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Abstract: In this article we present the use of the logarithmic number system (LNS) to implement fixed-point multiplication and 
division. LNS has recently attracted the interest of researchers for its low-power properties. The reduction of power dissipation in LNS 
arises from the simplification of basic arithmetic operations. 

In this paper we give a survey of the recently proposed digital circuits for logarithm and anti-logarithm conversion and multiplication 
and division in LNS. We also compare these methods in terms of accuracy, area, time and power. Finally, we give an overview of the real 
world applications that benefit form the use of LNS arithmetic.
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Zmanjševanje porabe v vezjih  z uporabo 
celoštevilskega množenja in deljenja v 
logaritemskem številskem sistemu
Izvleček: V tem preglednem članku predstavimo uporabo logaritemskega številskega sistema za implementacijo množenja in deljenja 
v fiksni vejici. Logaritemski številski sistem zadnje čase vabi pozornost raziskovalcev zaradi lastnosti nizke disipacije moči. Glavni razlog 
za manjšo porabo energije leži v lastnosti logaritemskega številskega sistema, da poenostavlja osnovne aritmetične operacije. V članku 
podamo pregled predlaganih nenatančnih digitalnih vezij za množenje in deljenje v logaritemskem sistemu ter jih primerjamo glede 
na natančnost ter porabo prostora, časa in moči. Na koncu podamo pregled vsakdanjih aplikacij v katerih lahko učinkovito uporabimo 
nenatančno logaritemsko aritmetiko in tako zmanjšamo porabo energije, ne da bi bistveno vplivali na natančnost in zanesljivost 
algoritmov.

Ključne besede: računalniška aritmetika, logaritemski številski sistem, poraba moči
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1 Introduction

Real time digital signal processing applications often 
use data from acquisition devices, which are corrupted 
with noise. If in such applications area, power or pro-
cessing speed are more important than accuracy, then 
faster, less-power and less-hardware consuming ap-
proximate solutions can be used. Multiplication and 
division are among the most used arithmetic opera-
tions in digital signal processing, neural networks and 
adaptive systems. A great number of repeated multipli-
cations and divisions impose a significant power and 
time consumption. An approximation of these opera-

tions should not lead to considerable degradation of 
applications’ performance; therefore the introduced 
error should be as low as permitted by an application.

The choice of the number system affects the power 
dissipation, since the number system has an effect on 
several levels of the design abstraction. In particular, 
the appropriate selection of the number system can 
reduce power dissipation, because it can reduce the 
number of the operations, the strength of the opera-
tors and the activity of the data.
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This review paper is organized as follows: in the follow-
ing subsections we give an overview of the switching 
power consumption in digital circuits and discuss how 
the choice of the number system can affect power dissi-
pation. In Section 2 various methods for multiplication 
in LNS are presented.  Section 3 gives an overview of 
the algorithms used in binary logarithmic and antilog-
arithmic approximations. A general logarithmic multi-
ply/divide unit is also discussed. In section 4 we give 
an overview of the real world applications that benefit 
from the usage of the arithmetic in the logarithm num-
ber system. We conclude the paper in Section 5.

1.1 Power dissipation

Power dissipation is a prime design issue, mainly due 
to the growing need for portable electronic devices. 
Low-power design requires optimization at all levels 
of abstraction. Dynamic power consumption is due to 
charging and discharging of capacitance. The energy 
consumed for N clock cycles is

2)( DDN VCNnE ⋅⋅= 2)( DDN VCNnE ⋅⋅= 				    (1)

where n(N) is  the number of 0 to 1 transitions in N clock 
cycles, C is switching capacitance and VDD is supply volt-
age. The switching power is given as energy per transi-
tion and can be expressed as:
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The switching power dissipation in a circuit is then 
given as:
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Three main principles of power reductions are:
-	 reduction of voltage,
-	 reduction of the switching activity, i.e. minimize 

spurious glitches, and
-	 reduction of the area complexity, i.e. reduce the 

switching capacitance.

Low-power design usually requires operation at low-
est possible voltage and clock speed. Glitches are 
temporary changes in the value of the output and as 

such they represent unnecessary transitions. They are 
caused due to the skew in the input signals to a gate. 
Gate sizing and path balancing techniques like pipelin-
ing can reduce glitches. 

In this paper we will focus on two techniques that af-
fect all factors in power Eq. (4): 
-	 the choice of the number system,
-	 optimization of arithmetic circuits.
 
1.2 Logarithmic number system

Stouraitis and Paliouras [1,2] studied the impact of the 
logarithmic number system on the power dissipation. 
They showed that, if the data distribution is uniform, 
the probability of the i-th bit transition from 0 to 1 
(probability of the bit assertion) is constant in the fixed-
point number representation, and is 0.25 for each bit in 
a word. On the other side they showed that the proba-
bilities of bit assertion in LNS operands are not constant 
– they depend on the significance of a bit. The prob-
ability of bit assertion for the more significant bits is 
substantially lower than the probability of bit assertion 
for the less significant bits. This is due to the inherent 
data compression probability of the logarithm and this 
behavior leads to a reduction of the average switching 
activity in the entire word. The study [1] showed that 
the activity savings percentage can be more than 15%. 
Paliouras and Stouraitis report that approximately a 
two-times reduction in power dissipation is possible 
for operations with word size of 8 to 14 bits. 

The logarithmic number system can simplify certain 
arithmetic operation and can reduce the strength of the 
operators. For example, the multiplication is reduced to 
the addition and the division is reduced to subtraction. 
In order tu use this benefit of the logarithm number 
system, a conversion circuitry is required to perform 
the conversion from the fixed-point number represen-
tation to LNS and vice-versa. The basic arithmetic oper-
ations and their counterparts are presented in Table 1.

Table 1: Basic arithmetic operations in the fixed-point 
number representation and their LNS counterparts.

Fixed-point operation Logarithmic operation
A = B . C log2A = log2B + log2C

A = B / C log2A = log2B - log2C

A = B2 log2A = (log2B) << 2

Paliouras and Stouraitis in [2] claim that LNS due to sav-
ings in signal activity and the reduction of the strength 
of the operators can be a successful candidate for the 
implementation of low-power arithmetic circuits.  
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2 Multiplication in LNS

Multiplication has always been a hardware-, time- and 
power consuming arithmetic operation, especially for 
large-value operands. This bottleneck is even more em-
phasized in digital signal processing (DSP) applications 
that involve a huge number of multiplications. In many 
real-time DSP applications, speed is the prime target 
and achieving this may be done at the expense of the 
accuracy of the arithmetic operations. Signal process-
ing deals with signals distorted with the noise caused 
by non-ideal sensors, quantization processes, amplifi-
ers, etc., as well as algorithms based on certain assump-
tions, so inaccurate results are inevitable. For example, 
a frequency leakage causes a false magnitude of the 
frequency bins in spectrum estimations. The signal-
compression techniques incorporate quantization 
after a cosine or wavelet transform. When transform 
coefficients are quantized, instead of calculating high-
precision coefficients and then truncating them, it is 
reasonable to spend less resources and produce less 
accurate results before the quantization. In many sig-
nal-processing algorithms, which include correlation 
computations, the exact value of the correlation does 
not matter; only the maximum of the correlation plays 
a role. Additional small errors introduced with multipli-
ers, as mentioned in the application described and oth-
ers, do not affect the results significantly and they can 
still be acceptable in practice.

Logarithmic multiplication introduces an operand con-
version from integer number system into the logarithm 
number system. The multiplication of the two operands 
N1 and N2 is performed in three phases, calculating the 
operand logarithms, the addition of the operand loga-
rithms and the calculation of the antilogarithm, which 
is equal to the multiple of the two original operands.

The main advantage of this method is the substitution 
of the multiplication with addition, after the conversion 
of the operands into logarithms. LNS multipliers can be 
generally divided into two categories, one based on 
methods that use lookup tables and interpolations, 
and the other based on Mitchell’s algorithm (MA) [3], 
although there is a lookup-table approach in some of 
the MA-based methods [4]. Generally, MA-based meth-
ods suppressed lookup tables due to hardware-area 
savings. However, this simple idea has a significant 
weakness:  logarithm and anti-logarithm cannot be cal-
culated exactly, so there is a need to approximate the 
logarithm and the antilogarithm. 

The binary representation of the number N can be writ-
ten as:
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where k is a characteristic number, i.e. the place of the 
leading-one bit, bi is a bit value at the i-th position and 
x is the fraction. The logarithm with the basis 2 of the 
number N is:

 )1(log))1(2(loglog 222 xkxN k ++=+⋅= 	 (6)

The expression log2(1+x) is usually approximated and 
the approximation affects the accuracy.  Many meth-
ods for the logarithm and anti-logarithm approxima-
tion have been proposed in the past [3,4,5,6,7,8,9]. 

2.1 Mitchell’s algorithm based multiplier

One of the oldest methods to approximate the multipli-
cation and division in LNS is Mitchell’s based logarithm 
computation [3] that approximates the logarithm with 
piecewise straight lines:

 xkN +≈2log 					    (7)

The Mitchell’s based approximation (MA) of the loga-
rithm of the product is:

 2121212 )(log xxkkNN +++≈⋅ 		  (8)

Mitchell proposed the following approximation of the 
product:
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The approximation of the product requires the com-
parison of the sum of mantissas, i.e. the product ap-
proximation depends on the carry bit from the sum of 
mantissas. The Mitchell’s method computes the prod-
uct using only shift and add operations. The architec-
ture of the multiplier proposed in [11] is depicted in 
Figure 1.

The Mitchell’s based multiplication produces a signifi-
cant error. The relative error increases with the number 
of bits with the value of ‘1’ in the mantissas. The maxi-
mum possible relative error for MA multiplication is 
around 11%, and the average error is around 3.8%. The 
Mitchell’s multiplier consumes only 17% of the power 
consumed by a standard fixed-point multiplier.  

Numerous attempts have been made to improve the 
MA’s accuracy. Hall [10], for example, derived differ-
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ent equations for error correction in the logarithm and 
antilogarithm approximation in four separate regions, 
depending on the mantissa value, reducing the aver-
age error to 2%, but increasing the complexity of the 
realization. Among the many methods that use look-
up tables for error correction in the MA algorithm, 
McLaren’s method [4], which uses a look-up table with 
64 correction coefficients calculated in dependence of 
the mantissas values, can be selected as one that has 
satisfactory accuracy and complexity.

2.2 Operand decomposition in the Mitchell’s algo-
rithm

Mahalingam and Ranganathan [11,12] proposed a 
method based on operand decomposition for improv-
ing the accuracy of Mitchell’s logarithmic multiplica-
tion. The operand decomposition is applied to the in-
puts as a preprocessing step to Mitchell’s logarithmic 
multiplication in order to reduce the number of ones in 
the input operands. In this method the n-bits input op-
erands X and Y are decomposed into n-bits operands:
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where ∨  and ∧  denote bitwise OR and AND opera-
tions. The product is then calculated as 

 )()( DCBAYX ⋅+⋅=⋅  		                 (10)

and the computation requires two Mitchell-based 
multipliers. The authors reported that the average rela-

tive error has been decreased to 2.1%, while the area 
is doubled in comparison to MA. It has been reported 
that operand decomposition based multiplier con-
sumes only 30% of the power consumed by a standard 
fixed-point multiplier.   The architecture of the operand 
decomposition based multiplier proposed in [11] is de-
picted in Figure 2.

Figure 2: The architecture of the operand-decomposi-
tion based multiplier.

2.3 Babic’s multiplier

Babic et al. [13,14] proposed a solution that simplifies 
logarithm approximation introduced by Mitchell in Eq. 
(9) and introduces an iterative algorithm with various 
possibilities for achieving the multiplication error as 
small as required and the possibility of achieving the 
exact result. By simplifying the logarithm approxima-
tion introduced in Eq. (9), the correction terms could 
be calculated almost immediately after the calculation 
of the approximate product has been started. In such 
a way, the high level of parallelism can be achieved by 
the principle of pipelining, thus reducing the complex-
ity of the logic required by Eq. (9) and increasing the 
speed of the multiplier with error rectification circuits.
From the binary representation of the numbers in Eq. 
(5), we can derive a correct expression for the multipli-
cation:
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The last term )2)(2( 11
11

kk NN −−  requires the multipli-
cation, while all other terms can be calculated using 

Figure 1: The architecture of the Mitchell’s multiplier.
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only shift and add operation. Babic et. al proposed the 
following approximation of the product:

)2(2)2(222 211221
2121

kkkkkk
approx NNPNN −+−+=≈⋅

(13)

Discarding the term )2)(2( 11
11

kk NN −−  from Eq. (12) 
gives an approximate product Papprox, which can be un-
derestimated for at most 25%. The architecture of the 
Babic’s multiplier is depicted in Figure 3.

Figure 3: The architecture of the Babic’s multiplier.

Babic et al. also proposed a simple scheme for er-
ror rectification. Instead of neglecting the term 

)2)(2( 11
11

kk NN −−  in Eq. (12), we can calculate the 
product )2)(2( 11

11
kk NN −−  in the same way as Papprox, 

i.e. using Eq. (13). In such a way the error rectification 
can start immediately after removing the leading ones 
from the both input operands. By repeating the above 
procedure we can approximate the product to an ar-
bitrary precision without using the exact multiplier. 
Babi´c et al. showed that in the worst case scenario the 
relative error decays exponentially with the rate 22 per 
pass. The average relative error with one error rectifica-
tion has been decreased to 0.97%.  

It has been reported in [13] that Babic’s  multiplier con-
sumes only 30% of the power consumed by a standard 
fixed-point multiplier. Area used by Babic’s multiplier is 
93% of the area used by the operand decomposition 
based multiplier.

3 Logarithmic converters and division

To improve the error in logarithm and antilogarithm 
conversion in Mitchell’s algorithm many efficient loga-

rithm and antilogarithm converters have been pro-
posed in literature [6] [7] [8] [9].  The logarithm of the 
binary number N is:

 )1(loglog 22 xkN ++= 		                 (14)

In order to calculate log2N we have to approximate the 
term log2(1+x) 

3.1 Abed-Siferd logarithm and antilogarithm ap-
proximation

Abed and Siferd [6,7,15] proposed a low-power loga-
rithmic converter where they further divided intervals 
for piecewise linear curve that is used to approximate 
the logarithm and anti-logarithm.  They proposed a 
2-region approximation of log2(1+x) as follows:
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Where 
 

)21( 3
33

_ −−−= MSBMSB xx  and MSBx3  represents the 
tree most significant bits in the mantissa x. The pro-
posed correction equations use only the three most 
significant bits of the mantissa and all coefficients are 
restricted to powers of 2. The block diagram of the pro-
posed logarithmic converter is depicted in Figure 4.  

Figure 4: A block diagram of the Abed-Siferd low-pow-
er logarithmic converter [6].
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Abed and Siferd also proposed a low-power antiloga-
rithmic converter [7]. If the logarithm of the number N 
is  mkxkN +=++= )1(loglog 22  then the antilogaritm 
is 

 mkN 22= 				                   (16)

To approximate 2m Abed and Siferd proposed the fol-
lowing 2-region approximation:
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Where 
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−−−= MSBMSB mm  and MSBm7  represents 
the seven most significant bits in the number m.

3.2 Multiplication and division using logarithmic 
converters

Multiplication and division are reduced to addition and 
subtraction after the input operands have been con-
verted to logarithms. The conversion from LNS to the 
fixed-point notation is required after the addition or 
subtraction in LNS. The general architecture of a mul-
tiplier and/or divider using LNS is depicted in Figure 5.

Figure 5: General architecture of a multiply/divide unit 
in LNS.

For logarithm and antilogarithm approximation we can 
use any of the methods proposed in [6] [7] [8] [9]. Us-
ing Abed-Siferd approximation, the relative error is re-
duced to 2.5% and the multiplier circuit uses only 40% 
of the area used by the array multiplier.

4 The appropriateness of LNS 
arithmetic in real-world applications

In this section we give an overview of the real world ap-
plications that benefit form the use of LNS arithmetic.

4.1 3-D graphics systems

In [16] a 32-bit fixed-point logarithmic arithmetic unit 
(LAU) is proposed for the possible application to mo-
bile three-dimensional (3-D) graphics system. The pro-
posed logarithmic arithmetic unit performs division, 
reciprocal, square-root, reciprocal-square-root and 
square operations. The unit is composed of two binary 
logarithmic converters, a calculation unit and a binary 
antilogarithmic converter.  Instead of general 2-region 
piecewise-linear interpolation of the logarithm, the au-
thors proposed a new 8-region piecewise-linear inter-
polation approximation algorithm, which is used in the 
proposed binary logarithmic converter block. Also, the 
piecewise interpolation method is used for the binary 
antilogarithmic converter.

The proposed LAU is implemented with 0.18 um CMOS 
technology and is verified in the 3-D graphics process-
ing software environment before its chip is implement-
ed. The test model consisted of 1700 polygons with 
lighting and texture mapping. The screen resolution 
was 512x512 and the texture size was 256x256. All 3-D 
graphics operations (vertex matrix transformation, ver-
tex lighting, rendering, and texture mapping are per-
formed by LAU. 

The authors [16] claim that no noticeable difference 
was found by naked eyes between the two images. The 
small error range was within a tolerable range for the 
small screen size images of the mobile system. By us-
ing the LAU in fixed-point arithmetic, the performance 
is improved by five times compared with the complex 
radix-4 method. The power consumption of the LAU is 
2.18 mW, while the power consumption of radix-4  unit 
is 4.29 mW, which is 1.97 times that of LAU’s.

4.2 Motion vector

The authors in [13] considered the calculation of mo-
tion vectors using Babic’s logarithmic multiplier. In 
video compression, a motion vector is used to repre-
sent a macro-block in a picture based on the position 
of this macro-block (or a similar one) in another picture, 
called the reference picture. For a block from observed 
frame (observed block), block-matching techniques try 
to find the best matching block in the reference frame. 
When the best matching is found, the displacement is 
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calculated and used as a motion vector, in applications 
like MPEG video compression.

In order to show the usability of the Babic’s multiplier 
for motion-vector calculations, the described block-
matching algorithm was applied on a selected region 
of the successive CT scan frames. 

The results obtained with the Babic’s multiplier with 
one error correction term are compared with the re-
sults of the regular multiplication. The mismatching 
percentage for the Babic’s multiplier was between 3.17 
and 3.9. These results  prove that the percentage of 
mismatching is very low. Due to the heavy computa-
tional requirements, the block matching is often per-
formed in two stages, a rough estimation of a moving 
vector and then an accurate refinement. In video com-
pression, the errors in motion vectors will only slightly 
decrease the compression, but will speed up the com-
pression algorithms and minimize power dissipation.

4.3 Multilayer perceptron with a highly parallel 
neural unit

Neural network processing comprises a huge number 
of multiplications. To gain as much as possible from 
the custom design, multiplications must be performed 
in parallel. However, multiplication circuits consume a 
lot of resources, time and power. Since the resources 
on a chip are limited, different strategies are applied 
to overcome the limitations. The first idea is to replace 
the floating-point arithmetic with fixed-point arithme-
tic. However, to further increase the performance the 
exact fixed-point matrix multipliers must be replaced 
with some approximate solutions. The hardware neural 
network presented in [17,18] is built around an iterative 
logarithmic multiplier, which can use many levels of 
correction circuits to iteratively approximate a product 
to the arbitrary precision. It also enables the pipelined 
design of correction circuits, which significantly reduce 
the propagation time of a signal through a circuit. The 
logarithmic multiplier with only one correction circuit 
is enough to reduce the multiplication error, on aver-
age, to less than 1%. In contrast to the majority of the 
proposed designs, where a special hardware unit is 
used for each neuron, the design presented in [17,18] 
contains only one highly parallel neural unit, which 
is capable of the fast parallel calculation of a neuron 
output. Since the same circuit can be used in forward 
and backward passes, it is more suitable for hardware 
neural network designs targeting small FPGA chips. 
The performance of the proposed hardware neural 
network with iterative logarithmic multipliers was 
compared to the usual software models and hardware 
neural network with exact matrix multipliers. 
The neural-network models were tested on the PRO-

BEN1 benchmark dataset, consisting of classification 
and approximation problems. Due to the highly adap-
tive nature of neural network models, which compen-
sated the erroneous calculation, the replacement of 
the multipliers did not have any notable impact on 
the models’ processing and learning accuracy. Further-
more, the consumption of fewer resources per multi-
plier also results in more power efficient circuits. The 
power consumption, which was reduced by roughly 
20%, makes the hardware neural network models with 
logarithmic multipliers favorable candidates for bat-
tery-powered applications.

4.4 Adaptive Control Systems

The authors in [19] implemented the Kalman filter for 
object tracking using the logarithmic multipliers and 
reciprocal units. Object-tracking systems require a 
large number of complex arithmetic operations, which 
impose a significant power dissipation.  Since adaptive 
algorithms can adjust to changes in the environment, 
they are also able to compensate for the computational 
errors, internally produced by the arithmetic units in 
LNS. The Kalman filter is able to iteratively update and 
estimate the underlying system state given a series of 
inaccurate and uncertain measurements. It can grasp 
the dynamics of a given system solely by observing its 
location over time. The Kalman filter equations com-
prise a large number of matrix multiplications and a 
matrix inverse. 

To make these computations effective, the authors in 
[19] proposed  two special purpose hardware units, a 
dot product unit and a multiply-and-divide unit. The 
dot product unit exploits the fact that any matrix mul-
tiplication can be decomposed to a series of indepen-
dent dot products. Each dot product unit consists of 
four logarithmic multipliers and three adders. Four dot-
product units are integrated the larger multiply-and-
divide (MAD) unit that is capable of computing four 
dot products in parallel. The MAD unit also includes 
two logarithmic reciprocal units that serve in computa-
tion of the inverse. 

The authors in [19] showed that the application of ap-
proximate arithmetic units importantly reduces power 
dissipation of the Kalman filter circuitry. The approxi-
mate units dissipate less power than the exact ones, but 
they usually need more clock cycles to get the result. 
Nevertheless, the implementations with logarithmic 
multipliers and reciprocal units are smaller and more 
energy efficient than the implementations with exact 
arithmetic. In such a way, the energy consumption per 
one iteration in the Kalman filter reduces to 70% - 80% 
of exact arithmetic. Moreover, the logarithmic arithme-
tic units reduce the critical path for up to 40%.
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5 Conclusion

In this study we discuss the use of logarithmic num-
ber system to reduce the power in digital systems. The 
choice of LNS can lead to substantial savings in power 
dissipation, since LNS affects the signal activity and the 
strength of operators. The replacement of multipliers 
and dividers in adaptive systems will not have any no-
table impact on the systems’ processing and learning 
accuracy. The same is true for signal processing sys-
tems, as signal processing deals with signals distorted 
with the noise caused by non-ideal sensors, quantiza-
tion processes, amplifiers, etc., as well as algorithms 
based on certain assumptions, so inaccurate results are 
inevitable.
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