Original scientific article UDC 574.2:599.3/.7(497.4Pohorje) Received: 2010-11-08 ELEVATIONAL DISTRIBUTION OF SMALL TERRESTRIAL MAMMALS ON MT. POHORJE, SLOVENIA Boris KRYSTUFEK University of Primorska, Science and Research Centre Koper, SI-6000 Koper, Garibaldijeva 1, Slovenia E-mail: boris.krystufek@zrs.upr.si Andrej SORGO & Franc JANZEKOVIC University of Maribor, Faculty of Natural Sciences and Mathematics, SI-2000 Maribor, Koroska cesta 160, Slovenia ABSTRACT Small mammals were sampled on Mt. Pohorje at 33 localities, ranging in elevation from 250-300 m to 1530 m a.s.l. Species composition varied, depending on the method employed during field surveys. Snap trapping was more effective in sampling rodents while pitfall trapping provided more shrews. Twenty-two species were identified, but commensal Rattus rattus and Mus musculus were excluded from further analyses. Fourteen species of a total 20 occurred all along the elevational gradient and the overall turnover rate was excessively low (5 = 0.17). The overall elevational pattern in species richness on Mt. Pohorje was thus a steady decline in species numbers along the altitu-dinal gradient. Relative abundance of mice (Muridae) declined with increasing elevation (r = -0.844) while shrews (Soricidae) were becoming more abundant in the same direction (r = 0.839). Key words: Alps, Pohorje, elevational extent, mid-domain model, small mammals, species richness DISTRIBUZIONE ALTITUDINALE DI PICCOLI MAMMIFERI TERRESTRI SUL MONTE POHORJE, SLOVENIA SINTESI I piccoli mammiferi sono stati campionati in 33 localita del monte Pohorje, ad un'altitudine compresa fra i 250300 m ed i 1530 m s.l.m. La composizione delle specie era variabile, in relazione al metodo impiegato durante il campionamento. Le trappole a scatto si sono rivelate piu efficienti nel campionamento dei roditori, mentre le trappole coperte catturavano piu toporagni. Ventidue specie sono state identifícate, ma i commensali Rattus rattus e Mus musculus sono stati esclusi da successive analisi. Quattordici specie delle venti totali sono state trovate lungo tutto il gradiente altitudinale, mentre il ricambio globale di specie e risultato molto basso (5 = 0,17). Il modello altitudinale completo in ricchezza di specie sul monte Pohorje ha pertanto evidenziato un regolare declino nella ricchezza di specie lungo il gradiente altitudinale. L'abbondanza relativa dei topi (Muridae) e diminuita con l'aumentare dell'altitudine (r = -0,844), mentre i toporagni (Soricidae) sono risultati piu abbondanti nella stessa direzione (r = 0,839). Parole chiave: Alpi, Pohorje, estensione altitudinale, modello di medio-dominio, piccoli mammiferi, ricchezza di specie INTRODUCTION Naturalists have been aware for centuries that species are not evenly distributed on the Earth's surface (Brown & Lomolino, 1998). The distribution of organisms is not random and few patterns of species richness are seemingly universal across time, geographical scale, and taxa (Rahbek, 1997). The oldest and one of the most fundamental patterns is the decrease in biological diversity from equatorial to polar regions and is known as latitudinal gradient (Willig et a/., 2003). A similar pattern of species decline along the elevational gradient was long believed to mirror the latitudinal gradient and to be a general pattern in mountain biotas (Stevens, 1992). Such a perception, derived primarily from tropical regions, claimed axiomatically that lowlands support the highest number of species (MacArthur, 1972). As shown subsequently, the relationship between species richness and elevation rather shows three basic patterns: a humped-shaped curve, a monotonic decrease, or almost horizontal species richness curve that declines at certain elevation (Rahbek, 1995). A series of recent papers based on small mammal distributions across continents (Heaney, 2001; Lomolino, 2001; Nor, 2001; Rickart, 2001; Sánchez-Cordero, 2001; McCain, 2004, 2005) revealed the predominance of a humped curve of species richness with clear mid-elevational peak. Most data sets analysed so far are from the tropics, both for mammals (McCaine, 2005), and other taxo-nomic groups as well (Rahbek, 1995). Temperate regions are underrepresented in this respect, with the majority of case studies, at least on mammals, coming from the arid regions of USA (Rickart, 2001; McCain, 2005). Europe differs from regions studied so far in lower species richness per unit area (Krystufek, 2004) and has thus a potential to provide data for testing the validity of hypotheses proposed so far. However, surprisingly little is known in this respect for the continent which is the cradle of biological science. We report in this paper on the distribution of small non-volant mammals along an elevational gradient on Mt. Pohorje, the south-eastern most extension of the Alpine mountain chain. Our study lacked a priori standardized sampling methodology which restricted our goal to a descriptive level. Despite this we trust that conclusion from this study allow some ideas on what may be a genuine elevational pattern in small mammal assemblages on a south-European mountain of moderate elevation. MATERIAL AND METHODS Study area Mt. Pohorje, located in northeast Slovenia, is the south-eastern most extension of the Central Alps. The west to east oriented ridge is 68 km long, but higher ele- vations (above 1100 m a.s.l.) are mainly an extensive plateau with rounded peaks of modest altitude (Jezerski vrh: 1537 m, Črni vrh: 1543 m). Bedrock is metamor-phic and impermeable. Climate is a continental one, with cold and snowy winters at higher elevations. Close to the mountain's top (Ribniška koča, 1507 m a.s.l.), the mean annual temperature is 3.7oC, with means for the coldest and the warmest months being -5.6°C and 13.9°C, respectively. Annual rainfall is abundant (1100— 1300 mm) with peaks along the central ridge (1500— 1600 mm). Forest is the dominant vegetation type, but natural stands of beech (Fagus sylvatica) were largely transformed in the past centuries into monotonous stands of Norway spruce (Picea abies). The high plateau is marshy with isolated Sphagnum bogs which are largely overgrown by dwarf pine (Pinus mugo). Agriculture is not an intensive one and stockbreeding, in addition to forestry, is the principal traditional activity. Single farms go as high as 1270 m a.s.l. Material and methods Data on local small mammal assemblages were obtained from published sources (Heneberg et al., 1964; Sorgo & Janžekovič, 1995), unpublished reports and from the files of the Slovenian Museum of Natural History. Field sampling was performed in 33 sites (Fig. 1) in three different ways: snap trapping, pitfall trapping and owl pellet analysis. A modified version of Museum Special snap traps was mainly used with a mixture of canned sardines and oat flakes as bait. Traps were settled in lines of various lengths (usually > 50 traps per site) and were exposed overnight. Pitfalls used were five liter buckets dug in the ground and filled with water to approximately one third to prevent escapes. Five or ten pitfalls were fixed per site and exposed over the entire vegetation season. Owl pellets of Strix aluco (a forest species) and Asio otus (hunting on meadows) were collected at suitable places and elaborated according to a standard protocol. Voucher specimens are deposited in the collections of the Slovenian Museum of Natural History (Ljubljana) and in the Department of Biology, University of Maribor. We considered non-volant small mammals belonging to six families: Soricidae, Talpidae, Erinaceidae, Cri-cetidae (Arvicolinae), Muridae, and Gliridae. Taxonomy and nomenclature follow Wilson & Reeder (2005). Species presence/absence matrix was constructed according to 200 m intervals (hereafter elevational intervals). We assumed that species occurred at an elevation if they were detected at both higher and lower elevation intervals. Intervals of 200 m proved sensitive enough to detect changes in the assemblages of species on the one hand, with a reasonably low share of empty intervals on the other. Fig. 1: Study area with sampling localities shown by dots. For list of localities see Appendix 1. SI. 1: Proučevano območje z vrisanimi mesti vzorčenja. Popoln seznam nahajališč je podan v Dodatku 1. Species turnover (p diversity) across the elevational gradient was evaluated following Whittaker (1960): P = (s/a) - 1 where s is the total number of species recorded in the elevational gradient, and a is the average number of species within the elevational interval. RESULTS AND DISCUSSION Small mammals were sampled at 33 localities, ranging in elevation between 250-300 m and 1530 m a.s.l.; see Appendix 1 for details. The majority of sites (61%) was sampled by pitfalls while owl pellets were collected on two localities only. The number of specimens per site varied between 1 and 321. Median (19) and central quartile range (6-36) were low, consequently the majority of local samples were small. There were significant differences among sample sizes regarding the sampling method. The two owl pellet samples were by far the largest (145 and 321 specimens, respectively) and snap trapping provided the majority of small samples (Tab. 1). Samples, obtained by pitfall trapping were on average significantly larger than those by snap trapping (Z = 2.72, p < 0.01; Mann-Whitney U test). Tab. 1: Number of small mammal specimens obtained by two trapping techniques. N - number of sites sampled. Tab. 1: Število malih sesalcev, ujetih z dema različnima metodama vzorčenja. N - število vzorčenih lokacij. Survey technique N Median Min - Max Central quartiles Snap trapping 11 4 1 - 98 1 - 14 Pitfall trapping 20 24 4 - 72 16 - 35.5 In total, 1268 specimens were collected belonging to 22 species. On the basis of a current knowledge of small mammal distributions in Slovenia (Krystufek, 1991) we assume that the faunal list is complete. Reiser (1933) reports for Pohorje also Eliomys quercinus, but this record is far outside the current range and is thus unlikely (Krystufek, 2003). Two species (Rattus rattus, Mus mus-culus) are clearly associated with human settlements in this part of Slovenia (Krystufek, 1991) and are excluded from further consideration for this reason. Their presence is only evidenced from a few owl pellet remnants. Species composition in a sample clearly depended on a method used in faunal survey. Sampling by pitfalls and the owl pellet analysis approached closely to a total species pool of 22 species, while snap trapping emerged as being the least effective in this respect. Such a perception is likely biased however, because much less specimens were collected by snap trapping than by the two other techniques (Append. 2). As evident from Table 2, rodents strongly dominated in samples collected by snap traps (89.2% of specimens) and in owl pellets (93.9%). High share of voles (Arvicolinae) in owl pellet sample results from prey by Asio otus, which is known to be specialized on this particular rodent group (Andrews, 1990). Snap trapping was evidently not effective in sampling dormice (Gliridae) while owl pellet analysis (1) most likely underestimated shrews (Soricidae). Pitfalls sampled shrews most effectively which is in line with published evidence (Kirkland & Krim Sheppard, 1994). The impact of sampling technique on perceived small mammal assembly is well known (Maddock, 1992; Kirkland & Krim Sheppard, 1994; Torre et al., 2004) consequently our results are not surprising in this respect. Tab. 2: Frequency composition (share of specimens; in %) of pooled samples across taxonomic groups and according to the technique employed in field survey. Moles (Talpidae) and hedgehogs (Erinaceidae) were excluded. See also Appendix 2 for a species composition of samples. Tab. 2: Frekvenčna sestava (delež osebkov; v %) v združenih vzorcih, urejenih po taksonomskih skupinah in po metodi terenskega vzorčenja. Krti (Talpidae) in ježi (Erinaceidae) niso vključeni. Glej Dodatek 2 za vrstno sestavo vzorcev. Snap trapping Pitfall trapping Owl pellets Soricidae 10.8 37.7 6.1 Arvicolinae 44.3 19.5 58.2 Muridae 43.8 40.2 27.0 Gliridae 1.1 2.6 8.7 Total 100.0 100.0 100.0 Fourteen species of a total 20 occurred all along the elevational gradient but the statement is poorly documented for Talpa europaea, Arvicola scherman, Micro-tus arvalis and Glis glis. Noteworthy, 19 species were found in the lowest elevational zone, i.e., all but Dryo-mys nitedula and we believe that the absence of this dormouse from low elevations is genuine. Altitudinal range for Micromys minutus is puzzling. Pitfall sampling confirmed its presence at low elevations (< 600 m a.s.l.), but remnants of two specimens were recorded in A. otus pellets at 1450 m a.s.l. Although this mouse does ascend as high as 1700 m a.s.l. in the southern Balkans (Krystu-fek & Kovacic, 1984), it was not recorded above 900 m in Austria (Spitzenberger, 2001). In subsequent analyses we thus considered M. micromys to be restricted only to the lowest two elevational zones. The remaining four species gradually disappeared with increasing altitude: Crocidura leucodon and C. suaveolens at 700 m, Erina-ceus roumanicus at 1100 m, and Neomys anomalus at 1130 m a.s.l. In conclusion, the core species are best classified as elevational generalists. With the exception of Dryomys nitedula, not a single species was added to the regional species pool with the increasing elevation. As a result, the overall turnover rate is excessively low (ß = 0.17). The overall elevational pattern in species richness on Mt. Pohorje is thus a steady decline in species numbers along the altitudinal gradient (Tab. 3, Fig. 1). Species richness also correlated negatively and significantly with elevation (r = -0.931, p < 0.01). Although such a response of species richness was long considered to be a general pattern in mountain biotas (MacArthur, 1972) and is certainly common in some taxonomic groups (Körner, 2002), the majority of recent studies, those based on small mammals in particular, demonstrate the predominance of a humped curve pattern (cf. McCain, 2005, and references therein). Possible reason for a deviation from the humped pattern might be lack of high elevation generalists, but this requires further evaluation on the continental scale. The decline might also be due to decrease in primary productivity (Körner, 2002). Presumption that species diversity increases with overall Fig. 2: Bivariate plot of small mammal species richness on Mt. Pohorje (dots) and of the period the beech is in leaf (triangles) against elevation. Sl. 2: Število vrst malih sesalcev na Pohorju (pike) in trajanje olistanosti bukve (trikotniki) glede na nadmorsko višino. Tab. 3: Small mammal species composition according to 200 m elevational zones on Mt. Pohorje. X - evidence based on trapping; O - evidence from owl pellets; not sign (--) - presence presumed; S - species richness (Stotal = 20). Predicted species richness accounts also presumed presences. Tab. 3: Vrstna sestava malih sesalcev na Pohorju po posameznih 200 metrskih višinskih pasovih. X - podatek temelji na ulovu; O - podatek temelji na izbljuvkih sov; pomišljaj (--) - domnevna prisotnost S - število vrst (Stotal = 20). Ocenjeno število vrst vključuje tudi domnevne prisotnosti. Elevational midpoint 300 500 700 900 1100 1300 1500 Sorex araneus X X X X X X X Sorex minutus X X X X X X X Sorex alpinus X X -- X X X X Neomys fodiens X X X -- X X X Neomys anomalus X X O -- X Crocidura leucodon X -- O Crocidura suaveolens -- -- O Talpa europaea -- X X -- X -- X Erinaceus roumanicus -- -- -- -- X Myodes glareolus X X X X X X X Arvicola scherman X -- O -- -- -- O Microtus agrestis X X X X X X X Microtus arvalis X -- O -- -- -- O Microtus subterraneus X X X -- X X X Apodemus flavicollis X X X X X X X Apodemus sylvaticus X X X X X -- O Micromys minutus X X O Muscardinus avellanarius X -- X X X -- X Dryomys nitedula X X X X -- X Glis glis -- -- X -- -- -- O Empirical S 15 13 17 9 14 8 15 Predicted S 19 20 19 17 17 15 15 Fig. 3: Frequency distribution (relative abundance) of main small mammal groups along the elevational gradient on Mt. Pohorje. Sl. 3: Frekvenčna razporeditev (relativna številčnost) glavnih skupin malih sesalcev vzdolž višinskega gradienta na Pohorju. Fig. 4: Frequency distribution (relative abundance) along the elevational gradient on Mt. Pohorje of Sorex araneus and Sorex minutus within shrew assemblages. Sl. 4: Frekvenčna razporeditev (relativna številčnost) vzdolž višinskega gradienta na Pohorju vrst Sorex araneus in Sorex minutus v združbah rovk. productivity is one of the most widely cited causal hypotheses concerning variation in species richness (MaCArthur, 1972; Rahbek, 1995). Productivity is not easy to measure (Heaney, 2001) and data are seldom available for elevational transects. Data from the Alps of Slovenia do show decrease in a period the beech (F. syl-vatica) is in leaf, which can be used as a proxy for the length of a productivity period. Over 45 years (19602004), this period lasted for 187 days at the elevation of 275 m, 163 days at 760 m, and 146 days at 970 m (data from the Environmental Agency of the Republic of Slovenia). However, the decline for the leaf period is steeper than for the species richness (Fig. 1). The four main taxonomic groups showed a different response to increase in elevation (Fig. 2). Note also that taxonomic groups overlap with trophic groups (Krystufek & Griffiths, 1999; 2001), i.e., Soricidae are insectivorous, Arvicolinae are herbivorous, while Muridae and Gliridae are omnivorous. Pearson correlation coefficient between relative abundance and elevation was significant (at p < 0.05) for Soricidae (r = 0.839) and for Muridae (r = -0.844). Within shrews, Sorex araneus and S. minutes were the most abundant species throughout the elevational transect (Fig. 4). The former tended to dominate at lower elevations and the latter at higher altitudes, the trend however was not a simple one and correlations were not significant (r < 0.67, p > 0.05). Dormice (Gliridae) were rare throughout the elevational gradient (relative abundance < 10%). Noteworthy is their peak above 1000 m a.s.l. and their presence at the highest elevational zone, where even Apodemus f/avico//is, the dominant small mammal in the study area, was rarely collected. ACKNOWLEDGEMENTS We thank Dr Igor Ziberna (Department of Geography, University of Maribor) for data on the period the beech is in leaf and Danijel Ivajnsic (Department of Biology, University of Maribor) who made the map of Mt. Pohorje. This study was partly supported by the Slovene Ministry of High Education, Science and Technology within the "Biodiversity" research programme (P1-0078). VIŠINSKA RAZPOREDITEV MALIH TERESTRIČNIH SESALCEV NA POHORJU, SLOVENIJA Boris KRYŠTUFEK Univerza na Primorskem, Znanstvenoraziskovalno središče Koper, SI-6000 Koper, Garibaldijeva 1 E-mail: boris.krystufek@zrs.upr.si Andrej ŠORGO & Franc JANŽEKOVIČ Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, SI-2000 Maribor, Koroška 160 POVZETEK Na Pohorju smo vzorčili male sesalce na 33 lokacijah v nadmorskih višinah med 250-300 m in 1530 m. Vrstna sestava je bila odvisna od metode vzorčenja. Lov s pastmi na vzmet je bil učinkovitejši pri vzorčenju glodalcev, lovne jame pa pri vzorčenju rovk. V materialu smo določili 22 vrst, vendar dveh komenzalnih glodalcev (Rattus rat-tus in Mus musculus) nismo upoštevali pri nadaljnjih analizah. Štirinajst vrst, od skupnega števila 20, je bilo prisotnih vzdolž celotnega višinskega gradienta, vrstni obrat pa je bil zelo nizek (p = 0,17). Za višinski vzorec vrstne raznolikosti na Pohorju je bilo tako značino postopno zmanjševanje števila vrst vzdolž višinskega gradienta. Relativna številčnost miši (Muridae) je upadala z naraščajo nadmorsko višino (r = -0,844), številčnost rovk (Soricidae) pa je naraščala (r = 0,839). Ključne besede: Alpe, Pohorje, višinski razpon, mali sesalci, model mid-domain, vrstna pestrost REFERENCES Andrews, P. (1990): Owls, caves and fossils. Natural History Museum. London. Brown, J. H. & M. V. Lomolino (1998): Biogeography. 2nd ed. Sinauer Associates, Sunderland, MA, 692 p. Heaney, L. R. (2001): Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecol. Biogeogr., 10, 15— 39. Heneberg, O., M. Morelj, N. Heneberg, N. Mikeš, & Z. M., Oordevic (1964): Hemoragička groznica u Jugoslaviji i istraženje njenih prirodnih žarišta. Higijena, 16, 28—37. Kirkland, G. L. & P. Krim Sheppard (1994): Proposed standard protocol for sampling small mammal communities. In: Merritt, J. F., G. L. Kirkland & R. K. Rose (eds.): Advances in the biology of shrews. Carnegie Museum of Natural History, Special Publication, 18, 277—283. Korner, C. (2002): Mountain biodiversity, its causes and function: an overview. In: Korner, C. & E. M. Spehn (eds.): Mountain Biodiversity. A global assessment. Parthenon Publishing, London, pp. 3—20. Kryštufek, B. (1991): Sesalci Slovenije. Prirodoslovni muzej Slovenije, Ljubljana, 294 p. Kryštufek, B. (2003): First record of the garden dormouse (Eliomys quercinus) in Slovenia. Acta Zool. Hung., 49 (Suppl. 1), 77—84. Kryštufek, B. (2004): A quantitative assessment of Balkan mammal diversity. In: Griffiths, H. I., B. Kryštufek & J. M. Reed (eds.): Balkan biodiversity: patterns and process in the European hotspot. Kluwer Academic Publishers, Dordrecht, pp. 79—108. Kryštufek, B. & D. Kovacic (1984): Distribution, habitat requirements and morphometric characteristics of Mi-cromys minutus Pallas, 1771 (Rodentia, Mammalia) in Yugoslavia. Biosistematika, 10, 99—112. Kryštufek, B. & H. I. Griffiths (1999): Mediterranean vs. continental small mammal communities and the environmental degradation of the Dinaric Alps. J. Biogeogr., 26, 167—177. Kryštufek, B. & H. I. Griffiths (2001): Species richness and rarity in European rodents. Ecography, 24, 120—128. Lomolino, M. V. (2001): Elevation gradients of species-density: historical and prospective views. Global Ecol. Biogeogr., 10, 3—13. MacArthur, R. H. (1972): Geographical ecology: patterns in the distribution of species. Harper & Row Publishers, New York. Maddock, A. H. (1992): Comparison of two methods for trapping rodents and shrews. Isr. J. Zool., 38, 333-340. McCain, C. M. (2004): The mid-domain effect all pied to elevational gradients: species richness of small mammals in Costa Rica. J. Biogeogr., 31, 19-31. McCain, C. M. (2005): Elevational gradients in diversity of small mammals. Ecology, 86, 366-372. Nor, S. Md. (2001): Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Global Ecol. Biogeogr., 10, 41-62. Rahbek, C. (1995): The elevational gradient of species richness: a uniform pattern? Ecography, 18, 200-205. Rahbek, C. (1997): The relationship among area, elevational, and regional species richness in Neotropical birds. Am. Nat., 149, 875-902. Reiser, O. (1933): Sv. Bolfenk na Pohorju. Topografska slika. Maribor. Rickart, E. A. (2001): Elevational gradients, biogeogra-phy and the structure of montane in the intermountain region of North America. Global Ecol. Biogeogr., 10, 77-100. Sánchez-Cordero, V. (2001): Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecol. Biogeogr., 10, 63-76. Spitzenberger, F. (2001): Die Säugetierfauna Österreichs. Grüne Reihe des Bundesministeriums für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft. Austria Medien Service GmbH, Graz, Bd.13, pp. 413-414. Stevens, G. (1992): The elevational gradient in altitudi-nal range: an extension of Rapoport's latitudinal rule to altitude. Am. Nat., 140, 893-911. Sorgo, A. & F. Janzekovic (1995): Prehrana male uharice (Asio otus) in lesne sove (Strix aluco) s Pohorja (Slovenija). Znanstv. Rev., 7, 61-68. Torre, I., A. Arrizabalaga & C. Flaquer (2004): Three methods for assessing richness and composition of small mammal communities. J. Mammalogy, 85, 524-530. Whittaker, R. H. (1960): Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr., 30, 279-338. Willig, M. R., D. M. Kaufman & R. D. Stevens (2003): Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst., 34, 273-309. Wilson, D. E. & M. D-A. Reeder (2005): Mammal species of the World. A taxonomic and geographic reference (3rd ed). John Hopkins University Press, Baltimore, MD, 2142 p. Appendix 1: Summary of faunal surveys on Mt. Pohorje (Fig. 1). Given are locality, elevation, method employed, date, total number of specimens collected and list of species with number of specimens in parentheses. List of species with acronyms: Soricidae: Sorex araneus (S.ar), S. minutus (S.mi), Sorex alpinus (S.al), Sorex sp. (S.sp), Neomys fodiens (N.fo), Neomys anomalus (N.an), Crocidura suaveolens (C.su), C. leucodon (C.le); Talpidae: Talpa europaea (T.eu); Erinaceidae: Erinaceus roumanicus (E.ro); Cricetidae, Arvicolinae: Myodes glareolus (M.gl), Arvicola scher-man (A.sc), Microtus agrestis (M.ag), M. arvalis (M.ar), M. subterraneus (M.su), Microtus sp. (M.sp); Muridae: Apodemus flavicollis (A.fl), A. sylvaticus (A.sy), Apodemus sp. (A.sp), Micromys minutus (M.mi), Rattus rattus (R.ra), Rattus sp. (R.sp); Gliridae: Muscardinus avellanarius (M.av), Dryomys nitedula (D.ni), Glis glis (G.gl). Dodatek 1: Povzetek favnističnih vzorčenj na Pohorju (Sl. 1). Navedeni so nahajališče, nadmorska višina, uporabljena metoda vzorčenja, datum, skupno število zbranih osebkov in seznam vrst s številom osebkov v oklepaju. Za seznam vrst z oznakami glej zgoraj. 1. Maribor, Pernica, 250-300 m a.s.l.; snap trapping on 22 May 1985; N=4: M.gl. (1), M.ag (2), A.fl (1). 2. Slivnica, 275 m a.s.l.; pitfall sampling in 1991; N=71: S.ar (25), S.mi (5), M.gl. (20), M.ar (1), A.fl (19), M.av (1). 3. Pekre, Ledine, 280 m a.s.l.; pitfall sampling in 1987; N=55: S.ar (2), S.mi (3), S.al (1), N.fo (2), N.an (6), C.le (1), A.sc (2); M.gl. (10), M.ag (2), M.su (1), A.fl (11), A.sy (3), A.sp (10), M.mi (1). 4. Maribor, Fram, Planica, 310 m a.s.l.; snap trapping on 12 July 1 977; N=1: S.ar (1). 5. Bolfenk, Vzpenjača, 330 m a.s.l.; pitfall sampling in 1987; N=25: M.gl. (1), M.su (1), A.fl (17), A.sy (2), A.sp (4). 6. Fram, 400 m a.s.l.; pitfall sampling in1 991; N=59: S.ar (8), S.mi (2), S.al (1), N.fo (3), N.an (1), T.eu (1), M.gl. (9), M.ag (1), M.su (1), A.fl (30), M.mi (2). 7. Fram, 425 m a.s.l.; pitfall sampling in1 991; N=31: A.fl (30), D.ni (1). 8. Bolfenk, Skalce, 560 m a.s.l.; pitfall sampling in 1987; N=36: S.mi (5), M.gl. (5), A.fl (14), A.sy (2), A.sp (10). 9. Ruše, 600-700 m a.s.l.; snapp trapping in 1963; N=98: S.ar (2), T.eu (1), M.gl. (40), M.su (1), A.fl (53), D.ni (1). Source: Heneberg et al. (1964). 10. Hoče - Areh, "Veronika Klinc", 675 m a.s.l.; pitfall sampling in 1991; N=55: S.ar (2), S.mi (7), M.gl. (10), A.fl (35), G.gl (1). 11. Planica nad Framom, 700 m a.s.l.; pellets of Strix aluco, collected in 1991 and 1992; N=145: S.ar (6), S.mi (1), N.fo (4), N.an (1), C.su (1), C.le (9), T.eu (4), M.gl. (14), A.sc (29), M.ag (4), M.ar (9), M.su (12), A.fl (5), A.sy (1), A.sp (18), R.ra (3), R.sp (1), M.av (3), G.gl (18). Source: Šorgo & Janžekovič (1995). 12. Bolfenk, Jonatan, 800 m a.s.l.; pitfall sampling in 1987; N=24: S.ar (1), S.mi (6), N.fo (1), M.gl. (4), M.ag (1), A.fl (5), A.sy (1), A.sp (4), M.av (1). 13. Slap na Framskem potoku, 925 m; pitfall sampling in 1991; N=35: S.ar (9), S.mi (8), S.al (5), M.gl. (5), A.fl (6), D.ni (1), M.av (1). 14. Predan, 975 m a.s.l.; pitfall sampling in 1991; N=18: S.ar (6), S.mi (6), M.gl. (1), A.fl (5). 15. Šumik, 1000-1100 m a.s.l.; snap trapping on 18 July 1969; N=14: S.al (1), N.fo (3), T.eu (1), M.gl. (3), M.su (4), A.fl (2). 16. Bajgot, 1050 m a.s.l.; pitfall sampling in 1991; N=4: S.mi (1), M.ag (1), M.av (2). 17. Šumik, 1075 m a.s.l.; pitfall sampling in 1991; N=22: S.ar (3), S.mi (6), M.gl. (3), M.su (1), A.fl (6), D.ni (3). 18. Pajkov dom, 1100 m a.s.l.; pitfall sampling in 1991; N=14: E.ro (1); S.ar (4), S.mi (1), M.ag (1), A.fl (6), M.av (1). 19. Bolfenk, Stolp, 1130 m a.s.l.; pitfall sampling in 1987; N=72: S.ar (23), S.mi (11), S.al (2), N.fo (1), N.an (2), M.gl. (5), M.ag (2), M.su (3), A.fl (11), A.sy (2), A.sp (8), D.ni (2). 20. Domna Osankarici, 1190 m a.s.l.; snap trapping on 21 June 1 984; N=6: N.fo (1), M.gl. (1), M.ag (1), A.fl (3). 21. Areh, 1200-1300 m a.s.l.; pitfall sampling in 1991; N=24: S.ar (1), S.mi (9), S.al (3), M.gl. (6), M.ag (1), M.su (1), A.fl (3). 22. Šiklarica, Črni vrh, 1300 m a.s.l.; snap trapping on 10 Aug 1975; N=1; S.ar (1). 23. Grmovškov dom, 1370 m a.s.l.; snapp trapping on 7 July 1983; N=11: S.mi (1), N.fo (1), M.gl. (1), M.su (4), A.fl (4). 24. Ribniško jezero, 1425 m a.s.l.; pitfall sampling in 1991; N=15: S.mi (10), M.gl. (1), M.ag (2), M.su (1), M.av (1). 25. Lovrenško jezero, 1425 m a.s.l.; pitfall sampling in 1991; N=17: S.ar (2), S.mi (12), M.ag (1), M.su (2). 26. Velika Kopa, 1450 m a.s.l.; snapp trapping on 3-5 April 1983, 2-8 July 1993; N=37: S.ar (3), S.mi (2), S.al (2), M.gl. (1), M.ag (2), M.su (12), A.fl (14), D.ni (1). 27. Jezerski vrh, 1450 m a.s.l.; pitfall sampling in 1991; N=19: S.mi (8), M.gl. (9), M.ag (2). 28. Ribniško jezero, 1450 m a.s.l.; pellets of Asio otus, collected in 1993; N=321: S.ar (1), S.mi (4), S.sp (1), M.gl. (29), A.sc (3), M.ag (136), M.ar (4), M.su (24), M.sp (1), Arvicolinae inted. (3), A.fl (66), A.sy (13), A.sp (12), M.mi (2), M.mu (3), M.av (18), G.gl (1). Source: Šorgo & Janžekovič (1995). 29. Jezerski vrh, 1 500 m a.s.l.; pitfall sampling in 1991; N=24: S.ar (2), S.mi (9), S.al (3), N.fo (3), T.eu (3), M.gl. (1), M.su (1), A.fl (2). 30. Ribniško jezero, 1500 m a.s.l.; snap trapping on 19 July 1969; N=1: M.ag (1). 31. Lovrenška jezera, 1520 m a.s.l.; pitfall sampling in 1 987; N=5: S.al (1), S.mi (1), M.gl. (1), M.ag (1), M.av (1). 32. Mala Kopa, 1 520 m a.s.l.; snap trapping on 13 July 1984; N=2: S.ar (1), T.eu (1). 33. Ribniška koča, 1530m a.s.l.; snap trapping on 20 July 1969; N=4: M.su (4). Appendix 2: Summary table of small mammal species and their abundance according to method employed during faunal surveys. S - species richness. Dodatek 2: Pregledna tabela vrst malih sesalcev in njihove številčnosti glede na uporabljeno metodo vzorčenja. S -število vrst. Snap trapping S = 10 Pitfall trapping S = 19 Owl pellets S = 19 Total S = 22 Sorex araneus 8 88 7 103 Sorex minutus 3 110 5 118 Sorex alpinus 3 17 20 Sorex sp. 1 1 Neomys fodiens 5 9 4 18 Neomys anomalus 9 1 10 Crocidura leucodon 1 9 10 Crocidura suaveolens 1 1 Talpa europaea 3 4 4 11 Erinaceus roumanicus 1 1 Myodes glareolus 47 91 43 181 Arvicola scherman 2 32 34 Microtus agrestis 6 15 140 161 Microtus arvalis 1 13 14 Microtus subterraneus 25 12 36 73 Microtus sp. 1 1 Arvicolinae indet. 3 3 Apodemus flavicollis 77 200 71 348 Apodemus sylvaticus 10 14 24 Apodemus sp. 36 30 66 Micromys minutus 3 2 5 Rattus rattus 3 3 Rattus sp. 1 1 Mus musculus 3 3 Muscardinus avellanarius 8 21 29 Dryomys nitedula 2 7 9 Glis glis 1 19 20 Total specimens 179 625 464 1268 Appendix 3: Summary table of small mammal numbers according to 200 m elevational zones. Based on pitfall sampling. Dodatek 3: Pregledna tabela števila malih sesalcev po posameznih 200 metrskih višinskih pasovih. Temelji na vzorčenju z lovnimi jamami. Elevational midpoint 300 500 700 900 1100 1300 1500 Total Sorex araneus 27 8 2 16 30 1 4 88 Sorex minutus 8 7 7 20 19 9 40 110 Sorex alpinus 1 1 6 2 3 4 17 Neomys fodiens 2 3 1 3 9 Neomys anomalus 6 1 2 9 Crocidura leucodon 1 1 Talpa europaea 1 3 4 Erinaceus roumanicus 1 1 Myodes glareolus 31 14 10 10 8 6 12 91 Arvicola scherman 2 2 Microtus agrestis 2 1 1 4 1 6 15 Microtus arvalis 1 1 Microtus subterraneus 2 1 4 1 4 12 Apodemus flavicollis 47 74 35 16 23 3 2 200 Apodemus sylvaticus 5 2 1 2 10 Apodemus sp. 14 10 4 8 36 Micromys minutus 1 2 3 Muscardinus avellanarius 1 2 3 2 8 Dryomys nitedula 1 1 5 7 Glis glis 1 1 Total specimens 151 126 55 77 112 24 80 625