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The Development of Deviant and Delinquent
Behavior of Adolescents:

Applications of Latent Class Growth Curves and
Growth Mixture Models

Jost Reinecke1

Abstract

The article presents applications of different growth mixture models consider-
ing unobserved heterogeneity within the framework of Mplus (Muthén and Muthén,
2001, 2004). Latent class growth mixture models are discussed under special con-
sideration of count variables which can be incorporated into the mixture models via
the Poisson and the zero-inflated Poisson model. Four-wave panel data from a Ger-
man criminological youth study (Boers et al., 2002) is used for the model analyses.
Three classes can be obtained from the data: Adolescents with almost no deviant
and delinquent activities, a medium proportion of adolescents with a low increase
of delinquency and a small number with a larger growth starting on a higher level.
The best model fits are obtained with the zero-inflated Poisson model. Linear growth
specifications are almost sufficient. The conditional application of the mixture mod-
els includes gender and educational level of the schools as time-independent predic-
tors which are able to explain a large proportion of the latent class distribution. The
stepwise procedure from latent class growth analysis to growth mixture modeling is
feasible for longitudinal analyses where individual growth trajectories are heteroge-
nous even when the dependent variable under study cannot be treated as a continuous
variable.

1 Introduction
Longitudinal research studies with repeated measurements are quite often used to examine
processes of stability and change in individuals or groups. With panel data it is possible to
investigate intraindividual development of substantive variables across time as well as in-
terindividual differences and similarities in change patterns. While the traditional analysis
of variance (ANOVA) and the analysis of covariance (ANCOVA) assume homogeneity of
the underlying covariance matrix across the levels of the between-subjects factors and the
same covariance patterns for the repeated measurements, the structural equation method-
ology offers an alternative strategy: the latent growth curve models. These models de-
scribe not only a single individual’s developmental trajectory, but also capture individual
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differences in the intercept and slopes of those trajectories. Based on the formative work
of Rao and Tucker’s basic model of growth curves (Rao, 1958; Tucker, 1958), Mered-
ith and Tisak (1990) discussed and formalized the model within the structural equation
framework. Further developments of the growth curve model were proposed by McAr-
dle and Epstein (1987), McArdle (1988), Muthén (1991, 1997) and Muthén and Curran
(1997).

The formal representation of a growth curve model can be seen either as a multilevel,
random-effects model (Liang and Zeger, 1986) or as a latent variable model, where the
random effects are latent variables (cf. for example Curran and Hussong, 2002: 69). In
the latent variable model the repeated measurements are the manifest variables while the
intercept and the slope are the latent variables (cf. the discussion in Hox, 2002, Chapter
14). Different specifications of growth curve models with structural equations using the
programs LISREL (Jöreskog, K. G. and Sörbom, 2004) and EQS (Bentler, 2001) are
discussed by Duncan, Duncan, Strycker, Li and Alpert (1999).

Observed heterogeneity in growth curve models can be captured by covariates (e. g.
gender) explaining part of the variances of the intercept and slope. But the assumption
of a single population underlying the growth curve has to be relaxed in the case of un-
observed heterogeneity where different classes of individuals vary around different mean
growth curves. A very suitable framework to handle the issue of unobserved heterogene-
ity is growth mixture modeling introduced by Muthén and Shedden (1999). These mixture
models differ between continuous and categorical latent variables. The categorical latent
variables represent mixtures of subpopulations where the membership to those subpop-
ulations is inferred from the data. Like the conventional growth curve models, intercept
and slope variables capture the continuous part of the model. The framework of growth
mixture models can also be seen as an extension of the structural modeling approach
with techniques of latent class analysis. The inferred membership of each individual to a
certain class is produced with the information of the estimated latent class probabilities.
Further developments and applications with the program Mplus (Muthén and Muthén,
2004) are discussed in several papers by Muthén (2001a, 2001b, 2003, 2004).

The simplest specification of a growth mixture model is the so-called latent class
growth analysis where no variation across individuals are allowed within classes. This
model was also discussed by Nagin and Land (1993), Nagin (1999) and Roeder, Lynch
and Nagin (1999) with normal and non-normal outcomes especially focused on deviant
and delinquent behavior (for a detailed overview see Nagin, 2005). Due to the substantive
similarity of the data used in our study, the underlying distributions of the longitudinal
measurements will be considered. Our measurements represent numbers of different de-
viant and delinquent behaviors and can be treated as count variables. The underlying
statistical model of a count variable is the Poisson distribution (see, e. g., Ross, 1993).
If the count variables are biased to zero, i. e., the particular behaviors seldom occur, the
zero-inflated Poisson model (Lambert, 1992) should be the best statistical representation.
A brief introduction of the growth mixture model including its special cases will be given
in Section 2.

Major methodological developments in criminological longitudinal research are in-
fluenced by the debate whether distinctive groups about criminal behavior can be ex-
plored and in which way the development of a ”criminal career” can be incorporated in
a statistical model. The major controversy stems from fundamental disagreements about
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whether people with criminal activities form a distinctive group and in which way those
”careers” can be explored (Nagin and Land, 1993). Several long-term studies, like the
”Cambridge Study” (Farrington and West, 1990), the ”Philadelphia Study” (Tracy, Wolf-
gang and Figlio, 1990) or the ”Montreal Study” (Tremblay, Desmarais-Gervais, Gagnon
and Charlebois, 1987) were analyzed by Nagin and collaborates to find population hetero-
geneity in behavioral trajectories. Depending on the type of the dependent variable, the
nature of the sample and the characteristics of the community, three to five trajectories re-
flecting different intensity and growth of delinquency were detected. These analyses can
differ between non-offenders, a time-limited delinquent behavior through adolescence
and a more or less chronic group of offenders (D’Unger, Land, McCall and Nagin, 1998;
Nagin 1999). Furthermore, background variables like household income or educational
level of the parents are included via a multinomial logit model to explain differences in
growth of criminal offending (Land, McCall and Nagin, 1996; Nagin, 1999). The major
statistical limitation of those analyses is the assumption that within each group the indi-
vidual developments are the same meaning that the growth parameters have no variance.
This restriction can be relaxed within the growth mixture model of Muthén and collabo-
rates. Although there are several methodological and statistical discussions about growth
mixture models (e. g., Bauer and Curran, 2003, 2004), the systematic evaluation of these
models with empirical data are still rare.

Applications of latent class growth models and growth mixture models within the
framework of Mplus are the main focus of the present study. A representative panel study
of adolescents’ deviant and delinquent behavior will serve as data base for the systematic
study of growth mixtures. After an introduction of the mixture models and their special
cases (Section 2), the design of the study, the variables and descriptive statistics are intro-
duced (Section 3). Section 4 will adress the number of distinctive groups in the data under
the assumption of the latent class growth model and explore substantive differences be-
tween those groups. Gender and level of education will serve as time-invariant predictors
in the conditional models. Based on these results, Section 5 studies various growth mix-
ture models allowing random intercepts and slopes. Differences to the previous results of
the latent class growth analyses will be emphasized. Section 6 summarizes the results and
discuss suggestions for further research with growth mixture models.

2 Method and models

2.1 Growth mixture models

The possibility that the individual trajectories of a dependent variable can vary is one of
the main advantages of the growth curve model. This variation is captured by the growth
curve factors. But the model assumes that all individuals are drawn from the same popu-
lation, i. e., the means of the random effects have no variance. Growth mixture modeling
relaxes this assumption and gives information about parameter differences across unob-
served subpopulations. Instead of considering individual variation of a single mean of
the intercept and slope, the growth mixture model allows different classes of individuals
to vary around different intercepts and slopes (Muthén and Shedden, 1999). The classes
are introduced by a latent categorical variable where the categories (classes) represent the
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Figure 1: General growth mixture model.

unobserved heterogeneity of the data.
Following Muthén (2002, 2004) a growth mixture model (GMM) contains both latent

growth variables η and a latent categorical variable c for c = 1, 2, . . . , K. The variable c
captures latent trajectory classes representing the different subpopulations. An uncondi-
tional growth mixture model can be formalized by the following equation:2

ytk = λ1tkη1k + λ2tkη2k + εtk

η1k = α1k + ζ1k

η2k = α2k + ζ2k

(2.1)

ytk is the manifest variable measured in wave t and class k, η1k is the initial level factor
whereas η2k is the linear growth factor. To estimate the model, factor loadings λ1tk are
restricted to one for all ytk whereas factor loadings λ2tk are usually restricted to represent
linear growth: λ2tk = 0, 1, 2, . . . , T − 1 for t = 1, . . . , T . εtk is the random error term.
In an unconditional model the latent variables are only described by their class specific
means (α1k, α2k) and variances (ζ1k, ζ2k).

For a conditional growth mixture model the structural equations of 2.1 are extended
by exogenous latent variables ξn:

ηmk = Ak + Γkξnk + ζmk (2.2)

Matrix Ak contains the levels and slopes within k-classes while matrix Γk refers to the
regressions of ξn within the kth class. Figure 1 gives an example of a growth mixture
model with one latent exogenous variable ξ1 (a measurement model for the exogenous
variable ξ1 is ommitted in the figure as well as in the description of the model).

The relation between the exogenous variable ξ1 and the categorical class variable c is
given by a multinomial logistic regression model:

logit(πk) = αc + Γcξ1 (2.3)

2For simplicity, person suffix i is ommited in the following equations.
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with πk = P (ck = k|ξ1) and αc as a (K − 1)-dimensional parameter vector. Γc is a
(K − 1)×q-parameter matrix containing regression coefficients of K classes on predictor
ξ1. Assuming two classes, matrix Γc contains one parameter for the first class while the
second parameter stands for the reference class. In Mplus, the reference class is always
the last class of the mixture model. With an unordered number of categories k of the
latent class variable, the probability expression P (ck = k|ξ1) can be formalized as follows
(Muthén and Muthén, 2004: 346):

P (ck = k|ξ1) =
eαck+γ

′
ck

ξ1∑K
k=1 eαck+γ′

ck
ξ1

(2.4)

For the last class eαcK+γ
′
cK

ξ1 equals 1. Therefore, the probability to be in class c is simply
the ratio of the exponentiated value of the logit and the sum of all exponentiated values.
The categorial part of the growth mixture model in Figure 1 can be enlarged by adding
outcome variables or distal indicators which are formally incorporated as a logistic re-
gression with covariates c and ξ1 (cf. Muthén, 2004: 349). The applications in Sections 4
and 5 will not consider this part of the mixture model.

2.2 Model estimation and evaluation
Growth mixture models are estimated by maximizing the log likelihood function within
the admissible range of parameter values given classes and data. Mplus (Version 3.11)
uses the principle of maximum likelihood estimation and employs the EM-algorithm for
maximization (Dempster, Laird and Rubin, 1977; Muthén and Shedden, 1999). A set of
starting values are provided by the program before one set is used for the final estimation
of the parameters. Version 3 of Mplus includes a so-called integration method which
tests sets of different starting values evaluating the maximum initial stage log likelihood
value. The seed number corresponding to that value is used for the final estimation of the
model. For re-estimation of the model parameters the optimal seed value of the previous
run can be included in the input file (for details see Muthén and Muthén, 2004). For a
given solution, each individual’s probability of membership in each class is estimated.
Individuals can be assigned to the classes by calculating the posterior probability that an
individual i belongs to a given class k. Each individual’s posterior probability estimate
for each class is computed as a function of the parameter estimates and the values of the
observed data (cf. Muthén and Muthén, 2001: 367f.).

It is always an empirical question how many classes are sufficient to describe the
unobserved heterogeneity of the data. By classifying each individual into his most likely
class, a table with rows corresponding to individuals classified into a given class can
be constructed. The columns of that table show the average conditional probabilities to
be in the particular class. High diagonal and low off-diagonal probabilities indicate a
good classification. The entropy measure Ek summaries the quality of the classification
(Muthén and Muthén, 2001: 372):

EK = 1−
∑

i

∑
k(−p̂ik lnp̂ik)

n lnK
(2.5)

p̂ik denotes the estimated conditional probability for individual i in class k. EK ranges
from zero to one, where values close to one indicate a good classification of the data.
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Maximum likelihood estimates and standard errors are obtained by maximizing the
log likelihood function, given the observed data and the number of classes. Standard
errors of estimates are asymptotically correct if the underlying mixture model is the true
model. But in mixture models a k class model is not nested within a k + 1 group model.
Therefore, conventional mixture tests like the Akaike Information Criterion (AIC; Akaika,
1987) and the Bayesian Information Criterion (BIC; Schwarz, 1978) have to be used for
model comparisons.

In general, test statistics require well-defined classes in a mixture model. The likeli-
hood ratio comparing a k − 1 and a k-class model does not have the usual large-sample
χ2-distribution because the class probability parameter can be at the boundary of its ad-
missible space, i. e., a latent class probability can be zero (Rudas et al., 1994). In addition
to that, a χ2-difference between two models is only suitable for model selection when the
models are nested. In mixture models a k class model is not nested within a k + 1 group
model. Therefore, the BIC is being used for model comparisons:

BIC = −2logL + pln(n) (2.6)

L is the value of the model’s maximized likelihood, p is the number of parameters and n
the sample size. The second term in both equations is the so-called penalty term which
penalize an increase of the likelihood with additional parameters. In addition, the BIC
includes the sample size. Usually, the model with the smallest BIC is accepted within
model comparisons. Furthermore, Mplus calculates a sample size adjusted BIC with
n = (n+2)/24 which was found to give superior performance for model selection (Yang,
1998). If the k-class model contains a redundant class, the k − 1-class model with the
smaller BIC value should be chosen. By adding a class an expansion of the model is
only desirable if the resulting improvement in the log likelihood exceeds the penalty for
more parameters. But to accept or reject a model on the basis of the BIC is more or less
descriptive and does not imply any statistical test.

Lo, Mendell, and Rubin (2001) proposed a likelihood ratio-based method for testing
k−1 classes against k classes in mixture models. The Lo-Mendell-Rubin likelihood ratio
test (LMR-LRT) considers the usual likelihood ratio for testing the k − 1 model against
a k model but with the correct distribution. The p-value from the test represents the
probability that H0 is true, i. e., that the model is sufficient with one less class. Therefore,
a low p-value indicates that the k−1 class model has to be recjected and the k-class model
can be accepted for substantive interpretations. LMR-LRT has been critized by Jeffries
(2003), but importance of the critics in applications is unknown (Muthén, 2004: 356).
BIC, adjusted BIC and the LMR-LRT test will be used for model selection in Sections 4
and 5.

2.3 Special cases of growth mixture models

2.3.1 Latent class growth analysis

A special case of the growth mixture model is the latent class growth analysis (LCGA),
which has been studied by Nagin and Land (1993), Nagin (1999) and Roeder, Lynch and
Nagin (1999). Jones, Nagin and Roeder (2001) discuss different applications of latent
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class growth models assuming Poisson distributed count data as well as the more gen-
eral zero-inflated Poisson model discussed below. LCGA is a submodel of Equation 2.1
and characterized by having zero variances and covariances of the intercept and slope
variables η. In an unconditional model the structural part of Equation 2.1 reduces to:

η1k = α1k

η2k = α2k
(2.7)

Individuals within a class are treated as homogeneous with respect to their development.
As Muthén (2004: 350) points out, LCGA has two major advantages: It can be used to
find cut points in the within-class variation on the growth factors. This leads to the ques-
tion which different latent classes represent substantially different trajectories and which
classes exist only due to minor variations. On the other hand the latent classes can be
viewed as a nonparametric representation of the distribution of the growth factors, result-
ing in a semi-parametric model (Nagin and Land, 1993; Nagin, 1999). LCGA serves here
as a starting point for the growth mixture model (GMM) with random intercepts and/or
random slopes. The random component in the GMM is represented by a mixture of k
classes. The stepwise procedure from LCGA to GMM will be discussed with substantive
applications in Section 4 and 5.

To study development of deviant and delinquent behavior is one of the main topics
in criminal sociology or criminology. Very often the longitudinal data gives information
about the incidence rate of that behavior or the number of convictions. From a method-
ological point of view the distributions of those variables are counts and have to be treated
differently compared to continuous data. The so-called ”key approach in the modeling of
delinquent and criminal careers” (Land et al, 1996) is the Poisson distribution with the
corresponding regression models.

2.3.2 Poisson model and zero-inflated Poisson model

The Poisson model assumes count variables instead of continuous variables. Let Y =
0, 1, 2 . . . be a random variable for a given time interval and y be the number of observed
occurences. The number of events in an interval of a given length is Poisson distributed
with the following probability density function:

Pr(Y = y) = e−ν

[
νy

y!

]
(2.8)

The expected value or mean of the Poisson distribution is E(Y ) = ν with V ar(Y ) = ν.3

Usually, the parameter ν is referred as the mean rate of occurrence of events. Small
values of ν yield high probability for zero occurences of the random variable Y . The
higher the value of ν, the lower the skewness of the distribution. The Poisson distribution
is considered most appropriate for modeling events which seldom occurs (for an overview
with applications to criminal careers data, cf. Land et al., 1996). If ν is indexed to each

3Note, that in the literature the greek letter λ is often used for the expected value of a Poisson distribution.
In structural equation models λ is reserved for vectors of factor loadings. Therefore, I use the letter ν here
for the expected value.
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individual i in a sample, exogenous variables X can be incorporated to specify a Poisson
regression model (Land et al., 1996: 395):

ln(νi) = Xiβ (2.9)

Instead of a simple regression model the growth curve model can be used to explain
the Poisson distributed count data:

ln(νit) = λ1tη1 + λ2tη2 + εt (2.10)

νit is the expected number of occurences of the measurement y of individual i at time t. η1

is the intercept and η2 is the slope variable. Factor loadings λ1t and λ2t are restricted for
linear growth equal to Equation 2.1. Equation 2.10 assumes that the growth parameters
do not differ between unobserved groups.

To cover the unobserved heterogeneity, a Poisson-based latent class growth model can
be formulated (Nagin and Land, 1993: 335; Nagin, 1999: 144; for specification in Mplus
see Muthén and Muthén, 2004: 190):

ln(νk
it) = λk

1tη
k
1 + λk

2tη
k
2 + εk

t (2.11)

νk
it is the expected number of occurences of the measurement y of individual i at time

t given the membership in class k. The conditional number of events, P (yk
it|k), should

follow the Poisson distribution.
If the number of zeros in the count variable are very large, a variant of the Poisson

regression model is more appropriate: the so-called zero-inflated Poisson model (ZIP)
originally proposed by Lambert (1992). The ZIP model combines the regression model
in Equation 2.9 with a logit model to cover the zero inflation in the count variable Y with
probability p that Y is zero (Lambert, 1992: 3). Two parallel growth mixture models
are estimated simultaneously when zero inflation of the data is assumed: The first model
contains the count part of the outcomes with values of zero and above (Variables y1 to
y4 in Figure 2). Intercepts of the outcomes are fixed to zero as the default. The means
of the growth curve variables (Variables i, s) are estimated for each class. The second
model refers to the zero-inflation part of the outcome with only values of zero in all
measurements (Variables yi

1 to yi
4). Intercepts of the outcomes are estimated and held

equal as the default. The mean of the intercept variable (Variable ii) are fixed to zero for
all classes while the mean of the slope (Variable si) is estimated and held equal for all
classes (cf. Muthén and Muthén, 2004: 190). Those two parallel growth curve models
can be combined in Mplus to get simultaneous parameter estimates. If rare events (e. g.
counts of deviant and delinquent behavior) are under study, the ZIP model should be more
appropriate than the Poisson model (see the applications with PROC Traj in Jones et al.,
2001).

3 Design of the study and descriptive statistics
The empirical basis for the following analyses with mixture models is taken from the
longitudinal research project Juvenile Delinquency in Modern Towns.4 The main focus of

4This interdisciplinary research project is located at the Universities of Münster (Institute of Crimi-
nology) and Bielefeld (Faculty of Sociology) and supported by the German National Science Foundation
(DFG) under grant numbers Bo1234/6 and Re832/4.
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Figure 2: Two-part growth mixture model with zero-inflated measurements.

the study is on the emergence and the development of deviant and delinquent behavior of
juveniles and the social control surrounding it; both formal, meaning the police and the
judiciary, and informal, referring to the school and the family (Boers et al., 2002).

The panel data contains self-administered interviews with pupils from the town Müns-
ter located north of Cologne in West Germany. The initial survey was conducted in the
year 2000 with pupils from 7th, 9th and 11th grade considering all relevant school types.
The school system in the community differ between three educational levels depending on
pupils’ achievements and their learning abilities. Further on, these educational levels will
be labeled as high, medium and low in the analyses of the conditional models in Section 4
and 5. One cohort (7th grade) have been interviewed annually until the pupils reached the
10th grade in the year 2003. 31 schools participated over the whole time period. The mean
response rate was about 85%. The relatively high response rate is due to confidentiality
restrictions. Almost every longitudinal study with sensitive topics avoid to collect data
which can identify respondents very easily (e. g. home adresses). Panel attritions can rise
up to 50% depending on the time period under study. Instead of collecting pupils’ home
adresses, an individual encryption code was created. To generate the code, a specific code
sheet were administered prior to the questionnaire in each panel wave. For example, the
code sheet includes questions about specific letters of respondent’ s eye and hair colors
and numbers of respondent’s birthday. Additional informations (e. g. change of class,
school) were used to avoid equal codes belonging to different persons (see Pöge, 2005 for
details).

Table 1 shows the distributions of gender and educational level for each panel wave.
Compared to offical statistics the distribution of the educational level is biased. Low
educated pupils are somewhat underrepresented while the high educated pupils are over-
represented in the data. It should also be noticed that the capability to remember the
answers to the code sheet questions generating the encryption code is correlated to the
educational level of the schools. There is also a somewhat higher proportion of females
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Table 1: Sample of respondents in the four-wave panel study (2000-2003).

Wave 1 Wave 2 Wave 3 Wave 4 Wave 1-4
Gender n (%) n (%) n (%) n (%) n (%)
male 665 (48.1) 816 (48.9) 868 (50.3) 716 (48.1) 353 (43.4)
female 717 (51.9) 852 (51.1) 857 (49.7) 774 (51.9) 460 (56.6)∑

1382 (100) 1668 (100) 1725 (100) 1441 (100) 813 (100)
Level of n (%) n (%) n (%) n (%) n (%)
Education
low 282 (20.4) 402 (24.1) 423 (24.5) 341 (22.9) 129 (15.9)
medium 410 (29.7) 525 (31.5) 560 (32.5) 487 (32.7) 241 (29.6)
high 690 (49.9) 741 (44.4) 742 (43.0) 662 (44.4) 443 (54.5)∑

1382 (100) 1668 (100) 1725 (100) 1441 (100) 813 (100)

(56%) in the four-wave panel data reflecting the greater ability to remember the answers
of the code variables. Due to improvements of the encryption code sheet in the follow-
ing panel waves, the bias could be reduced. In addition, a higher mobility between the
schools and dropouts of 9th grade pupils after the third panel wave have to be considered.
The last column of Table 1 presents the distribution of respondents that participated in all
panel waves and could be detected via the encryption code (N=813). Those respondents
are used for the mixture models described in subsequent sections.

Different types of deviant and delinquent behaviors (e. g., robbery, aggravated as-
saults, shoplifting) are asked in each panel wave for the respective last year. Only those
types of delinquencies are considered which were asked in all four waves. In the aver-
age, most of them increase until the third wave (9th grade pupils) and decrease one year
later. This development would give empirical evidence of an adolescent-limited group
of offenders which were detected in other longitudinal studies (cf. D’Unger et al., 1998;
Nagin, 1999). Using or dealing with drugs shows a somewhat different picture. The rates
increases from 5% in the first wave up to 27% in the fourth wave for drug use and from
nearly zero up to 4% for drug dealing in the fourth wave.

Table 2 shows the wave-specific overall prevalence rates as additive indexes of the par-
ticular delinquencies. The mean rate of deviant and delinquent behavior increased from
0.46 (7th grade) to the peak of 0.86 (9th grade). One year later the mean rate decreased
to 0.82 (10th grade). The percentage of zeros reflecting no particular delinquency of the
pupils decreased from 77% (7th grade) to nearly 63% (10th grade).

Correlations within the overall-prevalence rates reflect a time-dependent pattern (Ta-
ble 3). The longer the time distance between the measurements, the lower the correla-
tions. In accordance with our expectations both exogenous variables correlate negative
to the prevalence rates: Females show less deviant and delinquent behavior than males,
pupils on schools with a higher educational level are also less deviant and delinquent than
pupils from schools with a lower educational level. The overall prevalence rates for each
year will serve as the time-dependent measurement variable of the growth mixture models
discussed in the following sections.
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Table 2: Descriptive statistics of the overall prevalence rates (Prev) for four panel waves.

Index x̄ s % Zeros
Prev (t1) 0.46 1.16 76.9
Prev (t2) 0.69 1.42 68.3
Prev (t3) 0.86 1.65 63.5
Prev (t4) 0.82 1.59 62.9

Table 3: Correlation matrix of the overall prevalence rates and the exogenous variables.

Prev (t1) Prev (t2) Prev (t3) Prev (t4) Gender Educ. Level
Prev (t1) 1.000
Prev (t2) 0.542 1.000
Prev (t3) 0.406 0.629 1.000
Prev (t4) 0.346 0.518 0.606 1.000
Gender -0.131 -0.146 -0.189 -0.171 1.000
Educ. Level -0.110 -0.173 -0.138 -0.171 -0.002 1.000

4 Latent class growth analysis

The descriptive results suggest that occurence of delinquency is related to heterogeneity
which can be detected with the observed variables under study. Scores of the overall
prevalence rates could be used to assign individuals into a group taxonomy similar to the
study of Haapasalo and Tremblay (1994). They defined rules based on the frequencies
and trends of the subjects’ aggression level. Such assignment rules might be reasonable
but the individual classification to the various groups is deterministic. The uncertainty
of the group membership cannot be quantified in the form of probabilities. Furthermore,
the existence of distinct developmental trajectories must be assumed a priori without any
test and the chance to create groups with random variation in the trajectories cannot be
excluded. Reanalyses of the study of Haapasalo und Tremblay (1994) with latent class
growth analysis (LCGA) provided statistical support for only three of the original four
groups obtained by deterministic assignment rules (Nagin and Tremblay, 1999). The
advantage of the probabilistic classification is obvious.

The exploration of different growth trajectories with the aforementioned panel data
(Section 3) will use the advantages of the mixture models. In this section the latent class
growth model serve as a preliminary step exploring different developmental processes of
deviant behavior and delinquency: First, unconditional models with K classes using the
Poisson and the zero-inflated Poisson distribution of the overall prevalence rates are cal-
culated to detect differences in terms of model fit. In addition, the necessity to include a
quadratic growth term into the models is proved (Section 4.1). Second, conditional mod-
els incorporating background covariates gender and educational level are tested. These
analyses will focus on the observed heterogeneity of the data, i. e., a test of substantive
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Table 4: Fit of the unconditional LCGA-models with different classes.

LCGA-Poisson
Type Test C1 C2 C3 C4 C5
Linear BIC 8994 6853 6540 6523 6505
model Adj. BIC 8987 6837 6514 6488 6461

LMR-LRT − 2059 317 35 32
p-value − 0.00 0.00 0.17 0.27

Quadratic BIC 8970 6835 6528 6510 6477
model Adj. BIC 8961 6813 6493 6463 6417

LMR-LRT − 2084 322 43 58
p-value − 0.00 0.00 0.23 0.19

LCGA-ZIP
Type Test C1 C2 C3 C4 C5
Linear BIC 7613 6724 6484 6473 6477
model Adj. BIC 7601 6702 6452 6431 6426

LMR-LRT − 866 248 30 15
p-value − 0.00 0.00 0.15 0.46

Quadratic BIC 7613 6734 6500 6494 6489
model Adj. BIC 7594 6702 6456 6437 6420

LMR-LRT − 873 251 32 29
p-value − 0.00 0.00 0.19 0.31

relationships between the covariates and the latent classes as well as the growth variables
(Section 4.2).

4.1 Unconditional models

Latent class growth analysis of the unconditional model is performed up to five classes as
a linear and as a quadratic growth curve model as well. A quadratic model assumes that
the development is not linear, i. e., deviance and delinquency would decrease for certain
groups of offenders after a period of an increase. This process was detected in most of the
criminological panel studies and can also be expected with our data.

Assuming a Poisson distribution (abbreviated LCGA-Poisson) the BIC and the ad-
justed BIC favor a four- or a five-class model whereas the LMR-LRT points to a three-
class model (cf. first part of Table 4). The LMR-LRT p-values of the four- and five-class
model indicate that the addition of classes is not a significant improvement. Assuming a
zero-inflated Poisson distribution (abbreviated LCGA-ZIP) the BIC and the adjusted BIC
favor again a four- or a five-class model. But again, the LMR-LRT p-values indicate that a
fourth and fifth class is redundant (cf. second part of Table 4). The correction of the zero-
inflation gives a better representation of the data in all model variants. Therefore, further
analyses will focus on the mixture models assuming the zero-inflated Poisson distribution
of the dependent variable.
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Table 5: Distributions of the classes.

ZIP Quadrat-ZIP
Classes n (%) n (%)

1 262 (32.3) 265 (32.6)
2 63 (7.7) 64 (7.9)
3 488 (60.0) 484 (59.5)

Table 5 shows the class distribution for the zero-inflated (ZIP) and the quadratic zero-
inflated model (Quadrat-ZIP) with three classes. The criterion to be in a given class is
the most likely latent class membership. For both models the distributions are nearly
equal. About 32% of the respondents belong to the first, 8% to the second and 60% to
the third class. If both class memberships are crosstabulated, only seven persons are in
different classes. According to the entropy measure Ek (cf. Equation 2.5) the linear and
the quadratic ZIP-model indicate a reasonable classification (in both models Ek = 0.81).

The estimated growth trajectories of the LCGA-ZIP-model are shown in Figure 3. The
lines next to the x-axes represents the non-offenders with almost no deviant and delinquent
behavior over the observed time period. This class is the largest one (Class 3 in Table 5).
The second largest class, class 1, shows a small development of offending starting from a
low level. The estimated means range from 0.75 (t1) to 1.33 (t4). According to the mixture
analyses of D’Unger et al. (1998) this class can be characterized as low-rate adolescents
(intercept=0.124; slope=0.055). The smallest class, class 2, reflects a somewhat stronger
development of deviant and delinquent behavior starting from a significant higher level in
the first wave (intercept=1.298; slope=0.092). This class can be characterized as high-rate
adolescents. The estimated means range from 2.41 (t1) to 4.75 (t4).

Following Kreuter (2004) the intercept for the inflation part of the model is fixed to
zero in all classes. The estimate of the slope is restricted to be equal across classes. In
addition, intercepts of the manifest variables (yi

1 to yi
4, cf. Figure 2) are set to be equal

within and across classes. The estimated inflation probability decreases from 0.34 (wave
1) to less than 0.10 (wave 4). Differences between the linear and the quadratic LCGA-
ZIP-model are small because non-linearity in growth is only observed after the third wave
which is due to a slight decrease of offending in classes 1 and 2. With more panel waves
the quadratic model specification would give a better representation of the data (cf. the
three-class LCGA for the Cambridge study in Muthén, 2004).

Results of the categorical part of the linear LCGA-ZIP-model are discussed as follows
(cf. Equation 2.3). Without any exogenous variables, the exponential function of the logit
parameter (intercept) is simply the odds ratio for being in the particular class versus the
reference class. The class of non-offenders will serve as the reference class. For the first
class (low-rate adolescents) a logit coefficient of -0.649 is estimated. The exponentiated
value is 0.522. For the second class (high-rate adolescents) the estimated logit coefficient
is -2.026 and the exponentiated value is 0.132. Following Equation 2.4 the latent class
probability is 0.32 for the first, 0.08 for the second and 1 − 0.32 − 0.08 = 0.60 for
the third (reference) class. The distribution of those probabilities are equivalent to the
distribution of classes given in Table 5.
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Figure 3: Three-class LCGA-ZIP for four panel waves.

Table 6: Fit of the conditional LCGA-ZIP-models with different classes.

Type Test C1 C2 C3 C4 C5
Linear BIC 7451 6665 6444 6453 6468
Model Adj. BIC 7425 6624 6387 6380 6379

LMR-LRT − 796 247 23 19
P-Value − 0.00 0.00 0.49 0.68

Quadratic BIC 7463 6688 6474 6470 6471
Model Adj. BIC 7425 6630 6398 6375 6357

LMR-LRT − 796 248 43 38
P-Value − 0.00 0.00 0.05 0.06

4.2 Conditional models
The aforementioned analyses of the unconditional latent class growth curve model are the
basis for the conditional models. Therefore, gender and level of education are included
as exogenous variables for the latent class distribution. The fit of the linear and quadratic
specification of the latent class growth curve model is again compared up to five classes
(cf. Table 6). Similar to the unconditional models the linear specification results in a
better model fit than the quadratic one. The BIC, adjusted BIC and the LMR-LRT point
to a three-class solution with linear growth.

The estimated class distribution of the conditional linear LCGA-ZIP-model is compa-
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rable to the unconditional model: 58.3% of the respondents belong to the class of non-
offenders (Class 3), 32.6% to the low-rate adolescents (Class 2) and 9.1% to the high-rate
adolescents (Class 1). If the class membership of the three-class unconditional model is
crosstabulated with the conditional model, 14 persons move from class 3 to class 2 and 11
persons from class 2 to class 1. According to the entropy measure Ek, the classification
is slightly worse compared to the unconditional model, but still reasonable (Ek = 0.72).
The estimated parameters differ only sligtly from the unconditional specification. The
class of high-rate adolescents (intercept=1.582; slope=0.118) indicates that the larger in-
crease of deviant and delinquent behavior gets along with an higher initial rate compared
to the class of low-rate adolescents (intercept=0.409; slope=0.053).

According to Figure 1 and Muthén (2004: 355) the regressions of the growth curve
variables on the covariates should be allowed unless there are theoretical reasons not to
do it. Here, those regression coefficients are restricted to be equal across classes. A
substantive effect is only observed for the regression of the intercept on educational level
(-0.218), which is in accordance with our hypothesis: The higher the level of education,
the lower the initial rate of offending.

Table 7 summarizes the logit part of the conditional linear ZIP-model: the logit pa-
rameters, the exponentiated values of the logits (odds) and the latent class probabilities.
Equations 2.3 and 2.4 are used for calculations.

Table 7: Logit, odds (elogit) and latent class probabilities (Prob.) of the conditional linear
ZIP-model (3 classes).

Exogenous Variable Class Logit elogit Prob.
Male and low 1 -0.769 0.463 0.159
educational 2 0.377 1.458 0.499
level 3 0 1.0 0.342
Male and medium 1 -1.113 0.329 0.142
educational 2 -0.006 0.994 0.428
level 3 0 1.0 0.430
Male and high 1 -1.457 0.233 0.122
educational 2 -0.389 0.678 0.355
level 3 0 1.0 0.523
Female and low 1 -1.902 0.149 0.080
educational 2 -0.345 0.708 0.381
level 3 0 1.0 0.539
Female and medium 1 -2.250 0.106 0.067
educational 2 -0.728 0.483 0.304
level 3 0 1.0 0.629
Female and high 1 -2.590 0.075 0.053
educational 2 -1.111 0.329 0.234
level 3 0 1.0 0.713

Gender is coded 0 and 1 (male/female), educational level is coded 0, 1 and 2 (low, medium, high). Class 1
is the high-rated class, class 2 the low-rated, and class 3 the zero class.
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The probability for males with low educational level is nearly 16% to be in class 1
(high-rate adolescents), about 50% to be in class 2 (low-rate adolescents) and only about
34% to be in class 3 (non-offenders). The probability to be classified in class 3 increases
with the educational level of the school. The probability for females with low educational
level is only 8% to be in class 1, nearly 38% to be in class 2, but 54% to be in class 3. As
with the males, the probability to be classified in class 3 increases with the educational
level. But this increase for the females is much stronger compared to the males. The
chance to be a member of the high- or low-rate class is clearly greater for males than
females within all levels of education. On the average, the effect of the latent classes on
gender is stronger than the effect on educational level.

5 Growth mixture models
It has been shown, that unobserved as well as observed heterogeneity can be considered
simultaneously with LCGA to detect different trajectories (classes) of deviant and delin-
quent behavior. Time-invariant variables, like gender and level of education, are able to
predict the probabilities to belong to specific classes. Similar analyses are reported with
other longitudinal studies on criminal offending (e. g. Nagin and Land, 1993; Nagin,
1999). But LCGA is only a submodel of the growth mixture model (GMM) that allows
the variability of the growth parameters within given classes. The model analyses of the
previous section has shown that linear models incorporating the zero-inflated Poisson dis-
tribution have the best model fits. Therefore, the zero-inflated Poisson distribution will
be used for estimation of the growth mixture models (abbreviated GMM-ZIP). Uncondi-
tional models are discussed in Section 5.1 followed by the conditional ones including the
exogenous variables gender and educational level (Section 5.2).

5.1 Unconditional models
In a step-by-step procedure the unconditional GMM-ZIP models include either the vari-
ation of the intercepts within the classes or the variation of the slopes within the classes
(with the restriction of equal intercept or slope variances across classes). Both model
variants have equal degrees of freedom and fit measures can be compared easily. Table 8
provides the model results up to four classes. In general, models with random intercepts
have a slightly better model fit than models with random slopes. According to the BIC
and the LMR-LRT a three-class model is sufficient for the data. All four-class model are
recjected by the LMR-LRT. Results in detail show, that in each solution one class contains
less than six persons.

If the intercept variance of the class of non-offenders is set to zero (cf. a similar spec-
ification in Muthén, 2004: 362), the model fit gets worse compared to the previous spec-
ification (the three-class specification is rejected with LMR-LRT=3 and p=0.65; see first
model C3a in Table 8).5 Alternatively, if the slope variance of the class of non-offenders
is set to zero, the model fit is nearly equal compared to the corresponding three-class

5Alternatively, means and variances of the growth curve variables of the non-offender class can be fixed
to zero. In the same class the means of the manifest variables are fixed to the value −15.00 (cf. the
specification in Kreuter, 2004). Again, the model fit decreases similar to model C3a.
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Table 8: Fit of the unconditional growth mixture models (GMM-ZIP) with different classes.

Type Test C1 C2 C3 C3a C4
Random BIC 6464 6450 6431 6461 6445
intercept Adj. BIC 6448 6424 6396 6426 6401

LMR-LRT − 33 37 3 5
p-value − 0.03 0.00 0.65 0.17

Random BIC 6872 6522 6442 6444 6447
slope Adj. BIC 6856 6497 6408 6409 6402

LMR-LRT − 352 95 94 15
p-value − 0.00 0.00 0.00 0.62

Model C3a includes the restriction that the intercept or the slope of the zero class has a variance of zero.

solution (the three-class specification is confirmed with LMR-LRT=94 and p=0.00; see
second model C3a in Table 8). Due to the fact that this model specification is more parsi-
monious than the previous one, it will be accepted for further substantive interpretations.
Though, a random slope is estimated for the second and third class (low- and high-rated
adolescents) while the variance of the slope in the first class (non-offenders) are fixed to
zero. It should also be noted, that the entropy measure is much better in all random slope
models (average EK = 0.70) compared to the random intercept models. One more gen-
eral specification is the growth mixture model with random intercept and random slope
estimated simultaneously. But, even with several alternative starting values a solution of
this model with three classes could not be obtained.

Due to the most likely latent class membership 58% of the respondents are classified
in the first (N=473), 33% into the second (N=270) and 9% into the third class (N=70). The
sequence fits into the order of the class of non-offenders, the class of low-rate adolescents
and finally, the class of high-rate adolescents. If the class membership is crosstabulated
with the unconditional LCGA-model discussed in Section 4.1, most of the cases remain
in the particular classes. Only 16 persons move from the low-rate class to the high-rate
class, 9 persons move vice versa. Another 15 persons move from the non-offenders class
to the low-rate class. All in all, the zero class is smaller in the GMM-ZIP-model than in
the corresponding LCGA-ZIP-model whereas the other classes have higher proportions in
the GMM-ZIP-model. This result is comparable to the mixture analyses of the Cambridge
data in Muthén (2004: 362).

The estimated growth trajectories of the GMM-ZIP model with random slopes are
shown in Figure 4. The line next to the x-axes represents the non-offenders (Class 1) with
almost no deviant and delinquent behavior over the observed time period. This class is
again the largest class. The second largest class 2 shows a small development of offend-
ing starting from a low level (intercept=-0.229; slope=0.088). The estimated means range
from 0.54 (wave 1) to 1.29 (wave 4). The smallest class 3 reflects a somewhat stronger
development starting from a higher level in the first wave (intercept=1.316; slope=0.080).
The estimated means range from 2.61 (wave 1) to 3.66 (wave 4). The three growth tra-
jectories of the GMM-ZIP model are similar to those of the LCGA-ZIP model (Figure
3), the estimated slope variance restricted to be equal across classes is significant (vari-
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Figure 4: Three-class GMM-ZIP for four panel waves.

ance=0.049; z=16.27).
Results of the categorical part of the unconditional GMM-ZIP model are also com-

parable to the unconditional LCGA-ZIP model. In the GMM-ZIP model the class of
high-rate adolescents will serve as the reference class. For the first class (non-offenders)
a logit coefficient of 1.656 is estimated. For the second class (low-rate adolescents) the
estimated logit coefficient is 1.256. Following Equation 2.4 the latent class probability is
0.54 for the first, 0.36 for the second and 0.10 for the third (reference) class.

5.2 Conditional models
The unconditional GMM-ZIP model can now be extended by the exogenous variables
gender and level of education. In a step-by-step procedure the conditional GMM-ZIP
models include either the variation of the intercepts within the classes or the variation
of the slopes within the classes (with the restriction of equal intercept or slope variances
across classes). Table 9 provides the model results up to four classes. According to the
BIC and the LMR-LRT, three-class models with random intercepts or random slopes are
sufficient for the data. Both four-class model are rejected by the LMR-LRT.

If the intercept variance of the class of non-offenders is set to zero, the model fit
gets worse according to the BIC. But different from the unconditional specification, the
three-class solution is not rejected by the LMR-LRT (LMR-LRT=41 with p=0.00; see first
model C3a in Table 9). Alternatively, if the slope variance of the class of non-offenders
is set to zero, the model fit is nearly equal compared to the unrestricted three-class so-
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Table 9: Fit of the conditional GMM-ZIP-models with different classes.

Type Test C1 C2 C3 C3a C4
Random BIC 6402 6400 6395 6414 6421
intercept Adj. BIC 6380 6362 6341 6361 6351

LMR-LRT − 34 32 41 8
p-value − 0.02 0.06 0.00 0.43

Random BIC 6816 6469 6406 6408 6413
slope Adj. BIC 6794 6431 6352 6354 6353

LMR-LRT − 369 94 206 16
p-value − 0.00 0.00 0.00 0.66

Model C3a includes the restriction that the intercept or the slope of the zero class has a variance of zero.

lution (the BIC value difference between the models is only 2). The restricted model is
also confirmed by the LMR-LRT (LMR-LRT=206 with p=0.00; see second model C3a
in Table 9). So, this model specification will be accepted for further substantive interpre-
tations. Equal to the restricted unconditional GMM-ZIP model (cf. Table 8), a random
slope is estimated for the second and third class (low- and high-rated adolescents) while
the variance of the slope in the first class (non-offenders) is fixed to zero. According to
the most likely class membership 58.2% of the respondents belong to the class of non-
offenders (Class 1), 33.2% to the low-rate adolescents (Class 2) and 8.5% to the high-rate
adolescents (Class 3).

The estimated class distribution of the conditional linear GMM-ZIP model can be
compared to the conditional linear LCGA-ZIP model in Section 4.2 via crosstabulation of
both membership files: 16 persons move from the low to the high-rated class, 9 persons
vice versa and 15 persons from the non-offender class to the low-rated class. All other
non-offenders of the GMM-ZIP model are also non-offenders in LCGA-ZIP model. The
entropy measure of this model is reasonable (EK = 0.71) and nearly the same as for the
conditional LCGA-ZIP model. The regression coefficients of the growth curve variables
on the exogenous variables are again restricted to be equal across classes. No substantive
effects are observed.

The categorical part of the conditional GMM-ZIP model is summarized in Table 10.
The probability for males with low educational level to be in class 3 (high-rate adoles-
cents) is 29%, to be in class 2 (low-rated adolescents) is about 46% and to be in class 1
(non-offenders) is only 25%. The probability to be classified as non-offenders increases
with the educational level of the school. The probability for females with low educational
level is about 12% to be in class 3, nearly 42% to be in class 2 and 46% to be in class
3. As with the males, the probability to be classified as non-offenders increases with the
educational level. But, compared to the males the increase is much stronger. The chance
to be a member of the high- or low-rate class is clearly greater for males than females
within all levels of education. Comparable to the conditional LCGA-ZIP model (cf. Ta-
ble 7), the effect of gender on the latent classes is stronger than the effect on educational
level. One major difference between the conditional LCGA-ZIP model and the condi-
tional GMM-ZIP model is the distribution of the latent class probabilities within a com-
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Table 10: Logit, odds (elogit) and latent class probabilities (Prob.) of the conditional linear
ZIP-model (3 classes).

Exogenous Variable Class Logit elogit Prob.
Male and low 1 -0.159 0.853 0.247
educational 2 0.467 1.595 0.463
level 3 0 1.0 0.290
Male and medium 1 0.700 2.014 0.372
educational 2 0.876 2.401 0.443
level 3 0 1.0 0.185
Male and high 1 1.559 4.754 0.502
educational 2 1.285 3.615 0.386
level 3 0 1.0 0.107
Female and low 1 1.360 3.896 0.464
educational 2 1.254 3.504 0.417
level 3 0 1.0 0.119
Female and medium 1 2.219 9.198 0.594
educational 2 1.663 5.275 0.341
level 3 0 1.0 0.065
Female and high 1 3.078 21.714 0.708
educational 2 2.072 7.941 0.259
level 3 0 1.0 0.033

Gender is coded 0 and 1 (male/female), educational level is coded 0, 1 and 2 (low, medium, high). Class 1
is the zero class, class 2 the low-rated, and class 3 the high-rated class.

bination of exogenous variables’ categories. For example, the probability to belong to the
high-rate adolescents is for males higher in the GMM-ZIP model than in the LCGA-ZIP
model. The significant variance estimate of the slope (variance=0.048; z=15.71) leads to
a more adequate classification of the respondents in the GMM-ZIP model and supports
the assumption of individual growth variation within the classes.

6 Discussion

The general framework of growth mixture modeling outlined by Muthén (2002, 2004)
integrates several approaches of longitudinal growth modeling, e. g., the semiparametric
group-based model developed and applied by Nagin and Land (1993) Nagin (1999), and
Jones et al. (2001). This model is equivalent to a latent class growth model which fixes
the intercept and slope variances to zero. According to an an easier estimation of the pa-
rameters the latent class growth analysis is useful for a first evaluation of the unobserved
heterogeneity in the data. After these analyses the variability of the class specific inter-
cepts and slopes can be studied with the more general growth mixture model. If count
data with largely skewed distributions to zero are analyzed, the assumption of continu-
ously distributed variables can be replaced by the Poisson or the zero-inflated Poisson
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model. Mplus (Version 3.11) allows those tests of growth mixture models assuming dif-
ferent distributions of the manifest variables under study.

Data from a four-wave panel study of adolescents are used to study unobserved hete-
rogeneity in the development of deviant and delinquent behavior. Starting with an uncon-
ditional latent class growth model three classes can be obtained: Non-offenders, low-rate
adolescents and high-rate adolescents. Considering the zero-inflation of the measure-
ments results in a better model fit. Due to the limited number of panel waves in our data
(4 waves) a linear growth specification is sufficient. This result is also confirmed by a
growth mixture specification allowing random slopes in the low- and high-rated classes.
The conditional specifications of the mixture models include gender and educational level
of the schools. These exogenous variables are related to the latent class distribution: Male
adolescents with an low educational level on schools are more likely to be in the high-
rated class than female adolescents on the same educational level. And female adolescents
are more likely to be non-offenders than male adolescents. These results confirm our hy-
potheses and they are similar compared to other criminological studies using mixed Pois-
son models with panel data of adolescents’ deviant and delinquent behavior (D’Unger et
al., 1998; Jones et al., 2001). Their models, equivalent to LCGA, assume zero variances of
the intercept and slope variable. Therefore, our analyses with the growth mixture model
are more general even if it was only possible to estimate intercept and slope variances
seperately. The analyses do not confirm a convex trajectory that declines from a high
initial rate which was found by McDermott and Nagin (2001) using the National Youth
Survey. A similar trajectory can only be obtained in a five-class solution which is rejected
by several model fit criterias (BIC, adjusted BIC and LMR-LRT). All in all, the stepwise
procedure from latent growth analysis to growth mixture modeling has shown the capa-
bilities of longitudinal developmental analyses where individual growth trajectories are
heterogenous and belong to a finite number of unobserved populations.

The present analyses are limited due to the four-wave panel design of our study. The
mixture models were only conditioned on time-independent predictors, gender and educa-
tional level. Note, that educational level can also be analyzed as a time-dependent exoge-
nous variable regarding a certain mobility of the adolescents between different schools.
Actually, only a minor proportion of adolescents changed between the schools. In Ger-
many, the proportion of school changes increases significantly after the 10th grade, which
is beyond the period of our data collection. Several studies have considered various pre-
dictors in their studies, like socioeconomic status of the parents, parental behavior, moral
beliefs, attitudes about crime or delinquent peers (Nagin, 1999; McDermott and Nagin,
2001). Therefore, further growth mixture model explorations should also include sub-
stantively relevant time-dependent variables to test parallel developments and their inter-
relationships over time. These models have to cope with different assumptions about the
measurement of the variables (continuous and count data) which are easy to implement
in Mplus. Actually, those extensions are beyond the scope of the present article.
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