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Abstract. I discuss a general class of models where the inflation is driven by supersym-
metry breaking with the superpartner of the goldstino (sgoldstino) playing the role of
the inflaton. Imposing an R-symmetry allows to satisfy easily the slow-roll conditions,
avoiding the so-called η-problem, and leads to two different classes of small field inflation
models; they are characterised by an inflationary plateau around the maximum of the scalar
potential, where R-symmetry is either restored or spontaneously broken, with the inflaton
rolling down to a minimum describing the present phase of our Universe. Inflation can be
driven by either an F- or a D-term, while the minimum has a positive tuneable vacuum
energy. The models agree with cosmological observations and in the simplest case predict a
tensor-to-scalar ratio of primordial perturbations 10−9 <∼ r <∼ 10−4 and an inflation scale
1010 GeV <∼ H∗ <∼ 10

12 GeV.

Povzetek. Avtor obravnava razred modelov, v katerih zlomitev supersimetrije povzroči
inflacijo, vlogo inflatona pa igra superpartner goldstina (sgoldstino). Avtorjev privzetek, da
imajo modeli simetrijo R, omogoči, da je izpolnjen pogoj za ’slow-roll’, s čimer se izogne
problemu η. Tem pogojem zadostita dve vrsti modelov inflacije z majhnim poljem. Zanje
je značilen inflacijski plato okrog maksimuma skalarnega potenciala, kjer se simetrija R
bodisi ohrani ali pa spontano zlomi, inflaton pa se zapelje po potencialu do minimuma, ki
opisuje sedanjo fazo našega vesolja. Inflacijo lahko poganja ali člen F ali člen D, minimum
ima pozitivno vakuumsko energijo, ki jo z izbiro parametrov lahko spreminjamo tako, da
se ujemajo s kozmološkimi meritvami. V najpreprostejšem primeru modeli napovedo, da
je bilo, ko je bila v začetku vesolja energijska skala inflacije 1010 GeV <

∼ H∗ <∼ 1012 GeV,
razmerje tenzorskih in skalarnih nehomogenosti 10−9 <∼ r <∼ 10

−4.

Keywords: supersymmetry breaking, R-symmetry, supergravity, cosmology, infla-
tion

1.1 Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying
systems with strongly coupled dynamics, it should be able to describe at the
same time particle physics and cosmology, which are phenomena that involve
very different scales from the microscopic four-dimensional (4d) quantum gravity
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2 I. Antoniadis

length of 10−33 cm to large macroscopic distances of the size of the observable
Universe ∼1028 cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different
physics corresponding to the electroweak, dark energy and inflation. These scales
might be related via the scale of the underlying fundamental theory, such as string
theory, or they might be independent in the sense that their origin could be based
on different and independent dynamics. An example of the former constraint
and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a
four-dimensional braneworld forming our Universe [1]. In this case, the 4d Planck
mass is emergent from the fundamental string scale and inflation should also
happen around the same scale [2].

Here, we will adopt a more conservative approach, trying to relate the scales
of supersymmetry breaking and inflation, assuming that supersymmetry breaking
is realised in a metastable de Sitter vacuum with an infinitesimally small (tuneable)
cosmological constant independent of the breaking scale that may be in the TeV
region or higher.

In a recent work [3], we studied a simple N = 1 supergravity model having
this property and motivated by string theory. Besides the gravity multiplet, the
minimal field content consists of a chiral multiplet with a shift symmetry promoted
to a gauged R-symmetry using a vector multiplet. In the string theory context, the
chiral multiplet can be identified with the string dilaton (or an appropriate com-
pactification modulus) and the shift symmetry associated to the gauge invariance
of a two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The
shift symmetry fixes the form of the superpotential and the gauging allows for
the presence of a Fayet-Iliopoulos (FI) term [4], leading to a supergravity action
with two independent parameters that can be tuned so that the scalar potential
possesses a metastable de Sitter minimum with a tiny vacuum energy (essentially
the relative strength between the F- and D-term contributions). A third parameter
fixes the Vacuum Expectation Value (VEV) of the string dilaton at the desired
(phenomenologically) weak coupling regime. An important consistency constraint
of the model is anomaly cancellation which has been studied in [5] and implies
the existence of additional charged fields under the gauged R-symmetry.

In a subsequent work [6], we analysed a small variation of this model which
is manifestly anomaly free without additional charged fields and allows to couple
in a straight forward way a visible sector containing the minimal supersymmetric
extension of the Standard Model (MSSM) and studied the mediation of super-
symmetry breaking and its phenomenological consequences. It turns out that an
additional ‘hidden sector’ field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field participates in the supersymmetry
breaking and is similar to the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well
as trilinear A-terms, are generated at the tree level and are universal under the
assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since
matter fields are neutral under the shift symmetry and supersymmetry breaking
is driven by a combination of the U(1) D-term and the dilaton and z-field F-term.
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1 Inflation From Supersymmetry Breaking 3

Alternatively, a way to avoid the tachyonic scalar masses without adding the extra
field z is to modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use
a field representation in which the gauged shift symmetry corresponds to an
ordinary U(1) and not an R-symmetry. The two representations differ by a Kähler
transformation that leaves the classical supergravity action invariant. However, at
the quantum level, there is a Green-Schwarz term generated that amounts an extra
dilaton dependent contribution to the gauge kinetic terms needed to cancel the
anomalies of the R-symmetry. This creates an apparent puzzle with the gaugino
masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based on the so called anomaly mediation contributions [7,8] that
explain precisely the above apparent discrepancy. It turns out that gaugino masses
are generated at the quantum level and are thus suppressed compared to the scalar
masses (and A-terms).

This model has the necessary ingredients to be obtained as a remnant of mod-
uli stabilisation within the framework of internal magnetic fluxes in type I string
theory, turned on along the compact directions for several abelian factors of the
gauge group. All geometric moduli can in principle be fixed in a supersymmetric
way, while the shift symmetry is associated to the 4d axion and its gauging is a
consequence of anomaly cancellation [9,10].

We then made an attempt to connect the scale of inflation with the electroweak
and supersymmetry breaking scales within the same effective field theory, that at
the same time allows the existence of an infinitesimally small (tuneable) positive
cosmological constant describing the present dark energy of the universe. We thus
addressed the question whether the same scalar potential can provide inflation
with the dilaton playing also the role of the inflaton at an earlier stage of the
universe evolution [11]. We showed that this is possible if one modifies the Kähler
potential by a correction that plays no role around the minimum, but creates an
appropriate plateau around the maximum. In general, the Kähler potential receives
perturbative and non-perturbative corrections that vanish in the weak coupling
limit. After analysing all such corrections, we find that only those that have the
form of (Neveu-Schwarz) NS5-brane instantons can lead to an inflationary period
compatible with cosmological observations. The scale of inflation turns out then
to be of the order of low energy supersymmetry breaking, in the TeV region. On
the other hand, the predicted tensor-to-scalar ratio is too small to be observed.

Inflationary models [12] in supergravity1 suffer in general from several prob-
lems, such as fine-tuning to satisfy the slow-roll conditions, large field initial
conditions that break the validity of the effective field theory, and stabilisation of
the (pseudo) scalar companion of the inflaton arising from the fact that bosonic
components of superfields are always even. The simplest argument to see the fine
tuning of the potential is that a canonically normalised kinetic term of a complex
scalar field X corresponds to a quadratic Kähler potential K = XX̄ that brings
one unit contribution to the slow-roll parameter η = V ′′/V , arising from the eK

proportionality factor in the expression of the scalar potential V . This problem can
be avoided in models with no-scale structure where cancellations arise naturally

1 For reviews on supersymmetric models of inflation, see for example [13].
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4 I. Antoniadis

due to non-canonical kinetic terms leading to potentials with flat directions (at
the classical level). However, such models require often trans-Planckian initial
conditions that invalidate the effective supergravity description during inflation.
A concrete example where all these problems appear is the Starobinsky model of
inflation [14], despite its phenomenological success.

All three problems above are solved when the inflaton is identified with
the scalar component of the goldstino superfield2, in the presence of a gauged
R-symmetry [16]. Indeed, the superpotential is in that case linear and the big
contribution to η described above cancels exactly. Since inflation arises at a plateau
around the maximum of the scalar potential (hill-top) no large field initial condi-
tions are needed, while the pseudo-scalar companion of the inflaton is absorbed
into the R-gauge field that becomes massive, leading the inflaton as a single scalar
field present in the low-energy spectrum. This model provides therefore a minimal
realisation of natural small-field inflation in supergravity, compatible with present
observations, as we show below. Moreover, it allows the presence of a realistic
minimum describing our present Universe with an infinitesimal positive vacuum
energy arising due to a cancellation between an F- and D-term contributions to
the scalar potential, without affecting the properties of the inflationary plateau,
along the lines of Refs. [3,11,17].

In the above models the D-term has a constant FI contribution but plays no
role during inflation and can be neglected, while the pseudoscalar partner of the
inflaton is absorbed by the U(1)R gauge field that becomes massive away from
the origin. Recently, a new FI term was proposed [19] that has three important
properties: (1) it is manifestly gauge invariant already at the Lagrangian level; (2)
it is associated to a U(1) that should not gauge an R-symmetry and (3) supersym-
metry is broken by (at least) a D-auxiliary expectation value and the extra bosonic
part of the action is reduced in the unitary gauge to a constant FI contribution
leading to a positive shift of the scalar potential, in the absence of matter fields. In
the presence of matter fields, the FI contribution to the D-term acquires a special
field dependence e2K/3 that violates invariance under Kähler transformations.

In a recent work [18], we studied the properties of the new FI term and ex-
plored its consequences to the class of inflation models we introduced in [16].3

We first showed that matter fields charged under the U(1) gauge symmetry can
consistently be added in the presence of the new FI term, as well as a non-trivial
gauge kinetic function. We then observed that the new FI term is not invariant un-
der Kähler transformations. On the other hand, a gauged R-symmetry in ordinary
Kähler invariant supergravity can always be reduced to an ordinary (non-R) U(1)
by a Kähler transformation. By then going to such a frame, we find that the two FI
contributions to the U(1) D-term can coexist, leading to a novel contribution to
the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of
inflation from supersymmetry breaking, driven by a D- instead of an F-term. The
inflaton is still a superpartner of the goldstino which is now a gaugino within

2 See [15] for earlier work relating supersymmetry and inflation.
3 This new FI term was also studied in [20] to remove an instability from inflation in

Polonyi-Starobinsky supergravity.
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1 Inflation From Supersymmetry Breaking 5

a massive vector multiplet, where again the pseudoscalar partner is absorbed
by the gauge field away from the origin. For a particular choice of the inflaton
charge, the scalar potential has a maximum at the origin where inflation occurs
and a supersymmetric minimum at zero energy, in the limit of negligible F-term
contribution (such as in the absence of superpotential). The slow roll conditions
are automatically satisfied near the point where the new FI term cancels the charge
of the inflaton, leading to higher than quadratic contributions due to its non trivial
field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that
takes it to the non R-symmetry frame. In the presence of a small superpotential, the
inflation is practically unchanged and driven by the D-term, as before. However,
the maximum is now slightly shifted away from the origin and the minimum has
a small non-vanishing positive vacuum energy, where supersymmetry is broken
by both F- and D-auxiliary expectation values of similar magnitude. The model
predicts in general small primordial gravitational waves with a tensor-to-scaler
ration r well below the observability limit. However, when higher order terms
are included in the Kähler potential, one finds that r can increase to large values
r ' 0.015.

On general grounds, there are two classes of such models depending on
whether the maximum corresponds to a point of unbroken (case 1) or broken (case
2) R-symmetry. The latter corresponds actually to a generalisation of the model we
discussed above [11], inspired by string theory [3]. It has the same field content
but in a different field basis with a chiral multiplet S ∝ lnX playing the role of
the string dilaton. Thus, S has a shift symmetry which is actually an R-symmetry
gauged by a vector multiplet and the superpotential is a single exponential. The
scalar potential has a minimum with a tuneable vacuum energy and a maximum
that can produce inflation when appropriate corrections are included in the Kähler
potential. In these coordinates R-symmetry is restored at infinity, corresponding
to the weak coupling limit. Small field inflation is again guaranteed consistently
with the validity of the effective field theory.

In the following, we will present the main features of models of case 1, where
inflation occurs near the maximum of the scalar potential where R-symmetry
is restored and supersymmetry breaking is driven predominantly either by an
F-term or by a D-term.

1.2 Conventions

Throughout this paper we use the conventions of [21]. A supergravity theory is
specified (up to Chern-Simons terms) by a Kähler potential K, a superpotential
W, and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enu-
merated by the index α and the indices A,B indicate the different gauge groups.
Classically, a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),
W(z) −→ e−κ

2J(z)W(z), (1.1)
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6 I. Antoniadis

where κ is the inverse of the reduced Planck mass, MPl = κ−1 = 2.4 × 1015 TeV.
The gauge transformations of chiral multiplet scalars are given by holomorphic
Killing vectors, i.e. δzα = θAkαA(z), where θA is the gauge parameter of the gauge
group A. The Kähler potential and superpotential need not be invariant under this
gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (1.2)

provided that the gauge transformation of the superpotential satisfies δW =

−θAκ2rA(z)W. One then has from δW =Wαδz
α

Wαk
α
A = −κ2rAW, (1.3)

whereWα = ∂αW and α labels the chiral multiplets. The supergravity theory can
then be described by a gauge invariant function

G = κ2K + log(κ6WW̄). (1.4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1

2
(Ref)−1 AB PAPB, (1.5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (1.6)

The moment maps PA are given by

PA = i(kαA∂αK − rA). (1.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for
which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is
a Fayet-Iliopoulos [4] constant parameter.

1.3 Symmetric versus non-symmetric point

Here, we present a class of inflation models in supergravity theories containing
a single chiral multiplet transforming under a gauged R-symmetry with a cor-
responding abelian vector multiplet [16]. We assume that the chiral multiplet X
(with scalar component X) transforms as:

X −→ Xe−iqω. (1.8)

where q is its charge, andω is the gauge parameter.
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1 Inflation From Supersymmetry Breaking 7

The Kähler potential is therefore a function of XX̄, while the superpotential is
constrained to be of the form Xb:

K = K(XX̄),
W = κ−3fXb, (1.9)

where X is a dimensionless field. For b 6= 0, the gauge symmetry eq. (1.8) becomes
a gauged R-symmetry. The gauge kinetic function can have a constant contribution
as well as a contribution proportional to lnX

f(X) = γ+ β lnX. (1.10)

The latter contribution proportional to β is not gauge invariant and can be used
as a Green-Schwarz counter term to cancel possible anomalies. One can show
however that the constant β is fixed to be very small by anomaly cancellation
conditions and does not change our results [16]. We will therefore omit this term
in our analysis below.

We are interested in the general properties of supergravity theories of inflation
that are of the above form. Before performing our analysis, a distinction should
be made concerning the initial point where slow-roll inflation starts. The inflaton
field (which will turn out to be ρ, where X = ρeiθ) can either have its initial
value close to the symmetric point where X = 0, or at a generic point X 6= 0. The
minimum of the potential, however, is always at a nonzero point X 6= 0. This is
because at X = 0 the negative contribution to the scalar potential vanishes and no
cancellation between F-term and D-term is possible. The supersymmetry breaking
scale is therefore related to the cosmological constant as κ−2m23/2 ≈ Λ. One could
in principle assume that the value of the potential at its minimum is of the order
of the supersymmetry breaking scale. However, in this case additional corrections
are needed to bring down the minimum of the potential to the present value of
the cosmological constant, and we therefore do not discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton field will roll
towards a minimum of the potential at X 6= 0. On the other hand, in the second
case inflation will start at a generic point X 6= 0. It is then convenient to work with
another chiral superfield S, which is invariant under a shift symmetry

S −→ S− icα (1.11)

by performing a field redefinition

X = eS. (1.12)

In this case the most general Kähler potential and superpotential are of the form

K = K(S+ S̄),
W = κ−3aebS. (1.13)

Note that this field redefinition is not valid at the symmetric point X = 0 for the
first case.
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1.4 Case 1: Inflation near the symmetric point

1.4.1 Slow roll parameters

In this section we derive the conditions that lead to slow-roll inflation scenarios,
where the start of inflation is near a local maximum of the potential at X = 0.
Since the superpotential has charge 2 under R-symmetry, one has 〈W〉 = 0 as
long as R-symmetry is preserved. Therefore, 〈W〉 can be regarded as the order
parameter of R-symmetry breaking. On the other hand, the minimum of the
potential requires 〈W〉 6= 0 and broken R-symmetry. It is therefore attractive
to assume that at earlier times R-symmetry was a good symmetry, switching
off dangerous corrections to the potential. As similar approach was followed
in [22], where a discrete R-symmetry is assumed. Instead, we assume a gauged
R-symmetry which is spontaneously broken at the minimum of the potential.

While the superpotential is uniquely fixed in eq. (1.9), the Kähler potential is
only fixed to be of the form K(XX̄). We expand the Kähler potential as follows

K(X, X̄) = κ−2XX̄+ κ−2A(XX̄)2,

W(X) = κ−3fXb,

f(X) = 1, (1.14)

where A and f are constants. The gauge kinetic function is taken to be constant
since it was shown that the coefficient β in front of the logarithmic term in eq. (1.10)
is fixed to be very small by anomaly cancellation conditions [16]. As far as the
scalar potential is concerned, the coefficient γ can be absorbed in other parameters
of the theory. We therefore take γ = 1.

The scalar potential is given by

V = VF + VD, (1.15)

where

VF = κ−4f2(XX̄)b−1eXX̄(1+AXX̄)
[
−3XX̄+

(
b+ XX̄(1+ 2AXX̄)

)2
1+ 4AXX̄

]
(1.16)

and

VD = κ−4
q2

2

[
b+ XX̄(1+ 2AXX̄)

]2
. (1.17)

The superpotential is not gauge invariant under the U(1) gauge symmetry.
Instead it transforms as

W →We−iqbw . (1.18)

Therefore, theU(1) is a gauged R-symmetry which we will further denote asU(1)R.
From WXk

X
R = −rRκ

2W, where kXR = −iqX is the Killing vector for the field X
under the R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet-Iliopoulos contribution
to the scalar potential, andWX is short-hand for ∂W/∂X, we find

rR = iκ−2qb. (1.19)
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1 Inflation From Supersymmetry Breaking 9

A consequence of the gauged R-symmetry is that the superpotential coupling b
enters the D-term contribution of the scalar potential as a constant Fayet-Iliopoulos
contribution.4

Note that the scalar potential is only a function of the modulus of X and that
the potential contains a Fayet-Iliopoulos contribution for b 6= 0. Moreover, its
phase will be ‘eaten’ by the U(1) gauge boson upon a field redefinition of the
gauge potential similarly to the standard Higgs mechanism. After performing a
change of field variables

X = ρeiθ, X̄ = ρe−iθ, (ρ ≥ 0) (1.20)

the scalar potential is a function of ρ,

κ4V = f2ρ2(b−1)eρ
2+Aρ4

(
−3ρ2 +

(
b+ ρ2 + 2Aρ4

)2
1+ 4Aρ2

)
+
q2

2

(
b+ ρ2 + 2Aρ4

)2
.(1.21)

Since we assume that inflation starts near ρ = 0, we require that the potential
eq. (1.21) has a local maximum at this point. It turns out that the potential only
allows for a local maximum at ρ = 0 when b = 1. For b < 1 the potential diverges
when ρ goes to zero. For 1 < b < 1.5 the first derivative of the potential diverges,
while for b = 1.5, one has V ′(0) = 9

4
f2 + 3

2
q2 > 0, and for b > 1.5, on has

V ′′(0) > 0. We thus take b = 1 and the scalar potential reduces to

κ4V = f2eρ
2+Aρ4

(
−3ρ2 +

(
1+ ρ2 + 2Aρ4

)2
1+ 4Aρ2

)
+
q2

2

(
1+ ρ2 + 2Aρ4

)2
.(1.22)

A plot of the potential for A = 1/2, q = 1 and f tuned so that the minimum has
zero energy is given in Figure 1.1.

Note that in this case the the superpotential is linearW = fX, describing the
sgoldstino (up to an additional low-energy constraint) [26]. Indeed, modulo a
D-term contribution, the inflaton in this model is the superpartner of the goldstino.
In fact, for q = 0 the inflaton reduces to the partner of the goldstino as in Minimal
Inflation models [27]. The important difference however is that this is a microscopic
realisation of the identification of the inflaton with the sgoldstino, and that the
so-called η-problem is avoided (see discussion below).

The kinetic terms for the scalars can be written as5

Lkin = −gXX̄∂̂µX∂̂
µX

= −gXX̄
[
∂µρ∂

µρ+ ρ2 (∂µθ+ qAµ) (∂
µθ+ qAµ)

]
. (1.23)

It was already anticipated above that the phase θ plays the role of the longitudinal
component of the gauge field Aµ, which acquires a mass by a Brout-Englert-Higgs
mechanism.

4 For other studies of inflation involving Fayet-Iliopoulos terms see for example [24], or [25]
for more recent work. Moreover, our motivations have some overlap with [22], where
inflation is also assumed to start near an R-symmetric point at X = 0. However, this work
uses a discrete R-symmetry which does not lead to Fayet-Iliopoulos terms.

5 The covariant derivative is defined as ∂̂µX = ∂µX − Aµk
X
R , where kXR = −iqX is the

Killing vector for the U(1) transformation eq. (1.8).



i
i

“proc18” — 2018/12/10 — 11:44 — page 10 — #26 i
i

i
i

i
i

10 I. Antoniadis

Fig. 1.1.

We now interpret the field ρ as the inflaton. It is important to emphasise that,
in contrast with usual supersymmetric theories of inflation where one necessarily
has two scalar degrees of freedom resulting in multifield inflation [28], our class
of models contains only one scalar field ρ as the inflaton. In order to calculate the
slow-roll parameters, one needs to work with the canonically normalised field χ
satisfying

dχ

dρ
=
√
2gXX̄. (1.24)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1

κ2
d2V/dχ2

V
. (1.25)

Since we assume inflation to start near ρ = 0, we expand

ε = 4
(

−4A+x2

2+x2

)2
ρ2 +O(ρ4),

η = 2
(

−4A+x2

2+x2

)
+O(ρ2), (1.26)

where we defined q = fx. Notice that for ρ � 1 the ε parameter is very small,
while the η parameter can be made small by carefully tuning the parameter A.
Any higher order corrections to the Kähler potential do not contribute to the
leading contributions in the expansion near ρ = 0 for η and ε. Such corrections
can therefore be used to alter the potential near its minimum, at some point X 6= 0
without influencing the slow-roll parameters.

A comment on the η-problem in Supergravity A few words are now in order
concerning the η-problem [29]. The η problem in N = 1 supergravity is often
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1 Inflation From Supersymmetry Breaking 11

stated as follows (see for example [30]): If, for instance, a theory with a single
chiral multiplet with scalar component ϕ is taken, then the Kähler potential can
be expanded around a reference location ϕ = 0 as K = K(0) +Kϕϕ̄(0)ϕϕ̄+ . . . .
The Lagrangian becomes

L = −∂µφ∂
µφ̄− V(0)

(
1+ κ2φφ̄+ · · ·

)
, (1.27)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄, and the ellipses
stand for extra terms in the expansion coming from K and W. Following this
argument, the massmφ turns out to be proportional to the Hubble scale

m2φ = κ2V(0) + · · · = 3H2 + . . . , (1.28)

and therefore

η =
m2φ

3H2
= 1+ . . . . (1.29)

Or otherwise stated, this leading contribution of order 1 to the η-parameter has its
origin from the fact that the F-term contribution to the scalar potential contains an
exponential factor eK: V = eXX̄+... [. . . ] resulting in its second derivative VXX̄ =

V [1+ . . . ].
However, in our model the factor ’1’ drops out for the particular choice b = 1

in the superpotential6, resulting in an inflaton massm2ρ which is determined by
the next term A(XX̄)2 in the expansion of the Kähler potential,

m2χ =
(
−4A+ x2

)
κ−2f2 +O(ρ2),

H2 = κ−2f2

6
(2+ x2) +O(ρ2). (1.30)

As a result, there are two ways to evade the η-problem:

• First, one can obtain a small η by having a small q � f, while A should
be of order O(10−1). In this case, the rôle of the gauge symmetry is merely
to constrain the form of the Kähler potential and the superpotential, and to
provide a Higgs mechanism that eliminates the extra scalar (phase) degree of
freedom.

• Alternatively there could be a cancellation between q2 and 4Af2.

Since A is the second term in the expansion of the Kähler potential eq. (1.14), it is
natural to be of orderO(10−1) and therefore providing a solution to the η-problem.

Note that the mass of the inflaton given in eqs. (1.30) is only valid during
inflation at small ρ. The mass of the inflaton at its VEV will be affected by additional
corrections that are needed to obtain in particular a vanishing value for the scalar
potential at its minimum [16].

6 Note that in hybrid inflation models the η-problem is also evaded by a somewhat similar
way, but these models generally include several scalar fields (and superfields) besides
the inflaton (see e.g. [31]).
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The upper bound on the tensor-to-scalar ratio Before moving on to the next
section, let us focus on the approximation at ρ � 1 where the perturbative ex-
pansion of the slow-roll parameters in eqs. (1.26) is valid, and assume that the
horizon exit occurs at the field value ρ∗ very close to the maximum ρ = 0. In this
approximation, eqs. (1.26) become

ε(ρ) ≈ εpert(ρ) = |η∗|
2ρ2, η(ρ) ≈ η∗, (1.31)

where the asterisk refers to the value of parameters evaluated at the horizon exit.
To discuss the upper bound on the tensor-to-scalar ratio, it is convenient to

divide the region [ρ = 0, ρend] into two regions: one is [0, ρp], where the approxima-
tion 1.31 is valid, and the other is the rest [ρp, ρend]. Here ρend means the inflation
end. Note that ρp < ρend because the approximation 1.31 breaks down before the
end of inflation where ε(ρend) = 1 or |η(ρend)| = 1. In terms of this division, the
number of e-folds from the horizon exit to the end of inflation can be approximated
by

NCMB ' Npert(ρ∗, ρp) + κ

∫χend

χp

dχ√
2ε(χ)

, (1.32)

where we introduced

Npert(ρ1, ρ2) = κ

∫χ2
χ1

dχ√
2εpert(χ)

=
1

|η∗|
ln
(
ρ2

ρ1

)
. (1.33)

Here χ is the canonically normalised field defined by eq. (1.24). Let us next focus
on the region [ρp, ρend]. It is natural to expect the following inequality

κ

∫χend

χp

dχ√
2ε(χ)

<
∼ κ

∫χend

χp

dχ√
2εpert(χ)

. (1.34)

This is based on the following observation. The right hand side describes a hypo-
thetical situation, as if the slow-roll condition were valid throughout the inflation
until its end. But since in the actual inflation the slow-roll condition breaks down
in the region [ρp, ρend], the actual number of e-folds in this region will be smaller
than that in the hypothetical situation. AddingNpert(ρ∗, ρp) to the both hand sides
of 1.34 and using 1.32, we find

NCMB <∼
1

|η∗|
ln
(
ρend

ρ∗

)
. (1.35)

Using 1.31 and the definition of the tensor-to-scalar ratio r = 16ε∗, we obtain the
upper bound:

r <∼ 16
(
|η∗|ρende

−|η∗|NCMB

)2
. (1.36)

To satisfy CMB data, let us choose η = −0.02 andNCMB ≈ 50. Assuming ρend <∼ 1/2,
we obtain the upper bound r <∼ 10−4. Note that this is a little bit lower than the
Lyth bound [32] for small field inflation, r <∼ 10−3. From the upper bound on r, we
can also find the upper bound on the Hubble parameter as follows. In general, the
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1 Inflation From Supersymmetry Breaking 13

power spectrum amplitude As is related to the Hubble parameter at horizon exit
H∗ by

As =
2κ2H2∗
π2r

. (1.37)

Combining this with the upper bound r <∼ 10−4 and the value As = 2.2× 10−9 by
CMB data, we find the upper bound on the Hubble parameter H∗ <∼ 109 TeV.

In Ref. [16], we will also find the lower bound r >∼ 10−9 (equivalentlyH∗ >∼ 107

TeV), based on an model-independent argument. This bound can be lowered at
the cost of naturalness between parameters in the potential.

1.5 On the new FI term

1.5.1 Review

In [19], the authors propose a new contribution to the supergravity Lagrangian of
the form7

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

. (1.38)

The chiral compensator field S0, with Weyl and chiral weights (Weyl,Chiral) =
(1, 1), has components S0 = (s0, PLΩ0, F0) . The vector multiplet has vanishing
Weyl and chiral weights, and its components are given by V = (v, ζ,H, vµ, λ,D).
In the Wess-Zumino gauge, the first components are put to zero v = ζ = H = 0.
The multiplet w2 is of weights (1, 1), and given by

w2 =
λ̄PLλ

S20
, w̄2 =

λPRλ̄

S̄20
. (1.39)

The components of λ̄PLλ are given by

λ̄PLλ =
(
λ̄PLλ ;

√
2PL

(
−
1

2
γ · F̂+ iD

)
λ ; 2λ̄PL /Dλ+ F̂− · F̂− −D2

)
. (1.40)

The kinetic terms for the gauge multiplet are given by

Lkin = −
1

4

[
λ̄PLλ

]
F
+ h.c. . (1.41)

The operator T (T̄ ) is defined in [34,35], and leads to a chiral (antichiral) multiplet.
For example, the chiral multiplet T(w̄2) has weights (2, 2). In global supersymme-
try the operator T corresponds to the usual chiral projection operator D̄2.8

From now on, we will drop the notation of h.c. and implicitly assume its
presence for every [ ]F term in the Lagrangian. Finally, the multiplet (V)D is a
linear multiplet with weights (2, 0), given by

(V)D =
(
D, /Dλ, 0,DbF̂ab,−/D /Dλ,−�CD

)
. (1.42)

7 A similar, but not identical term was studied in [33].
8 The operator T indeed has the property that T(Z) = 0 for a chiral multiplet Z. Moreover,

for a vector multiplet V we have T(ZC) = ZT(C), and [C]D = 1
2
[T(C)]F.
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The definitions of /Dλ and the covariant field strength F̂ab can be found in eq. (17.1)
of [23], which reduce for an abelian gauge field to

F̂ab = e µa e
ν
b

(
2∂[µAν] + ψ̄[µγν]λ

)
Dµλ =

(
∂µ −

3

2
bµ +

1

4
wabµ γab −

3

2
iγ∗Aµ

)
λ−

(
1

4
γabF̂ab +

1

2
iγ∗D

)
ψµ.

(1.43)

Here, e µa is the vierbein, with frame indices a, b and coordinate indices µ, ν. The
fields wabµ , bµ, and Aµ are the gauge fields corresponding to Lorentz transforma-
tions, dilatations, and TR symmetry of the conformal algebra respectively, while
ψµ is the gravitino. The conformal d’Alembertian is given by �C = ηabDaDb.

It is important to note that the FI term given by eq. (1.38) does not require the
gauging of an R-symmetry, but breaks invariance under Kähler transformations.
In fact, a gauged R-symmetry would forbid such a term LFI [19].9

The resulting Lagrangian after integrating out the auxiliary field D contains a
term

LFI,new = −
ξ22
2

(s0s̄0)
2
. (1.44)

In the absence of additional matter fields, one can use the Poincaré gauge s0 =

s̄0 = 1, resulting in a constant D-term contribution to the scalar potential. This
prefactor however is relevant when matter couplings are included in the next
section.

1.5.2 Adding (charged) matter fields

In this section we couple the term LFI given by eq. (1.38) to additional matter fields
charged under the U(1). For simplicity, we focus on a single chiral multiplet X.
The extension to more chiral multiplets is trivial. The Lagrangian is given by

L = −3
[
S0S̄0e

− 1
3
K(X,X̄)

]
D
+
[
S30W(X)

]
F
−
1

4

[
f(X)λ̄PLλ

]
F
+ LFI, (1.45)

with a Kähler potential K(X, X̄), a superpotentialW(X) and a gauge kinetic func-
tion f(X). The first three terms in eq. (1.45) give the usual supergravity Lagrangian
[23]. We assume that the multiplet X transforms under the U(1),

V → V +Λ+ Λ̄,

X→ Xe−qΛ, (1.46)

with gauge multiplet parameter Λ. We assume that the U(1) is not an R-symmetry.
In other words, we assume that the superpotential does not transform under the
gauge symmetry. For a model with a single chiral multiplet this implies that the
superpotential is constant

W(X) = F. (1.47)

9 We kept the notation of [19]. Note that in this notation the field strength superfieldWα is
given byW2 = λ̄PLλ, and (V)D corresponds to DαWα.
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Gauge invariance fixes the Kähler potential to be a function of XeqV X̄ (for nota-
tional simplicity, in the following we omit the eqV factors).

Indeed, in this case the termLFI can be consistently added to the theory, similar
to [19], and the resulting D-term contribution to the scalar potential acquires an
extra term proportional to ξ2

VD =
1

2
Re (f(X))−1

(
ikX∂XK+ ξ2e

2
3
K
)2
, (1.48)

where the Killing vector is kX = −iqX and f(X) is the gauge kinetic function. The
F-term contribution to the scalar potential remains the usual

VF = eK(X,X̄)
(
−3WW̄ + gXX̄∇XW∇̄X̄W̄

)
. (1.49)

For a constant superpotential (1.47) this reduces to

VF = |F|2eK(X,X̄)
(
−3+ gXX̄∂XK∂X̄K

)
. (1.50)

From eq. (1.48) it can be seen that if the Kähler potential includes a term
proportional to ξ1 log(XX̄), the D-term contribution to the scalar potential acquires
another constant contribution. For example, if

K(X, X̄) = XX̄+ ξ1 ln(XX̄), (1.51)

the D-term contribution to the scalar potential becomes

VD =
1

2
Re (f(X))−1

(
qXX̄+ qξ1 + ξ2e

2
3
K
)2
. (1.52)

In fact the contribution proportional to ξ1 is the usual FI term in a non R-symmetric
Kähler frame, which can be consistently added to the model including the new FI
term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄)→ K(X, X̄) + J(X) + J̄(X̄),

W(X)→W(X)e−J(X), (1.53)

with J(X) = −ξ1 lnX allows one to recast the model in the form

K(X, X̄) = XX̄,

W(X) = m3/2X. (1.54)

The two models result in the same Lagrangian, at least classically10. However, in
the Kähler frame of eqs. (1.54) the superpotential transforms nontrivially under the
gauge symmetry. As a consequence, the gauge symmetry becomes an R-symmetry.
Note that [18]:

1. The extra term (1.38) violates the Kähler invariance of the theory, and the two
models related by a Kähler transformation are no longer equivalent.

2. The model written in the Kähler frame where the gauge symmetry becomes
an R-symmetry in eqs. (1.54) can not be consistently coupled to LFI.

10 At the quantum level, a Kähler transformation also introduces a change in the gauge
kinetic function f, see for example [36].



i
i

“proc18” — 2018/12/10 — 11:44 — page 16 — #32 i
i

i
i

i
i
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1.6 The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not
transform, and take into account the two types of FI terms which were discussed
in the last section. For convenience, we repeat here the Kähler potential in eq. (1.51)
and restore the inverse reduced Planck mass κ =M−1

Pl = (2.4× 1018GeV)−1:

K = κ−2(XX̄+ ξ1 lnXX̄). (1.55)

The superpotential and the gauge kinetic function are set to be constant11:

W = κ−3F, f(X) = 1. (1.56)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting
ξ1 = b, the full scalar potential V = VF + VD is a function of ρ. The F-term
contribution to the scalar potential is given by

VF =
1

κ4
F2eρ

2

ρ2b

[(
b+ ρ2

)2
ρ2

− 3

]
, (1.57)

and the D-term contribution is

VD =
q2

2κ4

(
b+ ρ2 + ξρ

4b
3 e

2
3
ρ2
)2
. (1.58)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We consider the
case with ξ 6= 0 because we are interested in the role of the new FI-term in
inflationary models driven by supersymmetry breaking. Moreover, the limit ξ→ 0

is ill-defined [19].
The first FI parameter b was introduced as a free parameter. We now proceed

to narrowing the value of b by the following physical requirements. We first
consider the behaviour of the potential around ρ = 0,

VD =
q2

2κ4

[(
b2 + 2bρ2 +O(ρ4)

)
+ 2bξρ

4b
3

(
1+O(ρ2)

)
+ ξ2ρ

8b
3

(
1+O(ρ2)

)]
,

(1.59)

VF =
F2

κ4
ρ2b
[
b2ρ−2 + (2b− 3) +O(ρ2)

]
. (1.60)

Here we are interested in small-field inflation models in which the inflation starts
in the neighbourhood of a local maximum at ρ = 0. In [16], we considered models
of this type with ξ = 0 (which were called Case 1 models), and found that the
choice b = 1 is forced by the requirement that the potential takes a finite value
at the local maximum ρ = 0. Now, we will investigate the effect of the new FI
parameter ξ on the choice of b under the same requirement.

11 Strictly speaking, the gauge kinetic function gets a field-dependent correction propor-
tional to q2 ln ρ, in order to cancel the chiral anomalies [11]. However, the correction
turns out to be very small and can be neglected below, since the charge q is chosen to be
of order of 10−5 or smaller.
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First, in order for V(0) to be finite, we need b ≥ 0. We first consider the case
b > 0. We next investigate the condition that the potential at ρ = 0 has a local
maximum. For clarity we discuss below the cases of F = 0 and F 6= 0 separately.
The b = 0 case will be treated at the end of this section.

1.6.1 Case F = 0

In this case VF = 0 and the scalar potential is given by only the D-term contribution
V = VD. Let us first discuss the first derivative of the potential:

V ′D =
q2

2κ4

[
4bρ

(
1+O(ρ2)

)
+
8b2

3
ξρ

4b
3

−1
(
1+O(ρ2)

)
+
8b

3
ξ2ρ

8b
3

−1
(
1+O(ρ2)

)]
.

(1.61)

For V ′D(0) to be convergent, we need b ≥ 3/4 (note that ξ 6= 0). When b = 3/4, we
have V ′D(0) = 8b2ξ/3, which does not give an extremum because we chose ξ 6= 0.
On the other hand, when b > 3/4, we have V ′D(0) = 0. To narrow the allowed
value of b further, let us turn to the second derivative,

V ′′D =
q2

2κ4

[
4b
(
1+O(ρ2)

)
+
8b2

3

(4b
3

− 1
)
ξρ

4b
3

−2
(
1+O(ρ2)

)
+
8b

3

(8b
3

− 1
)
ξ2ρ

8b
3

−2
(
1+O(ρ2)

)]
. (1.62)

When 3/4 < b < 3/2, the second derivative V ′′D(0) diverges. When b > 3/2, the
second derivative becomes V ′′D(0) = 2κ−4q2b > 0, which gives a minimum.

We therefore conclude that to have a local maximum at ρ = 0, we need to
choose b = 3/2, for which we have

V ′′D(0) = 3κ−4q2(ξ+ 1). (1.63)

The condition that ρ = 0 is a local maximum requires ξ < −1.
Let us next discuss the global minimum of the potential with b = 3/2 and

ξ < −1. The first derivative of the potential without approximation reads

V ′D ∝ ρ(3+ 3ξe
2
3
ρ2 + 2ξρ2e

2
3
ρ2)(3+ 2ρ2 + 2ξρ2e

2
3
ρ2). (1.64)

Since 3+ 3ξe
2
3
ρ2 + 2ξρ2e

2
3
ρ2 < 0 for ρ ≥ 0 and ξ < −1, the extremum away from

ρ = 0 is located at ρv satisfying the condition

3+ 2ρ2v + 2ξρ
2
ve

2
3
ρ2v = 0. (1.65)

Substituting this condition into the potential VD gives VD(ρv) = 0.
We conclude that for ξ < −1 and b = 3/2 the potential has a maximum

at ρ = 0, and a supersymmetric minimum at ρv. We postpone the analysis of
inflation near the maximum of the potential in section 1.7, and the discussion of
the uplifting of the minimum in order to obtain a small but positive cosmological
constant below. In the next subsection we investigate the case F 6= 0.
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We finally comment on supersymmetry (SUSY) breaking in the scalar poten-
tial. Since the superpotential is zero, the SUSY breaking is measured by the D-term
order parameter, namely the Killing potential associated with the gauged U(1),
which is defined by

D = iκ−2
−iqX

W

(
∂W

∂X
+ κ2

∂K
∂X
W

)
. (1.66)

This enters the scalar potential as VD = D2/2. So, at the local maximum and
during inflation D is of order q and supersymmetry is broken. On the other hand,
at the global minimum, supersymmetry is preserved and the potential vanishes.

1.6.2 Case F 6= 0

In this section we take into account the effect of VF; its first derivative reads:

V ′F = κ−4F2
[
b2(2b− 2)ρ2b−3 + 2b(2b− 3)ρ2b−1

(
1+O(ρ2)

)]
. (1.67)

For V ′(0) to be convergent, we need b ≥ 3/2, for which V ′D(0) = 0 holds. For
b = 3/2, we have V ′F(0) = (9/4)κ−4F2 > 0, that does not give an extremum. For
b > 3/2, we have V ′F(0) = 0. To narrow the allowed values of b further, let us turn
to the second derivative,

V ′′F = κ−4F2
[
b2(2b− 2)(2b− 3)ρ2b−4 + 2b(2b− 3)(2b− 1)ρ2b−2

(
1+O(ρ2)

)]
.

(1.68)

For 3/2 < b < 2, the second derivative V ′′F (0) diverges. For b ≥ 2, the second
derivative is positive V ′′(0) > 0, that gives a minimum (note that V ′′D(0) > 0 as
well in this range).

We conclude that the potential cannot have a local maximum at ρ = 0 for any
choice of b. Nevertheless, as we will show below, the potential can have a local
maximum in the neighbourhood of ρ = 0 if we choose b = 3/2 and ξ < −1. For
this choice, the derivatives of the potential have the following properties,

V ′(0) < 0, V ′′(0) = 3κ−4q2(ξ+ 1). (1.69)

The extremisation condition around ρ = 0 becomes

3κ−4q2(ξ+ 1)ρ+
9

4
κ−4F2 ' 0. (1.70)

So the extremum is at

ρ ' −
3F2

4q2(ξ+ 1)
. (1.71)

Note that the extremum is in the neighbourhood of ρ = 0 as long as we keep
the F-contribution to the scalar potential small by taking F2 � q2|ξ + 1|, which
guarantees the approximation ignoring higher order terms in ρ. We now choose
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ξ < −1 so that ρ for this extremum is positive. The second derivative at the
extremum reads

V ′′ ' 3κ−4q2(ξ+ 1), (1.72)

as long as we ignore higher order terms in F2/(q2|ξ + 1|). By our choice ξ < −1,
the extremum is a local maximum, as desired.

Let us comment on the global minimum after turning on the F-term contribu-
tion. As long as we choose the parameters so that F2/q2 � 1, the change in the
global minimum ρv is very small, of order O(F2/q2), because the extremisation
condition depends only on the ratio F2/q2. So the change in the value of the global
minimum is of order O(F2). The plot of this change is given in Fig. 1.2.

Fig. 1.2. This plot shows the scalar potentials in F = 0 and F 6= 0 cases. When F = 0, we
have a local maximum at ρmax = 0 and a global minimum with zero cosmological constant.
For F 6= 0, the local maximum is shifted by a small positive value to ρmax 6= 0. The global
minimum now has a positive cosmological constant.

In the present case F 6= 0, the order parameters of SUSY breaking are both the
Killing potential D and the F-term contribution FX, which read

D ∝ q(3
2
+ ρ2), FX ∝ Fρ1/2eρ

2/2, (1.73)

where the F-term order parameter FX is defined by

FX = −
1√
2
eκ
2K/2

(
∂2K
∂X∂X̄

)−1(
∂W̄

∂X̄
+ κ2

∂K
∂X̄
W̄

)
. (1.74)

Therefore, at the local maximum, FX/D is of order O((ξ+ 1)−1/2F2/q2) because
ρ there is of order O((ξ+ 1)−1F2/q2). On the other hand, at the global minimum,
both D and FX are of order O(F), assuming that ρ at the minimum is of order
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O(1), which is true in our models below. This makes tuning of the vacuum energy
between the F- and D-contribution in principle possible, along the lines of [16,11].

A comment must be made here on the action in the presence of non-vanishing
F and ξ. As mentioned above, the supersymmetry is broken both by the gauge
sector and by the matter sector. The associated goldstino therefore consists of
a linear combination of the U(1) gaugino and the fermion in the matter chiral
multiplet X. In the unitary gauge the goldstino is set to zero, so the gaugino is not
vanishing anymore, and the action does not simplify as in Ref. [19]. This, however,
only affects the part of the action with fermions, while the scalar potential does
not change. This is why we nevertheless used the scalar potential (1.57) and (1.58).

Let us consider now the case b = 0 where only the new FI parameter ξ
contributes to the potential. In this case, the condition for the local maximum of
the scalar potential at ρ = 0 can be satisfied for −3

2
< ξ < 0. When F is set to zero,

the scalar potential (1.58) has a minimum at ρ2min = 3
2

ln
(
− 3
2ξ

)
. In order to have

Vmin = 0, we can choose ξ = − 3
2e

. However, we find that this choice of parameter
ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to the previous model of section 1.4, it may be possible to achieve both the
scalar potential satisfying slow-roll conditions and a small cosmological constant
at the minimum by adding correction terms to the Kähler potential and turning
on a parameter F. However, here, we will focus on b = 3/2 case where, as we will
see shortly, less parameters are required to satisfy the observational constraints.

1.7 Application in Inflation

We recall that the the models we described in section 1.4, the inflaton is identified
with the sgoldstino, carrying a U(1) charge under a gauged R-symmetry and
inflation occurs around the maximum of the scalar potential, where the U(1)
symmetry is restored, with the inflaton rolling down towards the electroweak
minimum. These models avoid the so-called η-problem in supergravity by taking
a linear superpotential, W ∝ X. In contrast, here we will consider models with
two FI parameters b, ξ in the Kähler frame where the U(1) gauge symmetry is not
an R-symmetry. If the new FI term ξ is zero, these models are Kähler equivalent
to those with a linear superpotential (Case 1 models with b = 1). The presence of
non-vanishing ξ, however, breaks the Kähler invariance as we discussed before.
Moreover, the FI parameter b cannot be 1 but is forced to be b = 3/2, according
to the argument in Section 1.6. So the new models do not seem to avoid the η-
problem. Nevertheless, we will show below that this is not the case and the new
models with b = 3/2 avoid the η-problem thanks to the other FI parameter ξ
which is chosen near the value at which the effective charge of X vanishes between
the two FI-terms. Inflation is again driven from supersymmetry breaking but from
a D-term rather than an F-term as we had before.

1.7.1 Example for slow-roll D-term inflation

In this section we focus on the case where b = 3/2 and derive the condition
that leads to slow-roll inflation scenarios, where the start of inflation (or, horizon
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crossing) is near the maximum of the potential at ρ = 0. We also assume that the
scalar potential is D-term dominated by choosing F = 0, for which the model has
only two parameters, namely q and ξ. The parameter q controls the overall scale
of the potential and it will be fixed by the amplitude As of the CMB data. The only
free-parameter left over is ξ, which can be tuned to satisfy the slow-roll condition.

In order to calculate the slow-roll parameters, we need to work with the
canonically normalised field χ defined by eqs. (1.24), (1.25). Since we assume
inflation to start near ρ = 0, the slow-roll parameters for small ρ can be expanded
as

ε =
F4

q4
+
4F2

(
2(ξ+ 1)q4 − 3F4

)
3q6

ρ

+

(
16

9
(ξ+ 1)2 +

2F4
(
18F4 − q4(20ξ+ 11)

)
3q8

)
ρ2 +O(ρ3),

η =
4(1+ ξ)

3
+O(ρ). (1.75)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ
to avoid the η-problem. The observation is that at ξ = −1, the effective charge of X
vanishes and thus the ρ-dependence in the D-term contribution (1.58) becomes of
quartic order.

For our present choice F = 0, the potential and the slow-roll parameters
become functions of ρ2 and the slow-roll parameters for small ρ2 read

η =
4(1+ ξ)

3
+O(ρ2) ,

ε =
16

9
(ξ+ 1)2ρ2 +O(ρ4) ' η(0)2ρ2 . (1.76)

Note that we obtain the same relation between ε and η as in the model of inflation
from supersymmetry breaking driven by an F-term from a linear superpotential
and b = 1 (see eq. (1.26)). Thus, there is a possibility to have flat plateau near
the maximum that satisfies the slow-roll condition and at the same time a small
cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ2
∫χend

χ∗

V
∂χV

dχ = κ2
∫ρend

ρ∗

V
∂ρV

(
dχ

dρ

)2
dρ, (1.77)

where we choose |ε(χend)| = 1. Notice that the slow-roll parameters for small
ρ2 satisfy the simple relation ε = η(0)2ρ2 + O(ρ4) by eq. (1.76). Therefore, the
number of e-folds between ρ = ρ1 and ρ2 (ρ1 < ρ2) takes the following simple
approximate form as in (1.32):

N ' 1

|η(0)|
ln
(
ρ2

ρ1

)
=

3

4|ξ+ 1|
ln
(
ρ2

ρ1

)
. (1.78)

as long as the expansions in (1.76) are valid in the region ρ1 ≤ ρ ≤ ρ2. Here we
also used the approximation η(0) ' η∗, which holds in this approximation.
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We can compare the theoretical predictions of our model to the observational
data via the power spectrum of scalar perturbations of the CMB, namely the
amplitude As, tilt ns and the tensor-to-scalar ratio of primordial fluctuations r.
These are written in terms of the slow-roll parameters:

As =
κ4V∗
24π2ε∗

,

ns = 1+ 2η∗ − 6ε∗ ' 1+ 2η∗ ,
r = 16ε∗ , (1.79)

where all parameters are evaluated at the field value at horizon crossing χ∗. From
the relation of the spectral index above, one should have η∗ ' −0.02, and thus
eq. (1.78) gives approximately the desired number of e-folds when the logarithm is
of order one. Actually, using this formula, we can estimate the upper bound of the
tensor-to-scalar ratio r and the Hubble scaleH∗ following the same argument given
in section 1.4; that is, the upper bounds are given by computing the parameters
r,H∗ assuming that the expansions (1.76) hold until the end of inflation. We then
get the bound

r . 16(|η∗|ρende
−|η∗|N)2 ' 10−4, H∗ . 10

12GeV, (1.80)

where we used |η∗| = 0.02,N ' 50 − 60 and ρend . 0.5, which are consistent with
our models. In the next subsection, we will present a model which gives a tensor-
to-scalar ratio bigger than the upper bound above, by adding some perturbative
corrections to the Kähler potential.

As an example, let us consider the case where

q = 4.544× 10−7, ξ = −1.005. (1.81)

By choosing the initial condition ρ∗ = 0.055 and ρend = 0.403, we obtain the results
N = 58, ns = 0.9542, r = 7.06× 10−6 and As = 2.2× 10−9, which are within the
2σ-region of Planck’15 data [18].

As was shown in Section 1.6.1, this model has a supersymmetric minimum
with zero cosmological constant because F is chosen to be zero. One possible way
to generate a non-zero cosmological constant at the minimum is to turn on the
superpotentialW = κ−3F 6= 0, as mentioned in Section 1.6.2. In this case, the scale
of the cosmological constant is of order O(F2). It would be interesting to find an
inflationary model which has a minimum at a tiny tuneable vacuum energy with
a supersymmetry breaking scale consistent with the low energy particle physics.

1.7.2 A small field inflation model from supergravity with observable
tensor-to-scalar ratio

While the results in the previous example agree with the current limits on r set by
Planck, supergravity models with higher r are of particular interest. In this section
we show that our model can get large r at the price of introducing some additional
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terms in the Kähler potential. Let us consider the previous model with additional
quadratic and cubic terms in XX̄:

K = κ−2
(
XX̄+A(XX̄)2 + B(XX̄)3 + b lnXX̄

)
, (1.82)

while the superpotential and the gauge kinetic function remain as in eq. (1.56). We
now assume that inflation is driven by the D-term, setting the parameter F = 0. In
terms of the field variable ρ, we obtain the scalar potential:

V = q2
(
b+ ρ2 + 2Aρ4 + 3Bρ6 + ξρ

4b
3 e

2
3 (Aρ

4+Bρ6+ρ2)
)2
. (1.83)

We thus have two more parameters A and B. This does not affect the arguments
of the choices of b in the previous sections because these parameters appear in
higher orders in ρ in the scalar potential. So, we consider the case b = 3/2. The
simple formula (1.78) for the number of e-folds for small ρ2 also holds even when
A,B are turned on because the new parameters appear at order ρ4 and higher. To
obtain r ≈ 0.01, we can choose for example

q = 2.121× 10−5, ξ = −1.140, A = 0.545, B = 0.230. (1.84)

By choosing the initial condition ρ∗ = 0.240 and ρend = 0.720, we obtain the results
N = 57, ns = 0.9603, r = 0.015 and As = 2.2× 10−9, which agree with Planck’15
data as shown in Fig. 1.3.

Fig. 1.3. A plot of the predictions for the scalar potential with F = 0, b = 3/2, A = 0.545,
B = 0.230, ξ = −1.140 and q = 2.121× 10−5 in the ns - r plane, versus Planck’15 results.

In summary, in contrast to the model in section 1.4, where the F-term contri-
bution is dominant during inflation, here inflation is driven purely by a D-term.
Moreover, a canonical Kähler potential (1.55) together with two FI-parameters (q
and ξ) is enough to satisfy Planck’15 constraints, and no higher order correction to



i
i

“proc18” — 2018/12/10 — 11:44 — page 24 — #40 i
i

i
i

i
i

24 I. Antoniadis

the Kähler potential is needed. However, to obtain a larger tensor-to-scalar ratio,
we have to introduce perturbative corrections to the Kähler potential up to cubic
order in XX̄ (i.e. up to order ρ6). This model provides a supersymmetric extension
of the model [37] , which realises large r at small field inflation without referring
to supersymmetry.
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