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Abstract. We study the nucleon-nucleon interaction in the chiral constituent quark model

of Refs. [1,2] by using the resonating group method, convenient for treating the interac-

tion between composite particles. The calculated phase shifts for the 3S1 and 1S0 channels
show the presence of a strong repulsive core due to the combined effect of the quark in-

terchange and the spin-flavour structure of the effective quark-quark interaction. Such a

structure stems from the pseudoscalar meson exchange between quarks and is a conse-

quence of the spontaneous breaking of the chiral symmetry. We perform single and cou-

pled channel calculations and show the role of coupling of the �� and hidden colour CC

channels on the behaviour of the phase shifts. The addition of a �-meson exchange quark-

quark interaction brings the 1S0 phase shift closer to the experimental data. We intend to

include a tensor quark-quark interaction to improve the description of the 3S1 phase shift.
In this talk I shall mainly present results obtained in collaboration with Daniel
Bartz [3,4] for the nucleon-nucleon (NN) scattering phase shifts calculated in the
resonating group method.

The study of the NN interaction in the framework of quark models has al-
ready some history. Twenty years ago Oka and Yazaki [5] published the first L
= 0 phase shifts with the resonating group method. Those results were obtained
from models based on one-gluon exchange (OGE) interaction between quarks.
Based on such models one could explain the short-range repulsion of the NN
interaction potential as due to the chromomagnetic spin-spin interaction, com-
bined with quark interchanges between 3q clusters. In order to describe the data,
long- and medium-range interactions were added at the nucleon level. During
the same period, using a cluster model basis as well, Harvey [6] gave a classi-
fication of the six-quark states including the orbital symmetries [6℄O and [42℄O.
Mitja Rosina, Bojan Golli and collaborators [7] discussed the relation between the
resonating group method and the generator coordinate method and introduced
effective local NN potentials.

Here we employ a constituent quark model where the short-range quark-
quark interaction is entirely due to pseudoscalar meson exchange, instead of
one-gluon exchange. This is the chiral constituent quark model of Ref. [1], para-
metrized in a nonrelativistic version in Ref. [2]. The origin of thismodel is thought
to lie in the spontaneous breaking of chiral symmetry in QCD which implies
the existence of Goldstone bosons (pseudoscalar mesons) and constituent quarks? E-mail: fstancu@ulg.ac.be
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with dynamical mass. If a quark-pseudoscalar meson coupling is assumed this
generates a pseudoscalar meson exchange between quarks which is spin and
flavour dependent. The spin-flavour structure is crucial in reproducing the cor-
rect order of the baryon spectra [1,2]. The present status of this model is presented
by L. Glozman and W. Plessas at this workshop. Hereafter this model will be
called the Goldstone boson exchange (GBE) model.

It is important to correctly describe both the baryon spectra and the baryon-
baryon interactionwith the samemodel. Themodel [1,2] gives a good description
of the baryon spectra and in particular the correct order of positive and negative
parity states, both in nonstrange and strange baryons, in contrast to the OGE
model. In fact the pseudoscalar exchange interaction has two parts : a repulsive
Yukawa potential tail and an attractive contact Æ-interaction. When regularized,
the latter generates the short-range part of the quark-quark interaction. This dom-
inates over the Yukawa part in the description of baryon spectra. The whole in-
teraction contains the main ingredients required in the calculation of the NN po-
tential, and it is thus natural to study the NN problem within the GBE model.
In addition, the two-meson exchange interaction between constituent quarks re-
inforces the effect of the flavour-spin part of the one-meson exchange and also
provides a contribution of a �-meson exchange type [8] required to describe the
middle-range attraction.

Preliminary studies of the NN interaction with the GBE model have been
made in Refs. [9–11]. They showed that the GBE interaction induces a short-range
repulsion in theNN potential. In Refs. [9,10] this is concluded from studies at zero
separation between clusters and in [11] an adiabatic potential is calculated explic-
itly. Here we report on dynamical calculations of the NN interaction obtained
in the framework of the GBE model and based on the resonation group method
[3,4]. In Ref. [3] the 3S1 and 1S0 phase shifts have been derived in single and
three coupled channels calculations. It was found that the coupling to the �� and
CC (hidden colour) channels contribute very little to the NN phase shift. These
studies show that the GBEmodel can explain the short-range repulsion, as due to
the flavour-spin quark-quark interaction and to the quark interchange between
clusters.

However, to describe the scattering data and the deuteron properties, inter-
mediate- and long-range attraction potentials are necessary. In Ref. [4] a �-meson
exchange interaction has been added at the quark level to the six-quark Hamilto-
nian. This interaction has the formV� = -g2�q4� (e-��rr - e-��rr ) ; (1)

An optimal set of values of the parametres entering this potential has been found
to be g2�q4� = g2�q4� = 1:24; �� = 0:60 GeV ; �� = 0:83 GeV : (2)

As one can see from Fig. 1, with these values the theoretical phase shift for 1S0
gets quite close to the experimental points without altering the good short-range
behaviour, and in particular the change of sign of the phase shift at Elab � 260
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Fig. 1. The 1S0 NN scattering phase shift obtained in the GBE model as a function of Elab.
The solid line is without and the dashed linewith the �-meson exchange potential between

quarks with �� = 0:60 GeV and �� = 0:83 GeV. Experimental data are from Ref. [12].

MeV. Thus the addition of a �-meson exchange interaction alone leads to a good
description of the phase shift in a large energy interval. One can argue that the still
existing discrepancy at low energies could possibly be removed by the coupling
of the 5D0 N-� channel. To achieve this coupling, as well as to describe the 3S1
phase shift, the introduction of a tensor interaction is necessary.
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Description of nucleon excitations as decaying states
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Abstract. Two methods to describe excited states of baryons as decaying states are pre-

sented: the Analytic Continuation in Coupling Constant and the Kohn variational prin-

ciple for the K-matrix. The methods are applied to a simple model of the � resonance

consisting of the pion coupled to three valence quarks.

The work has been done in collaboration with Vladimir Kukulin and Simon Širca.

1 Motivation

Baryons are usually computed as bound states neglecting possible decay chan-
nels. The inclusion of strongly decaying channels may considerably influence the
position of the state as well as some other properties. The aim of the present
work is to estimate this effect in a simplified model and to discuss two possible
approaches to describe decaying states. The methods determine the position and
the width of the resonance, and furthermore, provide a suitable tool to calculate
new observables, which cannot be obtained in a bound state calculation, such as
non-resonant contributions to production amplitudes. In this work we shall focus
on the decay of the � resonance.

2 The model

The decay of the � resonance into the nucleon and the pion is most naturally de-
scribed in models with chiral symmetry, such as the linear � model (LSM), the
chromodielectric model (CDM), the cloudy bag model CBM, etc. Here we use a
simplified model which contains the main features of these models. It assumes
frozen quark profiles and neglects meson-self interaction. Furthermore, it does
not take into account additional scalar fields (sigma mesons in the LSM, chro-
modielectric field and sigmamesons in the CDM, or the bag potential in the CBM)
since their main role is to fix the quark profiles and generate a constant energy
shift for all baryons. In the present calculation, the quarks profiles are taken over
from the ground state calculation in the LSM[1].We know that the profiles do not
change considerably from one model to the other, so this is not a very severe re-
striction. The inclusion of meson self-interactionmay, however, more importantly
alter the results.? E-mail: Bojan.Golli@ijs.si
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For the quark-pion interaction we assume the usual pseudoscalar form:Hquark-meson = ig Z dr3q̄� � �̂5q : (1)

In models with spontaneous symmetry breaking, such as the LSM, the parame-
ter g is related to the ‘constituent’ quark mass by Mq = gf�. From 350 MeV<Mq <450 MeV we estimate that physically sensible values for g are 4 < g < 5.

The model is usually solved at the mean field level. We interpret the solution
as a coherent state of pions around the three quark core, and generate physical
N and � states by the Peierls Yoccoz projection of good spin and isospin. The
resulting states are interpreted as a superposition of 3 bare quarks plus 3 quarks
with one or more pions coupled, respectively, to nucleon or � quantum numbers:j�Ni = PJ=12 ;T=12 j�i= (3q)N + [(3q)N�℄J= 12 ;T=12 + [(3q)��℄ 12 ; 12 + [(3q)N��℄ 12 ; 12 + : : : (2)j��i = PJ=32 ;T=32 j�i= (3q)� + [(3q)N�℄J= 32 ;T=32 + [(3q)��℄ 32 ;32 + [(3q)N��℄ 32 ;32 + : : : (3)

In the � channel, the probability of finding one or more pions is higher than
in the N channel; as a consequence the � lies higher then the nucleon. In the
simplified model we obtain E� - EN = 84 MeV and 126 MeV for g = 4:3 and
5 respectively; including meson self interaction and performing self-consistent
calculation increases the splitting by some 40 MeV. Hence, the �N splitting due
to pions is only roughly one half of the experimental one; an additional hyperfine
interaction is needed to bring E�-EN to the experimental value (293MeV). In our
simple model we therefore introduce a phenomenological form of the interaction:H 0 = "P(3q)� (4)

where P(3q)� is the projector onto components containing 3 quarks coupled to �
quantum numbers. Using " = 262 MeV and 235 MeV for g = 4:3 and 5 respec-
tively, increases the splitting to the desired value.

3 The Kohn variational principle for the phase shift

The ansatz for the � resonance is taken in the formj	�i =  j��i + Z dk �(k0; k) haymt(k)j�NiiJ= 32 ;T=32
where aymt(k) creates a p-wave pion, m; t are the third components of its spin
and isospin, k0 denotes the pion momentum, while j�Ni and j��i correspond to
the nucleon and the � bound states ((2) and (3)), respectively. Asymptotically, the
pion state behaves as�(k0; r) = k0 j1(k0r) - tan Æ k0 y1(k0r) ; r!1 :
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Here we use standing waves to describe the pion rather than outgoing (and in-
coming) waves. In k-space this leads to�(k0; k) =r�2 Æ(k - k0) + �(k0; k)!k -!0 ; tan Æ = p2� !0k0 �(k0; k0)
The variational principle requires that the Kohn functional[2]FK = tan Æ- 2!0k0h�Nj�Ni h	�jH- Ej	�i
remains stationary with respect to variation of  and �(k0; k), as well as to varia-
tion of the intrinsic pion profile in j	�i.

In the above form only one channel is assumed; if more than one channel is
open, tan Æ is replaced by the Kmatrix.

Typical results for the phase shift are displayed in Fig. 1 and compared to the
experimental values. By varying " it is possible to reproduce the experimental
position of the resonance; using g = 4:3 (" = 273 MeV) the width (i.e. the slope
of the curve) is well reproduced while for g = 5 (" = 252 MeV) the width is too
large. These results are obtain by optimizing j	�i; if we do not vary the intrinsic
pion profile but take it over from the bound state calculation the results change
only very slightly provided the value of " is changed by a few MeV. Hence, the
properties of the � do not change significantly when the decay channel is open;
the main effect is that the energy drops by some 10 MeV (10 MeV for g = 4:3 and
13 MeV for g = 5).
4 The Analytic Continuation in Coupling Constant

Consider the scattering of a non-relativistic particle on an attractive potentialV(r)
which possesses a quasi bound state in the continuum. Introduce a parameter
(coupling constant) �: H = Hkin + �V(r) :
For sufficiently large �, � > 1 the state becomes bound. Let’s denote the threshold
value as �th. The method [3] is based on the fact that it much easier to solve the
bound state problem than the continuum case. It consists of the following steps:� Determine �th and calculate E as a function of � for � > �th.� Introduce a variable x = p�- �th; calculate k(x) = i

p-2mE in the bound
state region.� Fit k(x) by a polynomial:k(x) = i(0 + 1x+ 2x2 + : : : + 2Mx2M) :� Construct a Padé approximant:k(x) = i

a0 + a1x+ : : : + aMxM1 + b1x+ : : :+ bMxM : (5)
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Fig. 1. The phase shift in the P33 channel: Æ are the experimental values, � values from

the variational calculation using g = 4:3 and " = 273 MeV, and � those for g = 5 and" = 253MeV.� Analytically continue k(x) to the region � < �th (i.e. to imaginary x) wherek(x) becomes complex.� Determine the position and the width of the resonance as analytic continua-
tion in �: Er = 12m Re cont�!1k2 ; � = -2 12m Im cont�!1k2 : (6)

This method does not provide only the position and the width of the resonance;
the matrix element of an operator O between the resonant state j	ri and a bound
state j�i can be calculated ash	rjOj�i = cont�!1h	b(�)jOj�i :

In our implementation of the method, we relate the coupling constant � to
the parameter of the phenomenological hyperfine interaction:�V(r)! "P(3q)� ; x = p"th - " (7)

where "th is the value of " at the threshold: E�("th) - EN = m�. For sufficiently
high ", the real part of the energy eventually reaches the experimental position of
the resonance; this value of " then corresponds to � = 1 of the original formula-
tion of the method.

In our very preliminary calculation we treat the pion non-relativistically. For" < "th we calculatek(x) = i
p2m�(Eth - E); E = E�(x) - EN ;
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fit k(x) using a Padé approximant (5) and continue k(x) to the resonance region.
The energy difference, E�-EN, and the width of the resonance are then obtained
by (6). The ‘physical value’ of x (and " from (7)) is determined as ReE(= E�-EN)
reaches the experimental value 293 MeV. The corresponding value of ImE(= �)
then predicts the width of � and is to be compared with the experimental value� 120MeV.

Fig. 2 shows the behaviour of E� - EN and � as functions of x for two vales
of g. For higher order of the Padé approximant, M � 3, the method becomes
numerically instable and the determination of E and � is no more reliable. Forg = 4:3 andM = 1 and 2, the experimental splitting is reached for x2 � 230MeV
(and corresponding " = 300 MeV). This yields � � 60MeV which is only half of
the experimental value, most probably due to the non-relativistic treatment. Forg = 5 the value of � is larger (in accordance with Fig. 1) but its determination is
less reliable.

In order to be able predict reliable results it is necessary formulate the ap-
proach relativistically and to understand the origin of numerical instabilities for
higherM.
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Fig. 2. �N splitting and � width (in MeV) as functions of x (in units

p
MeV) for g = 4:3

(a), and g = 5 (b).
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