Description of nucleon excitations as decaying states *
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Abstract. Two methods to describe excited states of baryons as decaying states are presented: the Analytic
Continuation in Coupling Constant and the Kohn variational principle for the K-matrix. The methods are applied
to a simple model of the A resonance consisting of the pion coupled to three valence quarks.

The work has been done in collaboration with Vladimir Kukulin and Simon Sirca.

1 DMotivation

Baryons are usually computed as bound states neglecting possible decay channels. The inclusion
of strongly decaying channels may considerably influence the position of the state as well as some
other properties. The aim of the present work is to estimate this effect in a simplified model
and to discuss two possible approaches to describe decaying states. The methods determine the
position and the width of the resonance, and furthermore, provide a suitable tool to calculate
new observables, which cannot be obtained in a bound state calculation, such as non-resonant
contributions to production amplitudes. In this work we shall focus on the decay of the A
resonance.

2 The model

The decay of the A resonance into the nucleon and the pion is most naturally described in
models with chiral symmetry, such as the linear o model (LSM), the chromodielectric model
(CDM), the cloudy bag model CBM, etc. Here we use a simplified model which contains the main
features of these models. It assumes frozen quark profiles and neglects meson-self interaction.
Furthermore, it does not take into account additional scalar fields (sigma mesons in the LSM,
chromodielectric field and sigma mesons in the CDM, or the bag potential in the CBM) since
their main role is to fix the quark profiles and generate a constant energy shift for all baryons. In
the present calculation, the quarks profiles are taken over from the ground state calculation in
the LSM[1]. We know that the profiles do not change considerably from one model to the other,
so this is not a very severe restriction. The inclusion of meson self-interaction may, however,
more importantly alter the results.
For the quark-pion interaction we assume the usual pseudoscalar form:

HQuarkfmeson = ig / dr?’cj‘r : 7}'75q . (1)

In models with spontaneous symmetry breaking, such as the LSM, the parameter g is related
to the ‘constituent’ quark mass by M, = gf. From 350 MeV< M, <450 MeV we estimate that
physically sensible values for g are 4 < g < 5.

The model is usually solved at the mean field level. We interpret the solution as a coherent
state of pions around the three quark core, and generate physical N and A states by the Peierls
Yoccoz projection of good spin and isospin. The resulting states are interpreted as a superposition
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of 3 bare quarks plus 3 quarks with one or more pions coupled, respectively, to nucleon or A
quantum numbers:

[ @) = PP=2TZ2) = (3g)n + [(Bg)v ]’ =27 7E 4 [(3g) am Pt
[@4) = P/Z3T7318) = (3g)a + [(B)na]" 73772 + [(3q) am Tt
In the A channel, the probability of finding one or more pions is higher than in the N channel; as
a consequence the A lies higher then the nucleon. In the simplified model we obtain Ep — Ex =
84 MeV and 126 MeV for ¢ = 4.3 and 5 respectively; including meson self interaction and
performing self-consistent calculation increases the splitting by some 40 MeV. Hence, the AN
splitting due to pions is only roughly one half of the experimental one; an additional hyperfine
interaction is needed to bring o — Ex to the experimental value (293 MeV). In our simple
model we therefore introduce a phenomenological form of the interaction:

H' = P, @

where P34, is the projector onto components containing 3 quarks coupled to A quantum
numbers. Using ¢ = 262 MeV and 235 MeV for ¢ = 4.3 and 5 respectively, increases the
splitting to the desired value.

3 The Kohn variational principle for the phase shift

The ansatz for the A resonance is taken in the form

t J=3,T=3
) = cl@) + [ (o, ) [aby(k)jo)]
Int(k) creates a p-wave pion, m,t are the third components of its spin and isospin, kg
denotes the pion momentum, while |®y) and |#A) correspond to the nucleon and the A bound
states ((2) and (3)), respectively. Asymptotically, the pion state behaves as

where a

n(ko,r) = ko j1(kor) — tand ko y1(kor) , © —00.

Here we use standing waves to describe the pion rather than outgoing (and incoming) waves. In
k-space this leads to

ko, k
(Ko, k) ,/ 5(k — ko) + X(ko, k) tan6:\/27r%>((k0,k0)
0

Wg — Wo
The variational principle requires that the Kohn functional|2]

2(4)0
ko(Pn|PN)

remains stationary with respect to variation of ¢ and x(ko, k), as well as to variation of the
intrinsic pion profile in [@A).

In the above form only one channel is assumed; if more than one channel is open, tand is
replaced by the K matrix.

Typical results for the phase shift are displayed in Fig. 1 and compared to the experimental
values. By varying ¢ it is possible to reproduce the experimental position of the resonance; using
g = 4.3 (e = 273 MeV) the width (i.e. the slope of the curve) is well reproduced while for g = 5
(¢ = 252 MeV) the width is too large. These results are obtain by optimizing |¥); if we do
not vary the intrinsic pion profile but take it over from the bound state calculation the results
change only very slightly provided the value of € is changed by a few MeV. Hence, the properties
of the A do not change significantly when the decay channel is open; the main effect is that the
energy drops by some 10 MeV (10 MeV for g = 4.3 and 13 MeV for g = 5).

Fx =tand — (VaA|H — E[W,)
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Fig. 1. The phase shift in the P33 channel: o are the experimental values, ® values from the variational calculation
using g = 4.3 and € = 273 MeV, and * those for g = 5 and £ = 253 MeV.

4 The Analytic Continuation in Coupling Constant

Consider the scattering of a non-relativistic particle on an attractive potential V (r) which pos-
sesses a quasi bound state in the continuum. Introduce a parameter (coupling constant) A:

H = Hy, + AV (r) .

For sufficiently large A\, A > 1 the state becomes bound. Let’s denote the threshold value as Aty,.
The method [3] is based on the fact that it much easier to solve the bound state problem than
the continuum case. It consists of the following steps:

Determine Ay and calculate E as a function of X\ for A > Ay.
Introduce a variable z = /A — Ay; calculate k(z) = iv/—2mFE in the bound state region.

e Fit k(z) by a polynomial:
k(z) =i(co + 1z + o’ + ..+ CZMIEZM) .
e Construct a Padé approximant:
_ao—i-alm—i-...—i-aMxM
k(x) = . 5
(=) Ttz + ...+ byaM (5)
e Analytically continue k(x) to the region A < Ay, (i.e. to imaginary x) where k(z) becomes
complex.
e Determine the position and the width of the resonance as analytic continuation in A:
1 2 1 2
E, = — Reconty_, 1k, I' = -2 —TImconty_,1k° . (6)
2m 2m

This method does not provide only the position and the width of the resonance; the matrix
element of an operator O between the resonant state |7, ) and a bound state |@) can be calculated
as

(8 O18) = conty_,1 (V)] 0[8) .
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In our implementation of the method, we relate the coupling constant A to the parameter of
the phenomenological hyperfine interaction:

AV (r) = ePig)a T = e —¢€ (7)

where ey, is the value of € at the threshold: Fa(ey,) — En = m,. For sufficiently high e, the real
part of the energy eventually reaches the experimental position of the resonance; this value of €
then corresponds to A = 1 of the original formulation of the method.

In our very preliminary calculation we treat the pion non-relativistically. For ¢ < &, we

calculate
k(z) =iy/2m;(Ey, — E), E = Ex(z)— Epn,

fit k(z) using a Padé approximant (5) and continue k(z) to the resonance region. The energy
difference, Fo — El, and the width of the resonance are then obtained by (6). The ‘physical
value’ of z (and ¢ from (7)) is determined as ReE(= Ea — Ex) reaches the experimental value
293 MeV. The corresponding value of ImE(= I') then predicts the width of A and is to be
compared with the experimental value ~ 120 MeV.

Fig. 2 shows the behaviour of En — Ex and I' as functions of x for two vales of ¢g. For
higher order of the Padé approximant, M > 3, the method becomes numerically instable and
the determination of E¥ and I" is no more reliable. For ¢ = 4.3 and M = 1 and 2, the experimental
splitting is reached for 22 =~ 230 MeV (and corresponding ¢ = 300 MeV). This yields I" ~ 60 MeV
which is only half of the experimental value, most probably due to the non-relativistic treatment.
For g = 5 the value of I" is larger (in accordance with Fig. 1) but its determination is less reliable.

In order to be able predict reliable results it is necessary formulate the approach relativisti-
cally and to understand the origin of numerical instabilities for higher M.
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Fig. 2. AN splitting and A width (in MeV) as functions of x (in units vVMeV) for g = 4.3 (a), and g = 5 (b).
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