

UNIVERZA V LJUBLJANI Fakulteta za elektrotehniko

UNIVERSITY OF LJUBLJANA

Faculty of Electrical Engineering Tržaška 25 1001 Ljubljana, p.p. 2999 Slovenia Tel.: +386 61 17 68 411 +386 61 12 64 620 Fax: +386 61 12 64 630 Št.: M-822/2000 Datum: 27. 03. 2000

Janez J A M Š E K, univ. dipl. inž. el.

LJUBLJANA

Fakulteta za elektrotehniko Univerze v Ljubljani izdaja naslednjo magistrsko nalogo

Naslov naloge: BISPEKTRALNA ANALIZA KARDIOVASKULARNIH OSCILACIJ

Tematika naloge:

Periferni krvni pretok pri človeku na minutni časovni skali vsebuje pet oscilatornih komponent. Njihove značilne frekvence se tudi oscilatorno spreminjajo kot posledica medsebojnih sklopitev. Vendar narava sklopitev še ni znana.

V nalogi obdelajte metode za izračun spektrov višjih redov. Ugotovite značilnosti bispektrov za testne signale, ki vsebujejo dve in več časovno spremenljivih značilnih frekvenc. Analizirajte vpliv frekvenčne resolucije na natančnost ocene bispektrov in bikoherenc signalov, ki vsebujejo oscilacije na širokem frekvenčnem območju.

Za signale perifernega krvnega pretoka, izmerjene pri zdravih osebah, izračunajte bispektre in bikoherence. Ugotovite, ali obstajajo kvadratične fazne sklopitve med oscilacijami, ki jih vsebuje krvni pretok.

1619

1919 UNIVERZA V LJUBLJANI, 1999 80 let

UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO

MAGISTRSKA NALOGA

BISPEKTRALNA ANALIZA Kardiovaskularnih oscilacij

JANEZ JAMŠEK

MENTORICA: DOC. DR. ANETA STEFANOVSKA

V LJUBLJANI, APRIL 2000.

ma - 829

DHGR65 / 20.4.2000

POVZETEK

Kardiovaskularni sistem je kompleksen dinamičen sistem sestavljen iz več podsistemov, od katerih lahko vsakega predstavimo kot skoraj periodični oscilator. Med posameznimi oscilatorji prihaja do medsebojnega vplivanja v obliki šibkih sklopitev. Fazne sklopitve so tipične za nelinearne sisteme. S preučevanjem faznih sklopitev in njihovih jakosti želimo pridobiti poglobljeno znanje o kardiovaskularnem sistemu.

Ker imamo opravka s frekvenčnimi in faznimi sklopitvami, so za ta namen prikladne metode statistike višjih redov. V delu so obdelane metode za izračun bispektrov. Osredotočili smo se na direktno metodo, ki izhaja iz diskretne Fourierove transformacije. Izdelali smo algoritem za izračun mer statistike višjih redov; bispektera in kvadrata bikoherence. Njune lastnosti smo preučili na številnih testnih signalih, ki so prikazani za boljše razumevanje bispektralne vsebine kardiovaskularnega signala krvnega pretoka.

Bispekter uspešno detektira frekvenčno in/ali fazno sklopljene frekvenčne komponente. Občutljiv je na fazne, frekvenčne in amplitudne spremembe ter robusten na šum. Kvadrat bikoherence uporabimo za določanje jakosti faznih sklopitev. V primerjavi z bispektrom je veliko bolj občutljva na šum in napake. Poleg tega je njena vrednost odvisna od uporabljenih parametrov, kot sta število oken in njihovo prekrivanje.

Dobra lastnost bispekteralne analize je možnost analize sklopitev med vsemi frekvenčnimi oscilatorji naenkrat, kar ne omogoča nobena druga metoda. Z njo je mogoče ugotavljati tip nelinearnosti kot je sklopitev drugega reda, kar dosedanje metode ne omogočajo.

bispektralno analizo signala krvnega pretoka. Med vsemi petimi Naredili smo kardioskovaskularnimi oscilatorji smo ugotovili vsaj frekvenčne sklopitve. Srčni, respiratorni, nevrogeni in metabolični oscilator izkazujejo fazno samosklopitev. Najmočnejšo med njimi izkazujeta srčni in nevrogeni oscilator. Respiratorni oscilator ravno tako izraža fazne sklopitve, vendar so frekvenčne v povprečju prevladujoče. Z bispektrom ugotovimo zelo močne sklopitve pri zelo nizkih karakterističnih frekvencah, ki nakazujejo na zelo močno sklopitev s srčnim oscilatorjem. Srčni in miogeni, srčni in nevrogeni ter miogeni in metabolični oscilator so močno fazno sklopljeni. Srčni in metabolični ter respiratorni in miogeni oscilator so močno, srčni in respiratorni oscilator srednje, ostali pa šibko frekvenčno sklopljeni. Ugotovili smo, da signal krvnega pretoka nakazuje na možnost kvadratične sklopitve med srčnim in respiratornim oscilatorjem, če privzamemo določeno območje vrednosti bifaz, za katere še lahko sklepamo na fazno sklopitev. Na vrednosti bispektra, bifaze in kvadrata bikoherence vpliva časovno spreminjanje amplitude in frekvence sklopljenih karakterističnih frekvenčnih komponent, zato ne moremo pričakovati popolnih faznih in kvadratičnih sklopitev.

Določanje vrste sklopitev in njihove jakosti se izkaže za problematično pri nizkih frekvencah. Za nepristransko in konsistentno oceno mer bispektra in bikoherence je potrebno poprečevati preko zadostnega (velikega) števila odsekov ali realizacij signala. Pri končnih dolžinah signala se tako zmanjša dolžina odseka za izračun diskretne Fourierove transformiranke in s tem poslabša frekvenčna ločljivost. Tako na kvadratične fazne sklopitve pri nizkih frekvencah in frekvenčnih komponentah, ki so si zelo blizu skupaj, ne moremo sklepati. Neobhodna je tudi odprava vseh napak, ki so posledice statistike drugega reda, ker se v višjem (tretjem) redu še bolj izrazijo, ker je varianca večja.

Ključne besede: Bispektralna analiza, oscilacije, bispekter, bikoherenca, kumulanti, momenti, statistika višjih redov, sklopitev, fazna sklopitev, frekvenčna sklopitev, kvadratična sklopitev, kardiovaskularni signali, krvni pretok.

KAZALO

SUR

KAZALO

1. MOTIVACIJA ZA DELO	3
2. KARDIOVASKULARNI SISTEM	7
3. STATISTIKA VIŠJIH REDOV	11
3.1 MOMENTI	11
3.2 KUMULANTI	11
3.3 POVEZAVA MED MOMENTI IN KUMULANTI	12
3.4 LASTNOSTI MOMENTOV IN KUMULANTOV	13
3.5 MOMENTI IN KUMULANTI USTALJENIH PROCESOV	14
3.6 POLISPEKTRI	18
4. BISPEKTER	23
4.1 GLAVNO PODROČJE	24
4.2 IZRAČUN BISPEKTRA	25
4.2.1 DIREKTNA METODA	26
4.3 STATISTIČNE LASTNOSTI OCENE BISPEKTRA	28
4.4 BIKOHERENCA	29
5. FAZNE SKLOPITVE	33
5.1 FAZNA SKLOPITEV DRUGEGA REDA	34
5.2 FAZNA RAZLAGA KVADRATIČNE SKLOPITVE	39
5.3 MEHANIZEM KVADRATIČNE SKLOPITVE	40
7. REZULTATI	53
7.1 SIGNALI	53
7.2 PRIPRAVA SIGNALOV	54
7.2.1 Odstranjevanje trenda	54
7.2.2 Prevzorčenje signalov	54
7.2.5 Osrediscenje casovne vrste	54
7.3.1 Sklapitav mod svěno in respiratorno karakteristično frahvanco	57
7 3 2 Sklopitev med srčno in miogeno karakteristično frekvenco	67
7.3.4 Sklopitev med respiratorno in miogeno karakteristično frekvenco	75
7.3.5 Nizkofrekvenčne sklopitve	79
7.3.5.1 Srčna-nevrogena in srčna-metabolična povezava	82
7.3.5.2 Respiratorna-nevrogena in respiratorna-metabolična povezava	83
7.3.5.3 Miogena-nevrogena in miogena-metabolična povezava	86
7.3.5.4 Nevrogena-nevrogena povezava	88
7.3.5.5 Metabolična-metabolična povezava	89
7.4 PREGLED REZULTATOV	91
8. ZAKLJUČEK	93
9. LITERATURA	95
10. PRILOGE	101

1

1. MOTIVACIJA ZA DELO

Kardiovaskularni sistem je kompleksen dinamičen sistem. Kompleksnost izhaja iz velikega števila podsistemov, ki regulirajo krvni pretok, njihove nelinearne narave in medsebojne sklopitve. Zaradi kompleksnosti, nelinearnosti in neustaljenosti je težak za analiziranje in hkrati tako zanimiv.

Signali krvnega pretoka so biološki signali in so rezultat živega biološkega sistema. V sebi nosijo informacijo o biološki in fiziološki strukturi in stanju sistema, ki jih rodi. Tako na nek način odsevajo trenutno stanje celotnega organizma. Vsako bolezensko stanje se odraža kot odstopanje od določenega normalnega stanja. Interpretacija tega signala ima zato veliko potencialno klinično in diagnostično vrednost.

Sklopitve so ključnega pomena za razumevanje kardiovaskularnega in morda tudi celotnega človeškega sistema. Frekvenčna modulacija srčnega dihanja v ritmu dihanja, znana pod imenom srčna respiratorna aritmija, je že dolgo poznana [navedeno v 6]. Bivariatna analiza v časovnem prostoru, ki je bila pred kratkim razvita za analizo sinhronizacije ali posplošene sinhronizacije pri kaotičnih in šumnih oscilatorjih [51] je pokazala, da obstaja sinhronizacija srčnega in respiratornega oscilatorja. Sklopitve med podsistemi kardiovaskularnega sistema obstajajo, njihova narava delovanja pa je še nepojasnjena. Ker podsistemov ne moremo obravnavati ločeno, je njihovo preučevanje zelo težko. Zanima nas narava in pomen faznih relacij med posameznimi skoraj periodičnimi oscilatorji, ki lahko v primeru nelinearne sklopitve povzročijo novo odvisno komponento, pri modulirani frekvenci, ki je vsota osnovnih frekvenc sklopljenih oscilatorjev.

Biološki signali so običajno pomešani s šumom. Za izločitev informacije uporabljamo kompleksne transformacije, ki poudarijo njihovo vsebino.

Ocenjevanje gostote močnostnega spektra, časovno diskretnih determinističnih ali stohastičnih signalov v digitalnem procesiranju signalov se uporablja že več kot 30 let [35]. Metode ocenjevanja močnostnega spektra so se uveljavljale pri razvoju naprednih radarjev, sonarjev, biomedicine, komunikacije, govora, geofiziki in drugih sistemih za procesiranje podatkov. Obstoječe metode ocenjevanja močnostnih spektrov lahko preučujemo v številnih ločenih skupinah, kot so klasične ali Fourierove metode, Caponove maksimalno-verjetnostne metode in njene modifikacije, maksimalno-entropijske, minimalno energijske in minimalno križno entropijske kot tudi metode, ki temeljijo na avtoregresijskih metodah (AR), na gibajočih se povprečijh (MA) in na ARMA modelih; metodah harmonične dekompozicije kot so Prony, Pisarenko, MUSIC, ESPRIT in dekompozicija po singularnih vrednostih [12]. Razvoj na teh področjih je pripeljal do modeliranja signalov, razširitve na več dimenzij, več kanalov in do problemov, pri katerih hkrati z obdelavanjem izvedemo tudi razvrščanje.

Vsaka od omenjenih metod ima svoje prednosti in omejitve, ne samo v smislu ocenjevalne sposobnosti, temveč tudi v smislu računske zahtevnosti. Tako moramo glede na okolje signala izbrati najbolj primerno.

Pri ocenjevanju močnostnega spektra signala, ki ga preučujemo, je le ta obdelan na takšen način, da je ocenjena porazdelitev moči po posameznih frekvenčnih komponentah, pri tem pa se izgubijo fazne relacije med frekvenčnimi komponentami. Informacija v močnostnem spektru, je pravzaprav tista, ki je navzoča v avtokorelacijskem zaporedju. To bi zadostovalo za

SVR

popoln statistični opis Gaussovega signala, ne dobimo pa informacije odklona od Gaussovega signala in o prisotnosti faznih relacij.

V 60. letih so se pojavile nove metode, zasnovane na statistiki višjih redov, ki so omogočale izločanje novih informacij iz že obstoječih podatkov. Sprva na področju geofizike, proučevanju valovanja oceanov, sprememb pritiska atmosfere, seizmičnih aktivnosti in sončnih peg [34].

Informacijo o prisotnosti faznih sklopitev vsebujejo spektri višjih redov ali polispektri, ki so definirani s termini statistike višjih redov (kumulanti). Primer spektrov višjih redov je bispekter, ki je po definiciji Fourierov transform statistike tretjega reda in trispekter (spekter četrtega reda), ki je Fourierov transform statistike četrtega reda ustaljenega signala. Močnostni spekter je v resnici del razredov spektrov višjih redov, je spekter drugega reda. Čeprav so lahko statistika višjih redov in spektri višjih redov signala definirani s termini momentov in kumulantov, so momenti in spektri momentov zelo uporabni pri analizi determinističnih signalov (prehodni in periodični), medtem ko so kumulanti in spektri kumulantov velikega pomena pri analizi stohastičnih signalov [35].

Za uporabo statistike višjih redov (SVR¹) v procesiranju signalov je več splošnih motivacij. Te vključujejo metode: (1) zmanjševanja dodatnega obarvanega Gaussovega šuma; (2) identifikacija fazno neminimalnih sistemov ali rekonstrukcija fazno neminimalnih signalov [38]; (3) pridobivanje informacij zaradi odstopanja od Gaussove oblike in (4) ugotavljanje ter ovrednotenje nelinearnih lastnosti signala kot tudi identifikacija nelinearnega sistema [37].

Prva motivacija je osnovana na lastnosti, da so vsi spektri kumulantov, višjega reda od dva, enaki nič samo za Gaussove signale. V primeru, da imamo signal z ne-Gaussovo porazdelitvijo z dodanim Gaussovim šumovm, lahko izločimo šum s transformacijo v prostor kumulantov višjih redov. Prednost takšne obdelave je, da lahko iz spektra kumulantov preučevanih podatkov določimo in/ali ocenimo parametre signala. Z uporabo spektra kumulantov lahko dosežemo visoko razmerje signal-šum, ki nam omogoči odkrivanje, ocenitev parametrov ali rekonstrukcijo signala.

Druga motivacija je osnovana na dejstvu, da polispektri (kumulantov ali momentov) ohranjajo resnični fazni karakter signalov. Za modeliranje podatkovnih časovnih vrst, pri obdelavi signalov, se skoraj izključno uporablja statistika drugega reda, kar je navadno posledica optimizacijskega kriterija najmanjših kvadratov. Vendar pa avtokorelacija duši fazne informacije. Natančna fazna rekonstrukcija v prostoru avtokorelacije (ali močnostnem spektru) je tako mogoča le, če je signal fazno minimalen. Na drugi strani pa lahko rekonstruiramo fazno neminimalne signale ali ugotavljamo sistem v prostoru spektrov višjih redov na račun zmožnosti, da polispektri ohranjajo informacijo o amplitudi in neminimalni fazi.

Tretja motivacija izhaja iz opazovanja večine realnih signalov, ki nimajo Gaussove porazdelitve in imajo zato spektre višjih redov različne od nič. Lete lahko razstavimo v funkcije spektrov višjih redov, od katerih lahko vsaka vsebuje drugačno informacijo o signalih. To je lahko uporabno pri problemih klasifikacije signalov, kjer določeno lastnost za klasificiranje izvlečemo iz spektralnega prostora višjih redov.

¹ V beselilu bomo zaradi pogoste uporabe tega termina, krajšali s kratico SVR, ki pomeni Statistika Višjih Redov.

Na koncu, naj dodamo še to, da je vpeljava spektrov višjih redov povsem naravna, če želimo analizirati nelinearnost sistema pri naključnem vhodu v sistem. Že vrsto let zelo intenzivno preučujejo splošne relacije za poljubne ustaljene naključne podatke skozi poljubne linearne sisteme [33, 35]. V principu je večina teh relacij osnovana na metodi primerjanja močnostnih spektrov. Po drugi strani pa ne moremo dobiti splošnih relacij za poljubne ustaljene naključne podatke, ki gredo skozi poljuben nelinearen sistem. Namesto tega moramo vsak tip nelinearnosti preučevati kot poseben primer. Polispektri lahko igrajo ključno vlogo v ugotavljanju in določanju tipa nelinearnosti sistema iz izhodnih podatkov. Tako omogočajo metode statistike višjih redov razkrivanje informacij o nelinearnostih, kar nam ostale klasične metode ne omogočajo.

Uporaba mer SVR pri obdelavi signalov izhaja iz uporabnih lastnosti, ki vsebujejo mere SVR. Lahko jih razdelimo v dve skupini:

- v prvo skupino tiste, katerih namen so šumno-robustne ocene spremenljivk, ki jih običajno dobimo s statistiko drugega reda,
- v drugo skupino tiste, ki omogočajo informacijo, ki jo enostavno ne moremo dobiti z uporabo klasičnih mer.

Zadnje lastnosti SVR so za nas zelo zanimive in jih bomo s pridom uporabili pri analizi kardiovaskularnih signalov.

Vendar pa uporaba SVR ni vedno razvidna, kajti višji redi so bolj zapleteni, računsko zahtevnejši in težji za uporabo² kot je statistika drugega reda. Teh metod še vedno zlahka ne vključujejo v že obstoječi okvir obdelave signalov, kar je verjetno razlog za manjši interes na tem področju.

To delo se osredotoča prav na to področje, na polispektralno mero tretjega reda v frekvenčni domeni; to je bispektru in bikoherenci. Metode se še niso povsem oprijele in zato imajo prizvok raziskovalne. Na področju biomedicinskih signalov so bile metode SVR zelo malokrat uporabljene [1, 24, 41, 44, 50]. Večino analiz so opravili na signalu elektroencefalograma (EEG), predvsem za določanje globine anestezije [41, 44, 50]. Kot je avtorju znano, obstaja le eno delo, ki se ukvaraja z analizo spektrov tretjega reda za signal krvnega pretoka [1], ki pa ne proučuje sklopitev med značilnimi frekvencami kardiovaskularnega sistema, oziroma krvnega pretoka.

Bispekter vsebuje informacijo, ki je klasične metode spektralne analize ne omogočajo, razkriva nam vrsto sklopitve (frekvenčno ali fazno) in njeno jakost. Poleg tega lahko ugotovimo tudi določen tip nelinearnosti – fazno sklopitev drugega reda.

Med delom smo želeli poiskati odgovore na za nas tri bistvena vprašanja:

- Ali v signalih krvnega pretoka obstaja nelinearnost drugega reda?
- Ali obstaja in s kakšno gotovostjo lahko ugotovimo fazno sklopitev med srčnim in respiratornim oscilatorjem?

 $^{^{2}}$ V tem smislu, da so ocene dobljene s SVR na splošno bolj obremenjene z varianco kot v primeru uporabe statistike drugega reda.

> Ali lahko ugotovimo tudi druge sklopitve?

Za odgovore na zastavljena vprašanja smo sestavili algoritem za izračun mer statistike tretjega reda. Algoritem smo najprej preizkusili na testnih signalih s pričakovanimi bispektri. Na simuliranih signalih, ki so vsebovali podobne lastnosti, kot jih ima kardiovaskularni sistem. S pridobljenimi izkušnjami smo se lotili bispektralne analize kardiovaskularnih signalov.

Signal krvnega pretoka vsebuje na minutni časovni skali pet značilnih časovno spremenljivih frekvenc: srčna (okoli 1 *Hz*), respiratorna (okoli 0,2 *Hz*), miogena (okoli 0,1 *Hz*), nevrogena (okoli 0,04 *Hz*) in metabolična (okoli 0,01 *Hz*). V delu smo analizirali njihove medsebojne sklopitve in sicer med:

- srčnimi in respiratornimi,
- srčnimi in miogenimi,
- srčnimi in nevrogenimi,
- srčnimi in metaboličnimi,
- respiratornimi in miogenimi,
- respiratornimi in nevrogenimi,
- respiratornimi in metaboličnimi,
- miogenimi in nevrogenimi,
- miogenimi in metaboličnimi,
- nevrogenimi in metaboličnimi oscilacijami.

V zaključku so strnjeni dobljeni rezultati in nakazane možnosti za izboljšanje metod za izračun bispektralnih mer.

Kardiovaskularni sistem je eden od osnovnih sistemov človeškega organizma. Vsem celicam organizma neprestano dovaja energijo in snovi, ki so potrebne za njihovo normalno delovanje, hkrati pa iz celic odnaša snovi, ki nastanejo z metabolizmom. Sestavljata ga srce in ožilje (arterije, kapilare in vene). Kroženje krvi lahko razdelimo na pljučni in na sistemski obtok. V pljučnem obtoku poganja srce (desni prekat) kri najprej v pljuča, kjer obogatena s kisikom pride nazaj v srce (levi prekat), nato pa po večjem sistemskem obtoku še v preostale dele organizma.

Pretok, ki je enak celotnemu volumnu krvi, (t. j. 4l - 6l, oziroma 7 % - 8 % telesne teže), sklene pot, v primeru sproščenega, zdravega človeka po ožilju povprečno v eni minuti [56]. Tako dinamiko kardiovaskularnega sistema preučujemo na časovni osi okoli ene minute. Srce ima vlogo črpalke, ki poganja kri po sklenjenem krogu elastičnih žil. Pljuča lahko gledamo kot generator pritiska [47]. Krvni pretok, pritisk ter aktivnost pljuč in srca določajo dinamiko kardiovaskularnega sistema.

Raziskave so pokazale [4, 5, 6, 53, 54, 56, 55], da izmerjeni signali krvnega pretoka vsebujejo deterministično dinamiko, kar pomeni, da je kardiovaskularni sistem rezultat končnega števila podsistemov (oscilatorjev), ki ima vsak svojo karakteristično frekvenco. Pri regulaciji krvnega pretoka sodeluje pet podsistemov: srce, pljuča, miogeni, nevrogeni in metabolični sistem. Vsi regulatorji regulirajo pretok krvi, ki jim je skupen.

Srce periodično potiska kri v ožilje s povprečno frekvenco okoli 1 Hz^1 , oziroma 60 utripov na minuto. Srčna perioda ni konstantna, temveč se časovno spreminja. Ravno tako se spreminja perioda pljučne črpalke, v mejah med 0,15 Hz in 0,3 Hz. Periferni krvni pretok je močno odvisen od sistemov, ki kontrolirajo premer žil in s tem upornost za pretok. Ritmična aktivnost žil, ki jo povzročajo spodbujevalne celice v stenah gladkih mišic, je znana kot miogena aktivnost. Krčenje žil je odziv na spremembe v krvnem pritisku in pretoku in se odražajo v signalu krvnega pretoka s frekvenčno komponento okoli 0,1 Hz [6, 56].

Poleg miogene aktivnosti vplivata na upornost ožilja še vsaj dva sistema. Prvi, nevrogeni sistem deluje pod nadzorom avtonomnega živčnega sistema, povprečna frekvenca njegove aktivnosti je 0,04 *Hz*. Sistem z informacijami, ki jih dobi na primer od baroreceptorjev, vpliva na efektorje, ki povzročijo krčenje arteriol in kapilar. Drugi, metabolični sitem skrbi za transkapilarno izmenjavo snovi in regulacijo metaboličnih aktivnosti. Aktivnost povzročajo snovi, ki se prenašajo s krvjo, potrebne pa so celičnemu metabolizmu, ali so njegov produkt. Te snovi imajo neposreden metabolični vpliv na krčenje vaskularnih mišic. Vpliv poteka preko vrste procesov in jih lahko povežemo s frekvenčno komponento okoli 0,01 *Hz*.

Vsi ti sistemi so tudi pri zdravih ljudeh v mirovanju medsebojno šibko sklopljeni, zato njihove značilne frekvence niso konstantne, temveč se spreminjajo s časom, njihove amplitude pa so modulirane. Vsak sistem lahko obravnavamo kot samostojen nelinearen oscilator s svojo karakteristično frekvenco, ki jo lahko zaznamo v frekvenčnem spektru krvnega pretoka. Med posameznimi oscilatorji lahko prihaja do faznih sklopitev in

¹ Vrednosti karakterističnih frekvenc se razlikujejo od človeka do človeka. Podane vrednosti so rezultat ocen karakterističnih frekvenc, pridobljenih s frekvenčno analizo signala krvnega pretoka za primer mladega, zdravega moškega.

SUR

sinhronizacije. Nedavno so pokazali [4, 46], da so srčne in respiratorne oscilacije sinhronizirane. Sinhronizacija ali prilagoditev v času se pojavi, ko sta sklopljena dva ali več nelinearnih oscilatorjev. Pokaže se v obliki povezav med njihovimi frekvencami in fazami. Po Huygensu je sinhronizacija frekvenčna prilagoditev avtonomnih harmoničnih oscilatorjev² zaradi šibke interakcije. Fazna sklopitev je tako pojav določenih relacij med fazami medsebojno delujočih sistemov, medtem ko med amplitudami ni nujno, da obstaja korelacija.

Učinek sklopitev med dvema oscilatorjema na njuno obnašanje je odvisno od jakosti sklopitve. Šibke sklopitve povzročijo spreminjanje karakterističnih frekvenc oscilatorjev, medtem ko močne sklopitve vodijo v kvalitativne spremembe v obnašanju sistema, tako imenovani fazni prehodi [6]. Če sklopitev med oscilatorji v kardiovaskularnem sistemu ne bi bilo, bi dobili v močnostnem spektru ostre vrhove, razmerje med karakterističnimi frekvencami pa bi bilo sorazmerno, ki sicer pri zdravem človeku v mirovanju teži kvečjemu k racionalnemu razmerju. Nastop resonance je tako pojav, pri katerem se sistem poruši in nastopi smrt.

Sklopitve omogočajo izmenjavo informacije med procesi in so tako temeljne za pravilno delovanje kardiovaskularnega sistema. Razumevanje fiziološke narave teh sklopitev je bistvenega pomena za razumevanje delovanja celotnega sistema. Frekvenca in amplituda vsake opazovane oscilacije nam pove o aktivnosti oscilatorja in učinku vseh sklopitev. Posameznih učinkov sklopitev ne moremo meriti ločeno, zato uporabljamo najrazličnejše metode za analizo faznih, frekvenčnih in amplitudnih sklopitev.

Model kardiovaskularnega sistema lahko predstavimo s sistemom enačb [54]:

$$\frac{dx}{dt} = f(x,s), \ x(0) = x_0, \ x \in \Re^n,$$
(2.1)

kjer je f neka nelinearna funkcija razmerja in s vektor kontrolnih parametrov. Model je sestavljen iz petih sklopljenih podsistemov, od katerih lahko vsak avtonomno oscilira. Za osnovno enoto ima preprost oscilator z limitnim ciklom, ki ga je opisal Poincaré, in sicer:

$$\frac{dx_1^i}{dt} = \alpha_i x_1^i (a_i - r_i) - 2\pi f_i x_2^i$$
(2.2)

$$\frac{dx_2'}{dt} = \alpha_i x_2' (a_i - r_i) - 2\pi f_i x_1', \qquad (2.3)$$

kjer je

$$r_i = \sqrt{x_1^{i^2} + x_2^{i^2}} \,. \tag{2.4}$$

Indeks *i*, označuje *i*-ti oscilator z amplitudo a_i , karakteristično frekvenco oscilacij f_i in konstanto α_i , ki določa stabilnost limitnega cikla, oziroma hitrost, s katero se vektor stanja približuje limitnemu ciklu. Spremenljivki stanja x_1 in x_2 opisujeta pretok in hitrost pretoka *i*-tega oscilatorja, ki vsebuje potrebno strukturno stabilnost in robustnost, ki jih narekuje fiziološko obnašanje sistema.

² Oscilatorji so lahko tudi kaotični ali šumni.

Oscilator ima dve ravnotežni rešitvi, trivialno in periodično. V primeru periodične rešitve, vektor stanja x potuje po sklenjeni orbiti Γ , oziroma limitnem ciklu s periodo $T_i = 1/f_i$.

Slika 2.1: Limitni cikel, s privlačno okolico U(Γ).

V tem primeru se karakteristične frekvence kardiovaskularnega sistema časovno spreminjajo [4, 54, 56], zato poleg avtonomnega dela predpostavljamo tudi komponento, ki je posledica medsebojnega vpliva. Enačbama 2.1 in 2.2 dodamo še medsebojno sklopitev $H_{i,i}(x_1^j, x_2^j)$, j \neq i:

$$\frac{dx_1^i}{dt} = \alpha_i x_1^i (\alpha_i - r_i) - 2\pi f_i x_2^i + \varepsilon_i H_{i,j}(\mathbf{x}_1^j, \mathbf{x}_2^j)$$
(2.5)

$$\frac{dx_2^i}{dt} = \alpha_i x_2^i (\alpha_i - r_i) - 2\pi f_i x_1^i + \varepsilon_i H_{i,j}(\mathbf{x}_1^j, \mathbf{x}_2^j), \qquad (2.6)$$

kjer je e_i , koeficient sklopitve, $H_{i,j}(x_1^j, x_2^j)$ pa predstavlja vse možne vplive ostalih oscilatorjev sistema na i-ti oscilator.

Zaradi medsebojnih povezav oscilatorjev kardiovaskularnega sistema je zelo težko preučevati naravo in lastnosti posameznih medsebojnih sklopitev oscilatorjev, saj jih ne moremo ločiti in preučevati ločeno.

Ena prvih in najbolj raziskanih skopitev je sklopitev med srčno in respiratorno aktivnostjo, znana pod imenom respiratorna sinusna aritmija. V srčnem ritmu, krvnem pritisku in drugih hemodinamičnih parametrih se tudi v mirovanju pojavljajo spontane oscilacije. Te so posledica dinamičnega odziva sistemov, ki regulirajo krvni pretok, vplivajo pa na naravne fiziološke perturbacije. Periodično krčenje srca, katerega vir je sinusno-atrijski vozel, pogosto imenujemo sinusni ritem. Za spremembo frekvence delovanja tega vozla pod vplivom dihalne funkcije, se je uveljavil izraz respiratorna sinusna aritmija. Ker je frekvenčna modulacija povezana z dihanjem, bije srce hitreje pri vdihu in počasneje pri izdihu, ji navadno dodamo pridevnik respiratorna. Respiratorna sinusna aritmija je najmočnejša pri dojenčkih, s starostjo pa se zmanjšuje [6].

Možni mehanizmi sklopitve dihanja in bitja srca so vsaj trije. 1) Centralna živčna sklopitev; respiratorni nevroni v meduli oblongati neposredno vplivajo na kardiovaskularne. 2) Sklopitev prek barorefleksa; spremembe v krvnem pritisku prek refleksa baroreceptorjev in receptorjev na razteg spreminjajo srčni ritem. 3) Mehanska sklopitev; ritmičnost sinusnoatrijskega vozla se spremeni kot refleksni odziv na razširitev prsnega koša. Pri zdravih ljudeh prevladuje sklopitev prek barorefleksa. Dihaje povzroča centralno modulacijo odzivnosti baroreceptorjev. Poskusi so pokazali, da je ta največja proti koncu vdiha in na začetku izdiha [6]. Ena od posledic te modulacije je tudi respiratorna sinusna aritmija. Povečan odziv baroreceptorjev na začetku izdiha poveča vzbujanje parasimpatičnih struktur kardiovaskularnih centrov, ki preko vagusa upočasnijo bitje srca med izdihom.

Poslednja dognanja so s področja prostorske sinhronizacije za posamezno oscilatorno komponento. Raziskave so pokazale [51], da sta srčni in respiratorni oscilator močno fazno in frekvenčno sinhronizirana na različnih mestih kardiovaskularnega sistema, oscilatorji lokalnega izvora (miogeni, nevrogeni, metabolični) pa so šibkeje prostorsko sinhronizirani.

3. STATISTIKA VIŠJIH REDOV

Statistika višjih redov je zasnovana v strogem matematičnem okviru. Začeli bomo z definicijami za momente in kumulante za ustaljene naključne procese. Kljub temu, da vrednost stohastičnih signalov v vsakem časovnem trenutku ni točno znana, lahko iz njihove statistike višjih redov, ko obstaja in je večdimenzionalno deterministična in vsebuje posebne lastnosti simetrije, sledijo predpostavke, pod katerimi lahko s teorijo statistike višjih redov obdelujemo kardiovaskularni signal pretoka, ki je preučevan v tej nalogi. Nato definiramo polispektre in se osredotočimo na bispekter kot jedro analize. Na koncu se osredotočimo še na področje ugotavljanja nelinearnosti in s tem faznih sklopitev.

3.1 Momenti

Imejmo množico *n* realnih naključnih spremenljivk $\{x_1, x_2, ..., x_n\}$, katerih skupen moment reda $r = k_1 + k_2 + ... + k_n$ je podan [Papoulis, 1984]:

$$Mom\left[x_{1}^{k_{1}}, x_{2}^{k_{2}}, \dots, x_{n}^{k_{n}}\right] \underline{\Delta} E\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \dots, x_{n}^{k_{n}}\right\} =$$

$$= (-j)^{r} \cdot \frac{\partial^{r} \Phi(\omega_{1}, \omega_{2}, \dots, \omega_{n})}{\partial \omega_{1}^{k_{1}} \partial \omega_{2}^{k_{2}} \dots \partial \omega_{n}^{k_{n}}} \bigg|_{\omega_{1} = \omega_{2} = \dots = \omega_{n} = 0,}$$

$$(3.1)$$

kjer je

$$\Phi(\omega_1, \omega_2, ..., \omega_n) \underline{\Delta} E\left\{ e^{j(\omega_1 x_1 + \omega_2 x_2 + ... + \omega_n x_n)} \right\}$$
(3.2)

skupna karakteristična funkcija. $E\{\cdot\}$ pomeni operator pričakovanja, j^1 je imaginarna enota, ki da kvadrirano "-1" in ω_i i = 1, ..., n pomožne spremenljivke. Na primer, za dve naključni spremenljivki $\{x_1, x_2\}$, imamo moment drugega reda $Mom[x_1, x_2] = E\{x_1, x_2\}$, $Mom[x_1^2] = E\{x_1^2\}$ in $Mom[x_2^2] = E\{x_2^2\}$.

3.2 Kumulanti

Medtem ko lahko momente definiramo s Taylorjevim zapisom funkcije za generiranje momentov, pa lahko kumulante definiramo s Taylorjevo razširitvijo funkcije za generiranje kumulantov. Funkcija za generiranje kumulantov je naravni logaritem funkcije za generiranje momentov, tako so kumulanti v močni povezavi z momenti. Pri tem pa imajo kumulanti nekaj lastnosti, ki so prispevale k razvoju metod, zato je, kot bomo videli v nadaljevanju, večina metod SVR pretežno izražena s kumulanti in ne z momenti.

Tako je druga oblika definicije skupne karakteristične funkcije kar naravni logaritem funkcije $\Phi(\omega_1, \omega_2, ..., \omega_n)$, oziroma:

$$\Psi(\omega_1, \omega_2, \dots, \omega_n) \underline{\Delta} \ln[\Phi(\omega_1, \omega_2, \dots, \omega_n)].$$
(3.3)

¹ Pogosto se uporablja tudi črka i.

Skupni kumulanti reda r, $Cum\left[x_1^{k_1}, x_2^{k_2}, \dots, x_n^{k_n}\right]$ iste množice naključnih števil so definirani kot koeficienti Taylorjeve razširitve druge karakteristične funkcije nad ničlo [35].

$$Cum \left[x_1^{k_1}, x_2^{k_2}, \dots, x_n^{k_n} \right] \underline{\Delta} E \left\{ x_1^{k_1}, x_2^{k_2}, \dots, x_n^{k_n} \right\} =$$

$$= (-j)^r \cdot \frac{\partial^r \Psi(\omega_1, \omega_2, \dots, \omega_n)}{\partial \omega_1^{k_1} \partial \omega_2^{k_2} \dots \partial \omega_n^{k_n}} \bigg|_{\omega_1 = \omega_2 = \dots = \omega_n = 0,}$$

$$(3.4)$$

Verjetno so med temi lastnostmi najpomembnejše prav tiste, ki zadevajo Gaussov proces. Slednji je popolnoma določen samo s povprečno vrednostjo in varianco. Zlahka pokažemo, da je kumulant prvega reda Gaussovega procesa enak povprečni vrednosti, moment drugega reda enak varianci, ter vsi momenti višjih redov enaki nič. Ta lastnost nakazuje, da šum, za katerega navadno predpostavljamo, da je Gaussov, izgine s tretjim in višjim redom. Tako imamo možnost opazovati procese, ki nimajo Gaussove porazdelitve brez šuma v domenah višjih redov, kar je ena ključnih motivacij uporabe statistike višjih redov.

3.3 Povezava med momenti in kumulanti

Splošna povezava med skupnimi momenti množice $\{x_1, x_2,..., x_n\}$ in skupnimi kumulanti $Cum[x_1, x_2, ..., x_n]$ reda r = n, je enaka:

$$Cum[x_1, x_2, \dots, x_n] = \sum (-1)^{p-1} \cdot (p-1) \cdot E\left\{\prod_{i \in s_1} x_i\right\} \cdot E\left\{\prod_{i \in s_2} x_i\right\} \cdot \dots \cdot E\left\{\prod_{i \in s_n} x_i\right\}, \quad (3.5)$$

kjer seštevamo preko vseh particij $(s_1, s_2,..., s_p)$, p = 1, 2,..., n, množic celih števil (1, 2,..., n). Za primer podajmo; če imamo množico celih števil (1, 2, 3), jo lahko razdelimo:

$$p = 1 \qquad s_{I} = \{1, 2, 3\}$$

$$p = 2 \qquad s_{I} = \{1\} \qquad s_{2} = \{2, 3\}$$

$$s_{I} = \{2\} \qquad s_{2} = \{1, 3\}$$

$$s_{I} = \{3\} \qquad s_{2} = \{1, 2\}$$

$$p = 3 \qquad s_{I} = \{1\} \qquad s_{2} = \{2\} \qquad s_{3} = \{3\}$$

Tako preide 3.6 v:

$$Cum[x_1, x_2, x_3] = E\{x_1, x_2, x_3\} - E\{x_1\} \cdot E\{x_2, x_3\} - E\{x_2\} \cdot E\{x_1, x_3\} - E\{x_3\} \cdot E\{x_1, x_2\} + 2 \cdot E\{x_1\} \cdot E\{x_3\} \cdot E\{x_2\}.$$
(3.6)

Iz izraza 3.5 je razvidno, da za izračun kumulanta reda r potrebujemo znanje o vseh momentih do reda r.

3.4 Lastnosti momentov in kumulantov

Lastnosti momentov in kumulantov lahko na kratko povzamemo:

I.

Iz 3.1 in 3.5 neposredno sledi:

ter

$$Mom[a_1x_1, a_2x_2, ..., a_nx_n] = a_1 ... a_n Mom[x_1, x_2, ..., x_n], \qquad (3.7)$$

$$Cum[a_{1}x_{1}, a_{2}x_{2}, ..., a_{n}x_{n}] = a_{1}...a_{n}Cum[x_{1}, x_{2}, ..., x_{n}].$$
(3.8)

Kumulanti (momenti) skaliranih spremenljivk (faktorji skaliranja niso naključni) so enaki produktu vseh skaliranih faktorjev s kumulanti (momenti) neskaliranih spremenljivk, pri čemer je $(a_1, a_2, ..., a_n)$ množica konstant in $(x_1, x_2, ..., x_n)$ množica naključnih spremenljivk.

II.

Kumulanti (momenti) so neobčutljivi na prištevanje konstante; naj bo α konstanta:

$$Cum[\alpha + x_1, x_2, ..., x_n] = Cum[x_1, x_2, ..., x_n].$$
(3.9)

III.

Momenti in kumulanti so simetrične funkcije njihovih argumentov:

$$Cum[x_1, x_2, ..., x_n] = Cum[x_{i1}, x_{i2}, ..., x_{in}],$$
(3.10)

Kjer so $(i_1,..., i_n)$ permutacije (1, ..., n); to pomeni da lahko zamenjujemo argumente kumulantov (momentov) po želji, ne da bi se spremenila vrednost kumulanta (momenta). Na primer:

$$Mom[x_1, x_2, x_3] = Mom[x_2, x_1, x_3] = Mom[x_3, x_2, x_1],$$
(3.11)

in tako naprej.

IV.

Če lahko naključne spremenljivke razdelimo v dve ali več množic, ki so statistično neodvisne, potem je njihov kumulant n-tega reda enak nič, oziroma $Cum[x_1, x_2,..., x_n] = 0$, v splošnem pa velja, da je $Mom[x_1, x_2,..., x_n] \neq 0$.

Če imamo na primer dve neodvisni množici $\{x_1, x_2, ..., x_{\lambda}\}$ in $\{x_{\lambda+1}, x_{\lambda+2}, ..., x_n\}$, potem je njuna skupna karakteristična funkcija enaka:

$$\Phi(\omega_1, \omega_2, ..., \omega_n) = \Phi_1(\omega_1, \omega_2, ..., \omega_\lambda) \cdot \Phi_2(\omega_{\lambda+1}, \omega_{\lambda+2}, ..., \omega_n), \qquad (3.12)$$

druga skupna karakteristična funkcija pa je:

Dokaz za to enostavno sledi, če nadomestimo $\Psi(\omega_1, \omega_2, ..., \omega_n)$ in $\Phi(\omega_1, \omega_2, ..., \omega_n)$ v izrazu 3.4 oziroma 3.1.

V.

SUR

Če sta niza naključnih spremenljivk $\{x_1, x_2, ..., x_n\}$ in $\{y_1, y_2, ..., y_n\}$, neodvisna, potem velja:

$$Cum[x_1+y_1, x_2+y_2, ..., x_n+y_n] = Cum[x_1, x_2, ..., x_n] + Cum[y_1, y_2, ..., y_n],$$
(3.14)

Na splošno to ne velja za momente:

$$Mom[x_1+y_1, x_2+y_2, ..., x_n+y_n] = E\{(x_1+y_1)(x_2+y_2)...(x_n+y_n)\}$$

$$\neq Mom[x_1, x_2, ..., x_n] + Mom[y_1, y_2, ..., y_n], \qquad (3.15)$$

medtem ko za naključne spremenljivke $\{y_1, x_1, x_2, ..., x_n\}$ velja

$$Cum[x_1+y_1, x_2, ..., x_n] = Cum[x_1, x_2, ..., x_n] + Cum[y_1, x_2, ..., x_n],$$
(3.16)

$$Mom[x_1+y_1, x_2, ..., x_n] = Mom[x_1, x_2, ..., x_n] + Mom[y_1, x_2, ..., x_n].$$
(3.17)

VI.

in

Če je množica naključnih spremenljivk $\{x_1, x_2, ..., x_n\}$ porazdeljena Gaussovo, potem je vsa informacija o njegovi porazdelitvi vsebovana v momentih reda $n \ge 2$. Zato vsi momenti višjega reda od dva (n > 2) ne dajo nobene nove informacije. Tako so vsi skupni kumulanti reda 2 in več (n > 2) enaki nič za naključne-Gaussove vektorje. Vendar pa kumulanti višjega reda od dva (n > 2), na nek način merijo ne-Gaussove narave (ali nenormalnosti) časovne vrste.

3.5 Momenti in kumulanti ustaljenih procesov

Realni signali v večini primerov niso deterministični. Običajno vsebujejo nek šum ali motnjo, oziroma neko nepredvidljivo spreminjanje parametrov, kar povzroči, da je signal nedeterminističen. Pomembna skupina determinističnih signalov so periodični signali.

Najosnovnejši periodičen signal je sinusoida. Večina determinističnih signalov je neperiodičnih, obstajajo pa tudi taki, ki po definiciji niso periodični, se pa periodičnosti približajo. Stohastični signali so signali, katerih ni mogoče zapisati z matematično funkcijo in so posledica stohastičnih procesov. Neskončno število stohastičnih signalov, ki so rezultat istega procesa, se med seboj razlikujejo po obliki, delijo pa si enake statistične lastnosti. Stohastične signale lahko delimo naprej na ustaljene in neustaljene. Ustaljeni stohastični signali so tisti, katerih statistične lastnosti se ne spreminjajo s časom. Medtem ko so ergodični signali tisti, pri katerih za izračun statističnih lastnosti ne potrebujemo celotnega neskončnega števila signalov, ki jih sistem generira. Pri ergodičnem signalu zadostuje za določitev statističnih lastnosti poznavanje ene same funkcije.

SUR

Večina bioloških signalov velja za stohastične in neustaljene in zato tudi neergodične. Ker večina metod predpostavlja ustaljenost in ergodičnost signala, so potrebne določene poenostavitve in predpostavke o signalih. Če se pri opazovanju signala pretoka krvi omejimo na organizem v mirovanju, lahko predpostavljamo ergodičnost in ustaljenost.

Imejmo realen diskreten naključni signal x(n). Prva ključna predpostavka, ki jo moramo narediti, da lahko razvijemo mere SVR je, da je proces (v nekem smislu) ustaljen. V večini metod obdelave signalov se predpostavlja pogoj *široke* ustaljenosti. To vključuje, da za katerikoli čas, indeksiran $t_0,...,t_{N-1}$ in zakasnitev τ , obstajajo vsi skupni momenti do drugega reda procesa $x(t_0)$, $x(t_1)$, $x(t_2),..., x(t_{N-1})$ in so enaki premaknjenemu procesu $x(t_0+\tau)$, $x(t_1+\tau)$, $x(t_2+\tau),..., x(t_{N-1}+\tau)$. Povedano drugače, povprečna vrednost in kovarianca procesa se ne spremenita pri poljubnem časovnem premiku. Strožje predpostavke ustaljenosti zahtevajo enako vrsto invariantnosti časovnih premikov v momentih višjih redov. V nadaljevanju za posplošitev predpostavljamo, da je proces strogo ustaljen in so vsi njegovi skupni momenti neodvisni od poljubnega časovnega premika.

Proces x(t) je lahko določen na več načinov, po svoji amplitudi, energiji ali obliki valovanja. Funkcija verjetnostne porazdelitve procesa daje podrobno informacijo o porazdelitvi amplitud procesa, in lahko tako opiše proces. Niz spremenljivk, ki opisujejo obliko te funkcije verjetnostne porazdelitve, so momenti.

1) Blaga predpostavka da je x(k) stohastičen

Statistični pristop je matematično strog. Analiza polispektrov (momentov, kumulantov) je bila razvita in usmerjena predvsem na stohastične procese. Nas zanimajo tudi signali z močnimi determinističnimi komponentami, kot so sinusoide. Takšni signali imajo lastnosti, ki kršijo predpostavko, na kateri dobimo rezultate iz bispektrov. Vendar lahko kljub temu najdemo pot okoli problemov tako, da lahko naredimo meritve uporabe.

2) Blaga predpostavka da je x(k) ustaljen

Predpostavljamo, da je signal x(k) strogo ustaljen. Nivo ustaljenosti je določen z redom polispektra. Signal je lahko ustaljen samo za tretji red, da drži definicija bispektra. V primeru, ko je signal determinističen (kot je čista sinusoida s konstantno amplitudo, frekvenco in fazo), potem ne more biti več modeliran kot ustaljen proces, ker sta njena srednja vrednost in avtokorelacija časovno spremenljivi.

Da dosežemo ustaljenost, mora imeti signal časovno invariantno povprečno vrednost. Povprečje naključnega procesa je povprečna vrednost čez končno mnogo realizacij procesa. Za sinusni signal s konstantnimi parametri je vsaka realizacija enaka in je tako povprečna vrednost odvisna od časa, v katerem izmerimo posamezno realizacijo procesa. Tako je srednja vrednost časovno spremenljiva in proces ustaljen.

Če predpostavimo, da je faza sinusoide časovno spremenljiva, lahko sinusni signal pojmujemo kot ustaljen. Taka predpostavka je lahko nerealna za nekatere realne signale. Kljub tem argumentom nam bispekter sinusnih signalov še vedno zagotavlja uporabno informacijo o nelinearnostih ter interpretaciji ugotavljanja nelinearnosti bispektra.

Alternativno prilagoditev sinusoid v stohastičen okvir lahko dosežemo tudi z gledanjem sinusoid kot procesov z ničelno varianco in časovno spremenljivo srednjo vrednostjo [12]. To naredi proces neustaljen in tako neprimeren za nadaljnjo preiskavo.

Če je $\{x(k)\}$, (k pomeni diskretni čas) $k = 0, \pm 1, \pm 2, \pm 3,...$ realen naključni proces in njegovi momenti do reda *n* obstajajo, potem velja, da je:

$$Mom[x(k), x(k+\tau_{1}), ..., x(k+\tau_{n-1})] \triangleq E\{x(k) \cdot x(k+\tau_{1}), ..., x(k+\tau_{n-1})\},$$
(3.18)

odvisen samo od časovnih razlik τ_1 , τ_2 ,..., τ_n , $\tau_i = 0, \pm 1, \pm 2, \pm 3,...$ za vse *i*. Momente za naključne stacionarne procese sedaj zapišimo kot:

$$m_n^x(\tau_1, \tau_2, ..., \tau_{n-1}) \Delta E\{x(k) \cdot x(k+\tau_1) \cdot ... \cdot x(k+\tau_{n-1})\}.$$
(3.19)

V splošnem izračunamo moment k-tega reda nad povprečno vrednostjo² s pričakovanjem procesa pomnoženega s k-1 zakasnitvijo samega sebe [35]:

$$m_{2}(\tau_{l}) = E[x(n)x(n+\tau_{l})]$$

$$m_{3}(\tau_{l},\tau_{2}) = E[x(n)x(n+\tau_{l})x(n+\tau_{2})]$$

$$m_{4}(\tau_{l},\tau_{2},\tau_{3}) = E[x(n)x(n+\tau_{l})x(n+\tau_{2})x(n+\tau_{3})]$$

$$\vdots$$

$$m_{k}(\tau_{l},...,\tau_{k-l}) = E[x(n)x(n+\tau_{l})...x(n+\tau_{k-l})]$$
(3.20)

Namesto momentov ponavadi uporabljamo raje alternativne mere, ki imajo uporabne matematične lastnosti, to so kumulanti.

Podobno je kumulant reda n, (n-1) dimenzionalna funkcija, ki jo sedaj lahko zapišemo kot:

$$c_n^x(\tau_1,\tau_2,...,\tau_{n-1}) \underline{\Delta} E\{x(k) \cdot x(k+\tau_1) \cdot ... \cdot x(k+\tau_{n-1})\}.$$
(3.21)

Če združimo 3.5, 3.19 in 3.21 dobimo naslednje povezave med momenti in kumulanti:

Kumulant prvega reda:

$$c_1^x = m_1^x = E\{x(k)\}.$$
(3.22)

Moment prvega reda m₁ procesa x(k) je njegova povprečna ali srednja vrednost μ in nam podaja mero lokacije funkcije verjetnostne porazdelitve.

• Kumulant drugega reda

$$c_2^{x}(\tau_1) = m_2^{x}(\tau_1) - (m_1^{x})^2 = m_2^{x}(-\tau_1) - (m_1^{x})^2 = c_2^{x}(-\tau), \qquad (3.23)$$

Kumulant drugega reda je kovarianca, mera razpršitve funkcije verjetnostne porazdelitve. Tako vidimo, da je kumulant drugega reda kovarianca, medtem ko je moment drugega reda $m_2^x(\tau_l)$ avtokorelacija.

² Če proces vsebuje povprečno vrednost različno od nič, potem jo moramo najprej odšteti.

SUR

Kumulanti tretjega reda

$$c_{3}^{x}(\tau_{1},\tau_{2}) = m_{3}^{x}(\tau_{1},\tau_{2}) - m_{1}^{x} \left[m_{2}^{x}(\tau_{1}) + m_{2}^{x}(\tau_{2}) + m_{2}^{x}(\tau_{2} - \tau_{1}) \right] + 2 \cdot (m_{1}^{x})^{3}, \qquad (3.24)$$

kjer je $m_3^x(\tau_1, \tau_2)$ moment tretjega reda, izraz dobimo z združitvijo 3.6 ter 3.20.

Kumulanti četrtega reda

$$c_{4}^{x}(\tau_{1},\tau_{2},\tau_{3},\tau_{4}) =$$

$$= m_{4}^{x}(\tau_{1},\tau_{2},\tau_{3}) - m_{2}^{x}(\tau_{1}) \cdot m_{2}^{x}(\tau_{3} - \tau_{2}) -$$

$$- m_{2}^{x}(\tau_{2}) \cdot m_{2}^{x}(\tau_{3} - \tau_{1}) - m_{2}^{x}(\tau_{3}) \cdot m_{2}^{x}(\tau_{2} - \tau_{1}) -$$

$$- m_{1}^{x}\left[m_{3}^{x}(\tau_{2} - \tau_{1},\tau_{3} - \tau_{1}) + m_{3}^{x}(\tau_{2},\tau_{3}) + m_{3}^{x}(\tau_{2},\tau_{4}) + m_{3}^{x}(\tau_{1},\tau_{2})\right] +$$

$$+ (m_{1}^{x})^{2}\left[m_{2}^{x}(\tau_{1}) + m_{2}^{x}(\tau_{2}) + m_{2}^{x}(\tau_{3}) + m_{2}^{x}(\tau_{3} - \tau_{1}) + m_{2}^{x}(\tau_{2} - \tau_{1})\right] - 6 \cdot (m_{1}^{x})^{4}.$$
(3.25)

Kumulant n-tega reda za ne-Gaussov stacionarni naključni proces x(k) lahko zapišemo (samo za n = 3 in 4):

 $c_n^x(\tau_1, \tau_2, \dots, \tau_{n-1}) = m_n^x(\tau_1, \tau_2, \dots, \tau_{n-1}) - m_n^G(\tau_1, \tau_2, \dots, \tau_{n-1}), \qquad (3.26)$

kjer je $m_n^x(\tau_1, \tau_2,..., \tau_{n-1})$ moment *n*-tega reda x(k) in $m_n^G(\tau_1, \tau_2,..., \tau_{n-1})$ je moment *n*-tega reda ekvivalentnega Gaussov procesa, ki ima enako srednjo vrednost in avtokorelacijo za x(k). Če je x(k) Gaussov proces sledi, da je $m_n^x(\tau_1, \tau_2,..., \tau_{n-1}) = m_n^G(\tau_1, \tau_2,..., \tau_{n-1})$ in iz tega $c_n^x(\tau_1, \tau_2,..., \tau_{n-1}) = 0$. Seveda to drži samo za reda 3 in 4.

V primeru, ko imamo signal $\{x(k)\}$ s povprečno vrednostjo nič, $m_1^x = 0$, sledi iz enačb 3.4 ter 3.5, da sta kumulanta drugega in tretjega reda enaka momentom drugega oziroma tretjega reda. Za generiranje kumulanta četrtega reda potrebujemo znanje o momentu drugega in četrtega reda, iz enačbe 3.25 dobimo:

$$c_{4}^{x}(\tau_{1},\tau_{2},\tau_{3},\tau_{4}) = m_{4}^{x}(\tau_{1},\tau_{2},\tau_{3}) - m_{2}^{x}(\tau_{1}) \cdot m_{2}^{x}(\tau_{3}-\tau_{2}) - m_{2}^{x}(\tau_{2}) \cdot m_{2}^{x}(\tau_{3}-\tau_{1}) - m_{2}^{x}(\tau_{3}) \cdot m_{2}^{x}(\tau_{2}-\tau_{1}).$$
(3.27)

Če vstavimo $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ v enačbe od 3.20 do 3.24 in predpostavimo, da je $m_1^x = 0$, dobimo:

$$\gamma_2^x = E\{x^2(k)\} = c_2^x(0) \tag{3.28}$$

Varianca σ^2 je podana z momentom drugega reda $m_2^x(0)$, ki je v tem primeru enak kumulantu drugega reda $c_2^x(0)$. Bolj pogosto pa se za varianco v statistiki višjega reda uporablja oznaka γ_2^x .

$$\gamma_{3}^{x} = E\left\{x^{3}(k)\right\} = c_{3}^{x}(0,0)$$
(3.29)

Ravno tako obstajajo mere SVR, prva je mera simetrije verjetnostne porazdelitve, γ_3^x :

$$\gamma_{4}^{x} = E\left\{x^{4}(k)\right\} - 3 \cdot \left[\gamma_{2}^{x}\right]^{2} = c_{4}^{x}(0,0,0).$$
(3.30)

Naslednja je mera ostrine vrha funkcije verjetnostne porazdelitve, γ_4^x .

Ker matematične lastnosti kumulantov niso namen tega dela, se lahko bralec podrobneje seznani z lastnostmi v [35].

Kumulante procesa x(n) lahko izračunamo tako, da najprej izračunamo momente procesa, nato pa preko relacij, ki obstajajo med kumulanti in momenti, določimo kumulante. Za procese s povprečno vrednostjo nič ($m_1 = 0$), se izkaže, da je kumulant drugega reda $c_2(\tau)$ enak momentu drugega reda $m_2(\tau)$, medtem ko je kumulant tretjega reda $c_3(\tau_1, \tau_2)$ enak momentu tretjega reda $m_3(\tau_1, \tau_2)$. V praksi je veliko lažje odšteti povprečno vrednost časovni seriji podatkov, kakor dodatno obdelovati podatke. Ker je procese z ničelno povprečno vrednostjo veliko lažje analizirati, v nadaljevanju predpostavljamo, da so vsi procesi osrediščeni³.

Kumulanti četrtega reda pridejo prav v primeru, ko je proces simetrično porazdeljen in je njegov kumulant tretjega reda enak nič. V takem primeru moramo uporabiti kumulant četrtega reda. Na primer Laplaceova, uniformna, Gaussova in Bernoulli-Gaussova porazdelitve so simetrične, medtem ko so eksponentna, Rayleighova in K distribucija nesimetrične. Poleg tega imajo nekateri procesi zelo majhne vrednosti kumulanta tretjega reda in veliko večji kumulant četrtega reda; tudi v takšnem primeru je primernejša uporaba slednjega.

V praktičnih primerih, imamo na voljo podatke, iz katerih želimo izračunati kumulante. Kumulanti vsebujejo pričakovanja, in kot v primeru korelacije, ne morejo biti točno izračunani iz končnih realnih podatkov. Kumulante lahko ocenimo z zamenjavo pričakovanj s povprečjem vzorcev:

$$c_{3}^{x}(\tau_{1},\tau_{2}) \cong \hat{c}_{3}^{x}(\tau_{1},\tau_{2}) = \frac{1}{N} \sum_{t \in N} x(t) x(t+\tau_{1}) x(t+\tau_{2}), \qquad (3.31)$$

kjer je N število vseh podatkov.

Sedaj, ko smo na kratko spoznali momente in kumulante, si v nadaljevanju poglejmo njihovo predstavitev v frekvenčnem prostoru, kjer jih s skupno besedo imenujemo polispektri.

3.6 Polispektri

Povezava med merami v časovnem prostoru in tistimi v frekvenčnem prostoru je osnova večine moderne obdelave signalov. Diskretna Fourierova transformacija (DFT) zagotavlja sredstva za transformacijo iz časovnega prostora v frekvenčni in obratno. Lastnosti signala se ne izražajo v obliki signala, zato lahko s transformacijo le-tega v frekvenčni prostor razkrijemo periodičnost v merjenem signalu in tako doprinesemo k razumevanju procesa, ki je generiral signal. V tem poglavju bomo razširili poznane mere druge stopnje v časovnem in frekvenčnem prostoru, da bomo dobili nove mere višjih redov. Posplošitev močnostnega spektra na višje rede oblikuje družino polispektrov. Eden izmed njih je bispekter, ki je jedro tega dela.

Polispektre, oziroma spektre statistike višjih redov lahko, definiramo v smislu momentov (momentni spekter) ali kumulantov (kumulantni spekter). Kot je bilo že obrazloženo, so v

³ Oziroma jim je odšteta povprečna vrednost.

primeru stohastičnih signalov določene prednosti pri uporabi kumulantov, medtem ko je za deterministične bolje uporabljati momente. V primeru, da je proces osrediščen in je $m_1^x = 0$ pa velja iz enačbe 3.23, da je spekter enak za oba primera (samo red 2 in 3).

Za matematično primernost bomo predpostavili, da so vzorci procesa $\{x(k)\}, k = 0, \pm 1, \pm 2, \pm 3,..., ki je realen, strogo ustaljen s kumulanti do reda$ *n*, časovno daleč narazen, statistično neodvisni. S tem predpostavljamo mešane pogoje, ki pomenijo, da ni kakšne daljše korelacije med vzorci procesa.

Če predpostavljamo, da vrsta kumulantov zadovolji pogoj:

$$\sum_{\tau_1=-\infty}^{+\infty} \cdots \sum_{\tau_n=-\infty}^{+\infty} \left| c_n^x(\tau_1,\dots,\tau_n) \right| < \infty,$$
(3.32)

ali pogoj:

$$\sum_{\tau_1=-\infty}^{+\infty} \cdots \sum_{\tau_n=-\infty}^{+\infty} \left(1 + \left|\tau_j\right|\right) \cdot \left|c_n^x(\tau_1,...,\tau_n)\right| < \infty , \qquad (3.33)$$

za j = 1, 2,..., n-1, potem kumulantni spekter reda $n C_n^x(\omega_l, \omega_2,..., \omega_{n-l})$ procesa $\{x(k)\}$ obstaja in je zvezen, definiran kot (n-1) Fourierov transform zaporedja kumulantov n-tega reda. Izraz 3.32 dobro definira običajni pogoj za Fourierov transform. Kumulantni spekter je tako definiran:

$$C_{n}^{x}(\omega_{l},\omega_{2},...,\omega_{n-l}) = \sum_{\tau_{1}=-\infty}^{+\infty} \cdots \sum_{\tau_{n}=-\infty}^{+\infty} \left| c_{n}^{x}(\tau_{l},...,\tau_{n}) \right| \cdot e^{-j(\omega_{l}\tau_{1},\omega_{2}\tau_{2},...,\omega_{n-l}\tau_{n-l})}$$
(3.34)

 $|\omega_i| \leq \pi$ za i = 1, 2, ..., n-1 in $|\omega_l + \omega_2 + ... + \omega_{n-l}| \leq \pi$. V splošnem je $C_n^x(\omega_l, \omega_2, ..., \omega_{n-l})$ kompleksna veličina, ima amplitudo in fazo in ga lahko zapišemo kot:

$$C_{n}^{x}(\omega_{1},\omega_{2},...,\omega_{n-1}) = \left| C_{n}^{x}(\omega_{1},\omega_{2},...,\omega_{n-1}) \right| \cdot e^{-j\Psi_{n}^{x}(\omega_{1},\omega_{2},...,\omega_{n-1})}.$$
(3.35)

Kumulantni spekter je periodičen s periodo 2π , oziroma:

$$C_n^x(\omega_1, \omega_2, ..., \omega_{n-1}) = C_n^x(\omega_1 + 2 \cdot \pi, \omega_2 + 2 \cdot \pi, ..., \omega_{n-1} + 2 \cdot \pi)$$
(3.36)

Posebni primeri kumulantnih spektrov:

Če predpostavimo seštevanje kumulantov, potem nam da DFT kumulanta *n*-tega reda spekter kumulanta *n*-tega reda ali polispekter. To je enostavna posplošitev Wiener-Khinttchine-ove povezave, dobro znane povezave med merami drugega reda (avtokorelacijska funkcija $R(\tau_l) = c_2(\tau_l)$ in močnostni spekter) in kateri koli drugega reda (tretjega in višjega).

Močnostni spekter: n = 2

Začnimo s poznanim drugim redom; (diskretni) močnostni spekter P(k), z diskretno celoštevilčno frekvenco k, lahko zapišemo kot DFT ali avtokorelacijsko funkcijo $R(\tau_l) =$

 $c_2(\tau_l)$, kjer je τ_l diskretna zakasnitev, ali pa kot produkt dveh diskretnih Fourierovih transformirank X(), katerih vsota frekvenc je enaka nič⁴.

$$P(k) \triangleq DFT[R(\tau_1)] = DFT[c_2(\tau_1)] = E[X(k)X^*(k)]$$
(3.37)

$$C_2^x(\omega) = \sum_{\tau=-\infty}^{\infty} c_2^x(\tau) \cdot e^{-j\omega\tau} , \qquad (3.38)$$

 $|\omega| \le \pi$, $c_2^x(\tau)$ pa je kovarianca procesa $\{x(k)\}$ podana z enačbo 3.23. Če je proces osrediščen potem postane 3.37 Wiener-Khintchinov teorem :

$$c_2^{x}(\tau) = c_2^{x}(-\tau) \tag{3.39}$$

$$C_2^x(\omega) = C_2^x(-\omega) \tag{3.40}$$

 $C_2^x(\omega) \ge 0$, je realna ne negativna funkcija. (3.41)

Bispekter n = 3:

$$C_2^x(\omega_1,\omega_2) = \sum_{\tau_1=-\infty}^{\infty} \sum_{\tau_2=-\infty}^{\infty} c_3^x(\tau_1,\tau_2) \cdot e^{-j(\omega_1\tau_1+\omega_2\tau_2)}$$
(3.42)

 $|\omega_l| \le \pi$, $|\omega_2| \le \pi$, $|\omega_l+\omega_2| \le \pi$, $c_3^x(\tau_l, \tau_2)$ je kumulant tretjega reda procesa $\{x(k)\}$ podan z enačbo 3.24. Iz lastnosti kumulantov za simetrijo, enačba 3.10 in enačbe 3.24, sledijo simetrične lastnosti:

$$c_{3}^{x}(\tau_{1},\tau_{2}) = c_{3}^{x}(\tau_{2},\tau_{1}) = c_{3}^{x}(-\tau_{2},\tau_{1}-\tau_{2}) = c_{3}^{x}(\tau_{2}-\tau_{1},-\tau_{1}) = c_{3}^{x}(\tau_{1}-\tau_{2},-\tau_{2}) = c_{3}^{x}(\tau_{1},\tau_{2}-\tau_{1})$$
(3.43)

Če poznamo kumulant tretjega reda, v katerem koli področju od I do VI, prikazanih na sliki 3.1, lahko določimo celotno področje kumulanta. Področja vključujejo meje tako, da je na primer prvo področje neskončni klin omejen s: $\tau_2 = 0$, $\tau_1 = \tau_2$, ≥ 0 .

⁴ Če upoštevamo, da velja $X(-k) = X^*(k)$.

Slika 3.1: Simetrična področja kumulanta tretjega reda $c_3^x(\tau_1, \tau_2)$.

Iz definicije bispektra z enačbo 3.42 in lastnosti kumulantov tretjega reda 3.43 dobimo:

$$C_{3}^{x}(\omega_{1},\omega_{2}) = C_{3}^{x}(\omega_{2},\omega_{1}) = C_{3}^{x}(-\omega_{2},\omega_{1}-\omega_{2}) = C_{3}^{x}(\omega_{2}-\omega_{1},-\omega_{1}) = C_{3}^{x}(\omega_{1}-\omega_{2},-\omega_{2}) = C_{3}^{x}(\omega_{1},\omega_{2}-\omega_{1})$$
(3.44)

Bispekter vsebuje redundanco v bifrekvenčnem prostoru, do katere pride zaradi:

- zamenljivosti kateregakoli frekvenčnega para, enačba 3.44,
- redundance negativne polovice nekaterih frekvenčnih osi zaradi lastnosti konjugirane simetrije in
- periodičnosti Fourierove transformiranke s periodo vzorčne frekvence v primerih časovno diskretnih procesov.

Tudi bispekter ima šest simetričnih področij. Poznavanje bispektra v trikotnem področju $\omega_2 = 0$, $\omega_l = \omega_2$, $\omega_l \ge 0$, ki ga imenujemo glavno področje (več o tem bo povedano v poglavju 4.1) je dovolj za celotni opis bispektra. Za realne procese ima bispekter 12 simetričnih področij kot je prikazano na sliki 3.2, kar pa ne velja, če je signal neustaljen.

Na splošno velja, da ima polispekter k-tega reda

$$N_{sim} = \frac{k(k+1)}{2}$$
(3.45)

 N_{sim} hiperplanov ali simetrij v k-frekvenčnem prostoru [9].

51

SUR

Slika 3.2: 12 simetričnih področij bispektra v primeru realnih procesov.

Močnostni spekter lahko vzamemo kot frekvenčno dekompozicijo avtokorelacijske funkcije. Med seboj sta obe spremenljivki povezani na sledeči način: vsota močnostnega spektra P(k)čez vse frekvence k je enaka avtokorelacijski funkciji z ničelno zakasnitvijo R(0). Ta spremenljivka se imenuje varianca procesa σ^2 . Če idejo razširimo na višje rede, potem lahko polispekter tretjega (četrtega) reda zapišemo kot dvojni (trojni) DFT kumulanta tretjega (četrtega) reda:

$$B(k,l) \Delta DFT^{2}[c_{3}(\tau_{1},\tau_{2})] = E[X(k)X(l)X^{*}(k+l)]$$
(3.45)

$$T(k,l,m) \underline{\Delta} DFT^{3}[c_{4}(\tau_{1},\tau_{2},\tau_{3})] = E[X(k)X(l)X(m)X^{*}(k+l+m)], \qquad (3.46)$$

v katerem DFT² pomeni, da je B(k, l) dvojni DFT kumulanta tretjega reda, pri čemer sta k in l diskretni frekvenci.

Te enačbe povezujejo mere v časovnem prostoru (kumulante) z merami v frekvenčnem prostoru (polispektri). Meri B(k, l) ter T(k, l, m) pa sta znani kot bispekter in trispekter in sta najširše preučevani meri statistike višjih redov.

4. BISPEKTER

Sedaj ko smo spoznali definicijo bispektra, ki ga bomo uporabljali za preučevanje sklopitev, si natančneje poglejmo njegove lastnosti.

Bispekter lahko pojmujemo kot frekvenčno dekompozicijo kumulanta tretjega reda, iz česar sledi, da je mera simetričnosti procesa, ki je kumulant z ničelno zakasnitvijo $c_3(0, 0)$, enak vsoti bispektra čez vse frekvence. To je podobno varianci procesa, ki je povezana z močnostnim spektrom in kumulantom drugega reda (ali avtokorelacijsko funkcijo).

Dejstvo je, da bispekter meri interakcije med frekvencami, kar je njegova največja uporabnost. Fazni spekter, izračunan s pomočjo DFT, meri faze posameznih frekvenčnih komponent glede na začetek posameznega okna, v katerem računamo diskretno Fourierovo transformiranko. Bispekter pa meri korelacijo med fazami različnih frekvenčnih komponent. Bispekter B(k, l), enačba 3.46, je kompleksor, ima amplitudo |B(k, l)| in fazo¹ $\angle B(k, l)$.

$$B(k,l) = \left| B(k,l) \right| \cdot e^{j \angle B(k,l)} \,. \tag{4.1}$$

Obe, amplituda in faza, imata dve neodvisni frekvenčni osi, k ter l, ki določata vsebino bispektra pri bifrekvenci (k, l). Tako je vsaka tri-dimenzionalna spremenljivka. Na sliki 4.1 je ilustrirana diskretna Fourierova transformiranka pri treh frekvencah k, l ter k+l, ki prispevajo k vsebini bispektra pri bifrekvenci (k, l).

Slika 4.1: Vsebina Bispektra B(k, l) v točki bifaze (k, l) je prispevek amplitude in faze diskretne Fourierove transformiranke pri treh frekvencah k, l ter k+l.

¹ V frekvenčno-frekvenčnem prostoru jo imenujemo tudi bifaza.

Frekvence k, l ter k+l tvorijo trojico (k, l, k+l). Za vsako trojico podaja bispekter amplitudo, ki nam ponazarja jakost sklopitve in fazo, ki nam lahko razkrije nelinearni tip fazne sklopitve drugega reda. V nadaljevanju si bomo ogledali bistvene lastnosti bispektra.

4.1 Glavno področje

Na podoben način kot je diskretni močnostni spekter periodičen s periodo frekvence vzorčenja fs, je maksimalno neodvisna frekvenca le fs/2, kar ustreza Shannovem teoremu o vzorčenju [31, 34], oziroma je simetričen pri frekvenci zgibanja fs/2, velja to tudi za bispekter.

Poleg tega ima bispekter kar nekaj simetrij, ki so prikazane na slikah 3.1 in 3.2. Zaradi tega je potrebno izračunati bispekter samo v neredundantnem področju, ki ga imenujemo glavno področje (GP) in je prikazana na sliki 4.2 kot trikotnik z oglišči ACD. Glavno domeno lahko razdelimo na dva trikotnika, notranjega (NT), z oglišči ABD in zunanjega (ZT), določenega z oglišči BCD. NT je tisto področje bispektra, ki nosi za nas bistveno informacijo. Določajo ga tri stranice. Dve od treh sta določeni z lastnostmi simetrije, prva (AD) je abscisa, oziroma f_1 os, druga (AC) pa je diagonala $f_2 = f_1$. Tretja stranica (CD) je določena s tretjo frekvenco trojčka bispektra (f_1, f_2, f_1+f_2), ki je maksimalno neodvisna, če velja $f_1+f_2 \leq f_s/2$.

Slika 4.2 : Glavno področje diskretnega bispektra.

ZT je področje bispektra, ki nam lahko podaja informacijo, o tem ali smo vzorčili z ustrezno frekvenco vzorčenja fs, da ni prišlo do prekrivanja spektra, ali imamo opravka s ustaljenim signalom. Ravno tako lahko testiramo signal, če je naključen. V vseh treh primerih trditve držijo [21], če je absolutna vrednost bispektra na področju ZT enaka nič. Stranica CD je določena z $2f_1+f_2 \le f_s$. Za vsa področja velja, da so meje vključene. V diskretnem frekvenčnem prostoru je tako notranji trikotnik določen z NT = $\{k,l: l \le k, f_m \le k+l \le N/2\}$, pri čemer je N število vzorcev okna, iz katerega računamo diskretno Fourierovo transformiranki.

SVR

4.2 Izračun bispektra

Pri definiciji kumulantnega spektra 3.33 predpostavimo, da imamo na razpolago neskončno zaporedje časovnih vzorcev, oziroma, da je statistika višjega reda razpoložljiva in natančno poznana. V primeru periodičnih signalov predpostavljamo, da je osnovna perioda signala točno poznana. Tako v praksi nastopi problem ocenjevanja kumulantnega spektra procesa, ko imamo na razpolago le končno mnogo opazovanj procesa. Probleme ocenjevanja lahko v glavnem razdelimo na dva načina pristopa ocenjevanja mer statistike višjih redov.

Prvi način imenujemo klasični (ali Fourierov), drugega pa parametrični, ki je zasnovan na avtoregresijskem (AR), drsečem povprečju (MA), ARMA ali Volterovnem modelu. Parametrične metode omogočajo boljšo frekvenčno ločljivost, ki je pri direktnih metodah običajno manjša, ker imamo opravka s končno dolgimi časovnimi vrstami. Za parametrične metode je značilna tudi manjša varianca, ki nam da boljše ocene mer. Slabost parametričnih metod je v tem, da zahtevajo določene predpostavke o modelu². Problem je, ker ne moremo nedvoumno določiti red modela. Tako obstaja velika nevarnost, da nam zamegli zanimive in neznane lastnosti statistike višjega reda analiziranega signala. Zaradi tega so v nadaljevanju parametrične metode izključene iz naše študije.

Klasične metode lahko naprej delimo v tri metode :

- Direktno, ki je približek definicije podane s 3.34;
- Indirektno, ki je približek definicije 3.42;
- Kompleksno demodulacijo;

Najbolj uporabljeni sta prvi dve, direktna in indirektna metoda. Slednji smo uporabili za izračun bispektra in ju med seboj primerjali. Pri indirektni metodi izhajamo iz časovnega prostora in izračunamo kumulant tretjega reda po enačbi 3.31, uporabimo DFT in dobimo bispekter. Direktna metoda izhaja iz enačbe 3.46. Nanaša na direkten izračun bispektra v frekvenčnem prostoru. V obeh primerih dobimo enake rezultate, ob tem pa je direktna metoda računsko veliko bolj ekonomična od indirektne. Ker imamo opravka s trojnim produktom diskretne Fourierove transformiranke je algoritem računsko zelo zahteven. Znatno zmanjšanje računskih operacij dosežemo, če izračunamo bispekter v polarnih koordinatah za neredundantno GP, za kote med 0 in 45 stopinjami. Na razpolago imamo tri metode:

- Direktni pristop;
- Pristop z dodajanjem ničel;
- Super hitri Fourierov transform (FFT);

Pri metodi direktnega pristopa izračunamo bispekter s pomočjo direktne metode in ga nato preračunamo v polarne koordinate. Veliko hitrejša je druga metoda, kjer prihranimo čas z uporabo hitrega Fourierovega transforma. Metoda *super* FFT je razširitev metode pristopa z dodajanjem ničel. Točke bispektra izračunamo le na posameznih *premicah* pod različnimi

² Da je AR, MA ali ARMA tipa.

koti, z uporabo samo ene FFT, ki odgovarja *premici* z najmanjšim kotom. Zaradi problema prikaza bispektra v polarnih koordinatah smo se osredotočili in izpopolnili direktno metodo.

4.2.1 DIREKTNA METODA

SUR

Direktna metoda je razširitev Welchove metode poprečevanja periodogramov za ocenjevanje spektrov.

Imejmo signal x(n), n = 0..., N-1Signal x(n) razdelimo v K odsekov i = 0,... K-1, vsak dolžine M. Posamezni odseki se lahko prekrivajo, $K \ge N/M$. Naj bo *i*-ti odsek signala x(n) enak $x_i(n)$, n = 0,... M-1.

Za vsak odsek izračunamo povprečno vrednost odseka μ_i in jo odštejemo od vzorcev tega odseka.

$$\mu_i = \frac{1}{M} \sum_{n=0}^{M-1} x_i(n) \tag{4.2}$$

$$x'_{i}(n) = x_{i}(n) - \mu_{i}$$
(4.3)

Osrediščen odsek podatkov x_i '(n) pomnožimo z ustreznim oknom w(n) (pravokotno, Blackmanovo, Hanningovo ali Hammingovo okno), ki jih uporabljamo za izračun običajne spektralne analize. S tem lahko znatno zmanjšamo pojav razlivanja, a hkrati tudi povečamo varianco [29].

$$x''_{i}(n) = w(n) \cdot x'_{i}(n), n = 0, ..., M-1.$$
(4.4)

Slika 4.3: Od leve proti desni: Hammingonovo, Hanningonovo in Blackmanovo okno.

Hanning:
$$w(n) = 0,54 - 0,46 \cos\left(\frac{2\pi n}{N}\right)$$
 (4.5)

Hamming:
$$w(n) = 0.5 \left[1 - \cos\left(\frac{2\pi n}{N}\right) \right]$$
 (4.6)

Blackman:
$$w(n) = 0,42 - 0,5\cos\left(\frac{2\pi n}{N}\right) + 0,08\cos\left(\frac{4\pi n}{N}\right)$$
 (4.7)

Za vsak odsek izračunamo diskretno Fourierovo transformiranko:

SUR

$$X'(k) \cong \frac{1}{M} \sum_{n=0}^{M-1} x_i''(n) \cdot e^{-2 \cdot \pi \cdot n \cdot k / M} , \qquad (4.8)$$

kjer je k diskretna frekvenca, i = 0, ..., K in k = 0, ..., M-1.

V splošnem je povezava med N_3 in M podana z $M = M_3 \cdot N_3$, kjer je M_3 pozitivno liho celo število, $M_3 = 2 \cdot J_3 + 1$. M_3 določa velikost okna, s katerim gladimo spekter višjega reda po sosednjih frekvencah. Ker je M sod, M_3 pa lih, napravimo za vrednost N_3 kompromis na najbližje celo število.

Ocenimo spekter momenta tretjega reda $\hat{M}_{3}^{i}(k,l)$ s poprečenjem v frekvenčnem prostoru, da zmanjšamo varianco in dobimo boljšo oceno:

$$\hat{M}_{3}^{\prime}(k,l) = \frac{I}{J_{3}^{2}} \cdot \sum_{\lambda_{l}=-J_{2}}^{J_{3}} \sum_{\lambda_{2}=-J_{2}}^{J_{3}} X^{\prime}(k+\lambda_{1}) \cdot X^{\prime}(l+\lambda_{2}) \cdot X^{\prime}(k+l+\lambda_{1}+\lambda_{2})$$
(4.9)

i = 1,..., K, preko pravokotnega okna dimenzij $M_3 \times M_3$. V posebnem primeru, ko ni poprečenja v frekvenčnem prostoru $M_3 = 1$ ($J_3 = 0$) in je tako $\hat{M}_3^i(k, l)$ enak:

$$\hat{M}_{3}^{i}(k,l) = X^{i}(k+\lambda_{1}) \cdot X^{i}(l+\lambda_{2}) \cdot X^{i}(k+l+\lambda_{1}+\lambda_{2}), \quad i = 1,...,K.$$
(4.10)

Zadostuje izračun v NT, ki je določeno z: $0 \le l \le k$, $k+l \le fs/2$. Ocena bispektra signala x(n) je potem povprečje čez vse odseke:

$$\hat{B}^{x}(f_{1},f_{2}) = \hat{C}^{x}_{3}(f_{1},f_{2}) = \hat{M}^{x}_{3}(f_{1},f_{2}) = \frac{1}{K} \sum_{i=1}^{K} \hat{M}^{i}_{3}(f_{1},f_{2}), \qquad (4.11)$$

kjer sta:

$$f_{1} = \left(\frac{f_{s}}{N_{3}}\right) \cdot k$$

in
$$f_{2} = \left(\frac{f_{s}}{N_{3}}\right) \cdot l$$
 (4.12)

in fs frekvenca vzorčenja.

Algoritem direktne metode smo zapisali v programskem jeziku Borland Delphi 4.0 in je priložen v prilogi IV.

4.3 Statistične lastnosti ocene bispektra

Direktna klasična metoda zagotavlja asimptotično nepristranski³ in konsistenten približek [34, 35, 37]. Poleg tega je vsaka ocena spektra višjih redov asimptotično kompleksno Gaussova (za velike M, N) in nekolerirana z nobeno oceno spektra višjih redov pri drugih frekvencah.

Predpostavimo, da sta $C_2^x(f)$ in $C_3^x(f_1, f_2)$ pravi močnostni spekter, oziroma bispekter strogo ustaljenega osrediščenega naključnega procesa. Naj bo $\hat{C}_3^x(f_1, f_2)$ konsistentna ocena bispektra izračunana po direktni metodi iz ene realizacije naključnega procesa dolžine N. Za dovolj velike vzorce dolžine M in skupne dolžine N, predstavlja direktna metoda približno nepristransko oceno [12, 35]:

$$E\{\hat{C}_{3}^{x}(f_{1},f_{2})\}\cong C_{3}^{x}(f_{1},f_{2}), \qquad (4.13)$$

z asimptotično varianco:

$$\operatorname{var}\left\{\operatorname{Re}\left[\hat{C}_{3}^{x}(f_{1},f_{2})\right]\right\} \cong \operatorname{var}\left\{\operatorname{Im}\left[\hat{C}_{3}^{x}(f_{1},f_{2})\right]\right\} \cong \frac{1}{2}\sigma_{3}^{2}(f_{1},f_{2}), \quad (4.14)$$

$$\sigma_3^2(f_1, f_2) = \frac{N_3^2}{M \cdot K} C_2^x(f_1) \cdot C_2^x(f_2) \cdot C_2^x(f_1 + f_2)$$
(4.15)

Za $0 < f_2 < f_1$, kjer je K število odsekov, M število vzorcev odseka in $N_3 = M/(2 \cdot J_3 + 1)$, J_3 pa je definiran s 4.9. Varianca gre proti nič, ko gre $M \to \infty$, $K \to \infty$. Izraz za varianco bispektra $\sigma_3^2(f_1, f_2)$ 4.15 za frekvenci f_1 in f_2 velja, če ležita frekvenci na GP in ne na mejah oziroma $f_1 = f_2, f_1 = 0, f_2 = 0$ in $f_1 + f_2 = f_s/2$.

Tako lahko zmanjšamo varianco če:

- povečamo število odsekov K,
- povečamo okno za poprečevanje v frekvenčnem prostoru J₃,
- povečanjem dolžine odseka M,

S povečanjem števila odsekov K lahko vpeljemo morebitne neustaljenosti, algoritem pa postane računsko potraten. Po drugi strani poprečenje v frekvenčnem prostoru preko večjega področja zmanjša frekvenčno resolucijo, poslabša konsistentnost ocen in podaljša čas izračuna ter zakrije zanimive lastnosti procesa. V primeru, da imamo malo podatkov lahko povečamo K s prekrivanjem odsekov.

Dokazano je [12], da je za velike M in N-je napaka bikoherence

³ Če povečujemo število vzorcev časovne vrste dolžine *N*, se bo pričakovana ocena bispektra $\hat{B}(k,l)$ približevala pravi vrednosti bispektra B(k, l).

SUR

$$\frac{\left[\hat{C}_{3}\left(f_{1},f_{2}\right)-C_{3}\left(f_{1},f_{2}\right)\right]}{\sigma_{3}^{2}\left(f_{1},f_{2}\right)} \approx N(0,1), \qquad (4.16)$$

približno kompleksno Gaussovo porazdeljena spremenljiva s srednjo vrednostjo enako nič in varianco enako ena. Velja tudi, da lahko to statistiko obravnavamo kot neodvisne, naključne spremenljivke na diskretni mreži GD, če je korak mreže večji ali enak pasovni širini bispektra, to je $\hat{C}_3^x(f_i, f_k)$ in $\hat{C}_3(f, f)$ sta neodvisna za $j \neq r$ ali $k \neq s$, če je

$$\left|f_{j+l} - f_{j}\right| \ge \frac{l}{N_{3}} \tag{4.17}$$

ali

in

$$|f_{r+l} - f_r| \ge \frac{l}{N_3}$$
 (4.18)

Brillinger in Rosenblatt [1967] sta pokazala, da je potrebno vrednost N_n zniževati z zviševanjem reda statistike višjih redov, da bi ohranjali primerno stabilnost ocen. Za ocenjevanje bispektra priporočata dolžino okna, ki naj bi bila enaka kvadratnemu korenu tiste, ki jo uporabljamo pri izračunu močnostnega spektra [35]:

$$N_3 = \sqrt{N_2} . \tag{4.19}$$

Rao in Gabr pa priporočata naslednjo izbiro za N_3 [31]:

$$N_3 \le \sqrt{N_2} \tag{4.20}$$

$$N_3 < N_2$$
. (4.21)

Klasične metode imajo prednost enostavne implementacije (uporaba Fourierovega transforma) in dobrih ocen v primeru dolgih časovnih vrst. Pri tem pa je zaradi principa nedoločenosti Fourierove transformacije omejena zmožnost ločevanja harmoničnih komponent v frekvenčnem področju bispektra. To lahko povzroči probleme pri določanju kvadratičnih faznih sklopitev v primeru frekvenčnih parov, ki so si zelo blizu.

4.4 Bikoherenca

S povečevanjem števila vzorcev časovne vrste N, se bo pričakovana ocena bispektra $\hat{B}(k, l)$ približevala pravi vrednosti bispektra B(k, l), ker pa ne velja za varianco $\sigma_3^2(f_1, f_2)$. To predstavlja problem pri ocenjevanju bispektra, nasprotno pa tega problema ni pri ocenah močnostnega spektra, ki ima sledeče posledice; Predpostavimo, da ima signal več energije pri trojici frekvenčnih komponent (f_1, f_2, f_1+f_2) kot pri trojici (f_3, f_4, f_3+f_4) . Ocena bispektra $\hat{B}(k, l)$ bo imela večjo varianco pri bifrekvenci (f_1, f_2) kot pa pri bifrekvenci (f_3, f_4) , zgolj zaradi razlike v energiji, neodvisno od drugih lastnosti statistike višjih redov. Čeprav je velika vrednost ocene bispektra nujni pogoj, ni pa zadostni. Ker je njegova varianca odvisna od energije, meri ocena bispektra tako lastnosti drugega reda kot lastnosti tretjega reda.

SVR

Občutljivost drugega reda, enačba 4.15, lahko odstranimo iz ocene bispektra z vpeljavo nove veličine, ki jo imenujemo bikoherenca in jo definiramo:

$$bic(k,l) = \frac{E[B(k,l)]}{\sqrt{E[P(k)]E[P(l)]E[P(k+l)]}},$$
(4.22)

kjer pomeni P(k) močnostni spekter, definiran z enačbo 3.36. V praksi imamo opravka z ocenami tako, da je ocena bikoherence enaka:

$$\hat{bic}(k,l) = \frac{\hat{B}(k,l)}{\sqrt{\hat{P}(k)\hat{P}(l)\hat{P}(k+l)}},$$
(4.23)

kjer izračunamo oceno moči:

$$\hat{P}(k) = X(k)X^{*}(k).$$
(4.24)

Ocena moči ima v splošnem manjšo varianco kot ocena bispektra. Tako definirana bikoherenca je v bistvu mešanica med statistiko drugega in tretjega reda. Edini razlog za deljenje z močnostnim spektrom, je znebiti se nezaželenih lastnosti variance ocene bispektra. V bistvu ne gre za nič drugega kot le za način normalizacije. Dodajmo še to, da je v literaturi več predlogov normalizacije [12, 34, 35].

V splošnem se uporablja kvadrat bikoherence, oziroma njene ocene:

$$\hat{bic}^{2}(k,l) = \frac{\left|\hat{B}(k,l)\right|^{2}}{\hat{P}(k)\hat{P}(l)\hat{P}(k+l)}.$$
(4.25)

Zaradi jasnosti jo zapišimo še enkrat:

$$\hat{bic}^{2}(k,l) = \frac{\left|\frac{1}{k}\sum_{i=0}^{K}X_{i}(k)X_{i}(l)X_{i}^{*}(k+l)\right|^{2}}{\frac{1}{K}\sum_{i=1}^{K}|X_{i}(k)|^{2}|X_{i}(l)|^{2}|X_{i}(k+l)|^{2}}$$
(4.26)

Pomembna lastnost, kvadrata bikoherence je omejenost med nič in 1, to je:

$$0 \le \dot{bic}^{2}(k,l) \le 1,$$
 (4.27)

in jo zato lahko uporabimo kot mero za določanje in ovrednotenje jakosti fazne sklopitve. Imenovalec in števec bikoherence sta enako odvisna od amplitude signala. Tako je njuno razmerje neodvisno od amplitude signala in je zato čista mera fazne sklopitve. Če fazne sklopitve ni in je vsaka frekvenčna komponenta osnovna bo bispekter enak nič ter posledično tudi kvadrat bikoherence. Fazna sklopitev bo imela za posledico, da bo kvadrat absolutne vrednosti bispektra enak produktu moči posameznih harmonsko povezanih frekvenčnih

SVR

komponent, kar bo povzročilo, da bo kvadrat bikoherence enak 1. Vse vmesne stopnje fazne sklopitve, bodo med nič in ena, kar nam bo določalo jakost fazne sklopitve.

Izračunan kvadrat bikoherence je ocena in je obratno sorazmerna številu oken K ter prekrivanja posameznih oken M [28]. Jakost sklopitve v primeru popolno sklopljenega signala, ko naj bi bil kvadrat bikoherence enaka 1 in v primeru nesklopljenega signala, ko je naj bi bila vrednost kvadrata bikoherence enaka nič, je močno odvisna od števila uporabljenih oken za izračun povprečja. V primeru, ko računamo oceno kvadrata bikoherence s samo enim oknom, dobimo v obeh primerih vrednost kvadrata bikoherence enako 1.

Lastnosti normaliziranega bispektra – bikoherence (kvadrata bikoherence):

Lastnost 1: Bikoherenca Gaussovega signala je enaka nič.

V dodatku I je prikazano, da so kumulanti tretjega in višjih redov za Gaussov proces teoretično enaki nič. Ker je bispekter povezan s kumulantom tretjega reda preko Fourierovega transforma sledi, da je bispekter Gaussovega procesa enak nič. Bispekter je v bistvu enak nič za vsak signal s simetrično funkcijo verjetnostne porazdelitve in ne samo za Gaussove signale [33, 34, 37]. Nasprotno pa imajo signali, ki nimajo simetrične verjetnostne porazdelitvene funkcije, v splošnem od nič različne bispektre. Ker je bikoherenca normaliziran bispekter, velja prva lastnost tudi za bikoherenco.

Lastnost 2: Bikoherenca ne-Gaussovih signalov je v splošnem občutljiva na Gaussov šum.

Medtem ko je teoretični bispekter ne-Gaussovega signala *slep* na dodatni Gaussov šum, kar sledi iz prve lastnosti in je glavna motivacija uporabe bispektra za obdelavo signalov, to ne velja za bikoherenco. Preprosto povedano, bikoherenca signala se bo zmanjšala, če dodamo ne-Gaussovem signalu Gaussov šum, čeprav je ocena bispektra teoretično neobčutljiva na Gaussov šum. To za imenovalec v enačbah 4.22, 2.24 in 4.25 ne velja. Slednje je prikazano v dodatku III.

SUR

5. FAZNE SKLOPITVE

Predenj se poglobimo v fazne sklopitve bomo pojasnili sam pojem faze.

Enostavni sinusni val je funkcija časa t, v primeru časovno diskretnih signalov pa diskretnega časa nT_s , pri čemer je T_s perioda vzorčenja. Običajno pišemo samo n, val opišemo z:

$$x(n) = A \cdot \sin(2\pi \cdot f \cdot n + \varphi). \tag{5.1}$$

Amplituda A je polovica vrednosti višine sinusoide od vrha do vrha; frekvenca f je število popolnih ciklov, ki jih opravi sinusoida v času ene sekunde; fazni kot φ pa je način opisa začetne točke valovanja.

Na spodnji sliki je primer dveh sinusoid enakih amplitud in frekvenc, ki sta v času premaknjeni. Časovni premik med njima zaznamuje fazni kot, če velja, da začneta obe ob istem času t = 0 s. Fazni kot lahko ponazorimo z odmikom špice vrtečega se kolesa v smeri proti urnemu kazalcu iz začetne horizontalne lege, katerega vertikalna projekcija označuje amplitudo sinusoide. Tako lahko fazni kot zavzame vrednost med 0 in 360 stopinjami ali 0 in 2π radiani.

Slika 5.1: Levo sinusni val amplitude A = 1, frekvence f = 1 Hz in faze $\varphi = 0^{\circ}$. Desno enaka sinusoida s fazo $\varphi = 50^{\circ}$.

Če spremenimo pogled in predpostavimo sistem z vodom in izhodom lahko opazujemo vhodno-izhodno relacijo. Najenostavnejšo dobimo v primeru, ko imamo na izhodu signal enake frekvence, ki je fazno zamaknjen za neko konstantno vrednost. Pojav imenujemo sinhronizacija [51]. S sinhronizacijo razumemo povezave med dvema signaloma v časovnem prostoru. Mi pa proučujemo povezave med frekvenčnimi komponentami signala v frekvenčnem prostoru, kjer lahko gledamo na sinhronizacijo kot na sklopitev prvega reda.

Dobro je znano, da v primeru, ko preide kompleksen harmonski proces x(t) s frekvencami f_1 , $f_2,...,f_n$ in fazami $\phi_1, \phi_2,..., \phi_n$ nelinearno transformacijo kot je

$$y(t) = x(t) + \alpha \cdot x^{\kappa}(t), \qquad (5.2)$$

pri čemer je α konstanta, se pojavi na izhodu y(t) vsaj ena nova komponenta z vsoto frekvenc in faz:

$$f' = \sum_{i=1}^{k} f_i , \qquad (5.3)$$

$$\varphi' = \sum_{i=1}^{k} \varphi_i , \qquad (5.4)$$

poleg tistih, ki so že prisotne v x(t). Takšne nelinearnosti povzročijo tako imenovane frekvenčne in fazne sklopitve k-tega reda [12, 35, 40, 59, 58]. Za testiranje prisotnosti nelinearnosti se uporabljajo polispektri. Znano je, da lahko sklopitev k-tega reda ugotovimo s polispektron k+1 reda. Po drugi strani pa lahko s polispektrom k+1 reda ugotovimo samosklopitve k-tega reda [59].

5.1 Fazna sklopitev drugega reda

Zgodi se, da zaradi interakcije med dvema harmonskima komponentama procesa pride do prispevka moči pri vsoti in/ali razliki njenih moči. Tak pojav, ki bi bil lahko posledica nelinearnosti drugega reda, povzroči nastop določenih faznih relacij, ki jih imenujemo kvadratične¹ fazne sklopitve. Splošni primer je amplitudna modulacija. Kvadratična fazna sklopitev ali fazna sklopitev drugega reda se lahko pojavi samo med harmonsko odvisnimi komponentami. Tri frekvence (f_1, f_2, f_3) so harmonsko odvisne, če je ena od njih vsota ali razlika preostalih dveh, na primer $f_3 = f_1+f_2$ ali $f_3 = f_2-f_1$. Poseben primer nastopi, ko je ena dvakratnik druge ($f_1, f_1, f_2 = f_1+f_1$). V tem primeru govorimo o samosklopitvi. V določenih primerih je pomembno ugotoviti ali so frekvence, ki so na harmonsko odvisnih pozicijah v močnostnem spektru, dejansko fazno sklopljene. Močnostni spekter duši vse fazne odvisnosti, zato nam ne more dati odgovora. Bispekter pa omogoča ugotavljanje in ovrednotenje faznih sklopitev.

Prisotnost faznih sklopitev drugega reda je močan indikator za nelinearnega, signalnega, produkcijskega mehanizma. Razmerje moči med sklopljeno frekvenco k+l in frekvencama k in l, pogosto merimo z amplitudo kvadrata bikoherence $bic^{2}(k, l)$.

Imejmo procesa:

$$v_1(n) = \cos(2\pi f_1 n + \varphi_1) + \cos(2\pi f_2 n + \varphi_2) + \cos(2\pi f_3 n + \varphi_3), \qquad (5.5)$$

$$p_2(n) = \cos(2\pi f_1 n + \varphi_1) + \cos(2\pi f_2 n + \varphi_2) + \cos(2\pi f_3 n + (\varphi_1 + \varphi_2)),$$
(5.6)

kjer je

$$f_3 = f_1 + f_2 \,. \tag{5.7}$$

Trojica (f_1, f_2, f_3) je harmonsko povezana, fazni koti $\varphi_1, \varphi_2, \varphi_3$ pa so neodvisne naključne spremenljivke uniformno porazdeljene na področju $[0, 2 \cdot \pi]$. Iz 5.5 je razvidno, da je f_3 neodvisna harmonska komponenta, ker je φ_3 neodvisna naključna fazna spremenljivka. V tem primeru govorimo samo o frekvenčni sklopitvi. Frekvenčne sklopitve same po sebi nimajo bistvenega pomena in so lahko v procesih pogosto tudi samo naključne.

¹ V tem poglavju uporabljamo izraz kvadratične fazne sklopitve, obravnavamo pa sklopitev, ki je lahko posledica kvadratične sklopitve ni pa to razvidno. Natančneje bo pojasnjeno v poglavju 5.3.
Na drugi strani pa je f_3 procesa $v_2(n)$, oziroma 5.6, posledica fazne sklopitve², v tem primeru lahko sklepamo na nelinearnost, ki je vsebovana v procesu. Imamo frekvenčno in fazno skopitev, ki ni naključna, ampak močno nakazuje na nelinearni mehanizem.

Slika 5.2: Močnostni spekter signala $v_1(n)$ levo in $v_2(n)$ desno za vrednosti: $f_1 = 2$ Hz, $f_2 = 3$ Hz ter $f_3 = 5$ Hz, dolžina signala N = 200 točk, vzorčna frekvenca fs = 40 Hz.

Če pogledamo močnostna spektra signalov $v_1(n)$ ter $v_2(n)$ na sliki 5.2 vidimo, da sta enaka in ju ne moremo razlikovati. Informacijo razlikovanja dobimo z izračunom bispektra na spodnji sliki 5.3. Na fazno ali frekvenčno sklopitev lahko sklepamo glede na to, da je v močnostnem spektru vrh pri harmonsko povezani relaciji, kar je osnovni pogoj za študiranje sklopitev.

Slika 5.3:Levo, bispekter frekvenčno sklopljenega signala $v_1(n)$ in desno, fazno sklopljenega signala $v_2(n)$.

35

² V primeru, ko govorimo o fazni sklopitvi, je mišljena frekvenčna in fazna sklopitev.

Slika 5.4:Faza bispektra izračunana samo za frekvenčni par (3 Hz, 2 Hz), ker le ta pokaže znatni vrh v bispektru. Levo, bispekter frekvenčno sklopljenega signala $v_1(n)$ in desno, fazno sklopljenega signala $v_2(n)$.

V obeh primerih bispekter pokaže prisotnost fazne skopitve (slika 5.3). Medtem, ko je v drugem primeru resnična, v prvem primeru določitev odpove. Kljub temu, da gre samo za frekvenčno sklopitev, nam bispekter prikaže na mestu (3 Hz, 2 Hz) vrh. Šele nadaljnji izračun kota bispektra za podano bifrekvenco nam lahko razkrije za kakšno sklopitev v resnici gre. Če je nič stopinj lahko sklepamo na fazno sklopitev, in obratno za frekvenčno.

Na sliki 5.4 levo, ločimo frekvenčno sklopljeno bifrekvenco, saj zavzame vrednost malo čez 200 stopinj, od tiste na desni, ki je fazno sklopljena in zavzame 360 stopinj. V primeru fazne sklopitve je kot bispektra enak $0+2\pi k$ stopinj.

Kljub temu, da je vrednost kota bikoherence enaka nič lahko pride do napačne ugotovitve, ker so koti φ_1 , φ_2 in φ_3 neodvisni, uniformno porazdeljeni in zgodi se lahko, čeprav z zelo majhno verjetnostjo, da je

$$\angle bic^{2}(f_{1},f_{2}) = 0 = \varphi_{1} + \varphi_{2} - \varphi_{3}, \qquad (5.8)$$

tudi v primeru, ko imamo samo frekvenčno sklopitev. Problema se lotimo z uporabo razdelitve signala procesa v več odsekov.

Prikazani primer je izračunan z uporabo enega odseka, zato je mera bikoherence v tem primeru enaka ena za vse bifrekvence obeh primerov in tako neuporabna. Le ob predpostavki fazne naključnosti, je bikoherenca lahko uspešna mera za ugotavljanje faznih sklopitev drugega reda. Bispekter bo tako pokazal vrh le v primeru fazne sklopitve. Fazno naključnost zagotovimo z naključno vrednostjo faz signalov v vsakem odseku. Dokaz za to je v prilogi II...

Zgornje ugotovitve si poglejmo na primeru:

$$y(n) = y_1(n) + y_2(n) + s(n), \qquad (5.9)$$

kjer sta

$$y_1(n) = 1 \cdot \cos(2\pi f_1 n + \varphi_1) + 1 \cdot \cos(2\pi f_2 n + \varphi_2) + A_{ns} \cdot \cos(2\pi (f_1 + f_2) n + \varphi_3), \quad (5.10)$$

$$y_2(n) = A_{sk} \cdot \cos(2\pi (f_1 + f_2)n + (\varphi_1 + \varphi_2)), \qquad (5.11)$$

 φ_1 , φ_2 in φ_3 so uniformno porazdeljene naključne faze U[0, $2 \cdot \pi$], $f_1 = 2$ Hz, $f_2 = 3$ Hz in s(n) je Gaussov šum. Prva funkcija $y_1(n)$ je frekvenčno sklopljena pri f_1+f_2 , druga $y_2(n)$ pa je fazno sklopljena komponenta pri vsoti frekvenc f_1+f_2 .

Razmerje sklopljenih moči pri vsoti frekvenc f_1+f_2 je prava vrednost kvadrata bikoherence $bic^2_{prava}(f_1, f_2)$ in se lahko spreminja, če spreminjamo parametra amplitud A_{ns} in A_{sk} , ker je

$$bic_{prava}^{2}(f_{1},f_{2}) = \frac{A_{sk}^{2}}{A_{ns}^{2} + A_{sk}^{2}},$$
(5.12)

brez prisotnosti šuma.

Poglejmo si dva primera. V obeh bomo uporabili K = 64 odsekov za izračun statističnih mer tretjega reda. Frekvence f_1 , f_2 in f_3 naj bodo enake kot v predhodnem primeru (2 Hz, 3 Hz in 5 Hz). V prvem primeru $y_A(n)$, sta $A_{ns} = 0$ in $A_{sk} = 1$. Vrednost $bic_{prava}^2(f_1, f_2) = 1$, pri čemer predpostavljamo, da so faze φ_1 , φ_2 in φ_3 v vsakem odseku naključne. Opravka imamo z že poznanim signalom 5.5.

Slika 5.5: Levo, kvadrat bikoherence signala $y_A(n)$ in desno, signala $y_B(n)$. Izračunan pri K = 64 odsekov, dolžine M = 200 točk z zagotovljeno fazno naključnostjo v posameznih odsekih, $f_1 = 2$ Hz, $f_2 = 3$ Hz in $f_3 = 5$ Hz.

Iz kvadrata bikoherence tega signala na sliki 5.5 levo je lepo razviden vrh pri bifrekvenci (2 Hz, 3 Hz), ki je enak 1, kar kaže na popolno fazno sklopitev.

V drugem primeru $y_B(n)$, ko je $A_{ns} = 1$ in $A_{sk} = 0$ dobimo signal, enačba 5.6. Vrednosti za frekvence in predpostavka fazne naključnosti, veljata prav tako kot v prvem primeru. Teoretična vrednost kvadrata bikoherence $bic_{prava}^2(f_1, f_2) = 0$. Kvadrat bikoherence na sliki 5.5 desno pokaže vrh³, vendar pa ima ta vrednost okoli 0,008, kar je praktično nič. Tako sklepamo, da ne gre za fazno sklopitev, temveč frekvenčno.

Z razdelitvijo signala na odseke, ki ima čez vse odseke enake faze, ne dosežemo fazne naključnosti in s tem pravilnih izračunov. Sestavimo drug signal $y_B(n)$, v katerem so faze φ_1 , φ_2 ter φ_3 enake v vsakem odseku. Ker je $A_{ns} = 1$ in $A_{sk} = 0$, bi morala biti $bic^2_{prava}(f_1, f_2) = 0$.

³ Pri tem naj opomnimo, da smo pri izračunu kvadrata bikoherence za bispekter postavili vse vrednosti pri bifrekvencah, ki so bile manjše od povprečne vrednosti bispektra na področju NT, na nič, in s tem izločili napake oknenja, zaokrožitvene in druge napake, na katere je bikoherenca zelo občutljiva, da ne bi zameglili slike.

Kvadrat bikoherence pokaže visok vrh pri bifrekvenci (f_1, f_2) , slika 5.6 levo in nam napačno ugotovi popolno fazno sklopitev. Problem je ponazorjen v preglednici 5.1. Z absolutno vrednostjo bikoherence ne moremo ugotoviti kvadratičnih faznih sklopitev, če signal ne vsebuje naključnih faz v posameznih odsekih izračuna [15, 59]. V tem primeru kvadrat bikoherence meri razmerje koherentne⁴ moči pri vsaki posamezni bifrekvenci.

Slika 5.6: Levo, kvadrat bikoherence signala $y_B(n)$ izračunan iz 64 odsekov brez fazne naključnosti v posameznih odsekih, $f_1 = 2 Hz$, $f_2 = 3 Hz$ in $f_3 = 5 Hz$ in desno, $y_C(n)$ z zmanjšano jakostjo fazne sklopitve.

Ni nujno, da vrh v spektru bikoherence kaže na prisotnost fazne sklopitve, še vedno pa je lahko uporaben pri določanju katere bifrekvence vsebujejo signal in katere šum. Za fazno sklopitev bi morali neobhodno izračunati še fazni kot bispektra.

Fazna sklopitev	Naključna faza v posameznih odsekih		Brez naključne faze v posameznih odsekih	
	Da	Ne	Da	Ne
Primer	$y_A(n)$		$y_B(n)$	
Vrhovi v močnostnem spektru $P(f_1), P(f_2), P(f_1+f_2)$	Da	Da	Da	Da
$\hat{bic}^2(f_1,f_2)$	1	0	1	1
$\angle \hat{B}(f_1, f_2)$	0	U[0, 360]	0	U[0, 360]

Preglednica 5.1: Rezultati ugotavljanja kavdratične fazne sklopitve.

Poleg enostavnih primerov signalov, imamo v realnosti opravka s signali kot je na primer signal krvnega pretoka, pri katerem so fazne in frekvenčne sklopitve časovno prehodne. Poglejmo si spekter bikoherence na sliki 5.6 desno. Generirali smo signal $y_C(n)$ (enačba 5.9) brez šuma z vrednostmi parametrov $A_{ns} = 1$ in $A_{sk} = 1$ enakih frekvenc kot predhodna signala in fazno naključnostjo preko posameznih odsekov. V signalu nimamo prehodnih komponent, imamo pa prispevek frekvenčne sklopitve signala $y_1(n)$ in fazni prispevek signala $y_2(n)$ k isti bifrekvenci signala $y_C(n)$. Če višamo A_{ns} relativno glede na A_{sk} , se skladno s pričakovanjem vrednost kvadrata bikoherence zmanjša. V tem primeru je $bi\hat{c}^2(f_1, f_2)$ dobra ocena $bic_{prava}^2(f_1, f_2)$, saj ugotovimo, da je jakost fazne sklopitve okoli 0,6, prava vrednost pa je

⁴ Koherentne v smislu, da ostanejo enaka fazna razmerja med komponentami v vseh segmentih.

0,5. Razlog za takšno odstopanje najdemo v končnih (kratkih)časovnih vrstah in končnemu (majhnem) številu odsekov.

Da bomo lahko razvili način ugotavljanja kvadratičnih faznih sklopitev v signalu krvnega pretoka z bikoherenco se bomo podrobneje seznanili z interpretacijo bispektra na testnih signalih $v_1(n)$ (enačba 5.5) in $v_2(n)$ (enačba 5.6). Signala nista generirana na sliki 5.9 zato samo nakazujeta kvadratično nelinearnost, sta pa primernejša za ponazoritev in razumevanje.

Oba signala imata enaka močnostna spektra, z vrhovi, ki ustrezajo moči signala pri frekvencah f_1 , f_2 in f_1+f_2 . Signal $v_2(n)$ vsebuje kvadratično fazno sklopitev, v signalu $v_1(n)$ pa je ni. Poudariti želimo, da samo z uporabo metod drugega reda ne moremo razlikovati signala $v_1(n)$ in $v_2(n)$. Problem določitve kvadratične fazne sklopitve, ko imamo v močnostnem spektru vrhove pri frekvencah f_1 , f_2 in f_1+f_2 ponazorimo še s fazno razlago.

5.2 Fazna razlaga kvadratične sklopitve

Bispekter B(k, l) je kompleksna spremenljivka z amplitudo in fazo. Za vsako bifrekvenco (k, l) lahko bispekter predstavimo kot točko v kompleksni ravnini Im[B(k, l)] proti Re[B(k, l)]. Na sliki 5.7 je vektor bispektra prikazan v kompleksni ravnini za bifrekvenco (f_1, f_2) za signala $v_l(n)$ in $v_2(n)$.

Slika 5.7: Levo, fazna predstavitev bispektra za bifrekvenco (f_1, f_2) za frekvenčno sklopljen signal $v_1(n)$ in desno, za fazno sklopljenega signala $v_2(n)$.

Dolžina vektorja $B(f_1, f_2)$ predstavlja amplitudo. Fazo predstavlja kot med vektorjem in pozitivno realno osjo. V primeru fazne sklopitve je kot enak nič stopinj. Pri izračunu bispektra smo predpostavili uporabo poprečenja preko K oken, oziroma razdelitev podatkov na K odsekov, v katerih so koti kosinusnih funkcij uniformno porazdeljeni na U[0,2 $\cdot\pi$]. Le tako ima vsak bispekter posameznega K-tega odseka različno bifazo.

Slika 5.8: Zgoraj, fazna predstavitev bispektra za bifrekvenco (f_1, f_2) signala $v_1(n)$ in spodaj, signala $v_2(n)$ za K-ti odsek.

Za signal $v_1(n)$ so bifaze bispektra za bifrekvenco (f_1, f_2) posameznega odseka porazdeljene uniformno na področju U[0, $2 \cdot \pi$]. Inkoherentna vsota vseh K-tih vektorjev bo v povprečju težila k kotu nič stopinj in amplitudi nič, ko bo K naraščal. Za signal $v_2(n)$ so vsi vektorji bispektra za posamezni odsek usmerjeni vzdolž pozitivne realne osi. Koherentna vsota vseh vektorjev bo enaka povprečju amplitude različnem od nič in kotu nič stopinj.

Ocena bispektra bo za frekvenčno sklopljen signal enaka nič, v primeru fazne sklopitve pa od nič različna.

Bikoherenca ni nič drugega kot normalizirana mera bispektra, in zato je mehanizem uporabe za ugotavljanje faznih sklopitev enak kot smo ga predstavili na primeru bispektra. Amplitudo kvadrata bikoherence $bic^2(k, l)$ lahko razlagamo kot delež moči pri frekvenci k+l, ki je sklopljena s komponentama pri frekvencah k in l. Kvadrat bikoherence $bic^2(k, l)$ enak 1 pomeni popolno sklopitev, nič pa nobene sklopitve.

5.3 Mehanizem kvadratične sklopitve

Kot smo v drugem poglavju pojasnili osnove dinamike kardiovaskularnega sistema, imamo opravka vsaj s petimi skoraj periodičnimi oscilatorji, med katerimi lahko prihaja v času do faznih in/ali frekvenčnih sklopitev. V tem poglavju bomo na prikazali na primeru možen mehanizem faznih sklopitev. V signalu krvnega pretoka imamo prisotne karakteristične frekvence (frekvenca srčnega utripa, dihanja in miogena), zato bomo za model uporabili prikazani generator na sliki 5.9. Slednji da na izhodu karakteristične frekvence obogatene z višjimi harmoniki karakterističnih frekvenc in novimi frekvenčnimi komponentami na harmonskih relacijah, ki so posledica kvadratične transformacije karakterističnih frekvenc. Istočasno bom zaradi preglednosti obravnavali le kvadratično nelinearno povezavo med dvema karakterističnima frekvenčnima komponentama.

Slika 5.9: Blok diagram preprostega generatorja fazne sklopitve drugega reda.

Poglejmo si primer preprostega generatorja fazne sklopitve drugega reda:

$$x(n) = \sum_{i=1}^{2} \cos(2\pi f_i n + \varphi_i)$$
(5.13)

$$y(n) = x(n) + x^{2}(n) =$$

= $\cos(2\pi f_{1}n + \varphi_{1}) + \cos(2\pi f_{2}n + \varphi_{2}) +$
+ $\left[\cos(2\pi f_{1}n + \varphi_{1}) + \cos(2\pi f_{2}n + \varphi_{2})\right]^{2} =$ (5.14)

$$= \cos(2\pi f_1 + \varphi_1) + \cos(2\pi f_2 + \varphi_2) + 1 + + \frac{1}{2}\cos(2\pi (2f_1)n + 2\varphi_1) + \cos(2\pi (f_1 + f_2)n + (\varphi_1 + \varphi_2)) + (5.14) + \cos(2\pi (f_1 - f_2)n + (\varphi_1 - \varphi_2)) + \frac{1}{2}\cos(2\pi (2f_2)n + 2\varphi_2).$$

Izhodni signal prikazuje bogatejšo harmonsko strukturo kot vhodni signal za enosmerno komponento, oziroma frekvenco 0 Hz, $2f_1$, $2f_2$, f_1+f_2 ter f_1-f_2 , ki jo je signal pridobil pri prehodu skozi nelinearni sistem drugega reda. Iz enačbe 5.14 dobimo poleg bogatejše harmonske sestave tudi fazne relacije, ki so enake frekvenčnim, kot je prikazano v preglednici 5.2.

Preglednica 5.2: Frekvenčne in fazne relacije harmonikov nelinearnega signala y(n) (enačba 5.14).

Frekvenca	Faza
$2f_1$	$2\varphi_l$
$2f_2$	$2\varphi_2$
f_1+f_2	$\varphi_1 + \varphi_2$
$f_1 - f_2$	$\varphi_1 - \varphi_2$

Ker se pojavijo relacije med fazami zaradi kvadratične nelinearnosti pri prehodu signala skozi nelinearni sistem drugega reda pravimo, da signal izraža kvadratično fazno sklopitev ali fazno sklopitev drugega reda. Nelinearna transformacija povzroči tudi prisotnost parov frekvenc (f_0 , kf_0) in faz (φ_0 , $k\varphi_0$), ki so na harmonskih pozicijah, ki jih imenujemo samo-sklopitve. V periodičnih signalih so samo-frekvenčne sklopitve zelo pogoste, vendar brez samo-faznih sklopitev. Simultana prisotnost samo-frekvenčnih in samo-faznih sklopitev k-tega reda je močan indikator prisotnosti nelinearnosti k-tega reda.

Za primer vzemimo, da se srčna frekvenčna komponenta $f_1 = 1$ Hz in respiratorna frekvenčna komponenta $f_2 = 0,2$ Hz oziroma skoraj periodična oscilatorja fazno sklopita na opisan način. Da bi lahko predpostavili nelinearno povezavo, bi morali ugotoviti v močnostnem spektru poleg osnovnih frekvenčnih komponent še tiste iz preglednice 5.2.

SUR

41

Frekvenca x(n)	Frekvenca v močnostnem spektru	
f_1	1 Hz	
f_2	0.2 Hz	
$2f_1$	2 <i>Hz</i>	
$2f_2$	0.4 <i>Hz</i>	
$f_1 + f_2$	1.2 Hz	
$f_1 - f_2$	0.8 Hz	

Preglednica 5.3: Pričakovana vsebina močnostnega spektra testnega signala y(n).

Tvorimo testni signal x(n):

SUR

$$x(n) = 2 \cdot \cos(2\pi \cdot 1 \cdot n + \varphi_1) + 1 \cdot \cos(2\pi \cdot 0, 2 \cdot n + \varphi_2)$$
(5.15)

$$y(n) = x(n) + \xi \cdot x(n)^2 + s(n), \qquad (5.16)$$

kjer pomeni konstanta $\xi = 0,5$ jakost kvadratične sklopitve. Da smo dobili bolj realne razmere smo signalu dodali še Gaussov šum s(n) s povprečno vrednostjo nič in varianco 1. Pričakovana frekvenčna vsebina nelinearno preoblikovanega signala y(n) je prikazana na sliki 5.10; kjer so razvidne vse pričakovane frekvence iz preglednice 5.3.

Slika 5.10: Levo, časovni potek testnega signala y(n), dolžine 50 s, vzorčne frekvence 40 Hz. Fazno naključnost smo zagotovili z 32-imi neodvisnimi realizacijami. Desno je njegov močnostni spekter s pričakovanimi frekvenčnimi komponentami iz preglednice 5.2.

Če se vrnemo nazaj na definicijo bispektra 3.44 in zapišemo:

$$B(k,l) = X(k)X(l)X^{*}(k+l), \qquad (5.17)$$

pri čemer lahko za X(k) zapišemo:

$$X(k) = |X(k)|e^{j \angle X(k)},$$
(5.18)

če upoštevamo še zapis bispektra z amplitudo in fazo 4.1, lahko zapišemo amplitudo bispektra kot

$$|B(k,l)| = |X(k)| \cdot |X(l)| \cdot |X^*(k+l)|$$
(5.19)

in bifazo fazo kot

$$\angle B(k,l) = \angle X(k) + \angle X(l) - \angle X(k+l).$$
(5.20)

Iz enačbe 5.19 je razviden razlog za uporabo bispektra pri ugotavljanju tovrstnega tipa nelinearnosti, saj nastopijo naslednje zveze:

$$\angle B(f_1, f_1) = \varphi_1 + \varphi_1 - 2 \cdot \varphi_1 \tag{5.21}$$

$$\angle B(f_2, f_2) = \varphi_2 + \varphi_2 - 2 \cdot \varphi_2 \tag{5.22}$$

$$\angle B(f_1, f_2) = \varphi_1 + \varphi_2 - (\varphi_1 + \varphi_2)$$
(5.23)

$$\angle B(f_1, -f_2) = \varphi_1 - \varphi_2 - (\varphi_1 - \varphi_2), \qquad (5.24)$$

kjer se $B(f_1, f_2)$ nanaša na diskretno bifrekvenco (k, l), ki je najbližja normalizirani bifrekvenci (f_1, f_2) .

Signali, tvorjeni na način, prikazan na sliki 5.9, bodo imeli bifazo nič pri bifrekvencah, ki so v razmerju s frekvencami prisotnimi na vhodu. Tako je možno ugotavljati bispekter signala za ničelno bifazo, in ugotoviti, če mehanizem generiranja signala vsebuje kvadratično nelinearnost.

Poglejmo si vsebino bispektra testnega signala y(n) na sliki 5.11.

Slika 5.11: Levo, bispekter testnega signala y(n) (enačba 5.15), izračunan iz K = 32 oken in desno, nivojni prikaz bispektra.

Bispekter prikazuje več vrhov, od katerih pripada vsak svoji diskretni bifrekvenci (k, l). Iz bispektra najbolj izstopa komponenta pri bifrekvenci (1 Hz, 1 Hz), ki je bolj razvidna v nivojnem prikazu bispektra in nakazuje na srčno samosklopitev. Leta komponenta nakazuje, da gre verjetno za fazno sklopitev, če ne pa vsaj za frekvenčno. To bo razkrila faza bispektra obravnavane bifrekvence. Razlog za velike amplitudne razlike posameznih vrhov sledi iz izračuna bispektra. Trojica harmonsko povezanih frekvenčnih komponent (f_1, f_2, f_3) bo imela v bispektru veliko vrednost, ko bodo imele vse tri čim večjo vrednost diskretne Fourierove transformiranke. V primeru srčne samosklopitve po enačbi 5.19 dobimo produkt kvadratnega korena moči frekvenčne komponente 1 Hz s kvadratnim korenom moči harmonske frekvenčne

43

komponente samosklopitve 2 Hz. Tak produkt povzroči nastanek visokega vrha v močnostnem spektru na sliki 5.10. V primeru respiratorne samosklopitve, ki jo prikazuje nizek vrh pri bifrekvenci (0,2 Hz, 0,2 Hz), dobimo v produktu trojice (0,2 Hz, 0,2 Hz, 0,4 Hz) majhen produkt zaradi majhne vrednosti korena moči pri komponenti 0,4 Hz. Iz tega sledi, da so najvišji vrhovi bispektra pri tistih bifrekvencah, ki imajo v trojicah največje moči. V našem primeru so to (1 Hz, 1 Hz, 2 Hz), (0,2 Hz, 0,8 Hz, 1 Hz) ter (0,2 Hz, 1 Hz, 1,2 Hz). Vse imajo srčno frekvenčno komponento največje moči. Seveda na to vpliva tudi jakost kvadratične sklopitve ξ ter velikost amplitud osnovnih frekvenčnih komponent.

Iz bispektra razberemo 6 bifrekvenc, ki so zbrane v preglednici 5.4. Medtem, ko dobimo 2. samosklopitvi za srčno in respiratorno frekvenčno komponento ter njuno medsebojno sklopitev⁵, se v preglednici 5.4 pokažejo še sklopitve označene z zvezdico.

Bifrekvenca (f ₁₁ Hz, f ₂ /Hz)	Pripadajoča trojica $(f_1/Hz, f_2/Hz, (f_1\pm f_2)/Hz)$	Tip sklopitve
(0,2, 0,2)	(0,2, 0,2, 0,4)	Samosklopitev
(0,2, 0,8)	(0,2, 0,8, 1)	*
(0,2, 1)	(0,2, 1, 1,2)	f1 in f2
(0,4, 0,8)	(0,4, 0,8, 1,2)	*
(1, 1)	(1, 1, 2)	Samosklopitev
(0,8, 1,2)	(0,8, 1,2, 2)	*

Preglednica 5.4: Bifrekvence s pripadajočimi trojicami.

V danih primerih ne gre za prave sklopitve, temveč za sekundarne sklopitve med frekvenčnimi komponentami, ki so posledica nastanka vsote ali razlike osnovnih:

$$0,4 Hz = 0,2 Hz + 0,2 Hz, (5.25)$$

$$0,8 Hz = 1 Hz - 0,2 Hz, (5.26)$$

$$1,2 Hz = 1 Hz + 0,2 Hz \text{ in}$$
(5.27)

$$2 Hz = 1 Hz + 1 Hz. (5.28)$$

Lete $(f_1 = 1, 2 Hz \text{ in } f_2 = 0, 8 Hz)$ lahko zopet vzamemo kot sekundarne osnovne in dobimo:

$$1,2 Hz + 0,8 Hz = 2 Hz, \text{ ter}$$
(5.29)

$$1,2 Hz - 0,8 Hz = 0,4 Hz.$$
(5.30)

Frekvenčne komponente so zgolj posledica kavdratičnega generacijskega mehanizma in nimajo drugega pomena. Ko smo analizirali bifrekvence lahko z izračunom faze bispektra, oziroma bifaze analiziramo, za kakšne sklopitve gre. V primeru fazne sklopitve pričakujemo kot okoli 0 (360) stopinj. Do odstopanja lahko pride zaradi vpliva šuma, zaokrožitvenih napak in oknenja. Zaradi preglednosti izračunamo bifazo bifrekvence, ki imajo značilno amplitudo. Ostale bifrekvence imajo naključno porazdeljeno bifazo med 0 in 360 stopinjami. Na bifaznem spektru na sliki 5.12, so izračunane faze za vseh šest značilnih bifrekvenc iz preglednice 5.4.

⁵ Dokler ni prikazano drugače, govorimo o frekvenčnih sklopitvah.

Iz bifaznega spektra določimo bifaze za bifrekvence iz preglednice 5.3.

Bifrekvenca (f _{1/} Hz, f ₂ /Hz)	Bifaza v stopinjah	Vrsta sklopitve
(0,2, 0,2)	0	Fazna
(0,2, 0,8)	360	Fazna
(0,2, 1)	0	Fazna
(0,4, 0,8)	0	Fazna
(1, 1)	0	Fazna
(0,8, 1,2)	360	Fazna

Preglednica 5.5: Bifrekvence in pripadajoče bifaze:

Iz enačb od 5.21 do 5.30 dobimo za vseh šest bifrekvenc faze enake 0 stopinj (360), kar nam določa fazno sklopitev. Jakosti faznih sklopitev za posamezne bifrekvence ocenimo s pomočjo bikoherence, oziroma njenega kvadrata. S pomočjo bikoherence bi lahko ugotavljali značilne bifrekvence in določili njihovo jakost sklopitve. Bikoherenca veliko bolj občutljiva na šum, zaokrožitvene napake, oknenje in druge napake kot bispekter. Frekvenčna ločljivost se v splošnem zmanjša in bifrekvence težje določimo. Z nič izenačimo vse bifrekvence pri izračunu kvadrata bikoherence, z vrednostjo amplitude manjše od povprečne vrednosti bispektra v področju notranjega trikotnika. Da bi dobili preglednejšo sliko. Povprečna vrednosti bispektra v NT (slika 5.11) je enaka 0,000026, kar je 0,05 promila maksimalne vrednosti amplitude bispektra 0,5.

Iz slike 5.13 razberemo, da so vse značilne bifrekvence iz preglednice 5.4 zelo močno, oziroma 100 % fazno sklopljene, saj so vse amplitude za vse bifrekvence enake 1. Zlasti v primeru, ko imamo kratke časovne vrste, močan vpliv šuma in ostalih napak, si lahko pri določanju sklopitev pomagamo s pogledom bikoherence v kompleksni ravnini (slika 5.13).

Enačbo 4.23 lahko zapišemo tudi kot

$$bi\hat{c}(k,l) = \frac{Re[\hat{B}(k,l)] + jIm[\hat{B}(k,l)]}{\sqrt{\hat{P}(k)\hat{P}(l)\hat{P}(k+l)}},$$
(5.31)

in jo imenujemo kompleksna bikoherenca, iz česar sledi:

$$Re[bi\hat{c}(k,l)] = \frac{Re[\hat{B}(k,l)]}{\sqrt{\hat{P}(k)\hat{P}(l)\hat{P}(k+l)}}$$
 in (5.32)

$$Im[bi\hat{c}(k,l)] = \frac{Im[\hat{B}(k,l)]}{\sqrt{\hat{P}(k)\hat{P}(l)\hat{P}(k+l)}}.$$
(5.33)

Ima sledeči lastnosti:

$$\angle b\hat{c}(k,l) = \arctan \frac{Im[b\hat{c}(k,l)]}{Re[b\hat{c}(k,l)]} = \angle \hat{B}(k,l), \qquad (5.34)$$

to je, ima enake fazne lastnosti kot bispekter.

$$\left|bi\hat{c}(k,l)\right|^{2} = Re\left[bi\hat{c}(k,l)\right]^{2} + Im\left[bi\hat{c}(k,l)\right]^{2} = bi\hat{c}^{2}(k,l)$$
(5.35)

Njen kvadrat amplitude ima enake lastnosti kot kvadrat bikoherence.

Slika 5.13: Levo, spekter kvadrata bikoherence signala y(n) in desno, bikoherenca v kompleksni ravnini, brez odstranitve napake.

Ugotavljanje kvadratičnih faznih sklopitev lahko predstavimo tudi v kompleksni ravnini kompleksne bikoherence (slika 5.13). Krogci predstavljajo konec vektorjev kompleksne bikoherence z amplitudo od izhodišča koordinatnega sistema do krogca in fazo, ki je kot med realno osjo in vektorjem. Krogci, ki ležijo bliže realni osi, predstavljajo fazno sklopitev. Jakost ponazarja njihovo približevanje točki (1, 0). Pri izračunu kvadrata bikoherence nismo odstranili napak, na katere je bikoherenca zelo občutljiva. To prikazuje velik madež v središču kompleksne ravnine, ki se razteza v vse smeri do 0,4 v vseh smereh. Način ugotavljanja je primeren za začetno obravnavo signala, ko se sprašujemo, ali signal izkazuje fazne sklopitve ker ne ločimo med posameznimi bifrekvencami, ki izkazujejo fazne sklopitve.Z matematičnega vidika je nezadovoljiv samo test za ničelno bifazo. Lastnosti ocene (enačba 5.31) so bile empirično raziskane. Pokazale so, da se ocena približuje normalni porazdelitvi okoli prave vrednosti bifaze $N(\varphi, \sigma^2)$ z varianco [12, 45]:

$$\sigma^{2}[\hat{\varphi}(k,l)] \approx \frac{1}{2K} \left(\frac{1}{bic_{prava}^{2}(k,l)} - 1 \right), \qquad (5.36)$$

SVR

kjer je $bic^{2}_{prava}(k, l)$ prava vrednost kvadrata bikoherence. Predstavlja razmerje sklopljene moči pri bifrekvenci (k, l) [45]. Izraz 5.36 je le približek, s približevanjem kvadrata prave vrednosti bikoherence nič, se varianca ocene bifaze bliža neskončnosti. V praksi je bifaza vedno omejena med 0 in 2π , kar pomeni, da približek odpove za majhne vrednosti prave bikoherence.

6. NEKATERI PROBLEMI PRI UGOTAVLJANJU KVADRATIČNIH FAZNIH SKLOPITEV

Predenj se lotimo obravnavanja realnih signalov krvnega pretoka, bomo opredelili metodologijo določanja in vrednotenja faznih sklopitev drugega reda in probleme, ki se pri tem pojavijo.

Mere statistike višjih redov: amplitudo in fazo bispektra ter bikoherenco in njen kvadrat, za 5 različnih načinov normalizacije, smo preizkusili na več kot pedesetih testnih signalih. Signalom smo spreminjali amplitudo, frekvenco in fazo. Analizirali smo primere brez sklopitve, s frekvenčno sklopitvijo, s fazno sklopitvijo prvega, drugega in tretjega reda. Dodajali smo jim šum (normalno, eksponentno in uniformno porazdeljen) in pri vsakem signalu smo spreminjali parametre, kot so število vzorcev *N*, število oken *K* ter prekrivanje. Preverili smo tudi vlogo oken, kot so pravokotno, Blackmanovo, Hanningovo in Hammingonovo okno. Analizirali smo tudi vlogo časovno frekvenčnega povprečja pri odpravljanju občutljivosti mer na napake.

Obvezni pogoj za ugotavljanje faznih sklopitev je pojav frekvenčno sklopljenih harmonskih komponent v močnostnem spektru. Šele takrat se pojavi vprašaje, ali so frekvenčne komponente osnovne, frekvenčno ali fazno sklopljene¹. Tako bo prvi korak pri bispektralni analizi izračun močnostnega spektra in ugotavljanje osnovnih, karakterističnih frekvenčnih komponent kardiovaskularnega sistema. V močnostnem spektru se bomo osredotočili na vse komponente, ki so posledica nelinearne transformacije drugega reda in jih preučevali z bispektri.

Za pravilno ugotavljanje fazne sklopitve je neobhodna zagotovitev ergodičnosti. Slednjo v primeru realnih signalov jo lahko zagotovimo z večkratnimi neodvisnimi meritvami, ali v našem primeru, kjer imamo en signal, z razdelitvijo v več odsekov K. Zaradi končno dolgih (kratkih) časovnih vrst se pojavi problem zadostnega števila odsekov, ki bi zagotovila pravilno ugotavljanje fazne sklopitve. Z višanjem števila odsekov krajšamo dolžino posameznega odseka, kar poslabša frekvenčno ločljivost. Problem odpravimo s prekrivanjem posameznih oken.

Slaba frekvenčna ločljivost se še bolj izrazi, ker so karakteristične frekvence, na primer srčna in metabolična komponenta, v razmerju okoli 1:100. V bispektru to pomeni, da imamo na frekvenčnih oseh razpon od zelo nizkih frekvenc reda 0,01 Hz pa do visokih frekvenc reda 1 Hz. Za zagotovitev dobre frekvenčne ločljivosti nizkih frekvenc, potrebujemo čim daljše odseke za izračunu diskretne Fourierove transformiranke. To neposredno zmanjšuje število možnih odsekov in slabša oceno bispektra. Na sliki 6.1 je ponazorjen problem slabe frekvenčne ločljivosti pri nizkih frekvencah, ki nastopi zaradi velikega razmerja med najvišjimi in najnižjimi frekvencami, ki jih želimo opazovati. Iz slike je razvidno, da imamo enako frekvenčno ločljivost za obe frekvenčni osi le na diagonali, ki je boljša pri visokih frekvencah in obratno. Za bifrekvence, ki ne ležijo na diagonali, se pojavi še dodaten problem, ko imamo za eno frekvenčno os dobro za drugo pa slabo ločljivost (področje zgoraj, levo na sliki 6.1). Edina možnost, je, da ločeno obravnavamo posamezna področja bifrekvenčne vsebine signala. V primeru, ko preučujemo sklopitve med nizkimi in visokimi

¹ Ves čas imamo v mislih sklopitev drugega reda.

karakterističnimi frekvenčnimi komponentami, kot je na primer med srčno in metabolično karakteristično frekvenco, pa tudi to ne bo mogoče.

Slika 6.1: Ponazoritev frekvenčne ločljivosti bispektra (bikoherence).

V četrtem poglavju smo spoznali dve sorodni meri statistike višjih redov bispekter ter bikoherenco. Nakazali smo problem uporabe bikoherence pri ugotavljanju faznih sklopitev. Bikoherenca je zelo občutljiva na šum v ozadju. Zgodi se lahko, da je imenovalec enačbe 4.25 zelo majhen. Prav tako je v danem primeru majhen števec, oziroma bispekter, ki se lahko izrazi z veliko vrednostjo kvadrata bikoherence. Za takšen primer je dovolj že računska napaka, to je zaokrožitvena napaka.

Na podoben način se pojavi problem razlivanja pri uporabi odsekov za izračun diskretne Fourierove transformiranke. Zaradi razlivanja je bispekter različen od nič na celotnem področju bispektra. Posledično je tudi bikoherenca različna od nič na celotnem področju. V primeru šuma, ki različno vpliva na števec in imenovalec, predvsem zaradi tega, ker je večja varianca v števcu kot v imenovalcu. Občutljivost bikoherence lahko zmanjšamo tako, da imenovalcu prištejemo neko majhno konstanto, ki povzroči, da je imenovalec vedno večji od števca in s tem bikoherenca ne izraža nenadnih porastov. Velikost konstante smo ugotavljali s poskusi. Za učinkovito se je izkazalo prištevanje povprečne vrednosti bispektra na celotnem področju NT (slika 4.3). Tako dobimo:

$$bi\hat{c}^{2}(k,l) = \frac{\left|\frac{1}{k}\sum_{i=0}^{K}X_{i}(k)X_{i}(l)X_{i}^{*}(k+l)\right|^{2}}{\frac{1}{K}\sum_{i=1}^{K}|X_{i}(k)|^{2}|X_{i}(l)|^{2}|X_{i}(k+l)|^{2} + a\frac{1}{Z}\sum_{NT}\hat{B}(k,l)},$$
(6.1)

kjer pomeni Z število vseh bifrekvenc na področju NT. V praksi se izkaže, da je potrebno uporabiti tudi večkratnik povprečne vrednosti bispektra v NT za zadovoljive rezultate. Konstanto množenja a, smo določali eksperimentalno.

Umerjanje bikoherence smo zagotovili tudi s postavljanjem na nič vrednosti bispektra pri bifrekvencah, ki so zelo majhne. V ta namen smo izračunali maksimalno vrednost bispektra. V se vrednosti, ki so bile manjše od določenega procenta maksimalne vrednosti smo izenačili z nič.

Zaradi teh problemov smo za ugotavljanje sklopitev uporabili bispekter. Algoritem iskanja faznih sklopitev je sledeč:

Slika 6.2: Potek ugotavljanja fazne in frekvenčne sklopitve ter njune jakosti.

Frekvenčne sklopitve nimajo bistvenega pomena. Za nas pa so vseeno pomembne s stališča razumevanja dinamike kardiovaskularnega sistema. Zato nas je zanimala tudi jakost frekvenčnih sklopitev.

Signal krvnega pretoka spada med zelo zapletene signale. Njegovo vsebino določajo številni fiziološki vplivi, ki jih sabo razumemo in jih zelo težko opisujemo. Posledično je vsebina signala zelo spremenljiva. Karakterističnim frekvencam se neprestano spreminja amplituda in frekvenca. Komponente lahko opazujemo kot časovno prehodne signale. Še večjo kompleksnost povzročijo interakcije med posameznimi frekvenčnimi komponentami, ali kot frekvenčne ali kot fazne sklopitve. Z meritvijo pridelamo določen šum. Lahko je instrumentalen, številski, zaradi kvantizacije analognih signalov ali fiziološki. Kot fiziološki šum razumemo pojav interakcij z ostalim sistemom v merjenem signalu. Vse omenjeno lahko vsebuje vsak odsek. Pojavljanje in prepletanje faznih in frekvenčnih sklopitev skupaj s šumom vpliva na vrednost kvadrata bikoherence, prav tako na amplitudo bispektra in vrednost faznega kota. Od velikosti amplitude sklopljenih komponent je močno odvisna tudi jakost same sklopitve.

Za zagotovitev ergodičnosti poprečujemo preko vseh odsekov. Za majhen šum pričakujemo, da se spreminja naključno okoli neke konstantne vrednosti in ga lahko s poprečenjem izločimo.

V smislu, zmanjševanja spremenljivosti osnovnih parametrov signala in opazovanju osnovnih mehanizmov sklopitev, težimo k čimbolj ustaljenim meritvam. Merjena oseba mora biti povsem sproščena. Že vsak najmanjši premik se lahko zelo močno pozna v merjenem signalu.

7. REZULTATI

7.1 Signali

Signal krvnega pretoka je bil izmerjen z laserskim merilnikom *FlowLab* (Moor Instruments, Anglija). Metoda merjenja pri tem instrumentu temelji na Dopplerjevem efektu. Z Dopplerjevimi enačbami iz izmerjene spremembe izračunamo hitrost, s katero se gibljejo krvne celice. Meritev pri tem instrumentu je neinvazivna in omogoča zajemanje dolgih signalov. To je prednost tega instrumenta, saj mora izmerjeni signal vsebovati vsaj nekaj period najnižje frekvenčne komponente, če želimo, da se ta komponenta pri analizi dobro izrazi. Periferni krvni pretok je bil izmerjen na štirih različnih mestih s podobno gostoto krvnih celic in upornostjo ožilja. Merjene osebe so bili zdravi, mladi moški v mirovanju. Vsak je ležal pri miru na postelji 15 *minut* predenj je bila opravljena meritev, ki je trajala 20 *minut*. Signali so digitalizirani s 16 bitno ločljivostjo in vzorčeni s 40 *Hz*.

Slika 7.1: Časovni potek izmerjenega signala krvnega pretoka, 48040 točk, 1201s, fs = 40 Hz.

Slika 7.2: Krajši odsek signala (20 s) iz slike 7.1.

7.2 Priprava signalov

Signal krvnega pretoka smo najprej predelali tako da, smo izločili statični odziv in visoke frekvenčne komponente. Frekvenčno območje signalov smo približno omejili samo na tisti del, v katerem nastopajo značilne frekvence in sicer med 0,01 Hz in 1 Hz.

7.2.1 Odstranjevanje trenda

Statični odziv, ki je prisoten v signalu, se pri frekvenčni analizi pokaže kot prisotnost frekvenčnih komponent z zelo veliko periodo (nizko frekvenco). Slednje zaradi svoje velikosti močno vplivajo na našo oceno nizkih značilnih frekvenc kardiovaskularnega sistema (metabolično, nevrogeno, miogeno komponento). Izločili smo jih s filtrom gibajočega se povprečja. Z oknom dolgim 200 s (8000 točk), smo najprej izračunali trend signala, nato pa smo ga odšteli izmerjenemu signalu.

Trend signala dobimo tako, da v vsaki točki signala izračunamo povprečje 2n točk ((n-1) točk na eni in n na drugi strani). S tovrstnim poprečenjem se izmerjeni signal skrajša za (2n-1) točk ((n-1) na začetku in n na koncu). Število n določimo glede na to katere frekvenčne komponente želimo izločiti in koliko smemo največ skrajšati izmerjeni signal, da se najnižje značilne frekvenčne komponente kardiovaskularnega sistema še dovolj dobro izrazijo v spektrih. Pri odštevanju trenda moramo paziti, da odštevamo enako točko trenda in signala.

7.2.2 Prevzorčenje signalov

Višje frekvenčne komponente signala smo odstranili s prevzorčenjem signala. Nova vzorčna frekvenca je morala biti vsaj 2-krat večja od najvišje frekvenčne komponente prisotne v signalu (frekvenca srca – 1 Hz). Signal smo prevzorčili tako, da je vsaka točka prevzorčenega signala predstavljala povprečje večih točk prvotnega signala.

7.2.3 Osrediščenje časovne vrste

Pri bispektralni analizi smo predpostavili, da je signal v odseku, za katerega računamo, osrediščen. Signal osrediščimo tako, da izločimo enosmerno komponento:

$$x_{osr}(k) = x(k) - \frac{1}{N} \sum_{i=1}^{N} x(i)$$
(7.1)

7.3 Izračuni

Slika 7.3: Zgoraj, močnostni spekter signala krvnega pretoka v linearnem merilu in spodaj, v logaritemskem frekvenčnem merilu.

Močnostni spekter, izračunan iz enega odseka nam prikazuje frekvenčno vsebino signala krvnega pretoka (slika 7.3). Prevladujoča je srčna komponenta z vrhom pri frekvenci okoli 1,05 Hz in njen prvi harmonik z vrhom pri frekvenci okoli 2,1 Hz. Naslednji vrh, pri frekvenci okoli 0,18 Hz pripada respiratorni komponenti. Sledijo mu še vsaj trije vrhovi; prvi okoli 0,91 Hz pripada miogeni komponenti, drugi okoli 0,033 Hz pripada nevrogeni komponenti, tretji, ki ga še lahko razločimo na minutni skali dinamike je metabolična komponenta s frekvenco okoli 0,01Hz.

Pri bispektralni analizi se bomo osredotočili predvsem na prve tri: srčno, respiratorno in miogeno karakteristično frekvenco signala krvnega pretoka. Srčne in respiratorne oscilacije so centralnega izvora in se širijo preko celotne mreže krvnih žil. Ciklično krčenje in proženje gladkih mišičnih vlaken, ki so prostorsko porazdeljene po celotni mreži krvnih žil vključno s srčno mišico, imenujemo miogeno aktivnost. Ta je lokalnega izvora in nastaja kot stalni odziv celic gladkih mišič v stenah krvnih žil. Razmazani vrhovi nakazujejo na časovno spremenljivo

55

REZULTATI

frekvenčno vsebino. Karakteristične frekvence centralnega izvora so prostorsko invariantne. Tiste, ki so lokalnega izvora pa se malo razlikujejo na različnih mestih merjenja. Prav tako se karakteristične frekvence razlikujejo od osebe do osebe, za vse pa velja, da se nahajajo v določenih frekvenčnih področjih. Za prikaz časovno spremenljive vsebine je primernejša časovno-frekvenčna analiza.

Slika 7.4: Desno, časovno-frekvenčni prikaz vsebine signala krvnega pretoka, dobljenega z valčno transformacijo in levo, njegov pogled z vrha.

Valčna transformacija nam zagotavlja najboljši časovno-frekvenčni prikaz. Počasne, nizke frekvenčne komponente imajo dobro frekvenčno ločljivost; hitre, visoke frekvenčne komponente pa dobro časovno ločljivost. Slika 7.4 prikazuje dinamiko vseh petih značilnih frekvenčnih komponent.

Slika 7.5: Zgoraj, časovno povprečna valčna transformiranka signala iz slike 7.3 v linearnem merilu in spodaj, v logaritemskem merilu.

Za prikaz značilnih frekvenčnih komponent je prikladen časovno poprečna valčnna transformiranka signala krvnega pretoka (slika 7.5)..

Ugotovili smo osnovne frekvenčne komponente in sedaj nas zanimajo njihove medsebojne sklopitve. Zaradi lažjega razumevanja bispektra se bomo vsakič posebej osredotočili le na sklopitev med dvema karakterističnima frekvencama.

7.3.1 Sklopitev med srčno in respiratorno karakteristično frekvenco

Za boljšo razvidnost omenjenih komponent in njunih sklopitev smo iz signala izločili, oziroma oslabili vse frekvence pod 0,15 Hz. Dobljen signal je prikazan na sliki 7.6.

Slika 7.6: Časovni potek signala za ugotavljanje sklopitve med srčno in respiratorno karakteristično frekvenco, 47800 vzorcev, vzorčen s frekvenco fs = 40 Hz, z odstranjenim trendom in osrediščen.

Iz močnostnega spektra ocenimo povprečno srčno karakteristično frekvenčno komponento $f_{srčna} = f_1 = 1,05 Hz$ in povprečno respiratorno frekvenčno komponento $f_{respiratorna} = f_2 = 0,18 Hz$. Ob predpostavki kvadratičnega nelinearnega mehanizma sklopitve med srčnim in respiratornim skoraj periodičnim oscilatorjem, moramo v močnostnem spektru ugotovili še njune prve harmonike, ter njuno vsoto in razliko.

Slika 7.7: Močnostni spekter signala s slike 7.6.

V preglednici 7.1 so prikazane vse frekvenčne komponente, ki so posledica kvadratične transformacije. Na sliki 7.7 so označene njihove pozicije v močnostnem spektru, razen za prvi harmonik srčne frekvenčne komponente $2f_l = 2, 1$ Hz, ki je označen na sliki 7.3.

Slika 7.8: Levo, časovno-frekvenčni prikaz respiratorne komponente, izračunan s *selektivno* diskretno Fourierovo transformacijo levo in desno, povprečni močnostni spekter, iz katerega sta razvidni osnovna frekvenčna komponenta 0,18 Hz in njen prvi harmonik 0,36 Hz.

Slika 7.8 prikazuje časovno spremenljivost respiratorne frekvenčne komponente. Razločimo lahko njen prvi harmonik, ki je ravno tako časovno spremenljiv. Še večjo časovno spremenljivost opazimo pri srčni komponenti na sliki 7.9. Komponenta f_1 - f_2 = 0,87 Hz je razvidna iz slike 7.9, manj pa je razvidna frekvenčna komponenta f_1 + f_2 = 1,23 Hz.

Izračunani bispekter signala je prikazan na sliki 7.10. Opazimo veliko amplitudo z vrhom pri bifrekvenci (1,05 Hz, 1,05 Hz), ki ponazarja srčno samosklopitev. Manjša, a opazno amplituda z vrhom pri bifrekvenci (0,18 Hz, 0,18 Hz) označuje respiratorno samosklopitev. Vrh določen s frekvencama 1,05 Hz in 0,18 Hz, govori o sklopitvi med srčno in respiratorno karakteristično frekvenco. Poleg njega je na levi strani približno enako velik vrh pri bifrekvenci (0,87 Hz, 0,18 Hz). Za zadnjega predpostavljamo, da gre za sklopitev med osnovno frekvenčno komponento f_2 in komponento f_1 - f_2 , ki je lahko produkt mehanizma kvadratične sklopitve.

Slika 7.9: Levo, pogled z vrha časovno-frekvenčnega prikaza srčnega oscilatorja signala iz slike 7.6 in desno, njegov povprečni močnostni spekter.

Frekvenčna komponenta	Iskana frekvenčna komponenta v močnostnem spektru	Ugotovljena frekvenčna komponenta v močnostnem spektru
f_{I}	1,05 Hz	da
f_2	0,18 <i>Hz</i>	da
$2f_1$	2,10 Hz	da
$2f_2$	0,36 Hz	da
$\mathbf{f}_I + \mathbf{f}_2$	1,23 Hz	da
$f_1 - f_2$	0,87 Hz	da

Preglednica 7.1: Frekvenčne komponente kvadratične fazne sklopitve med respiratornim in srčnim skoraj periodičnim oscilatorjem.

Slika 7.10: Levo, bispekter, izračunan iz 32 odsekov, K = 32 s 75 % prekrivanjem in uporabo Blackmanovega okna in desno, njegov nivojni prikaz.

Da bi lahko sklepali na kvadratično sklopitev, bi morali v bispektru ugotoviti še dva vrhova. Prvega pri bifrekvenci (0,36 Hz, 0,87 Hz) in drugega pri bifrekvenci (0,87 Hz, 1,23 Hz). Vrhova ponazarjata tako imenovane posledične ali sekundarne sklopitve. Višina teh vrhov je odvisna od jakosti sklopitve ter amplitude osnovnih komponent. Ker je že amplituda prvega harmonika respiratorne komponente majhna, sklepamo, da bosta vrhova pri iskanih bifrekvencah še manjša.

Slika 7.11: Levo, bispekter okoli bifrekvence (0,87 Hz, 0,36 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njegov pogled z vrha.

Slika 7.12: Levo, kvadrat bikoherence okoli bifrekvence (0,87 Hz, 0,36 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.13: Levo, bifaza okoli bifrekvence (0,87 Hz, 0,36 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.14: Levo, bispekter okoli bifrekvence (1,23 Hz, 0,87 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.15: Levo, kvadrat bikoherence okoli bifrekvence (1,23 *Hz*, 0,87 *Hz*), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.16: Levo, bifaza okoli bifrekvence (1,23 Hz, 0,87 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in njen nivojni prikaz.

Slika 7.17: Levo, bispekter okoli bifrekvence (0,18 Hz, 0,18 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.18: Levo, kvadrat bikoherence okoli bifrekvence (0,18 *Hz*, 0,18 *Hz*), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.19: Levo, bifaza okoli bifrekvence (0,18 Hz, 0,18 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.20: Levo, bispekter okoli bifrekvenc (0,18 Hz, 0,87 Hz) in (0,18 Hz, 1,05 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njegov nivojni prikaz

Slika 7.21: Levo, kvadrat bikoherence okoli bifrekvenc (0,18 Hz, 0,87 Hz) in (0,18 Hz, 1,05 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.22: Levo, bifaza okoli bifrekvenc (0,18 Hz, 0,87 Hz) in (0,18 Hz, 1,05 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.23: Levo, bispekter okoli bifrekvence (1,05 Hz, 1,05 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.24: Levo, kvadrat bikoherence okoli bifrekvence (1,05 *Hz*, 1,05 *Hz*), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.25: Levo, bifaza okoli bifrekvence (1,05 Hz, 1,05 Hz), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno njen nivojni prikaz.

Preglednica 7.2: Pregled bifrekvenc kvadratične fazne sklopitve med respiratornim in srčnim skoraj periodičnim oscilatorjem, ugotovljene z bispektrom in bikoherenco.

Bifr	Bifrekvenca		Bifaza
(f_I, f_I)	(1,05 Hz, 1,05 Hz)	0,37	360
(f_2, f_2)	(0,18 Hz, 0,18 Hz)	0,32	300
(f_1, f_2)	(1,05 Hz, 0,18 Hz)	0,2	255
$*(f_1-f_2, f_2)$	(0,87 Hz, 0,18 Hz)	0,3	26
$*(f_1-f_2, 2f_2)$	(0,87 Hz, 0,36 Hz)	0,23	46
$*(f_1+f_2, f_1-f_2)$	(1,23 Hz, 0,87 Hz)	0,24	15

V preglednici 7.2 so zbrani rezultati dobljeni z bispektralno analizo za sklopitev med srčno in respiratorno komponento. Na vseh mestih pričakovanih bifrekvenc dobimo izstopajoče vrhove. Najvišji nastopi pri bifrekvenci srčne samosklopitve (amplituda = 700.000). Pri sekundarnih sklopitvah dobimo znatno manjše vrednosti, pri bifrekvenci (0,36 Hz, 0,87 Hz), je amplituda 4700, kar je približno 0,7 % maksimalne srčne, še vedno pa je veliko višja od povprečne vrednosti bispektra na glavnem področju, kjer je enaka 76. Fazni kot bispektra ali bifazo smo ugotavljali tako, da smo izračunali bifazo le za tiste bifrekvence okoli opazovanih bifrekvenc, pri katerih je bila značilna amplituda. V večini primerov vsaj 40 % maksimalne amplitude vrha pri opazovani bifrekvenci bispektra. S tem izločimo vpliv šuma in ostalih napak. Ugotovili smo, da dobimo popolno fazno samosklopitev za srčno komponento. Manj

očitna je fazna samosklopitev respiratorne komponente, kjer pride 300 stopinj in odstopa od pričakovane za 60 stopinj. Še nižjo vrednost faznega kota dobimo za bifrekvenco, ki ponazarja sklopitev med srčno in respiratorno komponento, le 265 stopinj.

Bispektri so občutljivi na frekvenčno spreminjanje sklopljenih frekvenčnih komponent, to se vidi pri srčni samosklopitvi. Bifrekvenco tvorita frekvenci srčnega oscilatorja, ki se s časom spreminja, tako dobimo značilni razpoteg v smeri diagonale. Vse samosklopitve se nahajajo na diagonali. Sprememba srčne frekvenčne komponente se nahaja v področju od 1,015 *Hz* do 1,15 *Hz*. Pri srčni fazni samosklopitvi je več moči pri nižjih frekvencah okoli 1,05 *Hz*. Še večjo frekvenčno spremenljivost najdemo pri bifrekvenci miogene samosklopitve, ki se spreminja od 0,16 *Hz* pa vse do 0,21 *Hz*. Posledično ima velik razpon tudi bifrekvenca, ki ponazarja sklopitev med srčnim in respiratornim oscilatorjem, z največjo močjo pri bifrekvenci (0,175 *Hz*, 1,07 *Hz*).

Vrhove, ki so posledica sekundarnih sklopitev med produkti kavdratičnega mehanizma ali z osnovnimi frekvenčnimi komponentami, si lahko razlagamo tudi sledeče: poglejmo si na primeru vrha pri bifrekvenci ($f_1 = 0,18 Hz$, $f_2 = 0,87 Hz$), ki je ponazorjen na sliki 7.26.

Slika 7.26: Vrh v bispektru kot posledica metode.

Absolutna vrednost bispektra je enaka produktu diskretne Fourierove transformiranke pri frekvenccah f_1 , f_2 in njuni vsoti f_1+f_2 (enačba 5.19). V našem primeru je vsota $f_1+f_2=0,18$ Hz + 0,87 Hz = 1,05 Hz, ravno srčna frekvenčna komponenta, ki ima zelo veliko amplitudo v močnostnem spektru. Ob posplošitvi, bo veljalo, da bispekter pri vsaki bifrekvenci, ležeči na diagonali¹ prikaže večjo vrednost amplitude od povprečne vrednosti bispektra na področju NT, ker je v produktu (enačba 5.19) vsaj ena velika vrednost. Podobno velja za vse bifrekvence, ki ležijo na črtkani vertikali ali horizontali, saj je v produktu prav tako vsaj ena velika vrednost. Vse to prikazuje slika 7.27. Bispekter je izračunan za glavno neredundantno področje. Sliko smo dobili, tako da smo porezali vrhove bispektra pri zelo nizki vrednosti. Na vsakem presečišču se pojavi vrh². Na mestih kjer pride do fazne ali frekvenčne sklopitve so ti zelo visoki, ostali so po amplitudi veliko manjši (odvisno od produkta, oziroma moči sklopitve).

¹ Označeni s črtkano črto na sliki 7.27.

² Vrhovi so možni le na presečiščih.

SUR REZULTATI

Vrnimo k našemu bispektru pri bifrekvenci (0,18 Hz, 0,87 Hz). V primeru fazne sklopitve mora biti bifaza enaka 0 (360) stopinj.

Slika 7.27: Posledica trojnega produkta pri izračunu bispektra, prikazana na primeru signala y(n) (enačba 5.15 iz poglavja 5.3). Sliko smo dobili tako, da smo porezali amplitude vrhov pri zelo majhni vrednosti.

Enako velja za ostali bifrekvenci v preglednici 7.2, označeni z zvezdico. Vrednosti so blizu 0 (360) stopinj. Na sliki 7.16 ni očiten rezultat 15 stopinj, ki je zapisan v preglednici 7.2. To vrednost za bifrekvenco (1,23 Hz, 0,87 Hz) dobimo s poprečenjem vseh bifaz bifrekvenc vrha, ki so imajo amplitudo enako ali večjo kot 0,4 od normiranega vrha na 1. Enako velja za vse ostale bifrekvence. Vrednosti za bikoherenco v preglednici 7.2 so maksimalne, ki jih lahko odčitamo iz spektra kvadrata bikoherence za posamezne bifrekvence. Vrednosti so precej nizke. Najvišja znaša 0,37 Hz pri srčni bifrekvenci fazne samosklopitve in 0,32 Hz pri bifrekvenci respiratorne samosklopitve. Za ostale z izjemo (0,87 Hz, 0,18 Hz) pa so vrednosti okoli 0,2. Nižje vrednosti smo pričakovali, saj se v času fazne sklopitve lahko pojavljajo le za kratek čas. Lahko so prehodne, že v naslednjem trenutku so lahko frekvenče sklopitve ali pa sklopitve ni več [40] (testni signal $y_{\rm C}(n)$, slika 5.6 desno). Vrednost kvadrata bikoherence 0,2 pri bifrekvenci sklopitve med srčno in respiratorno karakteristično frekvenco (1,05 Hz, 0,18 Hz) je pričakovano nižja od tiste pri njunih samosklopitvah. Zniža jo lahko tudi spremenljivost karakterističnih frekvenc in/ali amplitude.

Poglejmo si primer spremenjenega signala y(n) (enačba 5.16), s katerim smo simulirali fazno sklopitev med srčnim in respiratornim oscilatorjem.

$$x(n) = A_{re} \cdot \cos(2\pi \cdot 0.2 \cdot n + \varphi_1) + A_{sr} \cdot \cos(2\pi \cdot f_{sr} \cdot n + \varphi_1)$$
(7.2)

Testnemu signalu časovno spreminjajmo amplitudo respiratorne A_{re} in srčne A_{sr} karakteristične frekvence, s počasnim kosinusom približne periode, ki je enaka časovni razdalji med dvema zaporednima najvišjima vrhovoma v časovno-frekvenčnem prikazu (sliki 7.8 in 7.9):

$$A_{re} = 1 + 0.5 \cdot \cos(2\pi \cdot 0.0055 \cdot n) \tag{7.3}$$

REZULTATI

SUR

$$A_{sr} = 1 + 0.5 \cdot \cos(2\pi \cdot 0.0125 \cdot n) \tag{7.4}$$

Poleg tega se je linearno časovno spreminjala srčna karakteristična frekvenca od vrednosti 0,95 Hz do 1,05 Hz.

Slika 7.28: Levo, bispekter testnega signala y(n), pri K = 32, Blackmanovem oknu, 75 % prekrivanju in desno, spekter kvadrata bikoherence.

Slika 7.29: Levo, nivojni prikaz spektra kvadrata bikoherence testnega signala y(n) iz slike 7.27 in desno, prikaz kompleksne bikoherence v kompleksni ravnini.

Na sliki 7.28 desno vidimo, da se je amplituda kvadrata bikoherence pri bifrekvenci respiratorne samosklopitve zmanjšala na 0,4, zaradi časovne spremenljivosti amplitude. Vrednost pri bifrekvenci srčne samosklopitve je še manjša in sicer 0,2, kar pomeni, da frekvenčna spremenljivost, ki je razvidna iz bispektra (slika 7.29 levo), še dodatno zniža vrednost kvadrata bikoherence. Tako dobimo zelo majhne vrednosti za jakost fazne sklopitve, čeprav obstaja 100 % fazna sklopitev.

7.3.2 Sklopitev med srčno in miogeno karakteristično frekvenco

V primeru iskanja in določanja kvadratične sklopitve med srčno in miogeno karakteristično frekvenco, bomo na enak način ugotavljali frekvence na harmonskih relacijah. Takoj nastopi problem ugotavljanja prve harmonske komponente miogene karakteristične komponente, ki pade zelo blizu respiratorne komponente in jo na povprečnem močnostnem spektru ne

67

razlike. Vrh miogene povprečne karakteristične frekvence pri 0,091 Hz je razviden iz slike 7.29.

Preglednica 7.3: Frekvenčne komponente kvadratične fazne sklopitve med miogenim in srčnim skoraj periodičnim oscilatorjem.

Frekvenčna komponenta	Iskana frekvenčna komponenta v močnostnem spektru	Ugotovljena frekvenčna komponenta v močnostnem spektru
f_l	1.05 Hz	da
f_2	0.091 <i>Hz</i>	da
$2f_1$	2.10 Hz	da
$2f_2$	0.182 <i>Hz</i>	predpostavimo
$f_1 + f_2$	1.141 Hz	predpostavimo
$f_1 - f_2$	0.959Hz	predpostavimo

Slika 7.30: Povprečni močnostni spekter signala krvnega pretoka za analizo sklopitve med srčno in miogeno karakteristično frekvenco.

Slika 7.31: Desno, bispekter celotnega področja, kjer se nahajajo srčna in miogena karakteristična frekvenca in njune harmonsko odvisne komponente, pri K=34, 88 % prekrivanjem in Blackmanovim oknom in levo, njegov nivojni prikaz

Na sliki 7.31 je prikazan bispekter, ki prikazuje porazdelitev moči po posameznih bifrekvencah. Na njem prepoznamo vrhove, ki smo jih iskali za sklopitev drugega reda med respiratorno in srčno karakteristično frekvenco. Če porežemo vrhove, dobimo zanimivo sliko bispektra, ki jo bomo v nadaljevanju, obravnavali po posameznih področjih okoli iskanih bifrekvenc.

Slika 7.32: Porezan bispekter iz slike 7.31.

Slika 7.33: Levo, bispekter okoli bifrekvence (0,091 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.34: Levo, kvadrat bikoherence okoli bifrekvence (0,091 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.35: Levo, bifaza okoli bifrekvenc (0,091 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.36: Levo, bispekter okoli bifrekvence (1,05 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njegov nivojni prikaz.

70

Slika 7.37: Levo, kvadrat bikoherence okoli bifrekvence (1,05 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.38 Levo, bifaza okoli bifrekvence (1,05 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.39: Levo, bispekter okoli bifrekvence (0,959 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.40: Levo, kvadrat bikoherence okoli bifrekvence (0,959 *Hz*, 0,091 *Hz*), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.41: Levo, bifaza okoli bifrekvenc (0,959 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.42: Levo, bispekter okoli bifrekvence (0,959 Hz, 0,182 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njegov nivojni prikaz.

REZULTATI

SUR

Slika 7.43: Levo, kvadrat bikoherence okoli bifrekvence (0,959 *Hz*, 0,182 *Hz*), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.44: Levo, bifaza okoli bifrekvenc (0,959 Hz, 0,182 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.45: Levo, bispekter okoli bifrekvence (1,141 Hz, 0,959 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.46: Levo, kvadrat bikoherence okoli bifrekvence (1,141 *Hz*, 0,959 *Hz*), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.47: Levo, bifaza okoli bifrekvenc (1,141 Hz, 0,959 Hz), pri K = 34, Blackmanovem oknu, 88 % prekrivanju in desno, njen nivojni prikaz.

Izračun bispektra in njegovega kota ter spektra kvadrata bikoherence je prikazan v preglednici 7.4.

Preglednica 7.4: Frekvenčne komponente kvadratične fazne sklopitve med respiratornim in srčnim skoraj periodičnim oscilatorjem, ugotovljene z bispektrom in bikoherenco.

Bi	frekvenca	Bikoherenca	Bifaza
(f_1, f_1)	(1.05 Hz, 1,05 Hz)	0,37	360
(f_2, f_2)	(0,091 Hz, 0,091 Hz)	0,27	276
(f_1, f_2)	(1,05 Hz, 0,091 Hz)	0,27	297
$(f_1 - f_2, f_2)$	(0,959 Hz, 0,091 Hz)	0,27	122
$*(f_1-f_2, 2f_2)$	(0,959 Hz, 0,182 Hz)	0,2	336
$*(f_1+f_2, f_1-f_2)$	(1,141 Hz, 0,959 Hz)	0,2	300

Iz dobljenih izračunov za bispekter bi lahko zaključili, da sta miogena in srčna komponenta fazno sklopljeni, kar kaže vrh v bispektru, in njegova povprečna bifaza z 297 stopinjami. Na kvadratično sklopitev med oscilatorjema ne moremo sklepati, ker je frekvenčna ločljivost premajhna in ne moremo razločiti vrhov, ki so praktično zliti skupaj. Vrha pri bifrekvenci (1,141 Hz, 0,959 Hz) ni videti, prav tako ni izstopajočega vrha pri bifrekvenci (0,959 Hz), 0,182 Hz). Označeni vrednosti z zvezdico v preglednici 7.4, so vrednosti najbližjih vrhov omenjenima bifrekvencama.

7.3.4 Sklopitev med respiratorno in miogeno karakteristično frekvenco

Frekvenčni komponenti označeni z zvezdico v preglednici 7.5, sta zelo blizu prvega harmonika respiratorne in miogene karakteristične frekvence. Zopet ju predpostavimo. V močnostnem spektru (slika 7.48) ju lahko ugotovimo.

Slika 7.48: Zgoraj, močnostni spekter signala za bispektralno analizo sklopitve med respiratornim in miogenim oscilatorjem v linearnem merilu in spodaj, v logaritemskem merilu.

Frekvenčna komponenta	Iskana frekvenčna komponenta v močnostnem spektru	Ugotovljena frekvenčna komponenta v močnostnem spektru
f_1	0,18 Hz	da
f_2	0,091 <i>Hz</i>	da
$2f_1$	0,36 Hz	da
$*2f_2$	0,182 <i>Hz</i>	predpostavimo
f_1+f_2	0,271 Hz	da
$*f_{1}-f_{2}$	0,089 <i>Hz</i>	predpostavimo

Preglednica 7.5: Frekvenčne komponente kvadratične fazne sklopitve med miogenim in respiratornim skoraj periodičnim oscilatorjem.

Bispektre smo izračunali pri zelo veliki stopnji prekrivanja oken (97 %), kar pomeni, da vsako okno prinese zelo malo nove informacije (15 s), vendar le tako dosežemo večjo ločljivost za ugotavljanje sklopitev ter možnost izračuna kvadrata bikoherence in odstranjevanje naključnih napak. Izbira parametrov je vedno kompromis med zadovoljivo ločljivostjo in zagotavljanjem konsistentnih ocen. Vpliv prekrivanja prikažimo na primeru signala $y_C(n)$ (enačba 5.16), s spremenjenim x(n) (enačba 7.2).

Slika 7.49: Levo, spekter kvadrata bikoherence pri 75 % prekrivanju oken, uporabi K = 32 odsekov in Blackmanovega okna za izračun diskretne Fourierove transformiranke, brez odstranjene napake kvadrata bikoherence in desno, z odstranjeno napako.

Slika 7.50: Levo, spekter kvadrata bikoherence pri 97 % prekrivanju oken, uporabi K = 32 oken in uporabi Blackmanovega okna za izračun diskretne Fourierove transformiranke, brez odstranjene napake kvadrata bikoherence in desno, z odstranjeno napako.

REZULTATI

Na slikah 7.49 in 7.50 je prikazan vpliv prekrivanja. Čim večje je prekrivanje pri istem številu oken, tem večja je ločljivost in tem manj konsistentna je ocena bikoherence, ki teži proti vrednosti 1, ker poprečujemo približno enaka okna.

Poglejmo si bispekter za področje kjer se nahajajo iskane bifrekvence, na sliki 7.51.

Slika 7.51: Levo, bispekter pri K = 32, Blackmanoven oknu in 97 % prekrivanju in desno, njegov nivojni prikaz.

Vrhova miogene in respiratorne samosklopitve sta vidna. Slabše je vidna njuna medsebojna sklopitev. O ostalih bifrekvencah bomo izvedeli več na podrobnejših bispektrih.

Slika 7.52: Levo, bispekter okoli bifrekvence (0,18 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.53: Levo, kvadrat bikoherence okoli bifrekvence (0,18 *Hz*, 0,091 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.54: Levo, bifaza okoli bifrekvence (0,18 Hz, 0,091 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.55: Levo, bispekter okoli bifrekvence (0,271 Hz, 0,089 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.56: Levo, kvadrat bikoherence okoli bifrekvence (0,271 *Hz*, 0,089 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Bifaze okoli bifrekvence (0,271 *Hz*, 0,089 *Hz*) nismo izračunali, saj iz bispektra na sliki 7.53 ni razvidnega izstopajočega vrha. Tudi spekter kvadrata bikoherence nam pove, da gre le za horizontalen črtni porast vrednosti, zaradi miogene komponente kot je bilo prikazano na primeru (slika 7.27).

Preglednica 7.6: Frekvenčne komponente kvadratične fazne sklopitve med respiratornim in srčnim skoraj periodičnim oscilatorjem, ugotovljene z bispektrom in kvadratom bikoherence.

B	ifrekvenca	Bikoherenca	Bifaza
(f_l, f_l)	(0,18 Hz, 0,18 Hz)	0,32	300
(f_2, f_2)	(0,091 Hz, 0,091 Hz)	0,25	289
(f_1, f_2)	(0,18 Hz, 0,091 Hz)	0,55	243
$(f_1 - f_2, f_2)$	(0,089 Hz, 0,091 Hz)	ne moremo n	azločiti
$(f_1 - f_2, 2f_2)$	(0,089 Hz, 0,182 Hz,)	ne moremo i	azločiti
$(f_1+f_2, f_1-f_2)^*$	(0,271 Hz, 0,089 Hz)	0,75	272

Vrednosti za bifrekvenco (0,271 *Hz*, 0,089 *Hz*), označeno z zvezdico v preglednici 7.6, smo dobili z oceno najbližjega vrha tej bifrekvenci. Zaradi velikega prekrivanja so vrednosti grobe ocene.Vrednosti nakazujejo na fazno samosklopitev respiratorne karakteristične frekvence, frekvenčno samosklopitev miogene karakteristične frekvence in medsebojno sklopitev med respiratorno in miogeno karakteristično frekvenco.

7.3.5 Nizkofrekvenčne sklopitve

Z nizkofrekvenčnimi sklopitvami pojmujemo sklopitve srčne, respiratorne in miogene komponente z nevrogeno in metabolično komponento, ter medsebojne sklopitve. S tem namenom smo signal prevzorčili na frekvenco 1 *Hz* ter ga osrediščili.

Slika 7.57: Močnostni spekter signala za bispektralno analizo sklopitve med respiratornim in miogenim oscilatorjem dolžine 1000 s, signalu smo odstranili trend, ga prevzorčili na 1*Hz* in osrediščili.

Na sliki 7.58 in 7.59 je prikazan bispekter nizko frekvenčnega področja. Tudi na tem frekvenčnem področju prihaja do sklopitev kot prikazujejo vrhovi bispektra. Še ne analizirani vrhovi so obkroženi na nivojnem prikazu bispektra. Že pri sklopitvi med miogeno in respiratorno karakteristično frekvenco smo pokazali, da imamo premajhno frekvenčno ločljivost za ugotavljanje sklopitve drugega reda. Zato bomo analizirali samo vrsto in jakost sklopitve med posameznimi karakterističnimi frekvencami. Vsi izračuni so le grobe ocene.

Slika 7.58: Bispekter za nizkofrekvenčno področje.

REZULTATI

Slika 7.59: Nivojni prikaz bispektra za nizkofrekvenčno področje iz slike 7.56.

Slika 7.60: Levo, bifaza za področje nizkih bifrekvenc, K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.61: Levo, kvadrat bikoherence za področje nizkih bifrekvenc, K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

7.3.5.1 Srčna-nevrogena in srčna-metabolična povezava

Slika 7.62: Levo, bispekter okoli bifrekvenc (1,05 Hz, 0,034 Hz) in (1,05 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.63: Levo, kvadrat bikoherence okoli bifrekvence (1,05 Hz, 0,034 Hz) in (1,05 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.64: Levo, bifaza okoli bifrekvenc (1,05 *Hz*, 0,034 *Hz*) in (1,05 *Hz*, 0,01 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno njen nivojni prikaz.

Bispekter kaže na močno sklopitev med srčno in nevrogeno ter srčno in metabolično karakteristično frekvenco, saj je prisotno veliko moči na mestih teh bifrekvenc, ki jo prikazujeta razločna vrhova bispektra na sliki 7.62. Spekter bifaze prikazuje pojavljanje faznih sklopitev, predvsem pri sklopitvi z nevrogeno komponento, ki so po jakosti močne. Vrednosti kvadrata bikoherence so zaradi velikega prekrivanja skoraj za faktor 2 večje kot pri prejšnjih izračunih, in so zato okvirne.

7.3.5.2 Respiratorna-nevrogena in respiratorna-metabolična povezava

Slika 7.65: Levo, bispekter okoli bifrekvence (0,18 Hz, 0,034 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz

REZULTATI

Slika 7.66: Levo, kvadrat bikoherence okoli bifrekvenc (0,18 *Hz*, 0,034 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.67: Levo, bifaza okoli bifrekvenc (0,18 Hz, 0,034 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.68: Levo, bispekter okoli bifrekvence (0,18 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz

Slika 7.69: Levo, kvadrat bikoherence okoli bifrekvenc (0,18 *Hz*, 0,01 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.70: Levo, bifaza okoli bifrekvenc (0,18 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno njen nivojni prikaz.

Respiratorna karakteristična frekvenca je bolj šibko sklopljena z ostalimi oscilatorji, kar kaže majhna moč pri bifrekvencah sklopitve z nevrogeno in metabolično karakteristično frekvenco. Sklopitev z nevrogeno je predvsem frekvenčne, z metabolično pa tudi fazne narave. Metabolična frekvenčna komponenta ima veliko frekvenčno spremenljivost. Verjetno nastopa še kakšna komponenta nižjih frekvenc, ki pa niso predmet našega preučevanja³.

³ Nahajajo se nižje od metabolične karakteristične frekvence.

Slika 7.71: Levo, bispekter okoli bifrekvenc (0,091 Hz, 0,034 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.72: Levo, kvadrat bikoherence okoli bifrekvence (0,091 *Hz*, 0,034 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz

Slika 7.73: Levo, bifaza okoli bifrekvenc (0,091 Hz, 0,034 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.74: Levo, bispekter okoli bifrekvence (0,091 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.75: Levo, kvadrat bikoherence okoli bifrekvence (0,091 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.76: Levo, bifaza okoli bifrekvence (0,091 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Sklopitev med miogeno in nevrogeno karakteristično frekvenco ne izstopa iz bispektra. V okolici iskane bifrekvence je več vrhov, lepše je razvidna frekvenčna sklopitev iz spektra kvadrata bikoherence. Visok vrh bispektra pri bifrekvenci med miogeno in metabolično nakazuje na močno fazno sklopitev, če smatramo frekvenčno komponento s frekvenco okoli 0,006 *Hz* še pod metabolično.

7.3.5.4 Nevrogena-nevrogena povezava

Slika 7.77: Levo, bispekter okoli bifrekvence (0,034 *Hz*, 0,034 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.78: Levo, kvadrat bikoherence okoli bifrekvence (0,034 *Hz*, 0,034 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.79: Levo, bifaza okoli bifrekvence (0,034 Hz, 0,034 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Bispekter kaže na močno fazno samosklopitev nevrogene karakteristične frekvence.

7.3.5.5 Metabolična-metabolična povezava

Slika 7.80: Levo, bispekter okoli bifrekvence (0,01 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.81: Levo, kvadrat bikoherence okoli bifrekvence (0,01 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.82: Levo, bifaza okoli bifrekvence (0,031*Hz*, 0,01 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Največja moč je zbrana pri najnižjih frekvenčnih komponentah. Frekvenčno območje metabolične komponente je okoli 0,01 Hz. Bispekter prikazuje najvišji vrh pri bifrekvenci okoli (0,006 Hz, 0,006 Hz), ki je verjetno ne pripada metaboličnemu oscilatorju. Frekvenčno

komponento so opazili tudi drugi raziskovalci vendar njena narava še ni pojasnjena. Za enkrat predpostavimo, da je metabolična. Ugotovimo srednje močno fazno sklopitev.

Slika 7.83: Levo, bispekter okoli bifrekvence (0,034 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njegov nivojni prikaz.

Slika 7.84: Levo, kvadrat bikoherence okoli bifrekvence (0,034 Hz, 0,01 Hz), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Slika 7.85: Levo, bifaza okoli bifrekvence (0,034*Hz*, 0,01 *Hz*), pri K = 34, Blackmanovem oknu, 97 % prekrivanju in desno, njen nivojni prikaz.

Zaradi nizke frekvenčne ločljivosti ne moremo ločiti posamezne vrhove bispektra na sliki 7.83. Zopet je izrazit vrh, ki prikazuje sklopitev nevrogene karakteristične frekvence s frekvenčno komponento okoli 0,006 *Hz*, ki verjetno ni metabolična. Bifaza pri tej bifrekvenci pa prikazuje fazno sklopitev. Fazna sklopitev nastopa tudi pri ostalih vrhovih.

7.4 Pregled rezultatov

Bispekter je dober pokazatelj porazdelitve bispektralne moči po posameznih parih frekvenc. Največjo moč zaznamo pri najnižjih bifrekvencah okoli (0,01 *Hz*, 0,01 *Hz*) in še nižje, okoli (0,006 *Hz*, 0,006 *Hz*). Nižjih frekvenčnih komponent ne moremo zaznati, ker smo jih izločili s trendom. Vse karakteristične komponente izražajo veliko moči v sklopu z metabolično karakteristično frekvenco. Takoj za njo so po moči sklopitve s srčno komponento, najmanj moči pa izražajo sklopitve z respiratorno karakteristično frekvenčno komponento.

Preglednica 7.7: Porazdelitev bispektralne moči po posameznih bifrekvencah karakterističnih frekvenc kardiovaskularnega signala v odstotkih glede na največjo pri bifrekvenci okoli metabolične karakteristične frekvence.

SKLOPITEV / %	srčna	respiratorna	miogena	nevrogena	metabolična
srčna	45	1	./	1	1
respiratorna	11	4	/	1	1
miogena	51	9	45	1	1
nevrogena	67	7	15	29	1
metabolična	83	22	69	43	100

Vrhovi v bispektru kardiovaskularnega sistema so posledica in odraz njegove dinamike sklopitev. Vsaka moč, večja od povprečne moči v NT bispektra, je rezultat sklopitve. Kot smo ugotovili, je bifaza odvisna od amplitude in frekvenčne spremenljivosti, narave sklopitve in motečih vplivov. Fazna sklopitev usmerja povprečno bifazo k 0 stopinjam, frekvenčna sklopitev pa nasprotno, od 0 stopinj. Tako je pri signalu krvnega pretoka absolutno bifazo 0 stopinj težko pričakovati. V vseh primerih vedno najdemo na področju okoli⁴ karakterističnih bifaz, bifazo različno od nič stopinj. To pomeni, da lahko za vse primere trdimo, da gre za frekvenčne sklopitve. Najmočnejše frekvenčne sklopitve ugotovimo med srčno in metabolično, respiratorno in miogeno ter srčno in respiratorno karakteristično frekvenčno komponento.

Preglednica 7.8: Pojavljanje frekvenčnih sklopitev pri posameznih bifrekvencah karakterističnih frekvenc kardiovaskularnega signala.

SKLOPITEV	srčna	respiratorna	miogena	nevrogena	metabolična
srčna	da	1	1	/	1
respiratorna	da	da	1	1	1
miogena	da	da	da	/	/
nevrogena	da	da	da	da	/
metabolična	83	da	da	da	da

Če privzamemo območje vrednosti bifaz [-60°, +60°], v katerem še vedno predpostavljamo obstoj fazne sklopitve, potem imamo srčno, respiratorno, nevrogeno in metabolično fazno samosklopitev. Najbolj izrazita je fazna samosklopitev srčne karakteristične frekvence.

⁴ Karakteristične komponente so časovno variabilne.

REZULTATI

Srčna karakteristična frekvenca je močno fazno sklopljena z miogeno karakteristično frekvenco. Močno sta fazno sklopljeni tudi miogena in nevrogena karakteristična frekvenca. Nevrogena karakteristična frekvenca je srednje močno fazno sklopljena z metabolično karakteristično frekvenco. Vrednosti karakterističnih bifaz smo dobili s poprečenjem bifaz okoli karakterističnih bifaz. Če bi sklepali iz spektra bifaz, bi dobili fazne sklopitve tudi v primerih označenih z zvezdico v preglednici 7.9. Tudi v primeru srčne in respiratorne sklopitve, kjer je ugotovljena tako imenovana srčno-respiratorna aritmija, ugotovimo fazno sklopitev, v primeru, ko ne poprečujemo. Dobljeni rezultat lahko nakazuje, da so frekvenčne sklopitve med srčno in respiratorno karakteristično frekvenco, ali močnejše ali pa številčnejše.

Preglednica 7.9: Pojavljanje faznih sklopitev pri posameznih bifrekvencah karakterističnih frekvenc kardiovaskularnega signala.

SKLOPITEV	srčna	respiratorna	miogena	nevrogena	metabolična
srčna	da	/	/	1	/
respiratorna	°ne	da	1	1	/
miogena	da	*ne	*ne	1	/
nevrogena	*ne	*ne	*ne	da	1
metabolična	*ne	ne	da	da	da

Ugotavljanje narave nelinearnosti sklopitev med karakterističnimi frekvencami je bilo mogoče le v primeru srčno-respiratorne karakteristične frekvence. Če zopet predpostavimo območje vrednosti bifaz [-60°, +60°], za katere velja, da je bifaza enaka nič in imamo fazno sklopitev. Z veliko verjetnostjo lahko sklepamo, da imamo nelinearni mehanizem sklopitve drugega reda in s tem kvadratične fazne oscilacije. Pri vseh bifrekvencah, ki so posledica kvadratičnega mehanizma, dobimo povprečne bifaze dovolj blizu 0 (360) stopinj.

Preglednica 7.10: Ugotovljen možen pojav kvadratične fazne sklopitve med posameznimi karakterističnimi frekvencami kardiovaskularnega signala.

SKLOPITEV	srčna	respiratorna	miogena	nevrogena	metabolična
srčna	/	1	1	1	1
respiratorna	da	1	/	1	/
miogena	?	?	1	1	1
nevrogena	?	?	?	1	/
metabolična	?	?	?	?	1

Največje odstopanje dobimo pri bifazi sklopitve med srčno in respiratorno karakteristično frekvenco. Leta ne pade v privzeto območje bifaz za fazne sklopitve. Kljub temu sklepamo na kvadratično sklopitev. Pri spremenjenih parametrih algoritma izračuna ugotovimo tudi fazne sklopitve za obravnavano bifazo. Frekvenčne sklopitve so v povprečju prevladujoče, zato z poprečenjem preko večih oken dobimo večji odklon bifaze od pričakovane vrednosti za fazno sklopitev.

8. ZAKLJUČEK

Statistika višjih redov se počasi, a nezadržno uveljavlja na številnih področjih, med drugim tudi na področju obdelave biomedicinskih signalov. Njena uporaba omogoča nov vpogled v naravo mehanizmov fiziološke regulacije in njihovo razlaganje. Metode bispektralne analize kot orodja za odkrivanje frekvenčnih in faznih sklopitev so se izkazale za zelo obetavne pri obdelavi in razumevanju kardiovaskularnega signala krvnega pretoka.

Razvili smo metodo direktnega pristopa izračuna bispektra in kvadrata bikoherence. Metoda izhaja iz frekvenčnega prostora, diskretne Fourierove transformacije, ki jo dobro poznamo in razumemo. Preskok v bispekter je tako le nadgradnja in razumevanje je preneseno. Njegove prednosti pred ostalimi metodami so: zmožnost opazovanja celotnega frekvenčnega področja, razlikovanje med faznimi in frekvenčnimi sklopitvami in določanje tipa nelinearnosti, kar ne omogoča nobena druga nam znana metoda.

Teoretično ozadje metode je primerno za analiziranje kompleksnih signalov kot je na primer kardiovaskularni signal krvnega pretoka. Metoda se je izkazala za zelo učinkovito na vseh primerih testnih signalov. Poleg tega, da je zmožna določanja frekvenčnih komponent signala, je občutljiva na časovno spreminjanje njegovih frekvenčnih komponent in njihove amplitude, nam daje informacijo o sklopitvah med posameznimi frekvenčnimi komponentami. Sklopitve lahko med seboj razlikujemo in določamo njihovo jakost. Z njo smo sposobni zaznati nelinearno sklopitev drugega reda, čeprav je signal močno obremenjen s šumom.

Analiza realnih signalov je pokazala, da z diskretno Fourierovo transformacijo vnesemo tudi vse njene slabe lastnosti, kot so pojav razlivanja, problem ločljivosti in problem končnih vrst [26]. Ker imamo opravka z merami tretjega reda, se varianca še poveča, in za konsistentne ocene mer statistike višjega reda potrebujemo še daljše časovne vrste kot v primeru drugega reda.

Fourierova transformacija temelji na predpostavki periodičnosti signala in neskončno dolgih vrstah signalov. Ker za izmerjene signale ne drži nobena predpostavka je določitev posameznih frekvenc pri sistemu z močnimi sklopitvami zelo zahtevna. Težava je še večja v nizkem delu frekvenčnega področja, ki nas zanima, saj so karakteristične frekvence v tem delu zelo blizu druga druge in jih je težko ločiti. Veliko razmerje med najnižjo in najvišjo značilno frekvenco (1:100) [56], privede do pojava slabe frekvenčne ločljivosti pri nizkih frekvencah. Ob tem imamo na celotnem področju (razen na diagonali bispektra) različni frekvenčni ločljivosti za eno in drugo frekvenčno os. Zaradi principa nedoločenosti Fourierove transformacije je omejena zmožnost ločevanja harmoničnih komponent v frekvenčnem področju bispektra. To povzroči probleme pri določanju kvadratičnih faznih sklopitev v primeru frekvenčnih parov, ki so si zelo blizu. Z daljšimi signali si ne moremo pomagati, ker vpeljemo neustaljenost, pa tudi varianca ocene mer se samo še poveča.

Večino omejitev lahko obidemo s predhodno obdelavo signala. Signal osrediščimo, pri izračunu diskretne Fourierove transformiranke pa uporabimo okna za glajenje začetka in konca vrste. Za najboljše se je izkazalo Blackmanovo okno. V frekvenčnem prostoru poprečujemo preko sosednih bifrekvenc in zagotavljamo konsistentnost ocen s poprečenjem preko več oken, ki jih medsebojno še prekrivamo. Oceno bispektra tako izboljšamo na račun daljšega časa izračunavanja. Za bikoherenco se izkaže, da je bolj občutljiva kot bispekter, predvsem na število oken, preko katerih smo poprečevali oceno in velikosti njihovega prekrivanja. Občutljiva je na šum in zaokrožitvene napake. Pri njenem izračunu smo še dodatno povečevali imenovalec za vrednost povprečne vrednosti bispektra na področju *notranjega trikotnika* bispektra ali pa ničili majhne vrednosti imenovalca kvadrata bikoherence in s tem zagotavljali njeno konsistentnost.

Signal krvnega pretoka je zelo kompleksen za obdelavo, ker vsebuje časovno variabilne frekvenčne komponente tako po amplitudi kot frekvenci, ki se medsebojno nelinearno sklapljajo in odražajo kompleksno dinamiko kardiovaskularnega sistema. Z bispektralno analizo smo želeli ugotoviti možnosti novega pogleda na njegovo še precej neznano vsebino in naravo sklopitev. Kljub analizi enega samega signala, smo spoznali njegovo vrednost pri zmožnosti hkratnega analiziranja vseh sklopitev po njihovi vrsti in jakosti. Potrdili smo teorijo sklopljenih oscilatorjev, saj smo za vse karakteristične frekvence ugotovili vsaj frekvenčno sklopitev. Najmočneje med njimi sta frekvenčno sklopljena srčna in metabolična ter respiratorna in miogena karakteristična frekvenca. Nekateri zmed njih so tudi močno fazno sklopljeni, kot so srčna in miogena, srčna in nevrogena ter miogena in metabolična komponenta. Za druge smo ugotovili, da se v času pojavljajo, oziroma prepletajo frekvenčne in fazne sklopitve, na to kaže njihova bifaza, ki v večini primerov teži v povprečju k ustaljeni vrednosti. To bi pričakovali pri merjenju zdravega, normalnega, sproščenega in mirujočega človeka. Ustaljena vrednost pa je rezultat časovnega poprečja frekvenčnih in faznih sklopitev. Z bispektralno metodo smo ugotavljali tudi nelinearnost oscilacij in ugotovili, da sta srčna in respiratorna frekvenčna komponenta potencialno kvadratično sklopljeni. Za ostale ni bilo mogoče sklepati, saj nas je omejila premajhna ločljivost nizkih frekvenc.

Naša nadaljnja motivacija je optimizacija metode. Prvo, kar moramo doseči, je povečanje frekvenčne ločljivosti. Na razpolago imamo dve poti:

Prva je uvedba logaritemskega koraka na frekvenčnih oseh, s čimer bi znatno izboljšali nizkofrekvenčno ločljivost. Poleg tega lahko uvedemo tako imenovani selektivni Fourierov algoritem za izračun diskretne Fourierove transformiranke. Za vsako frekvenco posebej izračunamo spekter z oknom, ki se ji najbolje prilagaja. Algoritem lahko še dodatno pospešimo z uvedbo *hitrega* Fourierovega transforma.

Druga pot je uvedba valčne transformacije, ki zagotavlja konstantno razmerje med širino frekvenčnega okna in frekvenco [5, 23]:

$$c = \frac{\Delta f}{f} \tag{8.1}$$

Frekvenčna ločljivost se spreminja na način, da imamo pri nizkih frekvencah krajše, pri visokih pa daljše korake. Relativna pasovna širina je tako konstantna. Za izračun valčne transformiranke bi uporabili moduliran Gaussov valček, tako odpade potreba po uporabi oken za dušenje posledic frekvenčnega razlivanja.

Za potrditev spektakularne kvadratične nelinearnosti bo z bispektralno analizo predhodno potrebno obdelati še statistično dovolj veliko množico meritev signala krvnega pretoka.

9. LITERATURA

- V. Alexopoulos, S. Kollias, P. Leger, H. Boccalon, Z. Csiki, Higher-Order Spectral Analysis in Laser Doppler Flowmetry Signal Processing, *Technology and Health Care*, 7 (2, 3): 85-105, 1999.
- [2] A. G. Bessios, C. L. Nikias, FFT-Based Bispectrum Computation on Polar Rasters, IEEE Transactions on Signal Processing, 39 (11): 2535-2539, 1991.
- [3] B. Boashash, P O'Shea, Polynomial Wigner-Ville Distributions and their Relationship to Time-Varying Higher Order Spectra, *IEEE Transactions on Signal Processing*, 42 (1): 216-220, 1994.
- [4] M. Bračič, A. Stefanovska, Wavelet Analysis in Studying the Dynamics of Blood Circulation, Nonlinear Phenomena in Complex Systems, 2 (1): 68-77, 1999.
- [5] M. Bračič, A. Stefanovska, Wavelet-based Analysis of Human Blood-flow Dynamics, Bulletin of Mathematical Biology, 60: 919-935, 1998.
- [6] M. Bračič, Respiratorna sinusna aritmija, Seminarska naloga, FE, 1998.
- [7] D. R. Brillinger, Distributions of Particle displacement via High-Order Moment Functions, IEE Proceedings-F, 140 (6): 390-394, 1993.
- [8] D. H. Brooks, C. L. Nikias, The Cross-Bispectrum: Definition, Properties, and Application for Simulteneous Reconstruction of Three Nonminimum Phase Signals, *IEEE Transactions on Signal Processing*, 41 (7): 2389-2404, 1993.
- [9] V. Chandran, S Elgar, A General Procedure for the Derivation of Principal Domains of Higher-Order Spectra, *IEEE Transactions on Signal Processing*, 42 (1): 229-233, 1994.
- [10] V. Chandran, S. L. Elgar, Pattern Recognition Using Invariants Defined from Higher Order Spectra-One-Dimensional Inputs, *IEEE Transactions on Signal Processing*, 41 (1): 205-212, 1993.
- [11] J. R. Deller, Tom, Dick and Mary Discover the DFT, IEEE Signal Processing Magazine, 36-50, 1994.
- [12] J. W. A. Fackrell, Bispectral Analysis of Speech Signals, PhD thesis, The University of Edingburg, September 1996.
- [13] J. W. A. Fackrell, S. McLaughlin, Detecting Nonlinearities in Speech Sounds Using the Bicoherence, *Proceedings of the Institute of Acoustics, Autumn Conference*, 18 (part 9): 123-130, Lake Windemere, UK, 1996.
- [14] J. W. A. Fackrell, S. McLaughlin, W. B. Collis, Nonlinearity Detection for Condition Monitoring Using Higher-Order Statistics, *Proceedings of COMADEM96*, 519-528, Sheffield, UK, Julij 1996.

- [15] J. W. A. Fackrell, S. McLaughlin, P. R. White, Practical Issues Concerning the use of the Bicoherence for the detection of Quadratic Phase Coupling, *IEEE Signal Processing*, *ATSVR Workshop on Higher Order Statistics*, Begur, Spain, 310-314, Juni 1995.
- [16] J. W. A. Fackrell, S. McLaughlin, Detecting phase coupling in speech signals, IEE Colloquium Speech and Image Processing IEE Digest, (91): 4/1-4/8, Maj 1995.
- [17] J. W. A. Fackrell, P. R. White, J. K. Hammond, R. J. Pinnington, A. T. Parsons, Bispectral Analysis of Periodic Signals in Noise, Theory, Interpretation and Condition Monitoring Applications, *EUSPICO '94*, Edinburgh, September, 1994.
- [18] J. W. A. Fackrell, S. McLaughlin, The Higher Order Statistics of Speech Signals, *IEE Colloquium on Techniques in Speech Signal Processing*, London, (138): 7/1-7/6, Juni 1994.
- [19] J. R. Fonollosa, C. L. Nikias, Wigner Higher Order Moment Spectra: Definition, Properties, Computation and Application to Transient Signal Analysis, *IEEE Transactions on Signal Processing*, 41 (1): 245-266, 1993.
- [20] N. L. Gerr, Introducting a Third-Order Wigner Distribution, *Proceedings of the IEEE*, 76 (3): 290-292, 1988.
- [21] M. J. Hinch, H. Messer, On the principal domain of the discrete bispectrum of a stationary Signal, *IEEE Transactions on Signal Processing*, 43 (9): 2130-2134, 1995.
- [22] M. J. Hinich, Detecting a Transient Signal by Bispectral Analysis, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38 (7): 1277-1283, 1990.
- [23] M. Hočevar, Valčna analiza kardiovaskularnih funkcij, diplomsko delo, FE, Junij 1996.
- [24] P. J. Huber, B. Kleiner, T. Grasser, G. Dumermuth, Statistical Methods for Investigating Phase Relations in Stationary Stohastic Processes, *IEEE Transactions on Audio and Electroacoustics*, AU-19 (1): 78-86, 1971.
- [25] J. Jamšek, A. Stefanovska, Wavelet and Selective Fourier Transforms, ESEM'99, 5: 395-369, Barcelona, 1999.
- [26] J. Jamšek, A. Stefanovska, Selektivna Fourierova analiza, ERK'98, B: 339-342, Portorož, 1998.
- [27] I. I. Jouny, R. L. Moses, The Bispectrum of Complex Signals: Definitions and Properties, IEEE Transactions on Signal Processing, 40 (11): 2833-2836, 1992.
- [28] P. Kraniauskas, A plain Man's Guide to FFT, IEEE Signal Processing Magazine, 24-35, 1994.
- [29] V. K. Madiseti, D. B. Williams, The Digital Signal Processing Handbook, CRC Press LCC, Florida, 1998.

- [30] T. Matsouka, T. J. Ulrych, Phase Estimation Using the Bispectrum, Proceedings of the IEEE, 72 (10): 1403-1411, 1984.
- [31] J. M. Mendel, Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications, *Proceedingsof the IEEE*, 79 (3): 278-305, 1991.
- [32] A. K. Nadi, Higher-Order Statistics in Signal Processing, Cambridge, United Kingdom, 1998.
- [33] A. K. Nadi, Robust Estimation of Third-order Cumulants in Applications of Higher-Order Statistics, *IEE Proceedings-F*, 140 (6): 380-389, 1993.
- [34] C. L. Nikias, J. M. Mendel, Signal Processing with Higher-Order Spectra, IEEE Signal Processing Magazine, 10-35, Julij 1993.
- [35] C. L. Nikias, A. P. Petropulu, Higher-Order Spectra Anlysis: A Nonlinear Signal Processing Framework, Pretience-Hall, Englewood Cliffs, NY, 1993.
- [36] C. L. Nikias, ARMA Bispectrum Approach to Nonminimum Phase System Identification, *IEEE Transactions on Acustics, Speech and Signal Processing*, 36 (4): 513-526, 1988.
- [37] C. L. Nikias, M. R. Raghuveer, Bispectrum Estimation: A Digital Signal Processing Framework, *Proceedings of the IEEE*, 75 (7): 869-891, 1987.
- [38] R. Pan, C. L. Nikias, The Complex Cepstrum of Higher Order Cumulants and Nonminimum Phase System Identification, *IEEE Transactions on Acoustics, Speech,* and Signal Processing, 36 (2): 186-205, 1988.
- [39] H. Parthasarathy, S. Prasad, S. D. Joshi, Conditions for Third-Order Stationarity and Ergodicity of a Harmonic Random Process, *IEEE Transactions on Signal Processing*, 42 (1): 222-225, 1994.
- [40] M. R. Raghuveer, Time-Domain Approaches to Quadratic Phase Coupling Estimation, IEEE Transactions on Automatic Control, 35 (1): 48-56, 1990.
- [41] I. J. Rampil, A Primer for EEG Signal Processing in Anesthesia, Anesthesiology, 89 (4): 980-1002, 1998.
- [42] H. Parthasarathly, S. Prasad, S. D. Joshi, An ESPRIT-Like method for Quadratic phase coupling estimation, *IEEE Transactions on Signal Processing*, 43 (10): 2346-2360, 1995.
- [43] M. R. Raughuver, C. L. Nikias, Bispectrum Estimation: A Parametric Approach, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33 (4): 1213-1230, 1985.
- [44] C. Rosow, P. J. Manberg, Bispectral Index Monitoring, Annual of Anesthetic Pharmacology, 2: 89-107, 1998.

- [45] D. P. Ruiz, M. C. Carrion, A. Gallego, A. Medouri, Parameter Estimation of Exponentially Damped Sinusoids Using a Higher Order Correlation-Based Approach, *IEEE Transactions on Signal Processing*, 43 (11) 2665-2677, 1995.
- [46] C. Schäfer, M. G. Rosenblum, J. Kurths, H.-H. Abel, Heartbeat Synchronized with Ventilation, *Nature*, 392 (6673): 239-240, 1998.
- [47] I. Sharfer, H. Messer, The Bispectrum of Sampled Data: Part II-Monte-Carlo Simulations of Detection and Estimation of the Sampling Jitter, *IEEE Transactions on Signal Processing*, 42 (10): 2706-2714, 1994.
- [48] I. Sharfer, H. Messer, The Bispectrum of Sampled Data: Part I-Detection of the Sampling Jitter, *IEEE Transactions on Signal Processing*, 41 (1): 296-312, 1993.
- [49] D. C. Shin, L. Nikias, Complex Ambiguity Functions Using Nonstationary High Order Cumulant Estimates, *IEEE Transactions on Signal Processing*, 43 (11): 2649-2664, 1995.
- [50] J. C. Sigl, N. G. Chanoun, An Introduction to Bispectral Analysis for the Electroencephalogram, *Journal of Clinical Monitoring*, **10** (6): 392-404, 1994.
- [51] A. Stefanovska, M. Hožič, Spatial Synchronization in the Human Cardiovascular System, Progress in Theoretical Physics, v tisku.
- [53] A. Stefanovska, P. Leger, M. Bračič, T. Bračič, P. Bendayan, H. Boccalon, Linear and Nonlinear Analysis of Blood Flow in Healthy Subjects and in Subjects with Raynaud's Phenomenon, *Technology and Health Care*, 7 (2,3): 225-241, 1999.
- [54] A. Stefanovska, S. Strle, M. Bračič, H. Haken, Model Synthesis of the Coupled Oscilators Which Regulate Human Blood Flow Dynamics, *Nonlinear Phenomena in Complex Systems*, 2 (2): 72-87, 1999.
- [55] A. Stefanovska, M. Bračič, Reconstructing Cardiovascular Dynamics, Control Engineering Practice, 7 (2): 161-172, 1999.
- [56] A. Stefanovska, M. Bračič, Physics of the Human Cardiovascular Systems, Contemporary Physics, 40 (1): 31-55, 1999.
- [57] A. Swami, J. M. Mendel, C. L. Nikias, Higher-Order Spectral Analysis Toolbox for use with MATLAB, User's Guide, *The Marhworks*, Inc., 1998.
- [58] G. Zhou, G. B. Giannakis, Polyspectral Analysis of Mixed Processes and Coupled Harmonics, *IEEE Transactions on Information Theory*, **42** (3): 943-958, 1996.
- [59] G. Zhou, G. B. Giannakis, Retrival of Self-Coupled Harmonics, *IEEE Transactions on Signal Processing*, 43 (5): 1173-1186, 1995.
- [60] High Order Statistics Group, http://www.comm.uni-bremen.de/HOSHOME/

IZJAVA

Izjavljam, da sem magistrsko nalogo izdelal samostojno pod vodstvom mentorice doc. dr. Anete Stefanovske, univ. dipl. ing. Izkazano pomoč drugih sem v celoti navedel v zahvali.

Janez Jamšek.

ZAHVALA

Zahvaljujem se mentorici doc. dr. Aneti Stefanovski, za neprecenljivo ter neumorno usmerjanje med nastajanjem magistrskega dela.

Zahvaljujem se dr. Justinu Fackrellu (University of Edinburg - Anglija), prof. Georgiosu B. Giannakisu (Signal Processing Institute for Research and Innovative Technology - ZDA), Fluviu Giniju (Università di Pisa - Italija), prof. Petru Husarju (Technical University of Ilmenau - Nemčija), dr. Anathramu Swami (Army research laboratory - ZDA), Mounirju Ghoghu (University of Strathclyde - Anglija), prof. Jerryu M. Mendlu in prof. Chrysostonsu L. Nikias (University of Southern California - ZDA), vsem članom Skupine za nelinearno dinamiko in sinergetiko, Mariju Hožiču, dr. Maji Bračič Lotrič, vsem sodelovcem, še posebej prof. dr. Slavku Kocijančiču iz Oddelka za fiziko in tehniko na Pedagoški fakulteti v Ljubljani, doc. dr. Alešu Založniku mag, Katji Ažman Juvan, Robertu Prebilu, Mateji Kert, Andreji Comino, članom Športnega društva Virrus in vsem ostalim, ki ste mi kakorkoli pomagali pri nastajanju te magistrske naloge.

Še posebej se zahvaljujem Barbari Kert za vso njeno potrpežljivost in pomoč ter mojima staršema, Bernardi in Miroslavu za stalno podporo tekom mojega študija.

PRILOGE

10. PRILOGE

I. Neobčutjivost na šum

Bispekter Gaussovega procesa je enak nič.

Dokaz:

Funkcija verjetnostne porazdelitve zveznega Gaussovega procesa, s povprečno vrednostjo μ in varianco σ^2 je enaka [12]:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (10.1)

Da lahko dobimo kumulante procesa, najprej izračunamo funkcijo za generiranje momentov, iz katere lahko določimo funkcijo za generiranje kumulantov in posledično kumulante. Funkcija za generiranje momentov M(t) je preprosta dvostranska Laplaceova transformacija funkcije verjetnostne porazdelitvene:

$$M(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}.$$
 (10.2)

Če velja, da je funkcija za generiranje kumulantov K(t) = ln(M(t)), potem dobimo:

$$K(t) = \mu t + \frac{1}{2}\sigma^2 t^2.$$
(10.3)

Iz funkcije za generiranje kumulantov določimo skupne kumulante s potenčno razširitvijo:

$$K(t) = c_1 t + c_2 \frac{t^2}{2!} + c_3 \frac{t^3}{3!} + \dots + c_r \frac{t^r}{r!} + \dots,$$
(10.4)

kjer je c_1 prvi kumulant procesa, c_2 drugi in tako naprej. S primerjavo enačbe 10.2 in 10.3 je razvidno, da za Gaussov proces velja:

$$c_1 = \mu$$

 $c_2 = \sigma^2$
 $c_\tau = 0; \ \tau \ge 3.$ (10.4)

Tako sledi, da so kumulanti z ničelno zakasnitvijo reda tri ali višjega oziroma $c_3(0, 0)$, $c_4(0, 0, 0)$ in tako naprej enaki nič za Gaussov proces.

Če predpostavimo avtokorelacijsko funkcijo $R(\tau)$ procesa s povprečno vrednostjo enako nič, ki je enaka kumulantu drugega reda $c_2(\tau)$, potem lahko pokažemo, da ima $c_2(\tau)$ svojo maksimalno vrednost pri $\tau = 0$, tako da velja:

$$c_2(\tau) \le c_2(0) \ \forall \ \tau. \tag{10.6}$$

PRILOGE

Iz tega direktno sledi, če je $c_2(\tau) = 0$, potem $c_2(\tau) = 0$ za vsak τ . Podobno lahko pokažemo za kumulant tretjega reda, ki se konča z zaključkom, da če je $c_3(0, 0) = 0$, potem velja, da je $c_3(\tau_1, \tau_2) = 0$ za vsak τ_1, τ_2 . Ker je mera simetrije $c_3(0, 0) = 0$, pomeni, da imajo taki signali kumulant tretjega reda enak nič.

II. Fazna naključnost

V tem dodatku je prikazan primer procesa, za katerega je nujna razdelitev podatkov na posamezne odseke, da zagotovimo dosledne ocene bispektra.

$$x(n) = \sum_{i=1}^{3} \cos(2\pi f_i n + \varphi_i), \qquad (10.7)$$

 $f_3 = f_1 + f_2$ in φ_1 , φ_2 , φ_3 so neodvisne uniformno porazdeljene spremenljivke na področju [0, 2π).

$$y(n,k,l) \cong x(n)x(n+k)x(n+l) =$$

$$= \frac{1}{4} \begin{cases} \cos(2\pi(f_2k+f_1l)+\varphi) + \cos(2\pi(f_3k+f_1l)+\varphi) + \\ \cos(2\pi(f_1k+f_2l)+\varphi) + \cos(2\pi(f_3k-f_2l)-\varphi) + \\ \cos(2\pi(f_1k-f_3l)+\varphi) + \cos(2\pi(f_2k-f_3l)+\varphi) \\ + \sum_{i=1}^{3} \cos(2\pi f_i n + \varphi_i) \end{cases}, \quad (10.8)$$

kjer je $\varphi \cong (\varphi_1 + \varphi_2 - \varphi_3) \mod 2\pi$ in je spet uniformno porazdeljen na $[0, 2\pi)$. Iz enačbe 10.8 sledi, da je kumulant tretjega reda $c_3^x(k, l)$ procesa enak:

$$c_3^x(k,l) = E\{y(n,k,l)\} = 0$$
(10.9)

Vendar,

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} y(n,k,l) = = \frac{1}{4} \begin{cases} \cos(2\pi(f_2k+f_1l)+\varphi) + \cos(2\pi(f_3k-f_1l)-\varphi) + \\ \cos(2\pi(f_1k+f_2l)+\varphi) + \cos(2\pi(f_3k-f_2l)-\varphi) + \\ \cos(2\pi(f_1k-f_3l)+\varphi) + \cos(2\pi(f_2k-f_3l)+\varphi) \end{cases},$$
(10.10)

ki je funkcija naključne spremenljivke φ in zato v splošnem ni nič. Tako na primeru treh sinusoid, ki so harmonsko razvrščene, a brez fazne sklopitve, v primeru enega odseka dobimo nedosledno oceno kumulanta tretjega reda.

Če predpostavimo, da imamo M realizacij procesa, oblike:

$$x_m(n) = \sum_{i=1}^3 \cos(2\pi f_i n + \varphi_i^m), \quad m = 1, ..., M, \qquad (10.11)$$

kjer so $f_3 = f_1 + f_2$ in φ_i^k , i = 1, ..., 3, k = 1, ..., M vse neodvisne uniformno porazdeljene spremenljivke na področju $[0, 2\pi)$. Definirajmo:

$$y_{m}(n,k,l) \cong x_{m}(n)x_{m}(n+k)x_{m}(n+l) = \begin{cases} \cos(2\pi(f_{2}k+f_{1}l)+\varphi^{m})+\cos(2\pi(f_{3}k+f_{1}l)+\varphi^{m})+\\ \cos(2\pi(f_{1}k+f_{2}l)+\varphi^{m})+\cos(2\pi(f_{3}k-f_{2}l)-\varphi^{m})+\\ \cos(2\pi(f_{1}k-f_{3}l)+\varphi^{m})+\cos(2\pi(f_{2}k-f_{3}l)+\varphi^{m})\\ +\sum_{i=1}^{3}\cos(2\pi f_{i}n+\varphi^{m}_{i}) \end{cases}, m = 1,...,M, \qquad (10.12)$$

kjer je $\varphi^m \cong (\varphi_1^m + \varphi_2^m - \varphi_3^m) \mod 2\pi$ in je spet uniformno porazdeljen na $[0, 2\pi)$. Iz enačbe 10.12 sledi, da je kumulant tretjega reda $c_3^x(\mathbf{k}, l)$ procesa enak:

$$\hat{c}(k,l) = \frac{1}{NM} \sum_{m=1}^{M} \sum_{n=1}^{N} y_m(n,k,l).$$
(10.13)

Če upoštevamo dejstvo, da so φ^m , m = 1,..., M neodvisni in uniformno porazdeljeni na $[0, 2\pi)$, lahko pokažemo, da velja:

$$\lim_{\substack{M \to \infty \\ N \to \infty}} \hat{c}(k,l) = 0, \tag{10.14}$$

kar nakazuje, da moramo v primeru sinusoid na harmonskih pozicijah, nujno uporabiti razdelitev na več odsekov, da dobimo dosledne ocene kumulanta tretjega reda.

III. Vpliv Gaussovega šuma na bikoherenco ne-Gaussovega signala

Imejmo signal x(n), ki je vsota Gaussovega $x_g(n)$ in ne-Gaussovega signala $x_{ng}(n)$. Predpostavimo, da sta signala neodvisna od drug drugega. Po teoriji je bispekter *slep* na Gaussov šum, zato bo bispekter od x(n) enak bispektru ne-Gaussovega signala $x_{ng}(n)$.

$$E[B_{x}(k,l)] = E[B_{x_{ng}}(k,l)] + E[B_{x_{g}}(k,l)] = E[B_{x_{ng}}(k,l)]$$
(10.15)

Iz tega sledi, da bo števec enačbe 4.22 ostal nespremenjen. Spremenil pa se bo imenovalec enačbe 4.22, ker je močnostni spekter x(n) odvisen od spektrov Gaussovega in ne-Gaussovega signala:

$$E[P_{x}(k,l)] = E[P_{x_{ng}}(k,l)] + E[P_{x_{g}}(k,l)], \qquad (10.16)$$

iz česar sledi

$$E[P_{x}(k)]E[P_{x}(l)]E[P_{x}(k+l)] = \left(E[P_{x_{ng}}(k)] + E[P_{x_{g}}(k)]\right) \cdot \left(E[P_{x_{ng}}(k+l)] + E[P_{x_{g}}(k+l)]\right) + E[P_{x_{g}}(k+l)] = E[P_{x_{ng}}(k)]E[P_{x_{ng}}(l)]E[P_{x_{ng}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+l)] + E[P_{x_{g}}(k+l)]E[P_{x_{g}}(k+$$

SVR

Imenovalec bikoherence za x(n) je večji ali enak imenovalcu bikoherence $x_{ng}(n)$, čeprav sta njuna bispektra enaka:

$$E[P_{x}(k)]E[P_{x}(l)]E[P_{x}(k+l)] \ge E[P_{x_{ng}}(k)]E[P_{x_{ng}}(l)]E[P_{x_{ng}}(k+l)], \qquad (10.18)$$

enakost velja le v primeru, da je močnostni spekter šuma enak nič $P_g(k)$, kar pa je v praksi redko. Če zaključimo, dobimo:

$$bic^{2}_{x_{g}}(k,l) \ge bic^{2}_{x_{ng}}(k,l),$$
 (10.19)

z dodajanjem Gaussovega šuma ne-Gaussovem signalu, se kvadrat bikoherence zmanjša, tako bikoherenca ni *slepa* na šum.

IV. Programska koda za algoritem direktne metode izračuna bispektra in bikoherence

Program je bil napisan s programskim jezikom Borland Delphi 4.0.

unit Unit1b;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, ComCtrls, StdCtrls, Buttons, Spin, ExtCtrls;

type

TForm1 = class(TForm) ProgressBar1: TProgressBar; loadb: TBitBtn; saveb: TBitBtn: exitb: TBitBtn; OpenDialog1: TOpenDialog; SaveDialog1: TSaveDialog; Label1: TLabel; Label2: TLabel; go: TBitBtn; Labeldol: TLabel; LabelK: TLabel; LabelM: TLabel; Timer1: TTimer; LabelT: TLabel; Stat: TStatusBar; ComboK: TComboBox; Combofs: TComboBox; Label3: TLabel; ComboL: TComboBox; Label4: TLabel; Label5: TLabel; ComboO: TComboBox; ComboNW: TComboBox; Label6: TLabel; Label7: TLabel; Combofres: TComboBox; Combofmin: TComboBox;

PRILOGE

Label10: TLabel; Combofmax: TComboBox; Label11: TLabel; Labelfmintrue: TLabel; Labelfmaxtrue: TLabel; Bevel1: TBevel; Bevel2: TBevel: Bevel3: TBevel: LabelMa: TLabel; LabelMax: TLabel; CheckN: TCheckBox; RBi: TRadioButton: RadioF: TRadioButton: Bevel4: TBevel: Bevel5: TBevel; Splitter1: TSplitter; Windowing: TRadioGroup; Comboth: TComboBox; Label9: TLabel; Label12: TLabel; Label13: TLabel: Combof2min: TComboBox; Combof2max: TComboBox; Labelf2mintrue: TLabel; Labelf2maxtrue: TLabel; Checkf1f2: TCheckBox; Label15: TLabel; Label16: TLabel; Bevel6: TBevel: Bevel7: TBevel; Prog2: TProgressBar; labelmpov: TLabel; CheckbIT: TCheckBox; Label8: TLabel; Bevel8: TBevel: CheckKmax: TCheckBox; Butnew: TButton: ComboZ: TComboBox: LabelZ: TLabel; ComboIT: TComboBox; Label14: TLabel; bicoherence: TRadioGroup; procedure loadbClick(Sender: TObject); procedure savebClick(Sender: TObject); procedure goClick(Sender: TObject); procedure FormCreate(Sender: TObject); procedure Timer1Timer(Sender: TObject); procedure CombofresDropDown(Sender: TObject); procedure RBiClick(Sender: TObject); procedure RadioFClick(Sender: TObject); procedure Checkf1f2Click(Sender: TObject); procedure ButnewClick(Sender: TObject); procedure bicoherenceClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;

var Form1: TForm1; {declaration of variables: K number of records, M sempels in K-th record, delta -overlaping points of M, N total sempels in all records, fs - sempling frequency, Mdva - averaging square, O- % overlapping, signal- loaded signal, sigp - zero mean signal, th -treshhold for calculating angle of bispectrum ZIT-reducing bispectrum error, Kmax- maximum number of overlapping windows, NW-number of windows for calculating selective DFT, fstep – number DFT points, f1step-number of steps in f1 axis, f2step-number of steps in f2 axis, f1start-starting frequency of calculations for f1 axis, f2start-starting frequency of calculations for f2 axis, sim- maximum lengtl of loaded data, sima- maximum dimensions of bispectrum matrix, Mmax-maximum length of odsek, maver- averaged bispectrum over IT,Zproc- %of maximum averaged bispectrum to be zero,fr-real part of DFT, fi-imaginar part of DFT transform, af- absolute DFT, mr-real part of bispecter, mi-imaginar part of bispectrum, fiB-angle of bispectrum, abcoh-squared bicoherence, calcul- calculation finished} ZIT,K,M,Kmax,N,fs,L,Mdva,O,delta,NW,fstep,f1step,f2step,fstart,f1start,f2start,sim,sima,Mmax:integer; prvic:boolean; fmin,f2min,fres,fmax,f2max,th,maver,Zproc:real; signal, sigp:array [0..50050] of real; fr,fi:array [0..22050] of real; af:array [0..22050] of real; mr,mi,fiB:array [0..3096,0..3096] of real; abcoh:array [0..2000,0..2000] of real; calcul:boolean; implementation {\$R *.DFM} {load data} procedure TForm1.loadbClick(Sender: TObject); var f:textfile: s:string; begin if opendialog1.execute then begin N: = 1;assignfile(f,opendialog1.filename); reset(f); repeat read(f,signal[N]); N: = N+1;until (eof(f) = true);N: = N-2;closefile(f); label2.Caption: = 'N = '+inttostr(N); go.Visible: = true; stat.SimpleText: = 'Press Button!!'; end: timer1.Enabled: = true; loadb.Visible: = false; go.Visible: = true; end; procedure TForm1.savebClick(Sender: TObject); var g,gg,bh:textfile; {variabels that define files} pro1, progg:real; {variables for showing evaluation on progress bar} a1,i,j,MM,pr,k1,k2:integer; name,name2,p1,p2:string; {file name extension} begin pro1: = 0;progg: = 100/flstep;

PRILOGE

SUR

if savedialog1.execute then begin stat.SimpleText: = 'Saving absolute bispecter'; assignfile(g,savedialog1.filename); rewrite(g); {saving calculations} for j: = f2start+L to f2step+f2start-1-L do begin for i: = flstart+L to flstep+flstart-1-L do begin if radiof.checked then begin {angle of bispecter} write(g,fib[i,j],''); end: if bicoherence. Item Index = 0 then begin {squared bikoherence} write(g,mi[i,j],' '); end: if (rbi.checked) and (bicoherence.ItemIndex<0) then begin {absoltna vrednost bispektra} write(g,mr[i,j],' '); end; if bicoherence. Item Index = 1 then begin {Re/Im bicoherence} write(g,mr[i,j],' '); write(g,mi[i,j],''); end; end: writeln(g,"); prol: = progg+prol; pr: = round(prol); progressbar1.position: = pr; end; closefile(g); progressbar1.position: = 0;{saving parameters of calculation in file.bip} a1: = length(savedialog1.filename)-2; name: = savedialog1.filename; delete(name,a1,3); assignfile(gg,name+'bip'); rewrite(gg); write(gg, '% f1step, f1min, f1max, fres, fs, K, N, L, O, f2step, f2min, f2max, th, abs = 0/fi = 1/bic = 2/Re-Im bic = 3, windowing/R/B/N/M '); writeln(gg,"); write(gg,f1step,''); str(fmin:9:8,p1); write(gg,p1,' '); str(fmax:11:9,p1); write(gg,p1,' '); str(fres:10:9,p1); write(gg,fres,' '); write(gg,fs,''); write(gg,K,''); write(gg,N,' '); write(gg,L,' '); write(gg,O,' '); write(gg,f2step,' '); str(f2min:9:8,p1); write(gg,p1,' ');
str(f2max:11:9,p1); write(gg,p1,' '); str(th:5:4,p1); write(gg,p1,''); {phase (bispecter)} if radiof.Checked then write(gg,1,''); {amplitude (bispekter)} if (rbi.Checked) and (bicoherence.ItemIndex<0) then write(gg,0,''); {amplitude *bicoherence)} if (bicoherence.ItemIndex = 0)then write(gg, 2, ''); {Re/Im bicoherence} if (bicoherence.ItemIndex = 1)then write(gg,3,''); {windowing R-rectangular/B-Blackman/N-Hanning/M-hamming} if windowing.ItemIndex = 0 then write(gg,' %R '); if windowing. ItemIndex = 1 then write(gg, '%B'); if windowing. Item Index = 2 then write(gg, %N'); if windowing. ItemIndex = 3 then write(gg', M'); closefile(gg); exitb.Visible: = true; loadb.Visible: = true; go.Visible: = true; progressbar1.position: = 0;stat.SimpleText: = ' Saved!'; {deleting vectors and matrixse} stat.SimpleText: = 'Deliting vectros and matrixes'; progressbar1.position: = 0;pro1: = 0;progg: = 100/(f1step-L*2);for k1: = f1start+L to f1step+f1start-1-L do begin for k2: = f2start+L to f2step+f2start-1-L do begin if $(k2 \le k1)$ and $(k2 \le M/2-k1)$ then begin abcoh[k1,k2]: = 0;fib[k1,k2]: = 0;mr[k1,k2]: = 0;mi[k1,k2]: = 0;mi[k1,k2] := 0;mr[k1,k2]: = 0;end: end; prol: = progg+prol; pr: = round(pro1); progressbar1.position: = pr; end; progressbar1.position: = 0;pro1: = 0;progg: = 100/(Mmax); for k1: = fstart to Mmax do begin fr[k1]: = 0;fi[k1]: = 0;af[k1]: = 0;prol: = progg+prol; pr: = round(pro1); progressbar1.position: = pr; end; progressbar1.position: = 0;calcul: = false; butnew.Visible: = false; go.Visible: = true; timer1.Enabled: = true;

end;

SVR

```
end;
procedure TForm1.goClick(Sender: TObject);
var window,progg,povp,fxr,fxi,pro1,pro1a,mr1,mi1,j1,j2,j3,jr1,jr2,ji1,ji2,izra,mri:real;
 ll,m1,m2,k1,k2,okno,naj,mm,pr,11,12,polovica:integer;
 timecalc:ttime;
 we,we2:string;
begin
          {for determining the maximum value of bispecter and bicoherence}
          j1:=0; j2:=0; j3:=0; jr1:=0; jr2:=0; ji1:=0; ji2:=0;
          timer1.Enabled: = false;
          labelT.caption: = timetostr(time);
          timecalc: = time;
         {deleting vectors and matrix}
        if calcul then begin
                   stat.SimpleText: = 'Deliting vectors and matrixes';
                   progressbar1.position: = 0;
                  pro1: = 0;
                   progg: = 100/(f1 \text{step-L}^2);
                   for k1: = f1start+L to f1step+f1start-1-L do begin
                    for k2: = f2start+L to f2step+f2start-1-L do begin
                             if (k2 \le k1) and (k2 \le M/2 - k1) then begin
                                 abcoh[k1,k2]: = 0;
                                 fib[k1,k2]: = 0;
                                mr[k1,k2]: = 0;
                                mi[k1,k2]: = 0;
                                mi[k1,k2] := 0;
                                mr[k1,k2]:=0;
                             end:
                    end;
                    pro1: = progg+pro1;
                    pr: = round(pro1);
                    progressbar1.position: = pr;
                  end;
                  progressbar1.position: = 0;
                  pro1: = 0;
                  progg: = 100/(Mmax);
                  for k1: = fstart to Mmax do begin
                            fr[k1]: = 0;
                            fi[k1]: = 0;
                            af[k1]: = 0;
                            pro1: = progg+pro1;
                            pr: = round(pro1);
                            progressbar1.position: = pr;
                  end:
                  progressbarl.position: = 0;
        end;
        mayer: = 0;
        {we can use a larger number of windows for calculation because of overlapping}
        if checkKmax.Checked then K: = K+Kmax;
        {zero meaning}
        progg: = 100/K;
        pro1: = 0;
        stat.SimpleText: = 'Zero mean';
        for m1: = 1 to K do
         begin
                  prola: = 0;
                  povp: = 0;
                  for k1: = (m1-1)*(M-delta)+1 to (m1-1)*(M-delta)+M do povp: = signal[k1]+povp;
                  povp: = povp/M;
```

```
for k1: = 1 to M do begin
         sigp[k1]: = 0;
         sigp[k1]: = signal[(m1-1)*(M-delta)+k1]-povp;
end;
{calculating DFT }
stat.SimpleText: = 'Calculating DFT';
 pro1a: = 0;
 Mmax: = (fstart+fstep-1)*2;
 if Mmax > M/2 then Mmax = round(M/2);
 for k1: = fstart to Mmax do
         begin
           fxr: = 0;
           f_{xi:} = 0;
        {Rectangular window}
           if windowing. Item Index = 0 then
           begin
            for k_2: = 0 to M-1 do
            begin
                      fxr: = sigp[k2+1]*cos(2*pi*k2*k1/M)+fxr;
                      fxi: = -1*sigp[k2+1]*sin(2*pi*k2*k1/M)+fxi;
            end:
           end;
        {Blackman window}
          if windowing. Item Index = 1 then
           begin
            for k2 = 0 to M-1 do
            begin
                          window: = 0.42-0.5*\cos(2*pi*k2/(M-1))+0.08*\cos(4*pi*k2/(M-1))
                1));
                      fxr: = sigp[k2+1]*window*cos(2*pi*k2*k1/M)+fxr;
                      fxi: = -1*sigp[k2+1]*window*sin(2*pi*k2*k1/M)+fxi;
            end;
           end;
        {Hanning window}
          if windowing. Item Index = 2 then
           begin
            for k2: = 0 to M-1 do
            begin
                     window: = 0.50-0.50*\cos(2*pi*k2/(M-1));
                      fxr: = sigp[k2+1]*window*cos(2*pi*k2*k1/M)+fxr;
                     fxi: = -1*sigp[k2+1]*window*sin(2*pi*k2*k1/M)+fxi;
            end;
           end;
       {Hamming okno}
          if windowing. Item Index = 3 then
           begin
            for k2: = 0 to M-1 do
            begin
                     window: = 0.54-0.46*cos(2*pi*k2/(M-1));
                     fxr: = sigp[k2+1]*window*cos(2*pi*k2*k1/M)+fxr;
                     fxi: = -1*sigp[k2+1]*window*sin(2*pi*k2*k1/M)+fxi;
            end;
          end;
          fr[k1]: = (1*fxr)/M;
          fi[k1]: = (1*fxi)/M;
          {average DFT for bicoherency}
          if (bicoherence.ItemIndex>-1) then begin
           af[k1]: = sqr(fr[k1])+sqr(fi[k1]);
          end;
          if K<3 then begin
```

SUR

```
prog2.Visible: = true;
                                                                                       prog2.Width: = 209;
                                                                                       prola: = 100/fstep+prola;
                                                                                       pr: = round(prola);
                                                                                       prog2.position: = pr;
                                                                 end;
                                             end;
                                            prog2.Position: = 0;
                                            prog2.Visible: = false;
                                        {Calculation of averaged bispectrum over IT}
                                       pro1a: = 0;
                                        if checkbIT.Checked then begin
                                                             stat.SimpleText: = ' Calculation of averaged bispectrum over IT ';
                                                             for k1: = 1 to round(M/2) do begin
                                                              for k_2: = 1 to round(M/2) do begin
                                                               {smoothing Mdva}
                                                               mr1: = 0;
                                                               mi1: = 0;
                                                               if (k2 \le k1) and (k2 \le M/2 - k1) then begin
          mr1: = (fr[k1]*fr[k2] - fi[k1]*fi[k2])*fr[k1+k2] + (fr[k1]*fi[k2]+fi[k1]*fr[k2])*fi[k1+k2];
          mi1: = (fr[k1]*fi[k2]+fi[k1]*fr[k2])*fr[k1+k2]+(fi[k1]*fi[k2]-fr[k1]*fr[k2])*fi[k1+k2];
                                                                   maver: = sqrt(mr1*mr1+mi1*mi1)+maver;
                                                               end;
                                                              end;
                                                             prog2.Visible: = true;
                                                             prog2.Width: = 41;
                                                             pro1a: = 200/M+pro1a;
                                                             pr: = round(prola);
                                                             prog2.position: = pr;
                                                             end;
                                                            prog2.Position: = 0;
                                        end;
                                      prog2.Visible: = false;
                                      if (checkbIT.Checked = false) and (ZIT = 0) then
                                      begin
                                          {calculating 3-th order moment}
                                      stat.SimpleText: = 'Calculating 3-th order Cumulant';
                                           for k1: = f1start+L to f1step+f1start-1-L do begin
                                          for k2: = f2start+L to f2step+f2start-1-L do begin
                                            if (k_2 \le k_1) and (k_2 \le M/2 \cdot k_1) then begin
                                             {smoothing Mdva}
                                              mr1: = 0;
                                              mi1: = 0;
                                              11: = 0:
                                              for 11: = -L to L do begin
                                              for l2: = -L to L do begin
                                               if (k2+l2 \le k1-l1) and (k2+l2+k1+l1 \le M/2) then begin
                                                ll: = ll+1:
                                                 mr1: = (fr[k1+11]*fr[k2+12]-
                                                            k_{1+k_{2+l_{1+l_{2}}+mr_{1}}}
mi1:=(fr[k1+11]*fi[k2+12]+fi[k1+11]*fr[k2+12])*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+11]*fi[k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+k2+11+12]+(fi[k1+k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+k2+12]-1)*fr[k1+k2+11+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]+1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12]-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12)+(fi[k1+k2+12)-1)*fr[k1+k2+12)+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)*fr[k1+k2+12]+(fi[k1+k2+12)-1)+(fi[k1+k2+12)-1)+(fi[k1+k2+12)-1)+(fi[k1+k2+12)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi[k1+k2)-1)+(fi
fr[k_1+l_1]*fr[k_2+l_2])*fi[k_1+k_2+l_1+l_2]+mi1;
                                               end;
                                              end;
                                              end;
                                              mr[k1,k2]: = mr[k1,k2]+mr1/ll;
                                              mi[k1,k2] = mi[k1,k2] + mi1/ll;
                                             end;
                                          end;
```

```
end:
           if bicoherence.itemindex>-1 then
            begin
            stat.SimpleText: = 'Calculating sqr(abs(x(k)*x(l))- squared bicoherence';
            for k_1: = f1start+L to f1step+f1start-1-L do begin
              for k2: = f2start+L to f2step+f2start-1-L do begin
              if (k2 \le k1) and (k2 \le M/2 - k1) then begin
                abcoh[k1,k2]: = abcoh[k1,k2]+af[k1]*af[k2]*af[k1+k2]/K;
              end;
             end;
            end;
            end:
         prol: = progg+prol;
         pr: = round(pro1);
         progressbar1.position: = pr;
         end;
end;
if (checkbIT.Checked = false) and (ZIT = 0) then
begin
{calculation of parameter for normalization of squared bicoherence jr2, ji2 }
if (checkN.checked) or (Zproc>0) or (radiof.checked) then
begin
  progressbar1.position: = 0;
  pro1: = 0;
  progg: = 100/(f1step-L*2);
  stat.SimpleText: = 'Averaging and calculation of bispectrum';
  for k1: = f1start+L to f1step+f1start-1-L do begin
   for k2: = f2start+L to f2step+f2start-1-L do begin
   if (k_2 \le k_1) and (k_1 + k_2 \le M/2) then begin
      j1: = (sqrt(mr[k1,k2]*mr[k1,k2]+mi[k1,k2]*mi[k1,k2]))/K;
      if j_{1>j_{2}} then j_{2} = j_{1};
      jr1: = abs(mr[k1,k2]/K);
      if jr1>jr2 then jr2: = jr1;
      ji1: = abs(mi[k1,k2]/K);
      if ji1 > ji2 then ji2 := ji1;
   end;
   end;
   j3: = j2;
   pro1: = progg+pro1;
   pr: = round(pro1);
   progressbar1.position: = pr;
 end;
end;
{angle of bispectrum = (mi), fib}
if radiof.checked then
begin
           progressbar1.position: = 0;
           pro1: = 0;
           progg: = 100/(f1step-L*2);
           stat.SimpleText: = 'Calculating angle of bispectrum';
           for k1: = f1start+L to f1step+f1start-1-L do begin
            for k2: = f2start+L to f2step+f2start-1-L do begin
            if (k_2 \le k_1) and (k_1 + k_2 \le M/2) then begin
             izra: = (sqrt(mr[k1,k2]*mr[k1,k2]+mi[k1,k2]*mi[k1,k2])/K)/j2;
             fib[k1,k2]: = 0;
             if izra > = th then begin
```

if mr[k1,k2] = 0 then mr[k1,k2]: = 0.0000000000001;

 $\{I \text{ quarter} = 0.90\}$

SUR

```
if (mi[k1,k2] > = 0) and (mr[k1,k2] > = 0) then fib[k1,k2] :=
                                      arctan(mi[k1,k2]/mr[k1,k2])*180/pi;
                       \{II \text{ quarter} = 90-180\}
                       if (mi[k1,k2] \ge 0) and (mr[k1,k2] \le 0) then fib[k1,k2] =
                                      180+(arctan(mi[k1,k2]/mr[k1,k2]))*180/pi;
                       {III quarter 180-270}
                       if (mi[k1,k2]<0) and (mr[k1,k2]<=0) then fib[k1,k2]:=
                                      180+(arctan(mi[k1,k2]/mr[k1,k2]))*180/pi;
                       {IV quarter270-360}
                       if (mi[k1,k2]<0) and (mr[k1,k2]>0) then fib[k1,k2]:=
                                      360+(arctan(mi[k1,k2]/mr[k1,k2]))*180/pi;
            end;
           end;
           end;
           pro1: = progg+pro1;
           pr: = round(pro1);
           progressbar1.position: = pr;
 end:
end;
{averaging and calculating absolute bispecter = mr}
if rbi.checked then
begin
          progressbarl.position: = 0;
          pro1: = 0;
          progg: = 100/(f1 step-L*2);
          {normalizacija - deljenje z max(B) = j2}
          if checkn.Checked = false then j2: = 1;
          stat.SimpleText: = ' Averaging and calculating absolute bispecter ';
          for k1: = f1start+L to f1step+f1start-1-L do begin
                    for k2: = f2start+L to f2step+f2start-1-L do begin
                     if (k_2 \le k_1) and (k_1 + k_2 \le M/2) then begin
                       mr[k1,k2] := ((sqrt(mr[k1,k2]*mr[k1,k2]+mi[k1,k2]*mi[k1,k2]))/K)/j2;
                       if (mr[k1,k2] < (j3*Zproc)/100) and (Zproc>0) then mr[k1,k2] = 0;
                       if (mr[k1,k2] \le ZIT*maver) and (ZIT>0) then mr[k1,k2] := 0;
                     end;
           end;
           pro1: = progg+pro1;
           pr: = round(pro1);
           progressbar1.position: = pr;
          end:
end;
{averaging and calculating squared bicoherence mi }
if bicoherence. Item Index = 0 then
begin
          progressbar1.position: = 0;
          pro1: = 0;
          progg: = 100/(f1step-L*2);
          stat.SimpleText: = 'Averaging and calculating squared bicoherence ';
          for k1: = f1start+L to f1step+f1start-1-L do begin
           for k2: = f2start+L to f2step+f2start-1-L do begin
            if (k_2 \le k_1) and (k_2 \le M/2 - k_1) then begin
             if abcoh[k1,k2] = 0 then begin
                  abcoh[k1,k2] := 1;
                  mr[k1,k2]: = 0;
             end;
             mi[k1,k2]: = sqr(mr[k1,k2])/((abcoh[k1,k2])+ZIT*maver);
            end;
           end;
           pro1: = progg+pro1;
           pr: = round(pro1);
```

```
progressbar1.position: = pr;
                    end;
         end:
         {calculating complex bicoherence Re in Im bicoherence }
         if bicoherence. Item Index = 1 then
          begin
                    progressbar1.position: = 0;
                    pro1: = 0;
                    progg: = 100/(f1step-L*2);
                    stat.SimpleText: = 'Complex bicoherence';
                    mri: = 0;
                    for kl: = flstart+L to flstep+flstart-l-L do begin
                     for k2: = f2start+L to f2step+f2start-1-L do begin
                     if (k_2 \le k_1) and (k_2 \le M/2 - k_1) then begin
                        mr[k1,k2] := (mr[k1,k2])/K;
                        mi[k1,k2] := (mi[k1,k2])/K;
                        if (abs(mr[k1,k2]) \le (jr2*Zproc)/100) and (Zproc \ge 0) then mr[k1,k2] = 0;
                        if (abs(mi[k1,k2]) \le (ji2*Zproc)/100) and (Zproc>0) then mi[k1,k2] = 0;
                        mr[k1,k2]: = mr[k1,k2]/sqrt((abcoh[k1,k2])+ZIT*maver);
                        mi[k1,k2]: = mi[k1,k2]/sqrt((abcoh[k1,k2])+ZIT*maver);
                     end:
                     end:
                     prol: = progg+prol;
                     pr: = round(pro1);
                     progressbar1.position: = pr;
                    end;
         end;
         end;
         {Display averaged bispectrum over IT}
          if checkbIT.Checked then begin
          maver: = (maver/K)/(M*M/16);
          str(maver:13:10,we2);
          labelmpov.Caption: = we2;
          end:
         progressbar1.position: = 0;
         stat.SimpleText: = ' Calculated';
         labelT.caption: = timetostr(time-timecalc);
         saveb.Visible: = true;
         calcul: = true;
         go.Visible: = false;
         butnew.Visible: = true;
end:
procedure TForm1.FormCreate(Sender: TObject);
begin
        calcul: = false;
        sim: = 41050;
        sima: = 3096*2;
        K: = 1;
        fs: = 20;
        O: = 0;
        saveb.Visible: = false;
        go.Visible: = false;
        stat.SimpleText: = 'load data';
        prvic: = true;
        labelma.Caption: = '/'+inttostr(sim);
        labelmax.Caption: = '/'+inttostr(sima*2);
```

end;

procedure TForm1.Timer1Timer(Sender: TObject);

SUR

```
var pret, pretb:string;
 fresb:real;
begin
         if (combok.text = ") or (combok.text = '0') then
         begin
          comboK.text: = '1';
         end;
         K: = strtoint(comboK.text);
         M: = trunc(int(N/K));
         if M mod 2 \Leftrightarrow 0 then M: = M-1;
         LabelM.caption: = 'M = '+inttostr(M);
         delta: = trunc(M^*(O/100));
         Kmax: = trunc(((N-K*(M-delta))-delta)/(M-delta));
         label8.Caption: = 'Kmax:'+inttostr(Kmax+K);
         {fs - sampling frequency}
         if (combofs.text = ") or (combofs.text = '0') then
         begin
          combofs.text: = '1';
         end;
         fs: = strtoint(combofs.text);
         {L frequency averaging}
         if (comboL.text = ") then
                  begin
                   comboL.text: = '0';
         end:
         L: = strtoint(comboL.text);
         {trashhold - procent ampltude for phase calculation }
                 if (comboth.text = ") then
                  begin
                   comboth.text: = '0.5';
        end:
        th: = strtofloat(comboth.text);
         {Zproc - procent of max bispectrum j2 for zeroing }
        if (comboZ.text = ") then
                  begin
                  comboZ.text: = '0';
        end:
        Zproc: = strtofloat(comboZ.text);
         {ZIT - times of average bispectrum on IT = bpovpIT for bicoherence = 0 }
        if (comboIT.text = ") then
                  begin
                  comboIT.text: = '0';
        end;
        ZIT: = strtoint(comboIT.text);
        {O - Overlapping}
        if (comboO.text = ") or (comboO.text = '100') then
                  begin
                  comboO.text: = '0';
        end;
        O: = strtoint(comboO.text);
        {NW -number of windows}
        if (comboNW.text = ") then
                  begin
                  comboNW.text: = '5';
        end;
        NW: = strtoint(comboNW.text);
        {fres- resolution}
        str(fs/M:8:7,pretb);
        combofres.text: = pretb;
        fres: = strtofloat(combofres.text);
```

{f min} if (combofmin.text = ") then begin str(fres:9:8,pretb); combofmin.text: = pretb; end: fmin: = round(strtofloat(combofmin.text)/fres)*fres; ${f2 min}$ if (combof2min.text = ") then begin str(fres:9:8,pretb); combof2min.text: = pretb; end; f2min: = round(strtofloat(combof2min.text)/fres)*fres; if checkf1f2.Checked then begin f2min: = fmin;str(fmin:8:7,pretb); combof2min.text: = pretb; end; {fmin: = fres;} str(fmin:8:7,pretb); combofmin.text: = pretb; labelfmintrue.Caption: = 'true:'+pretb; ${f2min: = fres}$ str(f2min:8:7,pretb); combof2min.text: = pretb; labelf2mintrue.Caption: = 'true:'+pretb; {fmax} if (combofmax.text = ") then begin str(fs/2:4:1,pretb); combofmax.text: = pretb; end; fmax: = round(strtofloat(combofmax.text)/fres)*fres; str(fmax:5:4,pretb); labelfmaxtrue.Caption: = 'true:'+pretb; {f2max} if (combof2max.text = ") then begin str(fs/2:4:1,pretb); combof2max.text: = pretb; end; f2max: = round(strtofloat(combof2max.text)/fres)*fres; if checkf1f2.Checked then begin f2max: = fmax; str(f2max:5:4,pretb); combof2max.text: = pretb; end: str(f2max:5:4,pretb); labelf2maxtrue.Caption: = 'true:'+pretb; {size of smoothing over neighbouring frequencies} Mdva: = 2*L+1; {FT vector, f1 } f1step: = trunc((fmax-fmin)/fres); if f1step mod 2 <> 0 then f1step: = f1step-1; f1start: = trunc(fmin/fres); {FT vektor f2} f2step: = trunc((f2max-f2min)/fres); if f2step mod 2 <> 0 then f2step: = f2step-1; f2start: = trunc(f2min/fres);

```
SUR
```

```
{dimension of DFT vector}
         if fmax>f2max then fstep: = f1step+f1start else fstep: = f2step+fstart;
         if f1start<f2start then fstart: = f1start else fstart: = f2start;
         label15.Caption: = 'DFT['+inttostr(fstart)+':'+inttostr((fstart+fstep-1)*2)+']';
         label16.caption: = 'B[f1,f2] = ['+inttostr(f1start+L)+':'+inttostr(f1step+f1start-1-
         L)+','+inttostr(f2start+L)+':'+inttostr(f2step+f2start-1-L)+']';
         labeldol.caption: = 'B[f1,f2] = ['+inttostr(f1step-L*2)+', '+inttostr(f2step-L*2)+']';
end:
procedure TForm1.CombofresDropDown(Sender: TObject);
var pret:string;
begin
         if prvic then begin
          str(fs/M:9:8,pret);
          Combofres.Items.Add(pret);
          str(NW*fs/(M-2)-fmin:9:8,pret);
          Combofres.Items.add(pret);
          prvic: = false;
         end:
end;
procedure TForm1.RBiClick(Sender: TObject);
begin
         rbi.Checked: = true;
         radiof.Checked: = false;
         bicoherence.ItemIndex: = -1;
end:
procedure TForm1.RadioFClick(Sender: TObject);
begin
         rbi.Checked: = false;
         radiof.Checked: = true;
         checkn.Checked: = true;
         bicoherence.ItemIndex: = -1;
end:
procedure TForm1.Checkf1f2Click(Sender: TObject);
begin
        if checkf1f2.Checked then begin
                  combof2min.Enabled: = false;
                  combof2max.Enabled: = false;
        end:
        if checkf1f2.Checked = false then begin
                  combof2min.Enabled: = true:
                  combof2max.Enabled: = true:
        end:
end;
procedure TForm1.ButnewClick(Sender: TObject);
begin
         timer1.enabled: = true;
         butnew.Visible: = false;
         go.Visible: = true;
end:
procedure TForm1.bicoherenceClick(Sender: TObject);
begin
         if bicoherence.ItemIndex = 0 then begin
         checkN.Checked: = false;
          rbi.Checked: = true;
```

IN

end; if bicoherence.ItemIndex = 1 then begin checkN.Checked: = false; rbi.Checked: = false; radiof.Checked: = false; end;

end;

end.