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Abstract: In this contribution a general strategy for solving a coupled mi-
cro-macro problems is presented which enables analyses of modern 
heterogeneous materials. It provides an efficient problem solving 
tool to structures with complex microstructures, used in a demand-
ing structural components. The method uses a nested finite element 
solution strategy called multilevel finite element approach-ML-FEM. 
Within the ML-FEM framework one conducts an embedded micro-
scale computation in order to obtain quantities required at the mac-
roscopic level. The application of ML-FEM circumvents the need to 
construct an explicit macroscale constitution formulation, considering 
increased computational costs. Increased computation is linked to de-
tailed microscopic analysis for which the statistical representative 
volume element-RVE is needed. RVE will be derived based on 
the convergence criterion. In this work a general method for calcu-
lation of the consistent macroscopic stiffness matrix via sensitivity 
analysis of a micro level is shown. As an example the proposed meth-
od is applied on a simple test specimen under compression consisting 
microstructures with porosities and stiff inclusions. 

Povzetek: V tem delu je bila razvita splošna strategija za reševanje vezanih 
mikro-makro sodobnih heterogenih materialov. Strategija je učinko-
vito orodje pri reševanju problemov s kompleksno mikrostrukturo, 
uporabljeno v zahtevnih inženirskih komponentah. Strategija upo-
rablja večnivojski način reševanja problemov, kjer na mikroskopski 
in makroskopski ravni poteka analiza z metodo končnih elementov 
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(ML-FEM). Pri tej metodi reševanja makroskopska konstitutivna 
zveza ni več potrebna, saj je le-ta na račun povečanega računskega 
časa pridobljena z natančno mikroskopsko analizo. Ta je izvedena na 
statističnem reprezentativnem volumnu (RVE), katerega velikost do-
ločimo s konvergenčnim merilom. Metoda je splošen način reševanja 
makroskopske togostne matrike preko občutljivostne analize mikro-
skopskega nivoja. Lastnosti metode so bile preizkušene na enostav-
nem tlačnem preizkusu za porozno mikrostrukturo in mikrostrukturo 
s togimi vključki. 

Keywords: Heterogeneous materials, multiscale analysis, macroscopic tan-
gent computation, sensitivity analysis

Ključne besede: heterogeni materiali, mikro-makro analize, makroskopska 
togost, občutljivostna analiza

introduction

Heterogeneous materials used in engi-
neering sciences have physical prop-
erties that vary throughout their mi-
crostructures. Heterogeneities, such 
as inclusions, pores, fibers and grain 
boundaries, have a significant impact 
on the observed macroscopic behavior 
of multi-phase materials. In engineer-
ing some typical examples are metal 
alloy systems, various composites, po-
rous and cracked structures, polymeric 
blends and polycrystalline materials. 

To describe the macroscopic overall 
characteristics of heterogeneous struc-
tures is a vital problem in many engi-
neering applications. The ability to con-
vey information across length scales 
is essential for a better understanding 
of the sources of physical behavior 
observed on higher scales. Using mi-

cromechanical models of the micro-
structural elements, homogenization 
techniques allow an efficient and cor-
rect transfer of microscale information 
to the macroscale analysis. The funda-
mental methodology of homogeniza-
tion is the characterization of the mac-
roscopic behavior of the heterogeneous 
material by appropriately identifying 
and testing a statistically representa-
tive micromechanical sample. Once 
an appropriate sample is identified it 
can be used in the multiscale analysis 
methodology. The most straightfor-
ward way is to use the multilevel finite 
element method ML-FEM[1–5]. When 
analyses at both levels are made in the 
context of FEM, it can be referred to 
as the FE2 method[6, 7]. The application 
of ML-FEM circumvents the need to 
construct an explicit macroscale con-
stitution formulation, though at an in-
creased computational cost. The con-
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nique based on a sensitivity analysis of 
a microscopic level will be presented.

methods

Numerical RVE size
In order to estimate the effective prop-
erties of heterogeneous material, most 
of the micro-macro methods assume 
the existence of a micromechanical 
sample that is statistically representa-
tive of the microstructural features. 
The usual approach[8] is to determine a 
relation between averages, E*, defined 
through . Here σ and 
ε are the stress and strain fields within 
a statistically representative volume 
element. The RVE is considered both 
smaller enough than the macro scale 
media and bigger enough than the het-
erogeneities on the micro scale, with-
out introducing non-existing properties 
(e.g. anisotropy). 

In this contribution, macroscopically 
isotropic materials are considered, 
therefore the two linear elastic con-
stants (bulk and shear moduli) describ-
ing the form of E*can be computed us-
ing:

     
 

(1.1)

stitutive equations are written only on 
microscopic scale and homogenisation 
and localization equations are used to 
compute the macroscopic strains and 
stresses knowing the mechanical state 
at microscopic level.

By analyzing the engineering structure, 
the point of interest is usually localized 
in the so called critical region, where 
detailed analyses are needed. So to fur-
ther increase the efficiency of the com-
putation the structure can be divided 
into subdomains, critical region and 
the rest of the structure. In the critical 
region an embedded ML-FEM compu-
tation is conducted, while elsewhere 
a classical homogenization technique 
is used. In either case a statistical mi-
cromechanical model or representative 
volume element (RVE) will be needed.  

The purpose of this contribution is 
mainly two fold. First, the statisti-
cal RVE size will be derived based on 
convergence criterion of the several 
parameters being monitored. The sec-
ond purpose of this work tackles the 
efficiency of multilevel computation. 
Since a conventional way of macro-
scopic tangent computation in a con-
densation procedure, necessitate the 
computation of a Shur complement. 
It inflicts for increasingly complex 
microstructure higher memory alloca-
tion demands that may not be met by 
today’s computers. Therefore, as an al-
ternative, a tangent computation tech-
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where σ’ and ε’ denotes the deviatoric 
part. Macroscopically isotropic het-
erogeneous structure is achieved by 
random particle distribution at the mi-
croscale. Therefore, for a given sample 
size, multiple distributions of parti-
cles are possible. In order to capture a 
statistical measure of the range of re-
sponses from different distributions, a 
simple averaging of three samples per 
RVE size was used. 

To model random porous microstruc-
tures a matrix containing randomly 
distributed pores throughout a square 
L × L was considered. The size of the 
particles were determined relatively to 
unit length of the RVE such that 0.1 < 
2r < .15. Mechanical properties of the 
matrix material was K = 167 GPa and 
G = 77 GPa. In order to determine a 
suitable RVE size, one must monitor 
the range of estimates to E* for succes-
sively larger samples, shown on Figure 
1. The following sequences of particles 
per sample are used (N): 2, 4, 15 and 
32. Relying on the expectation as RVE 
size increases indefinitely the effective 
properties of material constants (K, G) 
will converge towards E*.

For numerical simulation of the re-
sponse a 2D quadrilateral plane strain 
2 ×2 Gauss rule elements were used. 
To determine the effective bulk and 
shear moduli, since the effective re-
sponse is assumed isotropic, only one 

test loading is necessary ε11 = 0.01005. 
In Table 1, the perturbation magni-
tudes are shown for various quantities 
as a function of pore number in the 
sample. 

Besides convergent material properties, 
the RVE must be tested upon the influ-
ence of the microstructural geometry 

Figure 1. A series of test samples with in-
creasing size, the volume fraction of parti-
cles is fixed at 0.6 %. 

Table 1. Perturbation magnitudes for shear 
and bulk moduli as a function of particles 
number (N).
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properties. This can be done by tracking 
various quantities such as: strain energy 
function, maximal stresses, averaged 
stresses in the particles or matrix etc. In 
this work the maximal effective stress 
was considered (von Misses). To guar-
antee the mixed stress fields besides the 
previously used normal test loading ε11 
= 0.01005 the shear loading condition 
was used ε12 = 0.01005 all the rest stays 

the same as described previously. Fig-
ure 2 is showing the convergence of the 
max. effective stress in the RVE by in-
creasing its size.

Based on the tests the statistical RVE 
size 2 (approximately 15 particles) is 
chosen. This size is used in all sub-
sequent analysis. The outline of the 
determination of the RVE size and ef-

Figure 2. Max. effective stress for two loading cases depending upon RVE size 

Table 2. Perturbation magnitudes of max. σeff for normal and shear load condition as a 
function of particles number (N).
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fective material constants are made for 
particles representing voids. The same 
procedures are used to determine the 
size and effective material constants 
also for microstructure with stiff inclu-
sions. All the values are given in the 
Results & discussion section.  

Multilevel finite element - principle
The material under consideration is 
assumed to be macroscopically homo-
geneous, so that continuum mechanics 
can be used to describe macroscopic 
behavior. However, at the micro level is 
the material configuration heterogene-
ous, consisting of many distinguishable 
components e.g. grains, cavities, hard 
inclusions. The microscopic length 
scale is much smaller than the charac-
teristic length of the macroscopic struc-
ture, therefore in this case a hypothesis 
on periodicity of the microstructure is 
acceptable. The multilevel finite ele-
ment strategy may be described by the 
following subsequent steps: [9, 10] 

1. Determination of a statistical rep-
resentative volume element (RVE), 
used in homogenization and in em-
bedded multilevel analysis.

2. The macroscopic structure to be 
analyzed is discretized by finite ele-
ments. The external load is applied 
by an incremental procedure. 

3. Macroscopic deformation gradient 
tensor (FM) is calculated for every 
integration point of the macrostruc-
ture in a multilevel subdomain. 

4. From the macroscopic deformation 
tensor appropriate boundary con-
ditions are derived to be imposed 
on the RVE that is assigned to this 
point. 

5. Upon the solution of the bound-
ary value problem for the RVE, the 
macroscopic stress tensor (PM) is 
obtained by averaging the resulting 
RVE stress field over the volume of 
the RVE. 

6. Additionally, the local macroscopic 
consistent tangent is derived from 
the sensitivity analysis of the RVE. 

This framework is schematically illus-
trated in Figure 3. In the subsequent 
sections these issues are discussed in 
more detail. 

Linking macroscopic and micro-
scopic levels
The actual coupling between the mac-
roscopic and microscopic scales is 
based on averaging theorems. The 
energy averaging theorem, known in 

Figure 3. Shematic diagram of the ML-
FEM model.
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the literature as the Hill condition or 
macrohomogeneity condition[11, 12],  
requires that the macroscopic vol-
ume average of the variation of work 
performed on the RVE is equal to 
the local variation of the work on the 
macroscale. Formulated in terms of a 
deformation gradient tensor and the 
first Piola-Kirchhoff stress tensor, the 
work criterion in differential form is 
written:

 (2.1)

In words, this equality states that in the 
transition from the microscopic scale 
to the macroscopic scale, energy is 
conserved.

It is well known that this criterion is 
not satisfied for arbitrary boundary 
conditions (BC) applied to the RVE. 
Classically three types of RVE bound-
ary conditions are used, i.e. prescribed 
displacements, prescribed tractions and 
prescribed periodicity. Periodicity here 
is referring on an assumption on global 
periodicity of the microstructure, sug-
gesting that the whole macroscopic 

specimen consists of spatially repeated 
unit cells. Among them the periodic 
BCs show a more reasonable estima-
tion of the effective properties. This 
was supported and justified by numbers 
of authors[13–16]. The periodicity condi-
tions for the microstructural RVE are 
written in a general format as: 

     (2.2)

where x  and X  represents the actual 

and initial position vector and p  the 
boundary traction of the RVE. In the 
equation (2.1) the macroscopic first Pi-
ola-Kirchhoff stress tensor (PM) and the 
macroscopic deformation gradient ten-
sor (FM) are the fundamental kinetical 
and kinematical measures which are de-
fined in terms of the volume average of 
their microscopic counterparts. Every 
time that the work criterion is satisfied, 
the volume average of the macroscopic 
above mentioned measures can be ob-
tained through the knowledge of bound-
ary information only.

 (2.3)

(2.4)
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Here, VRVE is undeformed RVE, Pm 
and Fm are microscopic stress tensor 
and deformation gradient tensor, re-
spectively, Γ  represents the bound-

ary of the RVE, while N  represents 
the normal vector to the surface of 
RVE. 

Macroscopic tangent computation 
In the realization of the multilevel 
FEM approach, the macroscopic con-
stitutive formulation is not explicitly 
obtained from the experimental data. 
Instead, the needed stiffness matrix at 
every macroscopic integration point 
has to be determined directly from the 
numerical relation of the macroscopic 
stress (PM) and macroscopic deforma-
tion gradient (FM) at that point[15, 17, 

18]. The weak form of the macroscale 
problem in the absence of body forces 
and acceleration can be written in vari-
ational form as:  
      

 (2.5)

To solve the macroscopic primal 
problem within ML-FEM setting, at 
i-th iteration step of a standard New-
ton-Raphson solution scheme, the 
following linearization needs to be 
computed. 

The macrolevel element tangent stiff-
ness matrix and the residual force vec-
tor can be obtained with the knowl-
edge of the stress (PM) and macro-
scopic tangent ( MM F/P ∂∂ ) obtained 
from the RVE analysis, since FM is ex-
plicit function of node displacements. 
The (PM) can be obtained directly 
from RVE analysis by using averag-
ing theorem equation (2.4), while for 
the determination of the macroscopic 
tangent a RVE sensitivity analysis is 
performed. For the sensitivity prob-
lem[19] the residuals and the vector of 
unknowns are defined as a function of 
sensitivity parameters, which are in 
this case the elements of tensor (FM). 
The sensitivity problem can then be 
obtained from the primal problem by 
differentiating the response functional 
and the residuals with respect to mac-
roscopic deformation gradient (FM), 
and the following system on the mi-
crolevel has to be solved: 

   
 (2.7)

where, Ψm represents response func-
tional on the microlevel, a is a set of 
unknowns (displacements), while ϕ 
represents arbitrary sensitivity param-
eter in our case FM.

 (2.6)
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With the assembling of the macroscop-
ic stiffness matrix is the problem on 
the macro level fully described and can 
be solved to produce an update of the 
macroscopic displacement field.  

Remark 1: for consistency the particu-
lar type of BC employed for the comp. 
of K must match the type of BC em-
ployed in the computation of P.

results & discussion 

In order to evaluate the presented 
ML-FEM strategy a simple compres-

sion test, Figure 4a, of a homogene-
ous matrix material with 6 % volume 
fraction of randomly distributed voids 
or stiff inclusions has been examined. 
The material parameters used in the 
analysis are: shear modulus of matrix 
material and stiff inclusions are Gm = 
77 GPa and Gi = 307 GPa respective-
ly, bulk modulus of matrix material 
and stiff inclusions are Km = 167 GPa 
and Ki = 667 GPa respectively. For the 
homogenized part the effective mate-
rial constants are calculated from RVE 
tests presented in the Numerical RVE 
size section: voided microstructure G 
= 72 GPa and K =156 GPa, microstruc-

Figure 4. a) Axisymmetric model of compresion test. b)  Axisymmetric 
numerical model: two subdomains with critical points indicated. 
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ture with stiff inclusions G = 90 GPa 
and K = 194 GPa. On the macroscopic 
level a 2D quadrilateral plane strain 
2 × 2 Gauss rule elements were used. 
Load was applied incrementally: load 
displacements Δ = 1 unit relative to 
L. The multilevel algorithm has been 
implemented into computer program 
AceFEM[20], where a special macro-
scopic element can be readily defined 
in open source code. 

Figure 4b shows a discretized numeri-
cal model where the homogenized and 
multilevel subdomains are clearly in-
dicated. In the later, two critical points 
are marked where a detailed RVE anal-
ysis has been done. From Figure 4b a 

straightforward estimate, regarding 
the considered test, can be done about 
the amount of computation needed for 
each macroscopical load increment: 
number of elements in the multilevel 
subdomain times the Gauss points per 
elements. For the present test it takes, 
18 Elements × 4 Gauss points, RVE 
analyses for each load increment. In 
order to further speed up the analysis 
and to make it more useful for compli-
cated engineering applications, multi-
level algorithm was set up for parallel 
computations. 

In Figure 5 the contour plots of the 
equivalent Misses stress considering 
the two microstructures are compared. 

Figure 5. Effective stress in the macrostructure 2D a) stiff inclusions, b) 
voided microstructure.

a) b)
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As expected the microstructure with 
stiff inclusions produces higher stress-
es but the interesting point is that the 
contour plots are not the same which 
would be the case for completely ho-
mogenized structure. The influence 
of more realistic model on the micro-
scopic level is clearly visible even in a 
simple case considered. 

The detailed analyses of the RVE at the 
critical points for both microstructures 

are depicted in Figures 6 and 7. It can 
be seen that the voids act as a stress 
concentrator and that some stress con-
centration regions can be seen between 
neighboring voids, Figure 6. The RVE 
taken from macroscopic point (o) is 
subjected to mainly hydrostatic com-
pression stresses, while RVE from 
point (-) is exposed to some amount of 
deviatoric stresses as well. This phe-
nomenon has greater influence on the 
voided microstructure, where higher 

Figure 7. Effective stress in the RVE containing stiff inclusions from the 
critical point of the macrostructure.

Figure 6. Effective stress in the RVE from the critical point of the macro-
structure voided microstructure.
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effective stresses are observed in the 
mainly hydrostatic region. Generally 
by comparing the microscopic and 
macroscopic stress fields a substan-
tially higher stresses are observed on 
the microscopic level. So by simul-
taneously examining RVE at critical 
macro points, while deforming the 
macro structure, a deeper understand-
ing of deformation mechanisms can be 
obtained, which can be very helpful in 
studying the damage mechanisms and 
densification in various engineering 
materials.  

conclusions

Firstly it was shown how to determine 
a statistical representative volume ele-
ment (RVE), which was later used in the 
homogenization process and as well in 
embedded multilevel analysis. A mul-
tilevel finite element analysis strategy 
for the simulation of the mechanical 
behavior of heterogeneous materials 
has been outlined. The performance 
of the method was illustrated by the 
modeling of simple compression test. 
Two different microstructures were 
tested: first including voids and second 
with hard inclusions embedded in the 
matrix. The presented multilevel finite 
element analysis strategy provides an 
efficient approach to determine the 
macroscopic response of heterogene-
ous materials with accurate account 
for microstructural phenomena. In the 

ML-FEM strategy the computational 
efficiency hinges on the correct and 
effective macroscopic tangent com-
putation, in this work this is done by 
sensitivity analysis of the microscopic 
level. It enables a problem solving tool 
for a variety of different micro-macro 
problems which includes complex mi-
crostructures.  
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