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Abstract

Bargraphs are lattice paths in N2
0, which start at the origin and terminate immediately

upon return to the x-axis. The allowed steps are the up step (0, 1), the down step (0,−1)
and the horizontal step (1, 0). The first step is an up step and the horizontal steps must
all lie above the x-axis. An up step cannot follow a down step and vice versa. In this
paper we consider levels, which are maximal sequences of two or more adjacent horizontal
steps. We find the generating functions that count the total number of levels, the leftmost
x-coordinate and the height of the first level and obtain the generating function for the mean
of these parameters. Finally, we obtain the asymptotics of these means as the length of the
path tends to infinity.
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1 Introduction
Bargraphs are lattice paths in N2

0, starting at the origin and ending upon first return to the
x-axis. The allowed steps are the up step, u = (0, 1), the down step, d = (0,−1) and the
horizontal step, h = (1, 0). The first step has to be an up step and the horizontal steps must
all lie above the x-axis. An up step cannot follow a down step and vice versa. It is clear
that the number of down steps must equal the number of up steps. Related lattice paths
such as Dyck paths and Motzkin paths have been studied extensively (see [4, 9]) whereas
until now bargraphs which are fundamental combinatorial structures, have not attracted the
same amount of interest.
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Bousquet-Mélou and Rechnitzer in [2] and Geraschenko in [8] have studied bargraphs
which were named skylines in the latter, and wall polyominoes as per the study of Feretić,
in [6]. Bargraphs models arise frequently in statistical physics, see for example [3, 5, 10,
12, 15, 17]. In addition, bargraphs are commonly used in probability theory to represent
frequency diagrams and are also related to compositions of integers [11].

In this paper, we consider levels, which are maximal sequences of two or more adjacent
horizontal steps. We find different generating functions in each of the following sections
where x counts the horizontal steps, y counts the up vertical steps and w counts one of the
following parameters: the total number of levels and the horizontal position or the height
of the first level. To facilitate these computations, we also find the generating function for
paths with no levels.

The study of levels in bargraphs is related to the modelling of tethered polymersunder
pulling forces, see [13, 14]. These pulling forces have vertical and horizontal compo-
nents and tend to be resisted by what is known as the stiffness of the polymers. The
polymers undergo phase changes, called the stretched (adsorption) phase, where the poly-
mer is stretched vertically. The free (desorbed) phase occurs only when the vertical force
is zero. In the bargraph models of polymers positive or negative energy is added to points
in levels on the bargraph (called stiffness sites), they tend to keep the polymer horizontal
or cause it to bend.

As an example of a bargraph we have
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Figure 1: A bargraph with 12 up steps, 13 horizontal steps and 4 levels

Often in the lattice walk and polygon literature, ”bargraphs” refer to polygon structures
(which would be obtained from the objects considered here by joining the first and last
vertices with horizontal steps). The objects discussed here are sometimes called ”partially
directed walks above a wall” depending on the context (in polymer modelling work for
example).

The main tool for elucidating the statistics of interest in this study is a decomposition
of bargraphs which is based on the first return to level one. This was described initially
by Prellberg and Brak in [16] and more recently in [2], where it is called the wasp-waist
decomposition. The present authors have also discussed it in [1].

It follows from the wasp-waist decomposition that the generating function B(x, y)
which counts all bargraphs is

B := B(x, y) =
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

2x
. (1.1)
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= + + + +

1 2 3 4 5

Figure 2: Wasp-waist decomposition of bargraphs

Here x counts the number of horizontal steps and y counts the number of up steps (see
Theorem 1 in [1]) or [2, 7]).

The series expansion, B(x, y) begins

x(y + y2 + y3 + y4) + x2(y + 3y2 + 5y3 + 7y4) + x3(y + 6y2 + 16y3 + 31y4)

+ x4(y + 10y2 + 40y3 + 105y4 + 219y4).

The bold coefficient of x4y2 is illustrated below with the full set of 10 bargraphs with 4
horizontal steps and 2 vertical up steps.
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Figure 3: The 10 graphs with 4 horizontal steps and 2 vertical up steps

In [1, 2] the authors found an asymptotic expression for B(z, z), where z marks the semi-
perimeter of the bargraphs. This is known as the generating function for the isotropic case.
The dominant singularity ρ is the positive root of

D := 1− 4z + 2z2 + z4 = 0, (1.2)

given by

ρ =
1

3

(
−1− 4× 22/3

(13 + 3
√
33)1/3

+
(
2(13 + 3

√
33)
)1/3)

= 0.295598 · · · . (1.3)

We have B(z, z) ∼ −
√

1−ρ−ρ3
√
ρ (1− z

ρ )
1/2 as z → ρ. Hence

[zn]B(z, z) ∼
√
1− ρ− ρ3

2
√
π ρn3

ρ−n. (1.4)
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The following definitions will be used:
A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps

denoted by hr where r ≥ 2. It is preceded and followed by either an up step or a down
step. The length of the level is the number r of horizontal steps in the sequence. The height
of a level is the y-coordinate of the horizontal steps in the sequence.

Thus, the graph in Figure 1 has four levels, three of length 2 and one of length 3.
In all the generating functions of the following sections, the horizontal steps are counted

by x, the vertical up steps are counted by y and the parameter that is under investigation by
w. In each section, we use G(x, y, w) or F (x, y, w) for the generating function where the
definition of G or F applies only to the section under consideration.

2 Total number of levels
2.1 Generating function for the number of levels

A level is a sequence of two or more adjacent horizontal steps as defined in the previous
section. Let F (x, y, w) be the generating function where w marks the total number of
levels. Using the wasp-waist decomposition in Figure 2, we have

F := F (x, y, w) = xy︸︷︷︸+ F2︸︷︷︸+ yF︸︷︷︸+xyF︸︷︷︸+FF2︸︷︷︸ (2.1)

1 2 3 4 5

The numbers below the terms refer to the cases in the wasp-waist decomposition. This will
be done throughout the paper. The generating function F2 := F2(x, y, w) is the analogous
function restricted to case 2. We use the following symbolic decomposition for F2

---- ︸ ︷︷ ︸ ︸ ︷︷ ︸
FR FR

= + +

Figure 4: Decomposition for F2

where FR is the generating function for bargraphs in which the first column is of height
2 or more. The function FR is easily obtained by considering all bargraphs except those
starting with a column of height one. Thus

FR = F − xy − F2. (2.2)

From Figure 4, we get

F2 = x(F − xy − xFR) + wx2y + wx2FR. (2.3)
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So, combining equations (2.1), (2.2) and (2.3), we find

F =
1

2(x− x2 + wx2)

(
1− x− y − xy + 2x2y − 2wx2y−

√
4(−x+ x2 − wx2)(xy − x2y + wx2y) + (1− x− y − xy + 2x2y − 2wx2y)2

)
.

(2.4)

In order to find the generating function for the total number of levels in bargraphs, we
differentiate F with respect to w and then put w = 1 to obtain

FLevels :=
∂F

∂w

∣∣∣∣
w=1

=
(1− x)(1− y)

(
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

)
2
√
(1− x− y − xy)2 − 4x2y

,

where z marks the semiperimeter.
The series expansion begins

x2(y + y2 + y3 + y4) + x3(y + 5y2 + 9y3 + 13y4) + x4(y + 12y2 + 38y3 + 79y4).

There are in total 12 levels in our example in Figure 3. This is shown in bold in the series
expansion.

2.2 Asymptotics in the isotropic case

We consider bargraphs with respect to the semiperimeter by substituting z for x and y in F
to obtain

FLevels(z, z) =
(1− z)2(1− 2z − z2 −

√
1− 4z + 2z2 + z4)

2
√
1− 4z + 2z2 + z4

.

In order to compute the asymptotics for the coefficients, we use singularity analysis as
described in [7]. Let ρ be as in (1.2) and (1.3). We find that as z → ρ

FLevels ∼
1− 4ρ+ 4ρ2 − ρ4

4
√
ρ(1− ρ− ρ3)

√
1− z

ρ

.

By singularity analysis we have

[zn]FLevels ∼
1− 4ρ+ 4ρ2 − ρ4

4
√
π n
√
ρ (1− ρ− ρ3)

ρ−n.

Then after dividing by the asymptotic expression for the total number of bargraphs
found in (1.4), we get the following result:

Theorem 2.1. The average number of levels in bargraphs of semiperimeter n is asymptotic
to

1− 4ρ+ 4ρ2 − ρ4

2(1− ρ− ρ3)
n = C n,

as n→∞ where C = 0.117516 · · · .
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3 Bargraphs with no levels
3.1 Generating function for the number of graphs with no level

Because we require it later, we begin by enumerating a special class of bargraphs, namely
one in which an adjacent sequence of horizontal steps does not occur (i.e. the only se-
quences of horizontals are single). This is denoted by F0 := F (x, y, 0) where F is the
generating function (2.4) from the previous section.

We use the wasp-waist decomposition in Figure 2 to obtain

F0 = xy︸︷︷︸+ F0,2︸︷︷︸+ yF0︸︷︷︸+ yF0x︸ ︷︷ ︸+F0F0,2︸ ︷︷ ︸ . (3.1)

1 2 3 4 5

Case 2 is explained below in Figure 5.

= -- --

Figure 5: Explanation for case 2, decomposition of F0,2

Thus
F0,2 = x

(
F0 − xy − F0,2

)
,

which leads to

F0,2 =
x
(
F0 − xy

)
1 + x

. (3.2)

The exclusions in case 2 are because we are not allowing adjacent horizontal steps.
Hence, from (3.1) and (3.2), we have:

F0 = xy︸︷︷︸+ x(F0 − xy)
1 + x︸ ︷︷ ︸+ yF0︸︷︷︸+ yF0x︸ ︷︷ ︸+ F0x(F0 − xy)

1 + x︸ ︷︷ ︸ .
1 2 3 4 5

Solving this for F0, we obtain

F0 =
1− y − 2xy −

√
1− y

√
1− y − 4xy − 4x2y

2x
. (3.3)

The series expansion for F0 begins

x(y + y2 + y3 + y4) + x2(2y2 + 4y3 + 6y4)

+ x3(y2 + 7y3 + 18y4) + x4(6y3 + 32y4 + 92y5).

Our example in Figure 3, shows that indeed there are no bargraphs having 4 horizontal and
2 up steps and no levels, which is confirmed by the lack of x4y2 term.
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3.2 Asymptotics in the isotropic case

As before we substitute z for x and y in F0 and obtain

F0(z, z) =
1− z − 2z2 −

√
1− z

√
1− z − 4z2 − 4z3

2z
.

Let τ be the dominant root of 1− z − 4z2 − 4z3 = 0, its value is

τ =
1

12

(
−4 + (224− 24

√
87)1/3 + 2(28 + 3

√
87)1/3

)
= 0.34781 · · · .

Using singularity analysis we have as z → τ

F0(z, z) ∼ −
√
1− τ

√
τ(1 + 8τ + 12τ2)

√
1− z

τ

2τ
.

Extracting coefficients will yield the asymptotic number of bargraphs with no levels.

[zn]F0(z, z) ∼
√
1− τ

√
τ(1 + 8τ + 12τ2)

4
√
π n3

τ−n,

as n→∞.
For n = 100, there are 3.20775×1042 bargraphs whereas the asymptotics give 3.24376

× 1042.

4 Horizontal position of the first level
4.1 Generating function for the mean

Now we derive a generating function Gx for bargraphs in which the leftmost x-coordinate
of the first level is counted by w. In the case where the bargraph has no level, we define
the horizontal position to be 0. In Figure 6, the start of the first level is the point with
coordinates (2, 5) and therefore the x-coordinate of the start of the first level here is 2.
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Figure 6: Horizontal position of the start of the first level

By the wasp-waist decomposition we have

Gx = xy︸︷︷︸+ F2︸︷︷︸+ yGx︸︷︷︸+ yGxx︸ ︷︷ ︸+ F5︸︷︷︸ (4.1)

1 2 3 4 5

To calculate the generating function for case 2, we use Figure 7 below. The part labelled
L in Figure 7 indicates a bargraph with at least one level.

L L

a

L --= + +

Figure 7: Decomposition for FL,2

Note that FL,2 is the generating function for case 2, (paths which have at least 1 level).
The generating function for the graph labelled “a” in Figure 7 is therefore Gx − F0,

since F0 is the generating function for graphs with no levels from Section 3.
Thus, using Figure 7, we have:

FL,2 := FL,2(x, y, w) = wx
(
Gx − F0 − FL,2

)
+ x2y + x2B

where B is the generating function for all bargraphs from equation (1.1). Hence,

FL,2 =
wxGx − wxF0 + x2y + x2B

1 + wx
, (4.2)

and from (3.2)

F0.2 =
x

1 + x
(F0 − xy) =

x

(
−xy + 1−y−2xy+

√
1−y
√

1−y−4xy−4x2y

2x

)
1 + x

.
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So, for case 2
F2 = FL,2 + F0,2.

Thus finally, the decomposition for case 5 requires Figure 8 below:

α β

Figure 8: Case 5

For case 5, we have the concatenation of two bargraphs labelled α and β. There are three
cases depending on whether the graphs α and β have levels or not.

i. Graph α has levels with generating function y(Gx−F0), in which case the generating
function for β is xB

y .

ii. Neither graph has levels, thus the generating function is F0F0,2 where F0,2 is as in
(3.2) or

iii. Graph α has no levels but graph β has, so the generating function is F0(xw, y)F2

where F0(w) := F0(xw, y) indicates that x has been replaced by xw in F0(x, y).

Thus

Gx = xy︸︷︷︸+ F2︸︷︷︸+ yGx︸︷︷︸+ yGxx︸ ︷︷ ︸+ ((Gx − F0)xB + F0F0,2 + F0(xw, y)F2

)︸ ︷︷ ︸
1 2 3 4 5

where in all but one case, the parameters have been omitted.
We solve for Gx, leading to

Gx(x, y, w)

=
−Bx2F0

wx+1
+BxF0 − Bx2

wx+1
− F0F0,2 − x2yF0(w)

wx+1
+ wx(F0)

2

wx+1
+ F0wx

wx+1
− F0,2 − x2y

wx+1
− xy

Bx+ wxF0(w)
wx+1

+ wx
wx+1

+ xy + y − 1

(4.3)

where

F0(w) =
1− y − 2wxy −

√
1− y

√
1− y − 4wxy − 4w2x2y

2wx
.

Remark: We note that from (3.3) F0(w)|w=1 = F0.
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Now, in order to find the mean horizontal position, we calculate:

∂Gx
∂w

∣∣∣∣
w=1

=
x

(Bx(x+ 1) + F0x+ (x+ 1)2y − 1)
2

× {F0((x+ 1)F ′0 + F0 + 1)(F0,2 + xy + y − 1) + F0,2((x+ 1)F ′0 + F0 + 1)

+B2x2(x(−F ′0 + F0 + 1)− F ′0) +Bx(2x2y(−F ′0 + F0 + 1)− (y − 1)F ′0

+x(F 2
0 − 3yF ′0 + F ′0 + F0y + F0 + y)) + xy(x2y(−F ′0 + F0 + 1)− yF ′0 + 2F ′0

+x(F 2
0 − 2yF ′0 + 2F ′0 + F0y + F0 + y) + F0 + 1)

}
where

F ′0 =
∂F0(w)

∂w

∣∣∣∣
w=1

=
y
(
−2x
√
y − 1 +

√
(2x+ 1)2y − 1−

√
y − 1

)
−
√
(2x+ 1)2y − 1 +

√
y − 1

2x
√
(2x+ 1)2y − 1

.

(4.4)

The series expansion of ∂Gx

∂w

∣∣
w=1

begins

x3
(
2y2 + 4y3 + 6y4

)
+ x4

(
5y2 + 25y3 + 60y4

)
.

In our example in Figure 3, the sum of the horizontal positions of the first levels is 5.

4.2 Asymptotics in the isotropic case

Using singularity analysis and computer algebra we find that

∂Gx
∂w

∣∣∣∣
w=1

∼ −2 c1(ρ)
√
ρ (1− ρ− ρ3)

(
1− z

ρ

)1/2

where ρ is as in (1.3) and

c1(ρ) =
1− ρ(

(−1 + ρ)ρ2 +
√
−1 + ρ

√
Y (ρ)

)3√
Y (ρ)

×
(√
−1 + ρ(1− ρ− 12ρ2 − 4ρ3 + 13ρ4 + 27ρ5 + 18ρ6 + 18ρ7 + 4ρ8)

+(−1 + ρ+ 4ρ2 + 8ρ3 − 5ρ4 + ρ5 − 6ρ6 − 2ρ7)
√
Y (ρ)

)
as z → ρ and Y (ρ) = −1 + ρ+ 4ρ2 + 4ρ3.

The coefficient is

[zn]
∂Gx
∂w

∣∣∣∣
w=1

∼
c1(ρ)

√
ρ (1− ρ− ρ3)√
π n3

ρ−n.

After dividing by the asymptotic number of bargraphs we get
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Theorem 4.1. The average horizontal position of the first level in bargraphs is asymptotic
to the constant

2 ρ c1(ρ) = 2.38298, as n→∞.

For n = 200, the exact average is 2.35787 · · · .

5 Height of the first level
5.1 Generating function for the mean

Let Gy(x, y, w) be the generating function for the y-coordinate of the first level for bar-
graphs where w marks this coordinate. If there are no levels then there is no w, so we have
a contribution to w0. As in the previous section, the first level in Figure 9 begins at the
point (2, 5), with y-coordinate 5.

-
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Figure 9: Height of the first level

Using the wasp-waist decomposition, this yields:

Gy = xy︸︷︷︸+ F2︸︷︷︸+ F3︸︷︷︸+ xF3︸︷︷︸+ F5︸︷︷︸ . (5.1)

1 2 3 4 5

Considering case 2 separately, we have for F2:

-- --= + +

Figure 10: Decomposition for F2
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Thus
F2 = x(Gy − xy − F2) + x2yw + x2wB.

So

F2 =
x(Gy − xy + xyw + xwB)

1 + x
(5.2)

and
F3 = yw

(
Gy − F0

)
+ yF0 (5.3)

where the first and second terms distinguish between the cases where there are levels (which
are therefore multiplied by w) and no levels.

Also separately, for the last case F5 we can use Figure 8. If α has levels, then the
generating functions for α and β are w

(
Gy − F0

)
and xB(x, y) respectively. On the other

hand, if α has no levels, the generating functions are yF0 and F2.
Thus

F5 = w(Gy − F0)xB(x, y) + yF0F2. (5.4)

Substituting (5.2), (5.3), and (5.4) in (5.1) and solving for Gy , we obtain

Gy =
T

Bwx+ F0x
x+1 + w(x+ 1)y + x

x+1 − 1
(5.5)

where

T =− BF0wx
2

x+ 1
+BF0wx−

Bwx2

x+ 1
− F0wx

2y

x+ 1
+ F0w(x+ 1)y

+
F0x

2y

x+ 1
− F0(x+ 1)y − wx2y

x+ 1
+

x2y

x+ 1
− xy.

The generating function for the sum of the heights of the first levels is obtained from
the derivative of Gy with respect to w and then setting w = 1.

Using the following substitutions{
X(x, y) = −1 + (1 + 2x)2y,

Y (x, y) = (−1 + y)(−1 + x2(−1 + y) + y + 2x(1 + y)),
(5.6)

we have
∂Gy

∂w

∣∣∣∣
w=1

=

(
−1 + x+ y − xy +

√
Y (x, y)

)
(
x2(1− y) + x

√
Y (x, y)−

√
X(x, y)

√
y − 1 +

√
Y (x, y)

)2
×
(
4x2(y − 1)y + x

(
−2
√
X(x, y)

√
y − 1y +

√
X(x, y)

√
y − 1 + 4y2 − 3y − 1

)
+y
(
−
√
X(x, y)

√
y − 1 + y − 1

))
. (5.7)

The series expansion of ∂Gy

∂w

∣∣
w=1

begins

x2
(
y + 2y2 + 3y3 + 4y4

)
+x3

(
y + 8y2 + 21y3 + 40y4

)
+

x4
(
y + 15y2 + 71y3 + 198y4

)
.
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Figure 3 illustrates that the sum of the heights of the first levels is 15 as shown in bold
above.

5.2 Asymptotics in the isotropic case

Substituting z for both x and y in the above equation (5.7) and using X(z, z) := X(z) =
−1 + z + 4z2 + 4z3 and Y (z, z) := Y (z) = 1− 4z + 2z2 + z4, we obtain

∂Gy

∂w

∣∣∣∣
w=1

=

(
−1 + 2z − z2 +

√
Y (z)

)
(
(1− z)z2 −

√
z − 1

√
X(z) +

√
Y (z) + z

√
Y (z)

)2
×
[
4z3(z − 1) + z

(
−1 + z −

√
z − 1

√
X(z)

)
+z
(
−1− 3z + 4z2 +

√
z − 1

√
X(z)− 2z

√
z − 1

√
X(z)

)]
∼ −2 c2(ρ)

√
ρ(1− ρ− ρ3)

(
1− z

ρ

)1/2

,

by using computer algebra as z → ρ, where

c2(ρ) = 2ρ

(
−2 + 2ρ+ ρ2 − ρ3 +

√
−1 + ρ

√
X(ρ)

)(
1 + ρ− 2ρ3 + ρ

√
−1 + ρ

√
X(ρ)

)
(
ρ2(−1 + ρ) +

√
−1 + ρ

√
X(ρ)

)3 .

Hence

[zn]
∂Gy
∂w

∣∣∣∣
w=1

∼
c2(ρ)

√
ρ(1− ρ− ρ3)√
π n3

ρ−n as n→∞

where
Thus after dividing by the asymptotic number of bargraphs we obtain

Theorem 5.1. The average height of the first level in bargraphs is asymptotic to the con-
stant

2 ρ c2(ρ) ≈ 6.15883 · · · , as n→∞.

For n = 300, the exact average is 6.00066 · · · .
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