce the multiplication error, on aver-
age, to less than 1%. In contrast to the majority of the
proposed designs, where a special hardware unit is
used for each neuron, the design presented in [17,18]
contains only one highly parallel neural unit, which
is capable of the fast parallel calculation of a neuron
output. Since the same circuit can be used in forward
and backward passes, it is more suitable for hardware
neural network designs targeting small FPGA chips.
The performance of the proposed hardware neural
network with iterative logarithmic multipliers was
compared to the usual software models and hardware
neural network with exact matrix multipliers.
The neural-network models were tested on the PRO-

BEN1 benchmark dataset, consisting of classification
and approximation problems. Due to the highly adap-
tive nature of neural network models, which compen-
sated the erroneous calculation, the replacement of
the multipliers did not have any notable impact on
the models’ processing and learning accuracy. Further-
more, the consumption of fewer resources per multi-
plier also results in more power efficient circuits. The
power consumption, which was reduced by roughly
20%, makes the hardware neural network models with
logarithmic multipliers favorable candidates for bat-
tery-powered applications.

4.4 Adaptive Control Systems

The authors in [19] implemented the Kalman filter for
object tracking using the logarithmic multipliers and
reciprocal units. Object-tracking systems require a
large number of complex arithmetic operations, which
impose a significant power dissipation. Since adaptive
algorithms can adjust to changes in the environment,
they are also able to compensate for the computational
errors, internally produced by the arithmetic units in
LNS. The Kalman filter is able to iteratively update and
estimate the underlying system state given a series of
inaccurate and uncertain measurements. It can grasp
the dynamics of a given system solely by observing its
location over time. The Kalman filter equations com-
prise a large number of matrix multiplications and a
matrix inverse.

To make these computations effective, the authors in
[19] proposed two special purpose hardware units, a
dot product unit and a multiply-and-divide unit. The
dot product unit exploits the fact that any matrix mul-
tiplication can be decomposed to a series of indepen-
dent dot products. Each dot product unit consists of
four logarithmic multipliers and three adders. Four dot-
product units are integrated the larger multiply-and-
divide (MAD) unit that is capable of computing four
dot products in parallel. The MAD unit also includes
two logarithmic reciprocal units that serve in computa-
tion of the inverse.

The authors in [19] showed that the application of ap-
proximate arithmetic units importantly reduces power
dissipation of the Kalman filter circuitry. The approxi-
mate units dissipate less power than the exact ones, but
they usually need more clock cycles to get the result.
Nevertheless, the implementations with logarithmic
multipliers and reciprocal units are smaller and more
energy efficient than the implementations with exact
arithmetic. In such a way, the energy consumption per
one iteration in the Kalman filter reduces to 70% - 80%
of exact arithmetic. Moreover, the logarithmic arithme-
tic units reduce the critical path for up to 40%.

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

210

5 Conclusion

In this study we discuss the use of logarithmic num-
ber system to reduce the power in digital systems. The
choice of LNS can lead to substantial savings in power
dissipation, since LNS affects the signal activity and the
strength of operators. The replacement of multipliers
and dividers in adaptive systems will not have any no-
table impact on the systems’ processing and learning
accuracy. The same is true for signal processing sys-
tems, as signal processing deals with signals distorted
with the noise caused by non-ideal sensors, quantiza-
tion processes, amplifiers, etc., as well as algorithms
based on certain assumptions, so inaccurate results are
inevitable.

6 Acknowledgements [11]

This study was supported by Slovenian Research Agen-
cy (ARRS) under grant P2-0359 (National research pro-
gram Pervasive computing).

7 References

1. T. Stouraitis and V. Paliouras, “Considering the Al-
ternatives in Low-Power Design,” IEEE Circuits and
Devices Magazine, vol. 17, no. 4, pp. 23-29, July
2001.

2. V. Paliouras and T. Stouraitis, “Signal activity and
power consumption reduction using the logarith-
mic number system,” in The 2001 IEEE International
Symposium on Circuits and Systems, 2001. ISCAS
2001, Sydney, NSW, 2001, pp. 653 - 656.

3. J. Mitchell., “Computer Multiplication and Division
using Binary Logarithms,” IRE Transactions on Elec-
tronic Computers, vol. 11, no. 4, pp. 512-517, Aug.
1962.

4. D.J Mclaren, “Improved Mitchell-based logarith-
mic multiplier for low-power DSP applications,”
in Proceedings of IEEE International [Systems-on-
Chip] SOC Conference, 2003., 2003, pp. 53-56.

5. E.E Swartzlander, “Sign/logarithm Arithmetic for
FFT Implementation,” IEEE Transactions on Com-
puters, vol. 32, no. 6, pp. 526-534, Jun 1983.

6. K.H. Abed and R.E. Siferd, “CMOS VLSI implemen-
tation of a low-power logarithmic converter,” IEEE
Transactions on Computers, vol. 52, no. 11, pp.
1421-1433, Nov. 2003.

7. K.H. Abed and R.E. Siferd, “VLSI implementation
of a low-power antilogarithmic converter,” IEEE
Transactions on Computers, vol. 52, no. 9, pp. 1221
- 1228, Sept. 2003.

8. D. De Caro, N. Petra, and A.G.M. Strollo, “Efficient
Logarithmic Converters for Digital Signal Process-
ing Applications,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 58, no. 10, pp. 667 -
671, Oct. 2011.

9. R. Gutierrez and J. Valls, “Low Cost Hardware Im-
plementation of Logarithm Approximation,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 12, pp. 2326 - 2330, Dec. 2011.

10. Ernest L. Hall, D.D. Lynch, and S.J., Dwyer, “Gen-
eration of Products and Quotients Using Ap-
proximate Binary Logarithms for Digital Filtering
Applications,” IEEE Transactions on Computers, vol.
19, no. 2, pp. 97 - 105, Feb. 1970.

11. V. Mahalingam and N. Ranganathan, “Improving
Accuracy in Mitchell’s Logarithmic Multiplication
Using Operand Decomposition,” IEEE Transactions
on Computers, vol. 55, no. 12, pp. 1523 - 1535, Dec.
2006.

12. V. Mahalingam and N. Ranganathan, “An efficient
and accurate logarithmic multiplier based on op-
erand decomposition,” in 19th International Con-
ference on VLSI Design, 2006. Held jointly with 5th
International Conference on Embedded Systems
and Design, 2006, p. 6.

13. Z. Babić, A. Avramović, and P. Bulić, “An iterative
logarithmic multiplier,” Microprocessors and Mi-
crosystems, vol. 35, no. 1, pp. 23-33, Feb. 2011.

14. P. Bulic, Z. Babic, and A. Avramovic, “A simple pipe-
lined logarithmic multiplier,” in 2010 IEEE Interna-
tional Conference on Computer Design (ICCD), Am-
sterdam, 2010, pp. 235 - 240.

15. K.H. Abed and R.E. Siferd, “VLSI Implementations
of Low-Power Leading-One Detector Circuits,” in
Proceedings of the IEEE SoutheastCon, 2006, Mem-
phis, TN, 2006, pp. 279 - 284.

16. Hyejung Kim, Byeong-Gyu Nam, Ju-Ho Sohn,
Jeong-Ho Woo, and Hoi-Jun Yoo, “A 231-MHz,
2.18-mW 32-bit Logarithmic Arithmetic Unit for
Fixed-Point 3-D Graphics System,” IEEE EEE Jour-
nal of Solid-State Circuits, vol. 41, no. 11, pp. 2373
- 2381, Nov. 2006.

17. Uroš Lotrič and Patricio Bulić, “Applicability of
approximate multipliers in hardware neural net-
works,” Neurocomputing, vol. 96, pp. 57-65, Nov.
2012.

18. U Lotric and P Bulic, “Logarithmic Multiplier in
Hardware Implementation of Neural Networks,”
in Lecture Notes in Computer Science Volume 6593,
2011, Adaptive and Natural Computing Algorithms
- 10th International Conference, ICANNGA 2011,
Proceedings, Part I Conference, ICANNGA 2011,
2011, pp. 158-168.

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

211

19. S. Skube, P. Bulić, and U. Lotrič, “Logarithmic Arith-
metic for Low-Power Adaptive Control Systems,”
IEEE Transactions on Control Systems Technology,
under review, pp. 1-22, 2013.

20. M. Ito, D. Chinnery, and K. Keutzer, “Low power
multiplication algorithm for switching activity
reduction through operand decomposition,” in
Proceedings of the 21st International Conference on
Computer Design, 2003. , 2003, pp. 21 - 26.

21. E.E. Swartzlander and A.G. Alexopoulos, “The
Sign/Logarithm Number System,” IEEE Transac-
tions on Computers, vol. 24, no. 12, pp. 1238 - 1242,
Dec. 1975.

22. F.J. Taylor, R. Gill, J. Joseph, and J. Radke, “A 20 bit
logarithmic number system processor,” IEEE Trans-
actions on Computers, vol. 37, no. 2, pp. 190 - 200,
Aug. 1988.

Arrived: 18. 10. 2013
Accepted: 08. 11. 2013

P. Bulić; Informacije Midem, Vol. 43, No. 4(2013), 203 – 211

