let. - vol. 50 (2004) {t. - no. STROJNIŠKI VESTNIK JOURNAL OF MECHANICAL ENGINEERING strani - pages 145 - 192 ISSN 0039-2480 Stroj V STJVAX cena 800 SIT 3. 4. o`nosti uporabe trdih prevlek na -p-r--e-oblikovalnih orodjih Hard Coatings F Properties Of For Forming Tools st sigm” v razvoju postopka zdelave ------- Six Sigma in Process Design miljenje hladilnih sistemov -ontrol in Refrigeration Systems ritev izkoristka in nastavitev krmilnih parametrov kaplanove turbine z dolgim cevnim sistemom s primerjalno metodo ------- Measurement of Relative Turbine Efficiency and Adjustment of Governing Parameters on Long Penstock Kaplan Turbine with Comparative Method 1. 2. © Strojni{ki vestnik 50(2004)3,145 Mese~nik ISSN 0039-2480 © Journal of Mechanical Engineering 50(2004)3,145 Published monthly ISSN 0039-2480 Vsebina Contents Strojni{ki vestnik - Journal of Mechanical Engineering letnik - volume 50, (2004), {tevilka - number 3 Razprave Podgornik, B., Hogmark, S., Sandberg, O.: Možnosti uporabe trdih prevlek na preoblikovalnih orodjih 146 Pavletič, D., Fakin, S., Sokovič, M.: “Šest sigm” v razvoju postopka izdelave 157 Primožič, J., Svečko, R: Krmiljenje hladilnih sistemov 168 Trebše, A. J.: Meritev izkoristka in nastavitev krmilnih parametrov kaplanove turbine z dolgim cevnim sistemom s primerjalno metodo 181 Osebne vesti Navodila avtorjem Papers Podgornik, B., Hogmark, S., Sandberg, O.: Wear And Friction Properties Of Hard Coatings For Forming Tools Pavletič, D., Fakin, S., Sokovič, M.: Six Sigma in Process Design Primožič, J., Svečko, R: Control in Refrigeration Systems Trebše, A J.: Measurement of Relative Turbine Efficiency and Adjustment of Governing Parameters on Long Penstock Kaplan Turbine with Comparative Method 190 Personal Events 191 Instructions for Authors stran 145 glTMDDC © Strojni{ki vestnik 50(2004)3,146-156 © Journal of Mechanical Engineering 50(2004)3,146-156 ISSN 0039-2480 ISSN 0039-2480 UDK621.7.016.3:621.793 UDC 621.7.016.3:621.793 531.4:539.62 531.4:539.62 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Mo`nosti uporabe trdih prevlek na preoblikovalnih orodjih Wear And Friction Properties Of Hard Coatings For Forming Tools Bojan Podgornik - Sture Hogmark - Odd Sandberg Namen predstavljenega prispevka je bil raziskati možnosti uporabe trdih prevlek fizikalno nanesenih v vakuumu (FNV - PVD) na orodjih za hladno preoblikovanje. V raziskavo so bile vključene prevleke TiN, TiB2, TaC in diamantu podobna prevleka na podlagi trdega ogljika (DPP), katerih triboloske lastnosti smo primerjali z različnimi orodnimi jekli za delo v hladnem jeklarne Uddeholm Tooling iz Švedske. Triboloske lastnosti materialov, vključenih v raziskavo, smo določili na preizkusevališču, katerega izoblikovanost omogoča izmenično in zvezno povečevanje ter zmanjševanje obremenitve med drsenjem. Obremenitev je bila v območju med 100 in 1300 N (kontaktni tlak med 1 GPa in 5 GPa), kot protimaterial pa smo uporabili avstenitno jeklo. Rezultati raziskave kažejo, da uporaba ustrezne prevleke privede do povečane obrabne obstojnosti orodja ter do precejšnjega zmanjšanja pojava lepljenja obdelovanega materiala na površino orodja. © 2004 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: preoblikovanje hladno, prevleke trde, adhezija, obraba, trenje) The aim of this paper was to investigate the potential of using hard physical vapour deposition (PVD) coatings on forming tools. A tribological evaluation of TiN, TiB2, TaC and diamond like coating (DLC) coatings deposited on cold-worked tool steel was carried out in a load-scanning test rig and compared to the behaviour of different uncoated forming tool steels. The special test configuration, where austenitic stainless steel was used as the counter-material, makes it possible to gradually increase the normal load during forward sliding strokes, and to correspondingly decrease the load during reversed ones. In this investigation, the load range was 100 to 1300 N (contact pressure from 1 to 5 GPa). The experimental results indicate that the introduction of an appropriate hard coating will lead to an improved wear resistance and a longer lifetime for the forming tool. Furthermore, by using hard low-friction coatings excellent anti-sticking properties can be obtained. © 2004 Journal of Mechanical Engineering. All rights reserved. (Keywords: cold forming, hard coatings, adhesion, wear, friction) 0 UVOD V predelovalni industriji se trde zaščitne prevleke že vsakodnevno uporabljajo za povečanje obstojnosti in produktivnosti odrezovalnih orodij [1]. Zahteve po delu v agresivnih okoljih in vedno večje zahteve po oksidacijski ter obrabni obstojnosti orodij narekujejo nenehen razvoj na področju trdih zaščitnih prevlek [2]. Kljub vsemu pa v predelovalni industriji še vedno prevladuje prevleka TiN, ki je bila razvita že pred več kot dvema desetletjema. V nasprotju z odrezovalnimi orodji je uporaba trdih prevlek pri preoblikovalnih orodjih še vedno redkost. Večina preoblikovalnih orodij je velikih izmer in zahtevne geometrijske oblike, kar otežuje nanos trdih prevlek ter doseganje ustrezne 0 INTRODUCTION Hard and corrosion-resistant coatings are frequently used to protect and enhance the lifetimes of tools under high and constant wear loads [1]. Although introduced more than two decades ago, TiN still dominates among the hard coatings applied in industry. However, the requirements to withstand aggressive environments and to improve oxidation resistance and wear resistance under extreme conditions has led to the development and introduction of new coatings [2]. In contrast to cutting tools, the majority of forming tools is still uncoated. This is due to their larger size and the complex shape of most forming tools, which makes it difficult to apply a coating and to obtain good adhesion between the coating and the substrate material [3]. Although hard ceramic coatings are routinely VH^tTPsDDIK stran 146 Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties oprijemljivosti le-teh [3]. Kljub temu, da tudi pri odrezovalnih orodjih luščenje prevleke ni zaželeno [4], to ni kritično. V primeru preoblikovalnih orodij lahko delci odluščene prevleke zaidejo v stik, s čimer poslabšajo kakovost izdelka, po drugi strani pa lahko privedejo tudi do kritične poškodbe izredno dragega orodja. Seveda obstajajo še drugi razlogi, zakaj se trde prevleke v preoblikovalni industriji ne uporabljajo bolj pogosto. Eden od najpomembnejših je razmeroma visok koeficient trenja komercialnih trdih keramičnih prevlek [1], ki povzroči lepljenje obdelovanega materiala na površino orodja [5]. V zadnjih nekaj letih pa je bil narejen izjemen napredek tako na področju nanašanja trdih prevlek, kakor tudi pri razvoju prevlek na osnovi trdega ogljika z izjemnimi tornimi lastnostmi ([6] do [9]). Namen predstavljene raziskave je bil preučiti možnosti uporabe trdih prevlek, nanesenih z metodo fizikalnega nanašanja iz parne faze (FNV), na orodjih za hladno preoblikovanje. Obrabno in torno obnašanje prevlek TiN, TiB2, TaC in DPP pri preoblikovanju avstenitnega jekla smo primerjali z lastnostmi orodnih jekel za delo v hladnem jeklarne Uddeholm Tooling iz Švedske. 1 EKSPERIMENTALNI DEL V predstavljeno raziskavo so bile vključene prevleke TiN, TiB2, TaC in prevleka na osnovi trdega ogljika (DPP), ki so bile nanesene na kaljeno in popuščeno orodno jeklo za delo v hladnem vanadis 4 (Uddeholm Tooling, Švedska), brušeno na R * 0,2 um. Vse štiri prevleke, debeline 2 um, so bile nanesene z uporabo komercialnih postopkov fizikalnega nanašanja iz parne faze (FNV). Parametri nanašanja in lastnosti uporabljenih prevlek so predstavljeni v preglednici 1. Prevleka DPP z večplastno strukturo volframovega karbida (WC) in amorfnega ogljika (a-C:H) je bila nanesena pri temperaturi podlage deposited with excellent adhesion, there is always the risk of depositing a coating with poor adhesion [4]. Although this is very undesirable for cutting tools, it is not a disaster. However, if a coating fails on a forming tool, coating fragments can become a source of abrasive particles within the system, which can lead to poor surface quality of the product and the destruction of a very expensive tool. There are other reasons why normal hard coatings are not used more widely in forming-tool applications. One is the relatively high coefficient of friction generated by most of the commercial ceramic coatings used in cutting-tool applications [1], which leads to a high tendency to galling when sliding against soft metals [5]. However, in the last couple of years tremendous progress has been seen in the field of coating deposition as well as in introducing new carbon-based coatings with excellent frictional properties ([6] to [9]). The aim of this study was to investigate the possibilities of using hard PVD (physical vapour deposition) coatings on forming tools. A tribological evaluation of TiN, TiB2, TaC and DLC coatings deposited on cold-worked tool steel was carried out in a load-scanning test rig and compared to the behaviour of different uncoated forming-tool steels, using soft austenitic stainless steel as the counter material. 1 EXPERIMENTAL WORK Four different PVD coatings - TiN, TiB2, TaC and DLC - with a thickness of about 2 um were used in this investigation. The investigated coatings were deposited on a hardened and tempered powder-metallurgy cold-worked tool steel, vanadis 4 (Uddeholm Tooling AB, Sweden), using commercial PVD processes. The process parameters and the properties of the coatings are listed in Table 1. The DLC coatings, which were WC-doped hydrogenated diamond-like carbon coatings with a multilayer structure of WC and amorphous carbon (a-C:H), were deposited at a substate temperature of ~230°C. For the refractory hard coatings of TiN, TiB and TaC, the deposition temperature was in the range between 70 and Preglednica 1. Parametri nanašanja in lastnosti raziskovanih prevlek Table 1. Deposition parameters and resulting coating properties prevleka coating postopek nanašanja deposition process TiN n TiB2 r DLC elektronski snop reactive e-beam modul zaostale temperatura trdota elastičnosti napetosti temperature hardness Young’s residual [°C] [GPa] modulus stress [GPa] [GPa] naprševanje sputtering T naprševanje iaC sputtering reakcijsko naprševanje reactive sputtering 320 - 420 300 54±9 600±85 -0,5±0,2 230 30±2 500±50 -3,8±0,4 70 15±2 230±20 -1,1±0,2 12±1 130±7 -0,3±0,1 gfin^OtJJlMISCSD 04-3 stran 147 \ ^BSSITIMIGC Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties Preglednica 2. Postopek izdelave in sestava uporabljenih orodnih jekel za delo v hladnem Table 2. Production process and nominal chemical composition of the investigated forming tool steels orodno jeklo steel VANADIS 4 VANADIS 6 VANADIS 23 WEARTEC postopek izdelave* production process* MP MP MP TN kemična sestava nominal chemical composition %C | %Si | %Mn | %Cr | %Mo | %V | %W 1,5 2,1 1,3 1,0 1,0 0,5 0,4 0,4 0,3 0,7 8,0 6,8 4,2 7,0 1,5 1,5 5,0 2,3 4,0 5,4 3,1 8,9 6,4 MP - metalurgija prahov / powder metallurgy, TN - tehnologija naprševanja / spray forming Preglednica 3. Toplotna obdelava in trdota površine raziskovanih orodnih jekel za delo v hladnem Table 3. Process, heat treatments and resulting hardness values of the investigated forming tool steels orodno jeklo steel toplotna obdelava heat treatment parametri toplotne obdelave treatment parameters trdota hardness VANADIS 4 AH AN B C D kaljenje hardening 1050°C/30min/air + 525°C/2x2h 62 HRC VANADIS 4 nitriranje v plazmi plasma nitriding 500°C/9h/95%H2-5%N2 1200 HV0,1 VANADIS 6 kaljenje hardening 1050°C/30min/ air + 525°C/2x2h 62 HRC VANADIS 23 kaljenje hardening 1050°C/30min/ air + 560°C/3x1h 62 HRC WEARTEC kaljenje hardening 1020°C/30min/ air + 525°C/2x2h 62 HRC ~230 °C, medtem ko so bile enoplastne prevleke TiN, TiB2 in TaC nanesene v temperaturnem območju med 70 °C in 420 °C (preglednica 1). Za doseganje ustrezne oprijemljivosti prevlek so bile le-te nanesene na ~0,1 um debelo vmesno plast titana (TiN, TiB2 in TaC) ali kroma (DPP). Tribološke lastnosti oplaščenega orodnega jekla vanadis 4 smo primerjali z lastnostmi neoplaščenega kaljenega ali nitriranega jekla vanadis 4 ter še s tremi orodnimi jekli za delo v hladnem jeklarne Uddeholm, predstavljenih v preglednicah 2 in 3. Kot protimaterial pa smo uporabili mehko žarjeno avstenitno jeklo AISI 304 (350 HV) ter kaljeno jeklo za kroglične ležaje AISI 52100 (850 HV). Tribološki preizkusi so bili narejeni na napravi, katere izoblikovanje dveh cilindričnih preizkušancev s premerom 10 mm (R - 0,2 um) omogoča izmenično in zvezno povečevanje ter zmanjševanje obremenitve med samim drsenjem ([10] in [11]), (sl. 1). Pri tem je vsaka točka vzdolž drsne poti pri obeh preizkušancih izpostavljena točno določeni obremenitvi. V predstavljeni raziskavi je bila obremenitev v območju med 100 in 1300 N, kar ustreza Hertzovemu stičnemu tlaku med 1 GPa in 5 GPa. Določitev tornih lastnosti in sposobnosti raziskovanih materialov preprečiti prenos ter lepljenje protimateriala (avstenitno jeklo) na površino 420°C. To improve the adhesion of the coatings, a thin (~ 0,1 um) Ti intermediate layer was deposited for the TiN, TiB and TaC coatings, and a Cr layer for the DLC coating, prior to the coating deposition. The tribological properties of the coated vanadis 4 steel were investigated in the load-scanning test rig and compared to uncoated hardened or plasma nitrided vanadis 4 steel, as well as to three different forming-tool steels, produced at Uddeholm Tooling AB, see Table 2. The heat treatments and the hardness values of the forming-tool steels included in this investigation are given in Table 3. As a counter material in the load-scanning tests, a soft (350 HV) austenitic stainless steel (AISI 304) was used for the friction tests and a hardened and tempered (850 HV) ball-bearing steel (AISI 52100) for the wear-resistance assessment. In the load-scanning test rig, which involves two crossed, elongated cylindrical test specimens of diameter 10 mm (Ra * 0,2 um) that are forced to slide against each other under a constant speed the normal load is allowed to gradually increase during the forward stroke and to correspondingly decrease during the reverse stroke ([10] and [11]), Figure 1. Thus, each point along the contact path of both specimens will experience a unique load and display a unique tribological history after the completion of the test. For the purpose of this investigation the range of the normal load was of the order of 100 to 1300 N. However, depending on the tribological property investigated a different mode of testing was used. For the purpose of anti-sticking tests, where the ability of the investigated materials and coatings VH^tTPsDDIK stran 148 Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties merilnik sile trenja friction force gauge _ tAAaM premični del moving sample holder merilnik sile v vzmeti vzmel spring force gauge spring Sl. 1. Shematični prikaz naprave za tribološko preizkušanje Fig. 1. Load-scanning test rig orodja je potekalo v razmerah suhega drsenja, pri drsni hitrosti 0,01 m/s. Preizkus je bil končan, ko je obremenitev dosegla največjo vrednost 1300 N. Za določitev tornih lastnosti raziskovanih prevlek in orodnih jekel za delo v hladnem proti mehko žarjenemu avstenitnemu jeklu smo uporabili ponavljajoče preizkušanje pri drsni hitrosti 0,1 m/s. Pred preizkusom je bila na površino preizkušancev nanesena tanka plast neaditiviranega poli-alfa-olefinskega olja (PAO; v40 = 46,6 mm2/s) debeline ~10 um. Tudi obrabna obstojnost raziskovanih materialov je bila določena pri drsni hitrosti 0,1 m/s, pri čemer je bil protipreizkušanec, izdelan iz kaljenega jekla 100Cr6, potopljen v neaditivirano olje PAO. Obraba raziskovanih materialov v razmerah mejnega mazanja je bila določena z uporabo optične mikroskopije in profilometrije, in to po 200 ciklih izmeničnega drsenja, na točki izpostavljeni obremenitvi 700 N. 2 REZULTATI Slika 2 prikazuje torne lastnosti raziskovanih materialov v obliki koeficienta trenja kot funkcijo obremenitve. V primeru kaljenega jekla vanadis 4 se začetni koeficient trenja giblje v območju med 0,3 in 0,35. Prvi znaki adhezije avstenitnega jekla na dotikalno površino orodnega jekla se, v obliki nenadnega povečanja koeficienta trenja, kažejo pri obremenitvi ~200 N, kar je mikroskopija dotikalne površine tudi potrdila. Podobno obnašanje je moč zaslediti pri vseh orodnih jeklih, vključenih v raziskavo, kar prikazuje slika 2a. V odvisnosti od obremenitve, pri kateri se prične na dotikalni površini orodnega jekla ustvarjati plast prenesenega avstenitnega jekla, pa je moč raziskovana orodna jekla razdeliti v dve skupini (sl. 3a). Pri prvi skupini, ki to prevent the transfer of a soft austenitic stainless steel to the tool surface was evaluated the test equipment was set to a single, forward stroke mode. Dry sliding conditions with a sliding speed fixed to 0,01 m/s were used. To determine the frictional behaviour of the inves-tigated materials against austenitic stainless steel under starved lubricated conditions, the load-scanning test rig was set to multicycle mode. An approximately 10-um-thick film of pure poly-alpha-olefin oil (PAO, v40 = 46,6 mm2/s) was applied to the austenitic stainless steel sample before each test The same test procedure, with the sliding speed of 0.1 m/s, the multicycle mode and the use of lubricant was used to determine the wear resistance of different materials and coatings under boundary lubrication. However, a hard-ened ball-bearing steel had to be used as the counter material to induce wear of the investigated materials and coatings. The maximum number of test cycles was 200. During testing the coefficient of friction was monitored as a function of load and time, and after the completion of the test a critical load corresponding to the appearance of material transfer and wear of the investigated materials were determined by post-test optical microscopy (OM) and optical surface profilometry respectively. 2 RESULTS AND DISCUSSION Figures 2a and b reveal the anti-sticking properties as the monitored friction coefficient versus load in the dry sliding test. In the case of hardened vanadis 4 steel against austenitic stainless steel the initial friction coefficient varied between 0.30 and 0.35. The first sign of adhesion of work material to the tool-steel surface, as indicated by a sudden increase in friction and confirmed by post-test microscopic observation, was detected at a load of about 200 N. Similar results with only marginal differences in frictional behaviour were observed for all the forming-tool steels investigated, as shown in Fig. 2a. However, depending on the load at which a layer of stainless steel starts to build-up on the tool surface, the investigated forming-tool steels can be classified into gfin^OtJJIMISCSD 04-3 stran 149 | ^BSSlTTMlGC Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties VANADIS 4 VANADIS 6 /L** \ VANADIS 23 TJf&Bh iST Mf ""\ WEARTEC 0 200 400 600 800 1000 1200 1400 obremenitev [l\Q load [N] 0 200 400 600 800 1000 1200 1400 obremenitev [N\ load [N] Sl. 2. Koeficient trenja v odvisnosti od obremenitve; (a) orodna jekla za hladno preoblikovanje in (b) oplemeniteno orodno jeklo za hladno preoblikovanje vanadis 4 Fig. 2. Friction coefficient vs. normal load for (a) forming-tool steels and (b) surface-engineered vanadis 4 steel, recorded during sliding against stainless steel vključuje kaljeni jekli vanadis 4 in vanadis 6, se adhezija ter prenos avstenitnega jekla na dotikalno površino orodja prične pri obremenitvi, nižji od 200N. Pri jeklih vanadis 23 in weartec, ki spadata v drugo skupino, pa v območju med 250 in 300N (sl. 3a). Sliki 2b in 3b prikazujeta krivulje koeficienta trenja ter kritično obremenitev adhezije in prenosa avstenitnega jekla na dotikalno površino za primer oplemenitenega orodnega jekla vanadis 4. Tudi v primeru oplemenitenega orodnega jekla vanadis 4 nenadno povečanje koeficienta trenja sovpada s pričetkom adhezije oziroma lepljenjem avstenitnega jekla na dotikalno površino orodnega jekla. V primerjavi s kaljenim orodnim jeklom, nitriranje v plazmi, zniža koeficient trenja ter daje boljšo adhezijsko odpornost površine (L * 300N). Kljub vsemu pa z nitriranjem v plazmi ne moremo doseči izrednih tornih lastnosti, ki jih ponujata prevleki TaC in DPP, kar prikazujeta sliki 2b in 3b. two groups, see Fig. 3a. For the first group with hardened vanadis 4 and vanadis 6 steel, the transfer of work material started at a load of approximately 200 N, whereas vanadis 23 and weartec steels displayed adhesion of the austenitic stainless steel in the load range 250 to 300 N, see Fig. 3a. Figures 2b and 3b show coefficient-of-friction curves and critical loads of material transfer, respectively, for surface-engineered vanadis 4 steel. A sudden increase in the friction was found to correspond to the beginning of material transfer for the nitrided vanadis 4, and the vanadis 4 with TiN, TiB2 and TaC coatings. Plasma nitriding improved the anti-sticking properties of vanadis 4 (L - 300 N), which then outperformed all the other forming-tool steels investigated. However, the plasma-nitrided surfaces were unable to match the very good behaviour obtained with the TaC and DLC coatings, as shown in Figs. 2b and 3b. VH^tTPsDDIK stran 150 Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties 350 300 -¦ > S — 2 I i" i 4) O 1400 1200 S, 1000 > _ 800 L 5" E ¦—¦ d) TJ O) 5 600 ¦g 400 -\ 200 0 n orodno jeklo forming tool steel AH AN TiN TiB2 TaC DLC oplemenitenje surface treatment Sl. 3. Kritična obremenitev pričetka prenosa in tvorjenja plasti avstenitnega jekla na dotikalni površini raziskovanih materialov, določena z optično mikroskopijo; (a) orodna jekla za hladno preoblikovanje (preglednica 3) in (b) oplemeniteno orodno jeklo za hladno preoblikovanje vanadis 4 Fig. 3. Beginning of the transfer of stainless steel to (a) forming-tool steels and (b) surface-engineered vanadis 4 steel Prevleki TaC in DPP znižata začetni koeficient trenja (u*0,15, sl. 2b) ter dajeta najmanjšo verjetnost prenosa obdelovanega materiala. Pri prevleki TaC se je adhezija in prenos avstenitnega jekla pričela pri obremenitvi ~700 N, medtem ko pri prevleki DPP tudi pri največji obremenitvi 1300N ni prišlo do nastajanja povezane plasti prenesenega avstenitnega jekla na dotikalni površini, kakor prikazuje slika 4a. Na drugi strani pa prevleka TiB2 kaže najvišji koeficient trenja proti avstenitnemu jeklu (u = 0,5 - 0,8) in takojšen prenos obdelovanega materiala na dotikalno površino orodja (slika 4b). Kljub temu, da je uporaba prevleke TiN znižala začetni koeficient trenja na ~0,25 pa, v primerjavi s kaljenim orodnim jeklom, to ni imelo nikakršnega vpliva na postopek prenosa obdelovanega materiala, kakor prikazuje slika 3b. Spremljanje koeficienta trenja v odvisnosti od obremenitve in števila ponovitev omogoča izdelavo tornih kart, ki prikazujejo spremembe v The TaC and DLC coatings considerably reduced the initial friction coefficient against austenitic stainless steel (u * 0.15, see Fig. 2b) and gave the lowest sensitivity to material transfer. For the TaC coating, the transfer of stainless steel started at a load of around 700 N, whereas virtually no transfer of work material could be detected for DLC-coated vanadis 4 steel up to a maximum load of 1300 N, as shown in Fig. 4a. On the other hand, the TiB2 coated steel showed by far the highest friction coefficient (0.5-0.8), and an almost instantaneous transfer of stainless steel to the coated surface (Fig. 4b). The application of a TiN coating reduced the initial friction coefficient to about 0.25, but this did not have any influence on the process of material transfer in comparison to uncoated vanadis 4 steel, see Figs. 3a and b. Monitoring the friction coefficient as a function of load and time makes it possible to prepare friction maps, which show the transition points in the Sl. 4. Izgled dotikalne površine pri pričetku prenosa avstenitnega jekla; (a) DPP prevleka pri obremenitvi 1300 N in (b) TiB 2 prevleka pri obremenitvi 150 N Fig. 4. Typical appearance of the contact surfaces of sliding-test specimens at the begining of stainless-steel transfer (light contrast). a) DLC coating at 1300 N load, and (b) TiB2 coating at 150 N load. The arrows indicate the direction of sliding | IgfinHŽšlbJlIMlIgiCšD I stran 151 glTMDDC Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties št. ponovitev no. of cycles obremenitev [N] load [N] 1025 1300 št. ponovitev no. of cycles obremenitev [N] load [N] 1025 1300 št. ponovitev no. of cycles Sl. 5. Torne slike za oplemeniteno orodno jeklo vanadis 4: (a) nitrirano v plazmi + PAO, (b) nitrirano v plazmi + izbrano olje za hladno preoblikovanje, (c) prevlečeno s prevleko TiN + PAO in (d) prevlečeno z DPP prevleko + PAO Fig. 5. Friction maps for surface-engineered vanadis 4 steel, sliding against soft austenitic stainless steel (a) plasma-nitrided steel + PAO, (b) plasma-nitrided steel + fully formulated forming oil - Castrol Ilform, (c) TiN coated steel + PAO, (d) DLC coated steel + PAO tornem obnašanju oplemenitenega orodnega jekla vanadis 4 (sl. 5). V primeru kaljenega ali nitriranega orodnega jekla za delo v hladnem je prišlo do prehoda iz začetnega mejnega mazanja v področje suhega trenja med drugo ponovitvijo, in to pri obremenitvi ~400 N, po vsega treh ponovitvah pa je bilo treba preizkus zaradi čezmernega prenosa obdelovanega materiala ustaviti (sl. 5a). Podobno torno obnašanje z začetnim koeficientom trenja v območju med 0,15 in 0,2 ter prehod v področje suhega trenja že med drugo ponovitvijo, smo opazili pri vseh raziskovanih orodnih jeklih za delo v hladnem. Z uporabo izbranega olja za hladno preoblikovanje (Castrol Ilform TDN 81, v40 = 120 mm2/s) smo že z nanosom ~10 (.m mazalne plasti na dotikalno površino zagotovili enakomeren potek koeficienta trenja v celotnem obremenilnem območju in popolnoma 3 iS-insOlJUMligSCd | iTIMECj stran 152 tribological behavior of the investigated materials. Friction maps for plasma-surface-treated vanadis 4 steel loaded against austenitic stainless steel under starved lubrication conditions are shown in Fig. 5. An increase in the friction was detected as early as the second stroke, at « 400 N load, for the hardened or plasma-nitrided steel, and the test had to be stopped due to the extensive transfer of stainless steel to the tool-steel surface after the third stroke, as indicated in Fig. 5a. These results indicate that as the reciprocal sliding proceeds, the initial regime of boundary lubrication moves towards a mixture of boundary lubrication and dry sliding. Similar results, with the initial friction in the range 0.15 to 0.20, and the transfer of work material starting during the second stroke, were observed for all forming-tool steels investigated. However, the use of a fully formulated forming oil gave a very smooth sliding of the nitrided Podgornik B., Hogmark S., Sandberg O.: Mo`nosti uporabe - Wear and Friction Properties preprečili prenos obdelovanega materiala, kar prikazuje slika 5b. Pri uporabi trdih keramičnih prevlek TiN in TiB2 je prišlo do preboja mazalne plasti in prehoda v področje suhega trenja s prenosom obdelovanega materiala že med prvo ponovitvijo, zaradi cesar je bilo treba preizkus ustaviti že po dveh ponovitvah (sl. 5c). Na drugi strani pa prevleki na podlagi trdega ogljika (TaC in DPP) zagotavljata precej boljše torne lastnosti dotikalne površine. Kljub temu, da je tudi v primeru prevleke TaC prišlo do preboja mazalne plasti in prenosa obdelovanega materiala, je bilo to omejeno le na največje obremenitve (F > 1000 N). Ti rezultati kažejo na slabo nosilnost same prevleke oziroma pomanjkljivo oprijemljivost prevleke na podlago. Najboljše rezultate, primerljive z uporabo izbranega olja za hladno preoblikovanje in neoplaščenega jekla vanadis 4, pa smo dosegli z uporabo prevleke DPP, ki daje že ob najmanjši količini neaditiviranega PAO olja enakomeren koeficient trenja d ~ 0,1) in popolno zaščito pred prenosom obdelovanega materiala v celotnem obremenitvenem območju (sl. 5d). Razlika v obrabni obstojnosti raziskovanih materialov, določeni v pogojih mejnega mazanja, je bila precej manjša kakor v primeru tornih lastnosti. Slika 6 prikazuje stopnjo obrabe raziskovanih materialov v točki vzdolž dotikalne poti, ki ustraza obremenitvi 700 N oziroma dotikalnemu tlaku * 4,2 GPa. Na splošno je moč reči, da nitriranje v plazmi ter nanos trde prevleke izboljšata obrabno obstojnost orodnega jekla, kar velja za celotno obremenitveno območje (sl. 6). Kljub vsemu pa razlaga rezultatov obrabnih preizkusov ni preprosta, saj hkrati deluje več obrabnih mehanizmov. steel Oi * 0.1) and complete protection against material transfer, see Fig. 5b. Figures 5c and d show friction maps for the coated forming-tool steel loaded against austenitic stainless steel. In the case of TiN-coated steel, a rapid increase in friction corresponding to a rapid transfer from boundary lubricated to dry sliding started as early as the first stroke, at a load of approximately 1100 N (Fig. 5c). The TiB coating showed similar results with an even higher increase rate in friction under starved lubricated conditions (0.4–0.6), and an immediate transfer of stainless steel. On the other hand TaC- and DLC-coated samples showed improved frictional properties under starved lubrication conditions, in comparison with uncoated steel. For the TaC coating, an increase in friction was also detected during the second stroke; however, it was more load dependent with the adhesion of the work material limited to the highest loads (F > 1000 N). Due to insufficient adhesion, the TaC coating may fail under high loads, leading to exposure of the substrate material, and accelerated material transfer. By far the best results were obtained for the DLC-coated steel, which during the entire 50-cycle test displayed a uniform frictional behavior with a friction coefficient of ~0.1, see Fig. 5d. The differences in wear resistance among the test materials were not as dramatic in terms of sliding wear under boundary lubrication as they were in terms of friction, see Fig. 6. It shows the wear rate of the investigated materials measured using a profilometric technique at a position corresponding to a load of 700 N (* 4.2 GPa maximum Hertzian contact pressure). Similar results were observed for the whole load range. The general observations are that plasma nitriding or coating deposition improve the wear resistance of the surfaces. However, it is not at all straightforward to interpret the sliding-wear test results, since several mechanisms are operating simultaneously. I „5 2.5- o R 5 Y2 DINAMIČNI PADEC Hdin PRETOK Q m3/s INDIKACIJA Q 2f ČISTI PADEC Hn J^ GONILNIK Y3 Sl. 11. Blokovni diagram krmiljenja gonilniškega odprtja fWm&\ ^TTDiaafeaMMKD Ml^ifMK stran 188 Treb{e A.J.: Meritev izkoristka in nastavitev - Measurement of Relative Turbine r1 r2 T H IG v1 v2 z z1 z2 x1 x2 polmer meritve diferencialnega tlaka AhW v točki 1 m polmer meritve diferencialnega tlaka AhWK v točki 2 m temperatura vode °C gladina vode pri iztoku m povprečna vtočna hitrost vode m/s povprečna iztočna hitrost vode m/s nadmorska višina m točka energijskih veličin pred turbino -točka energijskih veličin za turbino -višinska razlika od sredine gonilnika do tlačnega zaznavala - vtok m višinska razlika od sredine gonilnika do tlačnega zaznavala - iztok m y3 Q0 Q gar b hg h tu rv cosF j j j y gen tur relativna lega servomotorja vodilnika % relativna lega servomotorja gonilnika % pretok vode m3s-1 zajamčeni pretok vode m3s-1 kot nagiba gonilnikovih lopat izkoristek generatorja % izkoristek turbine % gostota vode kgm3 faktor generatorske moči brezrazsežno št. pretoka -geografska širina kot izbranega prereza v spirali brezrazsežno število čistega padca - 5 LITERATURA [1] SIST EN 60041 field acceptance tests to determine the hydraulic preformance of hydraulic turbines. [2] SIST EN 60308 international code for testing of speed governing system for hydraulic turbines. [3] SIST EN 60545 guide for commissioning, operation and maintenance of hydraulic turbines. [4] Schweiger, F. (1978) Research work on flow measurement by the Winter Kennedy method.Proceeding of Flomeko. [5] Schweiger, F. and V. Kercan (1985) Winter-Kennedijeva metoda za merjenje pretoka na hidroelektrarnah. Automatika. [6] Calvin, V. D. and K. E. Sorensen (1969) Handboock of applied hydraulics. Mc Graw -Hill Book Company. [7] Streeter, V.L. (1961) Handbook of fluid dynamics. Mc Graw -Hill Book Company. [8] Jordan, V. (1983) Prehodni režimi v hidravličnih sistemih. Partizanska knjiga. [9] Trebše, AJ., Poročili o preizkusih na gradbišču št. 1351 in 1375 - Litostroj e.i. 2002/2003 Avtorjev naslov: Andrej J. Trebše Litostroj e.i. Litostrojska cesta 40 1000 Ljubljana andrej.trebse@litostroj-ei.si Prejeto: Received: 25.11.2003 Sprejeto: Accepted: 8.4.2004 Odprto za diskusijo: 1 leto Open for discussion: 1 year y 2 © Strojni{ki vestnik 50(2004)3,190 © Journal of Mechanical Engineering 50(2004)3,190 ISSN 0039-2480 ISSN 0039-2480 Osebne vesti Personal Events Osebne vesti Personal Events Magisteriji, specializacije, diplome MAGISTERIJI Na Fakulteti za strojništvo Univerze v Ljubljani sta z uspehom zagovarjala svoji magistrski deli: dne 23. marca 2004: Borut Kecelj, z naslovom: “Celovit računalniško podprt pristop k izdelavi oblikovalnih orodij”; dne 24. marca 2004: Štefan Žun, z naslovom: “Ekološko sledenje razvoja lokalnih skupnosti”. S tem sta navedena kandidata dosegla akademsko stopnjo magistra znanosti. SPECIALIZACIJE Na Fakulteti za strojništvo Univerze v Mariboru sta z uspehom zagovarjala svoji specialistični deli: dne 10. marca 2004: Dejan Studenčnik, z naslovom: “Pomen in vpliv različnih načinov obnove gravure kovaških orodij na vzdržljivost gravure”; dne 11. marca 2004: Franc Rogelšek, z naslovom: “Upravljanje kakovosti v velikoserijski proizvodnji”. DIPLOMIRALI SO Na Fakulteti za strojništvo Univerze v Ljubljani sta pridobila naziv univerzitetni diplomirani inženir strojništva: dne 1.marca 2004: Simon BRLEK; dne 29. marca 2004: Polona TERŽAN. * Na Fakulteti za strojništvo Univerze v Ljubljani so pridobili naziv diplomirani inženir strojništva: dne 11. marca 2004: Jožef BLAŽIČ, Jože KOLANDER Aleš MLEKUŽ, Jože PINOZA, Marijan ŠTEFANČIČ, Jože ZAKOTNIK; dne 12. marca 2004: Aleš BAMBIČ, Marjan BRULC, Andrej GREBENC, Dominik KALUŽA, Rok STARC. Na Fakulteti za strojništvo Univerze v Mariboru so pridobili naziv diplomirani inženir strojništva: dne 25. marca 2004: Predrag RADEVIČ, Rudi REPNIK, Edin SELMAN. VH^tTPsDDIK stran 190 © Strojni{ki vestnik 50(2004)3,191-192 ISSN 0039-2480 Navodila avtorjem Navodila avtorjem Instructions for Authors Članki morajo vsebovati: - naslov, povzetek, besedilo članka in podnaslove slik v slovenskem in angleškem jeziku, - dvojezične preglednice in slike (diagrami, risbe ali fotografije), - seznam literature in - podatke o avtorjih. Strojniški vestnik izhaja od leta 1992 v dveh jezikih, tj. v slovenščini in angleščini, zato je obvezen prevod v angleščino. Obe besedili morata biti strokovno in jezikovno med seboj usklajeni. Članki naj bodo kratki in naj obsegajo približno 8 tipkanih strani. Izjemoma so strokovni članki, na željo avtorja, lahko tudi samo v slovenščini, vsebovati pa morajo angleški povzetek. Vsebina članka Članek naj bo napisan v naslednji obliki: - Naslov, ki primerno opisuje vsebino članka. - Povzetek, ki naj bo skrajšana oblika članka in naj ne presega 250 besed. Povzetek mora vsebovati osnove, jedro in cilje raziskave, uporabljeno metodologijo dela,povzetek rezulatov in osnovne sklepe. - Uvod, v katerem naj bo pregled novejšega stanja in zadostne informacije za razumevanje ter pregled rezultatov dela, predstavljenih v članku. - Teorija. - Eksperimentalni del, ki naj vsebuje podatke o postavitvi preskusa in metode, uporabljene pri pridobitvi rezultatov. - Rezultati, ki naj bodo jasno prikazani, po potrebi v obliki slik in preglednic. - Razprava, v kateri naj bodo prikazane povezave in posplošitve, uporabljene za pridobitev rezultatov. Prikazana naj bo tudi pomembnost rezultatov in primerjava s poprej objavljenimi deli. (Zaradi narave posameznih raziskav so lahko rezultati in razprava, za jasnost in preprostejše bralčevo razumevanje, združeni v eno poglavje.) - Sklepi, v katerih naj bo prikazan en ali več sklepov, ki izhajajo iz rezultatov in razprave. - Literatura, ki mora biti v besedilu oštevilčena zaporedno in označena z oglatimi oklepaji [1] ter na koncu članka zbrana v seznamu literature. Vse opombe naj bodo označene z uporabo dvignjene številke1. Oblika članka Besedilo naj bo pisano na listih formata A4, z dvojnim presledkom med vrstami in s 3 cm širokim robom, da je dovolj prostora za popravke lektorjev. Najbolje je, da pripravite besedilo v urejevalnilku Microsoft Word. Hkrati dostavite odtis članka na papirju, vključno z vsemi slikami in preglednicami ter identično kopijo v elektronski obliki. Prosimo, da ne uporabljate urejevalnika LaTeX, saj program, s katerim pripravljamo Strojniški vestnik, ne uporablja njegovega formata. V urejevalniku LaTeX oblikujte grafe, preglednice in enačbe in jih stiskajte na kakovostnem laserskem tiskalniku, da jih bomo lahko presneli. Enačbe naj bodo v besedilu postavljene v ločene vrstice in na desnem robu označene s tekočo številko v okroglih oklepajih Enote in okrajšave V besedilu, preglednicah in slikah uporabljajte le standardne označbe in okrajšave SI. Simbole fizikalnih veličin v besedilu pišite poševno (kurzivno), (npr. v, T, n itn.). Simbole enot, ki sestojijo iz črk, pa pokončno (npr. ms1, K, min, mm itn.). Vse okrajšave naj bodo, ko se prvič pojavijo, napisane v celoti v slovenskem jeziku, npr. časovno spremenljiva geometrija (ČSG). © Journal of Mechanical Engineering 50(2004)3,191-192 ISSN 0039-2480 Instructions for Authors Papers submitted for publication should comprise: - Title, Abstract, Main Body of Text and Figure Captions in Slovene and English, - Bilingual Tables and Figures (graphs, drawings or photographs), - List of references and - Information about the authors. Since 1992, the Journal of Mechanical Engineering has been published bilingually, in Slovenian and English. The two texts must be compatible both in terms of technical content and language. Papers should be as short as possible and should on average comprise 8 typed pages. In exceptional cases, at the request of the authors, speciality papers may be written only in Slovene, but must include an English abstract. The format of the paper The paper should be written in the following format: - A Title, which adequately describes the content of the paper. - An Abstract, which should be viewed as a miniversion of the paper and should not exceed 250 words. The Abstract should state the principal objectives and the scope of the investigation, the methodology employed, summarize the results and state the principal conclusions. - An Introduction, which should provide a review of recent literature and sufficient background information to allow the results of the paper to be understood and evaluated. - A Theory - An Experimental section, which should provide details of the experimental set-up and the methods used for obtaining the results. - A Results section, which should clearly and concisely present the data using figures and tables where appropriate. - A Discussion section, which should describe the relationships and generalisations shown by the results and discuss the significance of the results making comparisons with previously published work. (Because of the nature of some studies it may be appropriate to combine the Results and Discussion sections into a single section to improve the clarity and make it easier for the reader.) - Conclusions, which should present one or more conclusions that have been drawn from the results and subsequent discussion. - References, which must be numbered consecutively in the text using square brackets [1] and collected together in a reference list at the end of the paper. Any footnotes should be indicated by the use of a superscript1. The layout of the text Texts should be written in A4 format, with double spacing and margins of 3 cm to provide editors with space to write in their corrections. Microsoft Word for Windows is the preferred format for submission. One hard copy, including all figures, tables and illustrations and an identical electronic version of the manuscript must be submitted simultaneously. Please do not use a LaTeX text editor, since this is not compatible with the publishing procedure of the Journal of Mechanical Engineering. Graphs, tables and equations in LaTeX may be supplied in good quality hard-copy format, so that they can be copied for inclusion in the Journal. Equations should be on a separate line in the main body of the text and marked on the right-hand side of the page with numbers in round brackets. Units and abbreviations Only standard SI symbols and abbreviations should be used in the text, tables and figures. Symbols for physical quantities in the text should be written in Italics (e.g. v, T, n , etc.). Symbols for units that consist of letters should be in plain text (e.g. ms-1, K, min, mm, etc.). All abbreviations should be spelt out in full on first appearance, e.g., variable time geometry (VTG). stran 191 glTMDDC Strojni{ki vestnik - Journal of Mechanical Engineering Slike Slike morajo biti zaporedno oštevilčene in označene, v besedilu in podnaslovu, kot sl. 1, sl. 2 itn. Posnete naj bodo v kateremkoli od razširjenih formatov, npr. BMP, JPG, GIF. Za pripravo diagramov in risb priporočamo CDR format (CorelDraw), saj so slike v njem vektorske in jih lahko pri končni obdelavi preprosto povečujemo ali pomanjšujemo. Pri označevanju osi v diagramih, kadar je le mogoče, uporabite označbe veličin (npr. t, v, m itn.), da ni potrebno dvojezično označevanje. V diagramih z več krivuljami, mora biti vsaka krivulja označena. Pomen oznake mora biti pojasnjen v podnapisu slike. Vse označbe na slikah morajo biti dvojezične. Za vse slike po fotografskih posnetkih je treba priložiti izvirne fotografije ali kakovostno narejen posnetek. V izjemnih primerih so lahko slike tudi barvne. Preglednice Preglednice morajo biti zaporedno oštevilčene in označene, v besedilu in podnaslovu, kot preglednica 1, preglednica 2 itn. V preglednicah ne uporabljajte izpisanih imen veličin, ampak samo ustrezne simbole, da se izognemo dvojezični podvojitvi imen. K fizikalnim veličinam, npr. t (pisano poševno), pripišite enote (pisano pokončno) v novo vrsto brez oklepajev. Vsi podnaslovi preglednic morajo biti dvojezični. Seznam literature Vsa literatura mora biti navedena v seznamu na koncu članka v prikazani obliki po vrsti za revije, zbornike in knjige: [1] Tarng, Y.S., Y.S. Wang (1994) A new adaptive controler for constant turning force. Int J Adv Manuf Technol 9(1994) London, pp. 211-216. [2] Čuš, F., J. Balič (1996) Rationale Gestaltung der organisatorischen Ablaufe im Werkzeugwesen. Proceedings of International Conference on Computer Integration Manufacturing Zakopane, 14.-17. maj 1996. [3] Oertli, PC. (1977) Praktische Wirtschaftskybernetik. Carl Hanser Verlag Minchen. Podatki o avtorjih Članku priložite tudi podatke o avtorjih: imena, nazive, popolne poštne naslove, številke telefona in faksa ter naslove elektronske pošte. Sprejem člankov in avtorske pravice Uredništvo Strojniškega vestnika si pridržuje pravico do odločanja o sprejemu članka za objavo, strokovno oceno recenzentov in morebitnem predlogu za krajšanje ali izpopolnitev ter terminološke in jezikovne korekture. Avtor mora predložiti pisno izjavo, da je besedilo njegovo izvirno delo in ni bilo v dani obliki še nikjer objavljeno. Z objavo preidejo avtorske pravice na Strojniški vestnik. Pri morebitnih kasnejših objavah mora biti SV naveden kot vir. Rokopisi člankov ostanejo v arhivu SV Vsa nadaljnja pojasnila daje: Uredništvo STROJNIŠKEGA VESTNIKA p.p. 197 1001 Ljubljana Telefon: (01) 4771-757 Telefaks: (01) 2518-567 E-mail: strojniski.vestnik@fs.uni-lj.si Figures Figures must be cited in consecutive numerical order in the text and referred to in both the text and the caption as Fig. 1, Fig. 2, etc. Figures may be saved in any common format, e.g. BMP, GIF, JPG. However, the use of CDR format (CorelDraw) is recommended for graphs and line drawings, since vector images can be easily reduced or enlarged during final processing of the paper. When labelling axes, physical quantities, e.g. t, v, m, etc. should be used whenever possible to minimise the need to label the axes in two languages. Multi-curve graphs should have individual curves marked with a symbol, the meaning of the symbol should be explained in the figure caption. All figure captions must be bilingual. Good quality black-and-white photographs or scanned images should be supplied for illustrations. In certain circumstances, colour figures may be considered. Tables Tables must be cited in consecutive numerical order in the text and referred to in both the text and the caption as Table 1, Table 2, etc. The use of names for quantities in tables should be avoided if possible: corresponding symbols are preferred to minimise the need to use both Slovenian and English names. In addition to the physical quantity, e.g. t (in Italics), units (normal text), should be added in new line without brackets. All table captions must be bilingual. The list of references References should be collected at the end of the paper in the following styles for journals, proceedings and books, respectively: [1] Tarng, Y.S., Y.S. Wang (1994) A new adaptive controler for constant turning force. Int J Adv Manuf Technol 9(1994) London, pp. 211-216. [2] Čuš, F., J. Balič (1996) Rationale Gestaltung der organisatorischen Ablaufe im Werkzeugwesen. Proceedings of International Conference on Computer Integration Manufacturing Zakopane, 14.-17. maj 1996. [3] Oertli, PC. (1977) Praktische Wirtschaftskybernetik. Carl Hanser Verlag Minchen. Author information The following information about the authors should be enclosed with the paper: names, complete postal addresses, telephone and fax numbers and E-mail addresses. Acceptance of papers and copyright The Editorial Committee of the Journal of Mechanical Engineering reserves the right to decide whether a paper is acceptable for publication, obtain professional reviews for submitted papers, and if necessary, require changes to the content, length or language. Authors must also enclose a written statement that the paper is original unpublished work, and not under consideration for publication elsewhere. On publication, copyright for the paper shall pass to the Journal of Mechanical Engineering. The JME must be stated as a source in all later publications. Papers will be kept in the archives of the JME. You can obtain further information from: Editorial Board of the JOURNAL OF MECHANICAL ENGINEERING P.O.Box 197 1001 Ljubljana, Slovenia Telephone: +386 (0)1 4771-757 Fax: +386 (0)1 2518-567 E-mail: strojniski.vestnik@fs.uni-lj.si VH^tTPsDDGC I gfTTMafcflMia&a] I stran 192