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Abstract

The path of Markov process X run up to an independent exponential random time Sθ
can be decomposed into the part prior to the last exit time from a point before Sθ, and the
remainder up to Sθ. In this paper the laws of the two segments are identified under suitable
assumptions using excursion theory.
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1 Introduction
Considering a Markov processX up to an independent exponential time Sθ with rate θ > 0
has been used effectively to compute functionals of X . The computations are often based
on decompositions of the path of X up to Sθ into fragments before and after the last exit
time from a set before time Sθ. The known results described below are more general in
the sense that the path is decomposed at the last exit from a set before either fixed times or
random times belonging to a suitable family. Choosing an independent exponential time in
some cases leads to simpler descriptions of the laws of the two fragments involved. They
are often conditionally independent given suitable conditioning variables and their laws are
related to laws of known processes.

Williams [27] uses a decomposition of Brownian motion with drift run up to an in-
dependent Sθ to prove result of Ray [23] on the distribution of local times in the space
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variable. In their investigations of Ray-Knight theorems for Brownian motion B at fixed
times Biane and Yor [4] considered the pair of processes (Bt : 0 ≤ gSθ ) and (BSθ−t : 0 ≤
t ≤ Sθ − gSθ ) where Sθ is an exponential random variable independent of B and gt =
sup{s ≤ t : Bs = 0} is the last exit time from 0 before time t. Under P0 the two processes
are shown to be independent and their conditional laws given the local time L(Sθ) at zero
of Brownian motion and BSθ respectively are identified. This decomposition has been ex-
ploited by Jeanblanc, Pitman and Yor [13] to derive Feynman-Kac formulae for Brownian
motion. Salminen, Vallois and Yor [26] extend the decomposition for Brownian motion to
linear diffusions on [0,∞) with 0 a recurrent point and use them to study the excursion of
the diffusion straddling an independent exponential time.

For general Markov processes Pittenger and Shih [22] investigated the dependence of
the fragments of the path of a càdlàg strong Markov process X before coterminal time
Lt ≤ t and the fragment on the interval between Lt and t. Last exit times LtF before time t
from a closed set F are coterminal times. It is shown that given a suitably defined σ-algebra
FLt , the conditional law of the process (XLt+s : 0 ≤ s ≤ t− Lt) only depends on Lt and
XLFt

or XLt− and is an inhomogenous strong Markov process. Getoor and Sharpe [7]
give related results. General and elegant treatments of last exit decompositions are given
in Maisonneuve [18] and Pitman [21]. Kallenberg [14] proves that for Lévy processes the
fragments considered by Pittenger and Shih are conditionally independent givenXLtF− and
LtF where the last exit time from a set F is an instance of a backward time. Under suitable
conditions the laws of the two fragments are described.

Another example of considering a decomposition of a Markov process at last exit time
from 0 before and independent exponential time Sθ is the proof of fluctuation equalities
for Lévy processes given by Greenwood and Pitman [9]. If X is a Lévy process then it is
known that the process reflected at the supremum defined by Yt = sups≤tXs − Xt is a
strong Markov process. See e.g. Bertoin [2], p.156. If Y is split at the last exit time from
0 before an independent exponential time Sθ the two fragments are independent and their
laws can be described. This gives a direct proof of the infinite divisibility results needed to
prove the fluctuation identities by Pečerskiı̆ and Rogozin [20].

The setting of this paper is a strong Markov processes X with a recurrent point a. Last
exit times from a are considered and the path of X is split at the last exit time from a
before an independent exponential time Sθ. The two resulting fragments turn out to be
independent and their laws are described.

2 Notation and statement
Let X be a càdlàg Markov process with state space (E, E) which we will assume to be
Lusinian. We will assume that the semigroup Pt maps Borel functions into Borel functions
and that the process can be realized as the coordinate process on the Skorohod space Ω
of paths which are right continuous with left limits. Assume that the Markov process has
transition densities pt(x, y) with respect to a σ-finite measure ξ on (E, E). The densities
are assumed to be jointly continuous in all three variables for t > 0 which implies the
Chapman-Kolmogorov equations

pt+s(x, y) =

∫
E

pt(x, z)ps(z, y) ξ(dz)

for all s, t > 0 and x, y ∈ E.
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To formulate the results the existence of a dual strong Markov process X̂ on (E, E)
relative to the measure ξ will be assumed. This means that ξ is an invariant measure for
both X and X̂ and

Px(Xt ∈ dy) = pt(x, y)ξ(dy) and P̂x(X̂t ∈ dy) = p̂t(y, x)ξ(dy) (2.1)

for all t > 0, x, y ∈ E with p̂t(x, y) = pt(y, x). See [6] and the references therein for
details. Denote by

rθ(x, y) =

∫ ∞
0

e−θtpt(x, y) dt and r̂θ(x, y) =

∫ ∞
0

e−θtp̂t(x, y) dt

the resolvent densities of X and X̂ respectively. For the sake of simplicity it will be as-
sumed thatX and X̂ have infinite lifetimes ζ under Px and P̂y for all x, y ∈ E respectively.

The assumptions on X imply that it is possible to define bridge laws

P tx,y(·) = Px(·|Xt = y) (2.2)

for t > 0 and for x, y ∈ E. By Proposition 1 in Fitzsimmons, Pitman, Yor [6] for any
x, y ∈ E and t > 0 with pt(x, y) > 0 there is a unique law P tx,y on (Ω,Ft) such that for
any Fs-measurable functional F for 0 ≤ s < t

Etx,y(F ) · pt(x, y) = Ex (F · pt−s(Xs, y)) , (2.3)

whereEtx,y andEx are expectations with respect to measures P tx,y and Px respectively. The
laws P tx,y provide a regular version of the family of conditional distributions P (·|Xt = y).
Furthermore by Corollary 1 in Fitzsimmons, Pitman, Yor [6] the law of the reversed bridge
(X(t−s)− : 0 ≤ s < t) under P tx,y has the law of the bridge of the dual process P̂ ty,x.

The subject of this paper is the law of the process X started at a and run to an inde-
pendent exponential time Sθ with rate θ and conditioned on {XSθ = b}. Conditionally on
{Sθ = t,Xt = b} the law of the process will be the law of the bridge P ta,b and the laws
P ta,b will serve as the regular version of the family of conditional distributions.

Assume that a is a recurrent point of the process X . Let Ta = inf{t > 0: Xt− =
a orXt = a}. Since a is assumed to be recurrent the assumptions imply that Pb(Ta <
∞) = 1 for all b ∈ E.

For t > 0 define the last exit time from a before time t as

gt = sup{s ≤ t : Xt− = a orXt = a} .

Let (Lat : t ≥ 0) be the local time for the process X at a. We will assume that such
a right continuous nondecreasing additive functional exists and only increases on the set
M = {t ≥ 0: Xt− = a orXt = a}. All the results will be valid for any choice of
normalization of the local time. Let for s ≥ 0

τs = inf{t ≥ 0: Lat > s} (2.4)

be the right continuous inverse of the local time. From the strong Markov property of X it
follows that (τs : s ≥ 0) is a subordinator. Since we are assuming recurrence the local time
at a will be unbounded and hence τs is well defined for all s. For simplicity we will assume
that the set M has Lebesgue measure 0 almost surely. This means that the subordinator
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(τs : s ≥ 0) has no drift. From properties of subordinators, see Bertoin [2], Ch. 3, it
follows that

Ea
(
e−θτu

)
= e−ψ(θ)u . (2.5)

The notation X(t), La(t) and g(t) will be used for Xt, Lat and gt whenever necessary.
The theorem to be proved is stated as follows.

Theorem 2.1. Assume that a is a recurrent point for the process X and pt(a, b) > 0 for
all t > 0. Let X0 = a and assume (Lat : t ≥ 0) is the local time of X at a. If Sθ is an
exponential random variable with parameter θ independent of X then, under the measure
Pa:

(i) The random variables La(Sθ) and X(Sθ) are independent with distributions

Pa(La(Sθ) ∈ du) = ψ(θ) e−ψ(θ)udu and Pa(X(Sθ) ∈ dy) = θrθ(a, y)dy
(2.6)

where ψ(θ) is the Laplace exponent defined in Equation 2.5.

(ii) The processes

(Xt : 0 ≤ t ≤ gSθ ) and (XgSθ+u : 0 ≤ u ≤ Sθ − gSθ )

are independent.

(iii) For bounded measurable functionals F and G

Ea [F (Xs : 0 ≤ s ≤ gSθ )|LSθ = u] =
Ea
[
F (Xs : 0 ≤ s ≤ τu) e−θτu

]
Ea [e−θτu ]

(2.7)

Ea[G(X(Sθ−s)− : 0 ≤ s ≤ Sθ − gSθ )|XSθ = b] = (2.8)

=
Êb

[
G(X̂s : 0 ≤ s ≤ T̂a) e−θT̂a

]
Êb[e−θT̂a ]

where Êb refers to expectation under the law P̂b of the dual process, and T̂a = inf{t :
X̂t = a or X̂t− = a} is the hitting time of a for X̂ .

The novelty lies in the fact that known special cases are covered by the more general
Markov setup. Excursion arguments used are standard.

3 Excursion arguments
Let Π be a point process on an abstract space (S,S) with mean measure Λ. If Π is a Poisson
process then by Campbell’s Theorem, see Kingman [16], p. 28, for any measurable f ≥ 0

E

(
exp

(
−
∫
S

f(x)Π(dx)

))
= exp

(
−
∫
S

(1− e−f(x)) Λ(dx)

)
. (3.1)

Conversely, if Equation 3.1 holds for any measurable f ≥ 0, then Π is a Poisson process
with mean measure Λ.
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Assume that Π is a Poisson process with mean measure Λ, and let h : S → [0,∞) be a
measurable function such that∫

S

(1− e−h(x)) Λ(dx) <∞ . (3.2)

The random variable Σh defined by

Σh =

∫
S

h(x)Π(dx)

is almost surely finite and non-negative with

E (exp(−Σh)) = exp

(
−
∫
S

(1− e−h(x))Λ(dx)

)
. (3.3)

Define a new probability measure Q by

dQ

dP
=

exp (−Σh)

E [exp (−Σh)]
. (3.4)

The following lemma is known in the literature, see Proposition 2.1 in James [12] and the
discussion therein, or Proposition 2.4 in Bertoin [3].

Lemma 3.1. Under the measure Q, Π is a Poisson process with mean measure e−h(x) ·
Λ(dx).

Proof. It suffices to check that Equation 3.1 holds. Denote c = 1/E(exp(−Σh)) and let
Σf =

∫
S
f(x)Π(dx) for a measurable funtion f ≥ 0. One has

EQ [exp(−Σf )] = cEP

[
exp (−Σh) · exp

(
−
∫
S

f(x)Π(dx)

)]
= cEP

[
exp

(
−
∫
S

(f(x) + h(x)) Π(dx)

)]
= c exp

(
−
∫
S

(
1− e−f(x)−h(x)

)
Λ(dx)

)
= c exp

(
−
∫
S

[
(1− e−f(x)) e−h(x) + (1− e−h(x))

]
Λ(dx)

)
= exp

(
−
∫
S

(1− e−f(x)) e−h(x) Λ(dx)

)

LetX be a càdlàg strong Markov process. The setM = {t ≥ 0: Xt− = a or Xt =
a} is closed under the assumptions. Since we are assuming recurrence of X the com-
plement of M is a countable union of bounded open intervals. The segments of the
path of X on these open intervals are called the excursions of X away from the point
a. By definition the open intervals coincide with the complement of the range of the
subordinator (τs : s > 0) defined in Equation 2.4. Let Uδ be the space of càdlàg paths
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w : [0,∞) → E such that w(0) = a and there is a t > 0 such that for 0 < s < t we have
w(s) 6= a,w(s−) 6= a, and w(t) = a or w(t−) = a and w(s) = δ for s > t where δ is the
coffin state added to E. Let Uδ be the σ-algebra generated by the coordinate maps in Uδ .
Define the point process (es : s > 0) of excursions of X in the sense of Itô as

es =

{
δ if τs − τs− = 0
es(u) = Xτs−+u for u < τs − τs− and δ else. (3.5)

The process e is a Poisson process in the sense of Itô governed by the measure λ̃×n where
λ̃ is a multiple of the Lebesgue measure on [0,∞) and n is the Itô excursion law. We
can change the normalization of the local time, if needed, in order to ensure that λ̃ is the
standard Lebesgue measure. See Rogers and Williams [25], Ch. 8 or Revuz and Yor [24],
Ch. 8 for background on excursion theory.

The connection between excursion theory and the law of a Markov process run up to
an independent exponential time Sθ is established through marking excursions. Let Π be
a Poisson process on an abstract space (S,S). If conditionally on Π each point x ∈ Π is
assigned a mark with probability p(x) independently of all the other points in Π then the
resulting marked and unmarked processes are both Poisson and are independent. If Λ is the
mean measure of Π the marked process will have mean measure p · Λ and the unmarked
process (1− p) · Λ. See Kingman [16], Ch. 5 for definitions and proofs.

The excursion of the Markov processX straddling the independent exponential random
time Sθ can be interpreted as the first marked excursion of X where conditionally on e
marks are assigned to an excursion e with probability 1 − e−θR(e) where R(e) stands for
the duration of the excursion i.e. the length of the open interval of M c containing Sθ.
Intuitively we can think that Sθ is the first point in a Poisson process N on (0,∞) with
rate θ and independent of X . Excursions straddling a point of N are considered marked
and other excursions are considered unmarked. By independence properties of Poisson
processes conditionally on e the marks are assigned independently and an excursion of
lengthR(e) contains a point of the Poisson process with probability 1−eR(e) which follows
from the Poisson distribution of points contained in the excursion interval. See Sec. 49 in
Rogers and Williams [25] for definitions and proofs.

The following theorem is stated in slightly more general terms allowing the Poisson
process (es : s > 0) to be killed at a rate q. This would correspond to excursions of X
that have infinte length. The conclusions of the theorem are well known, see Sec. 49.4 in
Rogers and Williams [25].

Theorem 3.2. Let (es : s > 0) be a possibly killed excursion process ofX from a recurrent
point a in the sense of Itô, and let Sθ be an exponential random variable with parameter θ
independent ofX . Denote by (Lat : t ≥ 0) the local time process ofX at a and (es : s > 0)
the associated excursion process governed by λ× n where λ is the Lebesgue measure.

(i) The local time La(Sθ) during the excursion straddling Sθ is an exponential random
variable with parameter∫

U

(1− e−θR(e))n(de;R <∞) + q

where q is the rate of arrival of excursions with infinite lifetime. Moreover, it is
independent of the excursion e∗ = e(LaSθ ) which may have infinite lifetime.
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(ii) Given La(gSθ ) = u the process of excursions (es : 0 < s < u) is a Poisson
process in the sense of Itô which is governed by the measure n̄ given by n̄(de) =
e−θR(e) n(de;R(e) <∞) where n is Itô’s excursion law andR(e) denotes the length
of the excursion. Moreover, e∗ is conditionally independent of (es : 0 < s < u) given
{La(Sθ) = u}, and is independent of La(Sθ).

Proof. The first marked excursion in (es : s > 0) will arrive at an exponential time. The
processes of finite length excursions and those of infinte length are independent so the rates
of arrivals add. The rate of arrivals of marked finite length excursions is by definition equal
to ∫

U

(1− e−θR(e))n(de;R <∞) .

The two processes of marked and unmarked excursions are independent. This means that
conditionally on La(Sθ) = u the process (es : 0 < s < u) is a Poisson process on
(0, u)× Uδ .

The first marked excursion is picked according to the normalized law (1 − e−θR) · n
irrespective of the local time La(Sθ). This and the independence of marked and unmarked
excursions conclude the proof.

4 Proofs

Recall that under the assumptions on X and X̂ and if pt(a, b) > 0 there is a measure P ta,b
corresponding to the bridge of X starting at a and conditioned to be b at time t. The family
of P ta,b is a family of regular conditional laws of X given Xt = b. If Sθ is an exponential
random variable of rate θ then under Pa the family P ta,b is a regular conditional law of
X given {Sθ = t,Xt = b}. The assumptions made on X and X̂ also imply that X and
X̂ have no jumps at fixed times. See (3.18) in Getoor and Sharpe [8] for a proof. Let
T̂b = inf{t > 0: X̂t = b or X̂t− = b}. Assume further that P̂b(T̂b > 0) = 0 which in
conjunction with right continuity and strong Markov property implies that XTb = b.

Lemma 4.1. Assume that Pa(Tb <∞) = 1. Assume that pt(a, b) > 0 for all t > 0. Then

Pa(Tb ∈ ds|X(Sθ) = b) = e−θsPa(Tb ∈ ds)
rθ(b, b)

rθ(a, b)
,

where rθ(x, y) is the resolvent density.

Proof. By assumptions on b and X̂ we have Pa(Tb < Sθ|X(Sθ) = b) = 1. For fixed
0 < s < t and a Fs measurable functional F by 2.6 in Fitzsimmons, Pitman and Yor [6]

Eta,b(F ) · pt(a, b) = Ea (F · pt−s(Xs, b)) . (4.1)

Choose an open neighbourhood B ∈ E of b such that rθ(a, y) > 0 for y ∈ B. Let
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F = 1(Tb ∈ ds). We have

Pa(Tb ∈ ds, Tb < Sθ, XSθ ∈ B) =

=

∫ ∞
s

θe−θt dt

∫
B

pt(a, y)P ta,y(Tb ∈ ds) ξ(dy)

=

∫ ∞
s

θe−θt dt

∫
B

Pa (Tb ∈ ds) pt−s(b, y) ξ(dy)

= e−θsPa(Tb ∈ ds)
∫
B

ξ(dy)

∫ ∞
0

θe−θupu(b, y) du

= e−θsPa(Tb ∈ ds) θ
∫
B

rθ(b, y)ξ(dy)

= e−θsPa(Tb ∈ ds)
∫
B

rθ(b, y)

rθ(a, y)
· θrθ(a, y) ξ(dy)

It follows that

Pa(Tb ∈ ds|X(Sθ) = b) = e−θsPa(Tb ∈ du)
rθ(b, b)

rθ(a, b)
.

Remark 4.2. Integrating the equation with respect to s over (0,∞) in Lemma 4.1 gives
the well known formula

Ea(e−θTb) =
rθ(a, b)

rθ(b, b)
. (4.2)

See e.g. Rogers and Williams [25], (50.7) on p. 293.

Let us consider the process (Xt : 0 ≤ t ≤ Tb) given {XSθ = b}. The following lemma
gives the conditional distribution of this process given X(Sθ) = b.

Lemma 4.3. Assume that Pa(Tb <∞) = 1. Assume that pt(a, b) > 0 for all t > 0. Let F
be a non-negative measurable functional of the process (Xt : 0 ≤ t ≤ Tb). Then

Ea(F |X(Sθ) = b) = Ea
(
e−θTb · F

)
· rθ(b, b)
rθ(a, b)

, (4.3)

where rθ(x, y) is the resolvent density.

Proof. As in Lemma 4.1 we compute for an open neighbourhood B ∈ E of b such that
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rθ(a, y) > 0 and a bounded measurable functional F

Ea [F · 1(Tb < Sθ, Tb ∈ ds,XSθ ∈ B)] =

=

∫ ∞
s

θe−θt dt

∫
B

pt(a, y)Eta,y(F · 1(Tb ∈ ds)) dy

=

∫ ∞
s

θe−θt dt

∫
B

Ea (F · 1(Tb ∈ ds)) pt−s(b, y) dy

= e−θsEa (F · 1(Tb ∈ ds))
∫
B

dy

∫ ∞
0

θe−θupu(b, y) du

= e−θsEa (F · 1(Tb ∈ ds)) θ
∫
B

rθ(b, y) dy

= e−θsEa (F · 1(Tb ∈ ds))
∫
B

rθ(b, y)

rθ(a, y)
· θrθ(a, y) dy

This in conjunction with the distribution of Tb from Lemma 4.1 completes the proof.

The conclusions of Lemma 4.3 apply equally to the dual process X̂ . Moreover under
Pa the conditional law of the process (X(Sθ−t)− : 0 ≤ t ≤ Sθ) given XSθ = b is equal to
the law of X̂ started at b run to an independent exponential time and conditioned to be a at
the end. This implies that under the assumptions on a for any bounded functional G

Ea

[
G

(
X(Sθ−t)− : 0 ≤ t ≤ Sθ − gSθ

)∣∣∣∣XSθ = b

]
= Êb

[
G
(
X̂t : 0 ≤ t ≤ T̂a

)
e−θT̂a

]
· r̂θ(a, a)

r̂θ(b, a)

(4.4)

because the last exit time gSθ from a is the first hitting time of a for the reversed process.
This is in accordance with Theorem 7.6 in Getoor and Sharpe [8] that excursions straddling
a fixed time reversed and conditioned on the length are the excursions of the dual process.
See also formula (3.12) in Ikeda, Nagasawa, Sato [11] who give the law of the process
reversed from the lifetime of a killed Markov process. The case treated here considers
killing at a constant rate.

We are now in position to give the proof of Theorem 2.1.

Proof. The second assertion in (i) is the definition of the resolvent density. Let (es : s > 0)
be the excursion process of X from a. Marked excursions arrive at an exponential rate so
we know that La(Sθ) will be exponential. Since excursions are marked by an independent
Poisson process, the event {La(Sθ) > u} is equal to the event that there is no mark in the
interval [0, τu], and has conditional probability e−θτu . Integration gives

Pa(La(Sθ) > u) = Ea
(
e−θτu

)
= e−uψ(θ) ,

which by differentiation gives the density. To prove (ii) note that by Theorem 3.2 condi-
tionally on {La(Sθ) = u} the process of excursions (es : 0 < s < u) is independent of the
excursion e∗ straddling Sθ. Because marks to excursions are assigned by an independent
Poisson process conditionally on R(e∗) = r the mark is distributed at the distance U from
the left endpoint with density

θe−θu/(1− e−θr)
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on [0, r] independently of the process of unmarked excursions and of the local time La(Sθ).
So the excursion e∗ together with the position of Sθ within the duration of e∗ are indepen-
dent of the process of unmarked excursions and of La(Sθ). This proves the independence
of the two processes in (ii).

For the first assertion in (iii) note that conditionally on La(Sθ) = u the excursions of
(Xt : 0 ≤ t ≤ gSθ ) from the point a are a Poisson process with excursion law e−θR · n by
Theorem 3.2 (i). On the other hand, if we let (es : 0 < s < u) be the Poisson process of
excursions of X from a and choose h(e) = θ R(e) in Lemma 3.1, under the new measure
the process is still Poisson but with the mean measure e−Σh · n. But under the assumption
that the set M has Lebesgue measure 0 we have Σh = θ · τu.

The proof of the second formula in (iii) follows from Lemma 4.3 applied to the reversed
process.

Note the connection with Lemma 4.1 in Kallenberg [14] which states that for Lévy
processes with continuous densities

Pa (F (Xs : 0 ≤ s ≤ τu)|τu = t) = P ta,a (F (Xs : 0 ≤ s ≤ t)|Lt = u) (4.5)

where Pt refers to the law of the bridge of length t. Noting that Lemma 3.1 gives

Pa (gSθ ∈ dt|L(Sθ) = u) =
e−θtPa(τu ∈ dt)
Ea (e−θτu)

. (4.6)

Equations 4.5 and 4.6 imply part (ii) in Theorem 2.1.

5 Examples
5.1 Linear diffusions

Let X be a regular diffusion on an interval I ⊂ R with speed measure m. It is well known
that X has a jointly continuous density p(t, x, y) with respect to m:

Px(Xt ∈ A) =

∫
A

p(t, x, y)m(dy) . (5.1)

The density is symmetric in x and y which implies that for diffusions the dual process is
the diffusion itself. Assume that the X has a recurrent point a and that the point a is not
an atom of the speed measure m. This implies that the inverse local time at a has no drift.
With such assumptions the conclusions of the Theorem 2.1 hold with X̂ = X . Moreover,
it is known that

Eb
(
e−θTa

)
=
rθ(b, a)

rθ(a, a)
and Ea

(
e−θτu

)
= e
− u
rθ(a,a) . (5.2)

See Rogers and Williams [25], Sec. 50.
As the first example one can take X to be Brownian motion and a = 0. All the

assumptions are satisfied. It follows that the two processes (Bt : 0 ≤ t ≤ gSθ ) and
(BSθ−t : 0 ≤ t ≤ Sθ − gSθ ) are independent. For the first process we get

E0 (F (Bt : 0 ≤ t ≤ gSθ )|L(gSθ ) = l) =
E0

(
F (Bt : 0 ≤ t ≤ τu)e−θτu

)
E0 (e−θτu)

. (5.3)
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It is well known that

E0

(
e−θτl

)
= e−l

√
2θ and Eb

(
e−θT0

)
= exp

(
−|b|
√

2θ
)
.

where T0 = inf{t ≥ 0: Bt = 0}. The first assertion follows from (i) in Theorem 2.1 and
the fact that Lt

d
= |Bt|, see e.g. Revuz and Yor [24], p. 289. The hitting time distribution

is an elementary consequence of the reflection principle for Brownian motion. The law of
the second process, given BSθ = a, is described by

E(G(BSθ−t : 0 ≤ t ≤ Sθ − gSθ )|BSθ = b) =
Eb
(
F (Bs : 0 ≤ s ≤ T0)e−θT0

)
Eb (e−θT0)

. (5.4)

which yields the result first obtained by Biane and Yor in [4]. See Leuridan [17] for an
alternative elementary proof and Yen and Yor [28], Ch 9. for an alternative proof.

Since the bridge laws for Brownian motion with drift B(µ)
t = Bt + µt are exactly the

same for all drifts the conditional law of (B
(µ)
t : 0 ≤ t ≤ Sθ) given {B(µ)

Sθ
= b} does not

depend on µ. This means that Equations 5.3 and 5.4 hold for Brownian motion with drift
with B instead of B(µ). The only change is that the resolvent density changes to that of
Brownian motion with drift

rθ(a, b) =
1√

2θ + µ2
eµ(b−a)−|b−a|

√
2θ+µ2

.

The skew Brownian motion X(α) with parameter α ∈ (0, 1) is constructed by inde-
pendently flipping the excursions of |Bt| up with probability α and down with probability
1 − α. A pair of dual processes with respect to Lebesgue measure are the processes X(α)

andX(1−α). Both processes behave like Brownian motion away from 0 and the distribution
of their local time at a fixed point is equal to the distribution of the local time of Brownian
motion X(1/2). From the known transition densities of X(α), see p. 82 in Revuz and Yor
[24], it follows

rθ(0, b) = (2α1(b > 0) + 2(1− α)1(b ≤ 0)) e−|b|
√

2θ .

The skew Brownian motion satisfies all the assumptions made on the Markov process X .
Equation 2.7 holds with the same E(e−θτu) as in the case of Brownian motion. Equation
2.8 holds with X replaced by standard Brownian motion started at 0.

Let X be a Bessel process of dimension δ ∈ (0, 2). Denote ν = δ/2 − 1 ∈ (−1, 0).
It is well known, see Revuz and Yor [24], that 0 is a recurrent point for X , satisfying all
the assumptions and that the time X spends at 0 has Lebesgue measure 0. The results
of Theorem 2.1 apply. Bessel processes are dual to themselves under the speed measure
with density ξ(dx) = −x

2ν+1

ν dx on [0,∞). Let Iν(z) and Kν(z) be the modified Bessel
functions with index ν. With respect to ξ the transition density of X for a, b > 0 is given
by

pt(a, b) =
1

t(ab)ν
e−

a2+b2

2t Iν

(
ab

t

)
.

Using formula 15.55 in Oberhettinger [19] for 0 < a ≤ b we get that

rθ(b, a) =
2

aνbν
Iν(a
√

2θ)Kν(b
√

2θ) .
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By Equation 4.2

Ea
(
e−θTb

)
=

(
b

a

)ν
Kν(a

√
2θ)

Kν(b
√

2θ)

in accordance with Theorem 3.1 in Kent [15]. By Pa(T0 < ∞) = 1 and the continuity
of paths we have Ta ↑ T0 as a ↓ 0. Letting a → 0 and taking into account that Kν(z) ∼
Γ(−ν)

2 (z/2)ν for z → 0 we get

Eb
(
e−θT0

)
=

21+ν

Γ(−ν)

(
b
√

2θ
)ν/2

Kν

(
b
√

2θ
)
.

By Pitman, Barlow and Yor [1] there is a bicontinuous family of local times Lbt of the
process X such that ∫ t

0

f(Xs)ds =
1

2

∫ ∞
0

bδ−1Lbt db

for bounded measurable functions f . With this choice the inverse local time is a stable
subordinator of index −ν with Laplace transform

E0

(
e−θτu

)
= exp

(
−u · 21+νθ−νΓ(1 + ν)

Γ(−ν)

)
.

5.2 Lévy processes

For a Lévy process X the Lebesgue measure is invariant and the dual process is−X . If the
process has continuous densities for t > 0, is recurrent and spends Lebesgue measure 0 at
points the conclusions of Theorem 2.1 can be applied.

An example is provided by symmetric stable processes of index α ∈ (1, 2). These
processes are recurrent and by scaling property the inverse local time is a subordinator
of index 1 − 1/α. See Bertoin [2], Ch. 8. The independence of (Xt : 0 ≤ t ≤ gSθ ) and
(XgSθ+u : 0 ≤ u ≤ Sθ−gSθ ) and scaling imply that given g1 the process (Xt : 0 ≤ t ≤ g1)
is conditionally independent of (Xg1+u : 0 ≤ u ≤ 1 − g1). This means that the two
processes (

Xtg1√
g1

: 0 ≤ t ≤ 1

)
and

(
Xg1+u(1−g1)√

1− g1
: 0 ≤ u ≤ 1

)
(5.5)

are independent. Scaling also implies that the inverse local time τu is a stable subordinator
of index 1 − 1/α with E(e−θτu) = e−uψ(θ) = e−cθ

1−1/α

for some constant c depending
on the normalization of the local time. From Equation 2.7 we can compute

E
(
e−λgSθ

∣∣L(Sθ) = u
)

=
E
(
e−(λ+θ)τu

)
E (e−θτu)

. (5.6)

Using the form of ψ(θ) and unconditioning using Equation 2.6 gives

E
(
e−λgSθ

)
=

(
θ

λ+ θ

)1−1/α

.

It follows that gSθ ∼ Γ(1 − 1/α, θ) and by independence Sθ − gSθ ∼ Γ(1/α, θ). Using
scaling again this gives the arc-sine law g1 ∼ Beta(1 − 1/α, 1/α). This result is due to
Chaumont [5]. See also Bertoin [2], p. 230.
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For another application let Y be a Lévy process. Assume P (Y0 = 0) = 1 and define
Ȳt = sups≤t Ys. The reflected process X = Ȳ − Y is a Feller process in the right
continuous filtration Ft of X , see Ch. 6 in Bertoin [2]. Denote by L its local time 0 and
let τu = inf{t : Lt > u} be the right continuous inverse of L. Denote by (eu : u > 0) the
excursion process attached to the process X . It is in general not possible to reconstruct Ȳ
from the exursion process of the reflected process X . As noted by Greenwood and Pitman
in their remark on p. 899 in [10], however, the process of excursions can be extended into
a two dimensional Poisson point process such that X̄ can be reconstructed. The idea is to
add to the excursion at time u > 0 the jump of the ladder height processHu = Ȳτu . Denote
Ju = Hu−Hu−. The resulting point process ((eu, Ju) : u > 0) is a Poisson point process
in the sense of Itô in the space U × (0,∞).

Let Sθ be an exponential random variable with rate θ independent of Y . If the as-
sumptions of Theorem 3.2 are met the following conclusions can be made: (i) The pairs of
random variables (gSθ , X̄Sθ ) and (Sθ−gSθ , ȲSθ−YSθ ) are independent. This follows from
Theorem 2.1. (ii). The random pair (gθ, X̄θ) is infinitely divisible. To prove this statement
first recall a standard result about Lévy processes: if Z is a d-dimensional Lévy process
and Sθ is an independent exponential random variable, then the random variable (Sθ, ZSθ )
is infinitely divisible. See Bertoin, [2] p. 162. By Equation 2.8 applied to the reflected
process X̃ we find that the law of (gSθ , X̄Sθ ) given {L̃θ = u} is just like the sum of the
points of the process ((Ru, Ju) : u > 0) where Ru is the excursion length at local time u
and Ju is the jump of the ladder height process H . This last two-dimensional process is
a map of the extended excursion process ((eu, Ju) : u > 0) and as such a Poisson point
process on (0,∞)2. Sums of Poisson processes are infinitely divisible so it follows that
(gSθ , X̄Sθ ) given {LSθ = u} is infinitely divisible. But LSθ is exponentially distributed
and infinite divisibility follows. The infinite divisibility of the pair (Sθ − gSθ , ȲSθ − YSθ )
follows by duality arguments. See Lemma 9 in Bertoin [2], p. 164.

The assertions about infinite divisibility and independence are true in general without
additional assumptions on the reflected process X . See Greenwood and Pitman [9] for
details.
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imum, Adv. in Appl. Probab. 12 (1980), 893–902, doi:10.2307/1426747, http://dx.doi.
org/10.2307/1426747.

[10] P. Greenwood and J. Pitman, Fluctuation identities for random walk by path decomposition
at the maximum, Adv. in Appl. Probab. 12 (1980), 291–293, doi:10.2307/1426564, http:
//doi.org/10.2307/1426564.

[11] N. Ikeda, M. Nagasawa and K. Sato, A time reversion of Markov processes with killing, Kōdai
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[21] J. W. Pitman, Lévy systems and path decompositions, in: Seminar on Stochastic Processes,
1981 (Evanston, Ill., 1981), Springer, volume 1 of Progr. Prob. Statist., 1981 pp. 79–110.

[22] A. O. Pittenger and C. T. Shih, Coterminal families and the strong Markov property, Bull. Amer.
Math. Soc 78 (1972), 439–443.

[23] D. Ray, Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615–630.

[24] D. Revuz and M. Yor, Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], Springer-Verlag, Berlin, 2nd edition, 1994.



M. Perman: A decomposition for Markov processes at an independent exponential time 65

[25] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2: Itô
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