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Abstract

The smallest tree that contains all vertices of a subset W of V (G) is called
a Steiner tree. The number of edges of such a tree is the Steiner distance
of W and union of all Steiner trees of W form a Steiner interval. Both of
them are described for the lexicographic product in the present work. We
also give a complete answer for the following invariants with respect to the
Steiner convexity: the Steiner number, the rank, the hull number, and the
Carathéodory number, and a partial answer for the Radon number. At the end
we locate and repair a small mistake from [7].
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1 Introduction and preliminaries

Let W be a subset of a set of vertices V (G) of a graph G. A Steiner tree of W
is a minimum connected subgraph (if it exists) of G that contains all vertices of
W . Clearly Steiner tree is a tree. If W has exactly two vertices u and v, then its
Steiner tree is a shortest u, v-path or a u, v-geodesic. Hence Steiner trees are natural
generalization of geodesics. Similarly we have following generalizations. The number
of edges on an u, v-geodesic is the usual (geodetic) distance dG(u, v) between u and
v in G. The number of edges on a Steiner tree for W is the Steiner distance dG(W )
of W in G. The geodesic interval IG(u, v) contains all vertices lying on an u, v-
geodesic of G. The Steiner interval SIG(W ) contains all vertices of a Steiner tree of
W . A subset C of V (G) is geodesically convex if IG(u, v) is a subset of C for every
pair u and v from C. Similarly C is Steiner convex if SIG(W ) is a subset of C for
every W ⊆ C. It is easy to see that if C induce a complete graph or if C = V (G),
then C is a convex set for both geodesic and Steiner convexity. Such sets are called
trivial (geodesic or Steiner) convex sets. For W ⊆ V (G), let IG[W ] be an union
of intervals IG(u, v) for every pair u, v ∈ W , this is IG[W ] = ∪u,v∈W IG(u, v). A
set W of vertices of G is called a geodetic set if IG(W ) = V (G). A geodetic set of
minimum cardinality is a minimum geodetic set and its cardinality is the geodetic
number g(G) of G. If SIG(W ) = V (G), then we call W a Steiner set of G. A
Steiner set of minimum cardinality is a minimum Steiner set and its cardinality
is the Steiner number s(G) of G. In an analogue fashion we can define the above
concepts for the other convexities induced by different type of paths like induced
path, detour path, any path, and the others; see [11].

The Steiner tree problem is a well-known problem with several applications. Its
origin is in Euclidean (or other metric) space. In combinatorics Steiner trees play
an important role in combinatorial optimization and application to combinatorial
designs and transportation, to name just a few. For instance, see [2, 21] for some
development in approximation algorithms. In general, the problem of finding a
Steiner distance is NP-hard problem, see [17]. The beginning of graph theoretical
approach to Steiner distance was probably made by Chartrand et. al. in [13]. Since
then many papers appeared on the topic. For a small collection see [1, 4, 9, 13, 14,
20, 21, 22, 25] and the references therein. In particular, note that Steiner number
was introduced by Chartrand and Zhang in [14]. In the second section we completely
describe the Steiner distance, Steiner intervals, and the Steiner number with respect
to lexicographic product of graphs.

In [4, 9] authors worked on a variation of Steiner problems on multi sets (instead
of sets). Both definitions coincide for Steiner convexity, since we take all subsets of
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C in the definition of a Steiner convex set C and not only k-subsets of C. (The latest
is known as the k-Steiner convexity.) Not much is known about Steiner convexity.
The pioneer work was done in [19] and continued in [5] on the so-called local Steiner
convexity. For the general Steiner convexity, the non-trivial (geodesic and Steiner)
convex sets of lexicographic product of graphs are characterized in [1]. We will use
this result in the third section to describe some of the well-known convex invariants
on lexicographic product graphs with respect to the Steiner convexity. The study of
convexity invariants like the Carathéodory, the Helly, the Radon, the Hull numbers,
and rank is one of the classical problems in combinatorial convexity. For the geodesic
convexity an interesting observation due to Duchet in [16] states that these convexity
invariants can be arbitrary in the sense that given any positive integers c, h, and
r, there exists a finite graph whose geodesic convexity has Carathéodory, Helly,
and Radon numbers c, h, and r, respectively. This result motivates to study these
invariants for other graph convexities, see [3, 11, 12, 15], in particular in our case in
third section the Steiner convexity.

In the last section we briefly discuss a small mistake from [7] and correct it, while
in the remaining of this section we define the convexity invariants and introduce some
notations.

Let A be a subset of V (G) for some graph G. The geodesic convex hull ch(A) of
A is the smallest geodesic convex set that contains A, while the Steiner convex hull
sch(A) of A is the smallest Steiner convex set that contains A. We will use sch(A)
in the following definitions, since we are mainly interested in the Steiner convexity.
The Steiner Carathéodory number of a graph G is the smallest integer c(G) (if it
exists) such that for any finite subset A of V (G), sch(A) equals to ∪{sch(S) : S ⊆
A, |S| ≤ c(G)}. The Radon number of G is the smallest integer r(G) (if it exists)
such that every r(G)-element set S ⊆ V (G) admits a Radon partition S1 and S2,
that is S = S1 ∪ S2, S1 ∩ S2 = ∅, and sch(S1) ∩ sch(S2) 6= ∅. A subset A of V (G)
is Steiner convexly independent if a /∈ sch(A − {a}) for every a ∈ A. Cardinality
of a maximum convexly independent set is known as Steiner rank, srank(G) for
short. A subset A of V (G) is called a Steiner hull set of G if sch(A) = V (G), and
a Steiner hull set of G of the minimum cardinality is a minimum Steiner hull set
in G. The cardinality of a minimum Steiner hull set in G is called the Steiner hull
number sh(G) of G. All these concepts are direct generalizations from the geodesic
convexity. However they can be defined on general convexities. For more about this
topic see the book [24].

We will use for a graph G the standard notations NG(g) for the open neighborhood
{g′ : gg′ ∈ E(G)} and ω(G) for the order of a maximum complete subgraph. A
simplicial vertex is a vertex g whose NG(g) induce a complete graph. By λ(G) we
denote the number of all simplicial vertices of G. If a vertex is not simplicial it is
called a Λ-vertex. For a subset A of V (G), we denote by 〈A〉 the subgraph of G
induced by A.

The lexicographic product of graphs G and H is the graph G◦H (also denoted by
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G[H]) with the vertex set V (G)×V (H). Vertices (g1, h1) and (g2, h2) are adjacent if
either g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H). The lexicographic product create
a constant interest in the research community over the years. The intersection from
past decade with other topics in this work can be found in [1, 6, 8, 23]. A product
is called non-trivial if both factors are graphs on at least two vertices. It is easy
to see that G ◦ H is connected if and only if G is connected. For h ∈ V (H) call
Gh = {(g, h) ∈ G ◦ H : g ∈ V (G)} a G-layer in G ◦ H and for g ∈ V (G) call
gH = {(g, h) ∈ G ◦H : h ∈ V (H)} an H-layer in G ◦H. Note that

〈
Gh
〉

and 〈gH〉
are isomorphic to G and H, respectively. The map pG : V (G ◦H)→ V (G) defined
by pG((g, h)) = g is called a projection map onto G. Similarly we can define the
projection map onto H. We can also project graphs which is clear from the domain.
For more on lexicographic product or products in general we recommend [18].

2 The Steiner distance, interval, and number of G ◦H
First we state a useful lemma about relationship between Steiner trees in G and in
G ◦H from [1].

Lemma 1 [1, Lemma 3.1] Let g1, . . . , gk be different vertices of a connected graph
G. For any (not necessarily different) vertices h1, . . . , hk of a graph H, a Steiner
tree of g1, . . . , gk (in G) and a Steiner tree of (g1, h1), . . . , (gk, hk) (in G ◦H) have
the same size.

The proof of this lemma imply even more. A tree T is a Steiner tree of (g1, h1), . . . ,
(gk, hk) in G ◦H whenever pG(T ) is a Steiner tree of g1, . . . , gk in G.

Theorem 2 Let G and H be two non-trivial graphs and let G be connected. For a
subset W of V (G ◦H), dG◦H(W ) is equal to
dG(pG(W )) + |W | − |pG(W )| : W * gH, for every g ∈ V (G);

|W | : W ⊆ gH and dH(pH(W )) ≥ |W |;
|W | − 1 : W ⊆ gH and dH(pH(W )) = |W | − 1.

Proof. If dH(pH(W )) = |W | − 1, then vertices of pH(W ) induce a tree in H. If
in addition W ⊆ gH, then vertices of W induce a tree in 〈gH〉 and the proof is by
nothing in this case. Assume next that W ⊆ gH and dH(pH(W )) ≥ |W |. Hence W
does not induce a connected subgraph of G ◦H and dG◦H(W ) ≥ |W |. On the other
hand, dG◦H(W ) ≤ |W |, since W ∪ {(g′, h)} induce a connected subgraph of G ◦H
for every neighbor g′ of g and any h ∈ V (H).

Let now W * gH for every g ∈ V (G). Without loss of generality we may
assume that there are only p number of H-layers giH, i ∈ {1, . . . , p}, for which
W ∩ V (giH) 6= ∅. Let (gi, hi)∈ W∩ giH for i ∈ {1, . . . , p}. By Lemma 1, a Steiner
tree of g1, . . . , gp (in G) and a Steiner tree of (g1, h1), . . . , (gp, hp) (in G◦H) have the
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same size. Let T be a Steiner tree of (g1, h1), . . . , (gp, hp) (in G◦H). Since W * gH,
every vertex of (gi, hi), for i ∈ {1, . . . , p}, has a neighbor (g′i, h

′
i) on T that is not in

giH. The remaining vertices of W in each layer giH, i ∈ {1, . . . , p}, are also adjacent
to (g′i, h

′
i) (by the definition of the lexicographic product). Let T be a tree obtained

from T by adding all remaining vertices of W and for every such vertex exactly one
additional edge to a (g′i, h

′
i) ∈ V (T ). Clearly T has dG(pG(W )) + |W | − |pG(W )|

edges. If T is not a Steiner tree of W , then there exists T ′ which is a Steiner tree of
W with less edges than T . The projection pG(T ′) is a tree containing pG(W ) with
less edges than pG(T ). Since pG(T ) and pG(T ) have the same number of edges, we
have a contradiction with the fact that pG(T ) is a Steiner tree of pG(W ). 2

In the above theorem plays no role whether H is connected or not. However we
do not need the condition for G to be connected. If G is not connected the formula
stays the same whenever all vertices of pG(W ) are in the same component of G,
while otherwise the Steiner distance does not exists. The same holds also for the
next result.

Theorem 3 Let G and H be two non-trivial graphs and let G be connected. For a
subset W of V (G ◦H), SIG◦H(W ) is equal to
W ∪ ((SI(PG(W )− PG(W ))× V (H)) : W * gH for every g ∈ G;

W ∪ (NG(g)× V (H)) : W ⊆ gH and dH(pH(W )) > |W |;
({g} × SIH(pH(W ))) ∪ (NG(g)× V (H)) : W ⊆ gH and dH(pH(W )) = |W |;
W : W ⊆ gH and dH(pH(W )) = |W | − 1.

Proof. If W ⊆ gH and dH(W ) = |W | − 1, then W induce a tree in G ◦ H
and hence W itself is the Steiner interval. If W ⊆ gH and dH(pH(W )) ≥ |W |,
then W ∪ {(g′, h)} induce a tree for every g′ ∈ Ng(g) and any h ∈ V (H). Clearly
this tree is a Steiner tree and hence NG(g) × V (H) ⊆ SIG◦H(W ). If in addition
dH(pH(W )) = |W |, then there are also some Steiner trees completely contained in
〈gH〉. Since 〈gH〉 is isomorphic to H, we also have {g}×SIH(pH(W )) ⊆ SIG◦H(W ).
Suppose that there exists an additional vertex (g′, h) in SIG◦H(W ), where (g′, h) /∈
({g}×SIH(pH(W )))∪(NG(g)×V (H)). Either dG(g, g′) ≥ 2 or g′ = g. If dG(g, g′) ≥
2, this tree contains more than |W | edges. If g′ = g, then h /∈ SIH(pH(W )). The
tree that contains W and (g, h) has more than |W | edges and is not a Steiner tree
for W .

Let now dH(W ) > |W |. If there exists a vertex (g′, h) in SIG◦H(W ), where
(g′, h) /∈W∪(NG(g)×V (H)), then again either dG(g, g′) ≥ 2 or g′ = g. If dG(g, g′) ≥
2, we have the same contradiction. If g′ = g, then h /∈ pH(W ). Since dH(W ) > |W |,
there exists no vertex (g, h) in gH such that W ∪ {(g, h)} induce a tree in G ◦ H.
Hence (g, h) is not in SIG◦H(W ).

Let W * gH for every g ∈ V (G). From the description of Steiner trees in the
proof of Theorem 2, we can easily see the following. If g ∈ pG(W ), then gH ∩
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SIG◦H(W ) contains only vertices of W . Otherwise, if g /∈ pG(W ) and g is on some
Steiner tree for pG(W ) in G, then there exists a Steiner tree for W in G ◦ H that
contains (g, h) for every h ∈ V (H). Hence [W ∪ (SI(PG(W )− PG(W ))× V (H))] ⊆
SIG◦H(W ). If there would be an additional vertex in SIG◦H(W ), we would get the
same contradiction as at the end of the proof of Theorem 2. 2

The Steiner number ofG◦H mainly depends on the number of vertices ofH which
can be seen in the next theorem. But there is an exception. Let H be a connected
graph. If a subset W of V (H) induce a connected graph, then SIH(W ) = W .
Hence every Steiner set S of H, that is a proper subset of V (H), does not induce
a connected subgraph of H. Next we investigate those Steiner sets S for which
dH(S) = |S|, called perfect Steiner sets. In other words, a Steiner set S is a perfect
Steiner set if S ∪ {v} induce a tree in H for every v ∈ V (H) − S. There is no
perfect Steiner set in a complete graph, since any proper subset of V (Kn) induce a
connected subgraph. So let H be a connected non-complete graph and v a vertex
of minimum degree that is not a cut vertex. We claim that S = V (H) − NH(v) is
a perfect Steiner set. Indeed, S does not induce a connected subgraph of H and
d(S) ≥ |S|. On the other hand 〈S ∪ {u}〉 is connected for every u ∈ NH(v), since v is
not a cut vertex. Hence dH(S) = |S| and SIH(S) = V (H) and every non-complete
connected graph admits a perfect Steiner set. However this is not necessarily a
minimum perfect Steiner set. As an example observe a cube Q3 and let vertices of
S induce two edges at distance 2. It is easy to see that this is a perfect Steiner set
of cardinality 4, while the above description gives a perfect Steiner set of cardinality
5. Now we can describe the Steiner number of any nontrivial lexicographic product.

Theorem 4 Let G and H be two non-trivial graphs and let G be connected. If
A = min{|W | : W is a perfect Steiner set in H}, then s(G ◦H) is equal to
A : if G has a universal vertex and H is connected and not complete;

|V (H)| : if G has a universal vertex and H is not connected;

s(G)|V (H)| : otherwise.

Proof. Suppose first that G has a universal vertex g. If H is connected and not
complete, then there exists a perfect Steiner set of H and a perfect Steiner set of
minimum cardinality. Let W be such a set, that is A = |W |. Clearly S = {g} ×W
is a subset of gH and dG◦H(S) = |S| = A. By Theorem 3, we have

SIG◦H(S) = ({g} × SIH(pH(W ))) ∪ (NG(g)× V (H)) =

= ({g} × V (H)) ∪ ((V (G)− {g})× V (H)) =

= V (G)× V (H) = V (G ◦H)

and S is a Steiner set. Moreover, since S does not induce a connected subgraph, we
have s(G ◦H) = |S| = A.
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Suppose now thatH is not connected. For S = gH we have d(pH(S)) =∞ > |S|.
By Theorem 3, we have

SIG◦H(S) = S ∪ (NG(g)× V (H)) =

= ({g} × V (H)) ∪ ((V (G)− {g})× V (H)) =

= V (G)× V (H) = V (G ◦H)

and S is a Steiner set in this case. Let S′ be a smaller subset of V (G ◦ H) than
S. For every g′ ∈ V (G) there exists an h ∈ V (H), such that (g′, h) /∈ S′. Choose
g′ ∈ pG(S′). We claim that g

′
H * SI(S′). Indeed, if S′ ⊂ g′H, then by Theorem 3,

(second and third possibility) and since H is not connected, g
′
H is not entirely in

SI(S′). So let S′ * g′H for every g′ ∈ G. By Theorem 3, (first option) again g′H is
not in SI(S′). Hence S′ is not a Steiner set and s(G ◦H) = |V (H)|.

Next let H be a complete graph. If S′ is a minimum Steiner set of G, then
S′×V (H) clearly form a Steiner set in G◦H and s(G◦H) ≤ s(G)|V (H)|. Let S be
a minimum Steiner set of G ◦H. First note that S * gH for every g ∈ G, since H
is complete. Next if g ∈ pG(S), then all vertices of gH must be in S by Theorem 3.
If pG(S) is not a minimum Steiner set in G, we get a contradiction with Lemma 1
or on the other hand with minimality of S. Hence s(G ◦H) = s(G)|V (H)|.

Finally let G be a graph without an universal vertex. For every Steiner set S of
G ◦H, S * gH for every g ∈ V (G) by Theorem 3. By the same theorem for every
g ∈ pG(S), the whole gH must be in S. Thus s(G ◦ H) ≥ s(G)|V (H)| by Lemma
1. Since S′ × V (H) is a Steiner set for a minimum Steiner set S′ of G, we have
s(G ◦H) = s(G)|V (H)| and the proof is complete. 2

In [6] the geodetic number g(G ◦H) was considered and g(G ◦H) was bounded
there between 2 and 3g(G). The Theorem 4 shows that s(G ◦H) does not behave
like g(G ◦H), since it grows with the number of vertices of H in most cases.

3 Invariants for G ◦H with respect to Steiner convexity

In this section we discuss several invariants connected with convex sets on the lex-
icographic product with respect to Steiner convexity. Recall that a vertex u of a
graph G is called a Λ-vertex if u is not a simplicial vertex. An induced subgraph
Y of the lexicographic product G ◦ H is called Λ-complete if gH ∩ Y = gH holds
for any Λ-vertex g of pG(Y ). The subgraph K of G is (Steiner) convex if V (K) is
Steiner convex in V (G). The following theorem, recently proved in [1], is needed.

Theorem 5 [1, Theorem 3.2] Let G ◦H be a non-trivial, connected lexicographic
product. Then a proper non-complete induced subgraph Y of G◦H is Steiner convex
if and only if the following conditions hold:
(i) pG(Y ) is Steiner convex in G,
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(ii) Y is Λ-complete, and
(iii) H is complete.

Also in [1] is the analogue version of this theorem (Theorem 2.1) for the geodesic
convexity. The only difference is that one need to replace both words Steiner by
geodesic. Hence a natural question appears whether also convex invariants have
analogue solutions for both convexities in G ◦ H. This question has a positive
answer in case of all studied invariants here as we will see in next subsections.

3.1 Rank

Recall that srank(G) is the cardinality of a maximum convexly independent set with
respect to Steiner convexity.

Theorem 6 Let G and H be two non-trivial graphs and let G be connected. With
respect to Steiner convexity is

srank(G ◦H) =

{
srank(G)|V (H)| : if H is complete;

ω(G)ω(H) : otherwise.

Proof. Suppose first that H is not a complete graph. By Theorem 5, V (G ◦ H)
has only trivial Steiner convex sets. Thus the only Steiner convex sets are subsets of
V (G) that induce a complete graph and V (G ◦H). Let A be a subset of V (G ◦H)
on at least three vertices which does not induce a complete graph. Let (g, h) and
(g′, h′) be two non-adjacent vertices of A and (g′′, h′′) a third vertex. By Theorem
5, sch(A − (g′′, h′′)) = V (G ◦ H). Thus all (maximum) Steiner convex sets induce
complete graphs in G ◦H. Since vertices of a complete graph always form a Steiner
convexly independent set, we need to find a maximum clique in G ◦ H. Let C ⊆
V (G◦H) be a set that induce a maximum clique inG◦H. Clearly pG(C) = CG induce
a maximum complete subgraph in G and its size is ω(G). Moreover gH ∩ C induce
a complete subgraph in 〈gH〉 for every g ∈ pG(C). If |gH ∩ C| < ω(H), we have a
contradiction with the maximality of C, since Kω(G) ◦ Kω(H) is a complete graph.
Hence srank(G ◦H) = ω(G)ω(H).

Let now H be a complete graph. Let srank(G) = r and let A1 be a Steiner
convexly independent set with |A1| = r. By the definition a /∈ sch(A1 − a) for every
a ∈ A1. We show next that A1 × V (H) is Steiner convexly independent. If not, we
can find an (a1, h1) ∈ A1×V (H) such that (a1, h1) ∈ sch(A1×V (H)−{(a1, h1)}). We
can find (b1, `1), . . . , (bm, `m) ∈ A1 × V (H)− {(a1, h1)} whose Steiner tree contains
(a1, h1). Without loss of generality we can assume that b1, . . . , br, r ≤ m, are in the
projection of (b1, `1), . . . , (bm, `m) in G. By Lemma 1, the Steiner tree of b1, . . . , br
contains a1. That is a1 ∈ sch(A1− a1), a contradiction, and A1×V (H) is maximal.

Since every Steiner convexly independent subset of V (G◦H) projects to a Steiner
convexly independent subset of V (G), clearly A1×V (H) is a maximum Steiner con-
vexly independent set, otherwise we have a contradiction with A1 being a maximum
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Steiner convexly independent set of V (G). Hence srank(G ◦H) = srank(G)|V (H)|
and the proof is complete. 2

The same theorem holds if we replace all terminology connected to Steiner con-
vexity by the same terminology with respect to geodesic convexity. The only other
change is in second paragraph of the proof, where we replace a Steiner tree by a
shortest path in the case of geodesic convexity and conclusion follows the same lines.

3.2 Hull number

The hull number of lexicographic product of graphs with respect to geodetic con-
vexity is described in [8]. Here we prove an analogue result for Steiner convexity.
First we prove a lemma in order to prove the theorem.

Lemma 7 If H is a complete graph, then every simplicial vertex of a graph G ◦H
belongs to any Steiner hull set of G ◦H.

Proof. If a simplicial vertex (g, h) is not in a Steiner hull set A, then it is not in
any Steiner interval of any subset of V (G ◦H) by Theorem 3. A contradiction with
A being a Steiner hull set. 2

Recall that we denote the number of simplicial vertices of graph G by λ(G). It
is a straightforward observation that (g, h) ∈ V (G ◦H) is a simplicial vertex if and
only if g is a simplicial vertex of G and H is a complete graph.

Theorem 8 Let G and H be two non-trivial graphs and let G be connected. With
respect to Steiner convexity is

sh(G ◦H) =

{
2 : H is not complete;

λ(G)|V (H)|+ h(G)− λ(G) : H is complete.

Proof. Let first H be a non-complete graph. Since G ◦H has no proper Steiner
convex sets other than cliques by Theorem 5, the convex hull of any two non-adjacent
vertices will be G ◦H. Hence in this case sh(G ◦H) = 2.

Let now H be a complete graph. By Lemma 7, every simplicial vertex must
be in any hull set and there are exactly λ(G)|V (H)| simplicial vertices in G ◦ H.
Let A = {g1, . . . , gλ(G), `1, . . . , `k} be a minimal hull set of G, where g1, . . . , gλ(G)

are simplicial vertices and `1, . . . , `k are Λ-vertices of G. We will prove that A =
{ g1H, . . . , gλH, (`1, h1), . . . , (`k, h1)} is a minimal hull set of G ◦H. First observe a
subset B = A×{h1}. By Theorem 3, SI(B) contains all vertices in all gH layers for
which g /∈ A. Since every (`i, h1), for i ∈ {1, . . . , k}, is a Λ-vertex, (`i, h1) is adjacent
to some non-adjacent vertices, say (uj , h1) and (um, h1). If (uj , h1) or (um, h1) are
simplicial or not, they are in sch(B). Now SI[(uj , h1), (um, h1)] will contain the
layer `iH and thus sch(B) contains all vertices in gH for every Λ-vertex g ∈ V (G).
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But then sch(A) contains the whole vertex set V (G ◦H) and is a hull set. Suppose
that a hull set S is smaller than A. Clearly S must contain all simplicial vertices of
G ◦H. Thus there are less than k Λ-vertices in S and pG(S) is a hull set of G with
cardinality less than |A|, contradicting the minimality of A. Hence A is a minimum
hull set and sh(G ◦H) = λ(G)|V (H)|+ h(G)− λ(G). 2

3.3 Carathéodory number

First we need a lemma which is a direct consequence of Lemma 1 and Theorem 5.

Lemma 9 Let H be a complete graph and G a graph. If F is a subset of V (G ◦H),
then pG(sch(F )) = sch(pG(F )).

Proof. Clearly sch(pG(F )) ⊆ pG(sch(F )), since sch(pG(F )) is the smallest Steiner
convex set that contains pG(F ) and pG(sch(F )) is a convex set by Theorem 5 that
contains all vertices of pG(F ). On the other hand let g ∈ pG(sch(F )). Either (g, h) ∈
F for some h ∈ V (H) or (g, h) is on some Steiner tree of F1 ⊆ F . Clearly (g, h) ∈ F
imply that g ∈ sch(pG(F )). If (g, h) is on some Steiner tree of F1 ⊆ F , then g is on
a Steiner tree of pG(F1) by Lemma 1. Hence also pG(sch(F )) ⊆ sch(pG(F )) holds
and we have an equality. 2

The Carathéodory number with respect to the Steiner convexity of G ◦ H is
completely described by the following result.

Theorem 10 Let G and H be two non-trivial graphs and let G be connected. The
Carathéodory number with respect to the Steiner convexity is

c(G ◦H) =


c(G) : H is complete and G is not;

2 : H is not complete;

1 : G and H are complete.

Proof. If G and H are complete graphs, then G ◦H is complete and clearly c(G ◦
H) = 1. If H is not complete, then G ◦H contains no proper non-complete Steiner
convex set by Theorem 5. Furthermore if F contains any two non-adjacent vertices
(g, h1) and (g, h2) ofG◦H, then sch(F ) = V (G◦H) as well as sch({(g, h1), (g, h2)}) =
V (G ◦H). Thus c(G ◦H) = 2.

LetH be a complete graph andG a non-complete graph. Suppose that c(G◦H) <
c(G). Let F ′ be any subset of V (G). Set F = F ′ × {h} for some h ∈ V (H). We
can find a collection of subsets S1, . . . , St of F of cardinality at most c(G ◦H), such
that the equality sch(F ) = ∪ti=1sch(Si) holds. Subsets pG(S1), . . . , pG(St) of pG(F )
have cardinality at most c(G ◦H) < c(G). By Lemma 9

sch(pG(F )) = pG(sch(F )) = pG
(
∪ti=1sch(Si)

)
=

= ∪ti=1(pG(sch(Si))) = ∪ti=1(sch(pG(Si))),
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which is a contradiction with minimality of Carathéodory number of G. Thus c(G) ≤
c(G ◦H).

On the other hand, let F be any subset of V (G ◦ H). For F ′ = pG(F ) there
exists a family S′1, . . . , S

′
k of subsets of cardinality at most c(G) for which sch(F ′) =

∪ki=1sch(S′i) holds. Let Si, i ∈ {1, . . . , k}, be a family of following subsets of cardi-
nality |S′i| ≤ c(G): S ∈ Si if for every g ∈ S′i there is exactly one vertex (g, h) ∈ F
in S. We claim that sch(F ) = A for A = ∪ki=1 ∪S∈Si sch(S). If (g, h) ∈ sch(F ), then
g ∈ pG(sch(F )) and g ∈ sch(pG(F )) = sch(F ′) by Lemma 9. Hence g ∈ sch(S′i) for
some i ∈ {1, . . . , k}. The way families Si are defined, there exists S ∈ Si, such that
(g, h) ∈ sch(S). Thus (g, h) ∈ A and sch(F ) ⊆ A. Let now (g, h) ∈ A, more accurate
let (g, h) ∈ sch(S) and S ∈ Si for some i ∈ {1, . . . , k}. By Lemma 9 again we have

pG(sch(S)) = sch(pG(S)) = sch(S′i) ⊆ sch(F ′) = sch(pG(F )) = pG(sch(F )).

Hence g ∈ pG(sch(F )). If g is a Λ-vertex, then (g, h) is in sch(F ) by Theorem 5,
since sch(F ) is Steiner convex and thus also Λ-complete. If g is a simplicial vertex,
then (g, h) must be in S by Lemma 7 and hence also in F and clearly also in sch(F ).
Thus A ⊆ sch(F ) and the proof is complete. �

In [10, Theorem 4], a family of graphs Gk, k ≥ 2, was constructed with the
property that Gk has a k-Steiner convex subset that is not (k + 1)-Steiner convex.
This family is an example for graphs with large Steiner Carathéodory number, since
c(Gk) > k.

Again the same result and proof can be stated if we replace Steiner terminology
by the geodesic one. Note only that in the proof Lemma 9, we cannot refer to Lemma
1. However the geodesic version of Lemma 1 is an easy task for the students. Hence
we leave the details to the reader.

3.4 Radon number

Clearly r(G) > ω(G), since in a complete subgraph Kω(G) for every partition S1 and
S2 we have sch(S1)∩ sch(S2) = ∅. Also for complete graphs the Radon number does
not exist.

Theorem 11 Let G and H be two non-trivial graphs, at most one complete and let
G be connected. The Radon number with respect to Steiner convexity is
(i) r(G ◦H) = ω(G)ω(H) + 1 if H is not complete;
(ii) max{r(G), ω(G)ω(H) + 1} ≤ r(G ◦H) ≤ (r(G)− 1)ω(H) + 1 if H is complete.

Proof. Since ω(G ◦H) = ω(G)ω(H), we always have r(G ◦H) ≥ ω(G)ω(H) + 1.
For (i), let H be a non-complete graph. If S is a subset of V (G ◦H) of cardinality
ω(G)ω(H) + 1, then there exists two non-adjacent vertices (g, h) and (g′, h′). Sets
S1 = {(g, h), (g′, h′)} and S2 = S−S1 form a Radon partition. Indeed, S1 ∪S2 = S,

11

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

9,
 J

u
ly

 3
8,

 2
01

2



S1 ∩ S2 = ∅, and sch(S1) ∩ sch(S2) 6= ∅, since sch(S1) = V (G ◦ H) by Theorem 5.
Hence r(G ◦H) = ω(G)ω(H) + 1 if H is a non-complete graph.

For (ii), let H be a complete graph, which implies that G is not. Choose any
subset S of V (G ◦H) of cardinality (r(G)− 1)|V (H)|+ 1. The cardinality of pG(S)
is at least r(G). Let S′ be any subset of pG(S) of cardinality r(G). Let S′1 and S′2
form a Radon partition for S′. By S1 we denote all vertices of S that projects to S′1
and S2 = S − S1. Clearly S1 ∪ S2 = S and S1 ∩ S2 = ∅. Let v ∈ sch(S′1) ∩ sch(S′2).
Since S′1 ∩S′2 = ∅, then v /∈ S1 or v /∈ S2. Without loss of generality we may assume
that v /∈ S1. But then the whole layer vH is in sch(S1). Thus sch(S1)∩ sch(S2) 6= ∅
and S1 and S2 form a Radon partition of S. Hence r(G◦H) ≤ (r(G)−1)|V (H)|+1.
For the lower bound we may assume that r(G) > ω(G)ω(H) + 1. Let S be a subset
of V (G) of cardinality r(G) − 1 that does not admit a Radon partition. Observe
S′ = S × {h}. If S′ admits a Radon partition S′1 and S′2, then also S = pG(S′)
admits a Radon partition S1 = pG(S′1) and S2 = pG(S′2) which is not possible.
Hence r(G ◦H) ≥ r(G) and the proof is complete. �

While in most cases one can expect that r(G) < ω(G)ω(H) + 1, this is not
always the case. Let K+

n be a graph obtained from Kn by subdividing each edge by
a vertex. It is easy to see that a set S of all original vertices of Kn does not admit
a Radon partition and is thus r(K+

n ) ≥ n+ 1. For G ∼= K+
2n+1 and H ∼= K`, ` ≤ n,

we have r(G) > ω(G)ω(H) + 1.
The following corollary is a direct application of (ii) in Theorem 11.

Corollary 12 Let H be a complete graph and G a connected graph. If r(G) =
ω(G) + 1, then r(G ◦H) = ω(G)ω(H) + 1 (with respect to the Steiner convexity).

As an example that the lower bound of (ii) in Theorem 11 is not always attained
let G ∼= C2k+1, k ≥ 2, and H ∼= Kn. It is easy to see that r(C2k+1) = 4 and we have
2n + 1 ≤ r(G ◦H) ≤ 3n + 1 by (ii) of Theorem 11. Let uv ∈ E(C2k+1) and w the
antipodal vertex of u and v on C2k+1. For S = {(w, h)} ∪ ({v, u} × V (H)), where
h ∈ V (H), it is easy to see that S has no Radon partition. Since |S| = 2n + 1 we
have 2n+ 1 < r(G ◦H). Moreover, every subset of V (G ◦H) of cardinality 2n+ 2
has a Radon partition and we have r(C2k+1 ◦Kn) = 2n+ 2 (we leave the details to
the reader).

As in the previous subsections of this section we can state analogue results for
the geodesic convexity if we replace Steiner terminology by geodesic one.

4 Erratum

While going through the hull number, rank, and Steiner number of lexicographic
product, we found a small error in the Proposition 14 of the paper [7], and we have
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rectified the proposition. We state the definition which is used in that paper and
proposition as it is. But first we define the strong product.

The strong product of graphs G and H is the graph G �H with the vertex set
V (G)× V (H). Vertices (g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) and
h1 = h2 or g1 = g2 and h1h2 ∈ E(H) or g1g2 ∈ E(G) and h1h2 ∈ E(H).

Definition 13 Let S be a set of vertices in a graph G. Then, S is said to satisfy
the condition
(A) if, for every vertex x ∈ S, there exists two vertices y, z ∈ S \ x such that
x ∈ I[y, z].
(B) if there are two vertices x, y ∈ S such that x /∈ I[S \ x] and y /∈ I[S \ y]

Proposition 14 [7, Proposition 5] Let G be a graph with a minimum geodetic set
S satisfying the condition (A). Then, for every positive integer n, g(G�Kn) = g(G).

Example 15 (Counter example for Proposition 14) Let G = C6 and H =
Kn. Let uv and xy be two opposite edges of C6. Set S = {u, x, v, z} is the minimum
geodetic set that satisfies the condition (A) and g(G) = 2. But we can see that
g(G�H) = 4 > g(G).

We modify the Proposition 14 as follows.

Proposition 16 Let G be a graph with a minimum geodetic set S satisfying the
condition (A). Then, for every positive integer n, g(G�Kn) = |S|.

Proof. We can see that |S| need not be g(G) as in Example 15. The proof follows
from the proof of the Proposition 5 in [7] by replacing g(G) by |S|. 2
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