
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 10 (2016) 223–235

Isospectral genus two graphs are isomorphic

Alexander Mednykh , Ilya Mednykh
Sobolev Institute of Mathematics, 630090, Novosibirsk, Russia

Novosibirsk State University, 630090, Novosibirsk, Russia
Siberian Federal University, 660041, Krasnoyarsk, Russia

Received 10 March 2013, accepted 24 July 2015, published online 3 October 2015

Abstract

By a graph we mean a finite connected multigraph without bridges. The genus of a
graph is the dimension of its homology group. Two graphs are isospectral is they share the
same Laplacian spectrum. We prove that two genus two graphs are isospectral if and only
if they are isomorphic. Also, we present two isospectral bridgeless genus three graphs that
are not isomorphic.

The paper is motivated by the following open problem posed by Peter Buser: are
isospectral Riemann surfaces of genus two isometric?
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1 Introduction
Over the last decade, a few discrete versions of the theory of Riemann surfaces were cre-
ated ([1, 18, 2, 8, 11]). In these theories, the role of Riemann surfaces is played by graphs.
The genus of a graph is the dimension of its homology group. Under these assumptions,
the theory of Jacobi manifolds is constructed and analogues of the Riemann-Hurwitz and
Riemann-Roch theorems were proved. Counterparts of many other theorems from the clas-
sical theory of Riemann surfaces were derived in the discrete case ([9, 10, 16]).

Since the classical paper by Mark Kac [14], the question of what geometric properties
of a manifold are determined by its Laplace operator has inspired many intriguing results.
One class of manifolds whose spectral theory has been studied with many beautiful results
is the class of compact Riemann surfaces with the canonical constant curvature metric.
Wolpert [19] showed that a generic Riemann surface is determined by its Laplace spectrum.
Nevertheless, pairs of isospectral non-isometric Riemann surfaces in every genus ≥ 4 are
known. See papers by Buser [7], Brooks and Tse [5], and others. There are also examples of

E-mail addresses: smedn@mail.ru (Alexander Mednykh), ilyamednykh@mail.ru (Ilya Mednykh)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



224 Ars Math. Contemp. 10 (2016) 223–235

isospectral non-isometric surfaces of genus two and three with variable curvature ([5, 3]).
At the same time, isospectral genus one Riemann surfaces (flat tori) are isometric [4].
Similar results are also known for graphs ([12, 13]).

Peter Buser [6] posed an interesting problem: are two isospectral Riemann surfaces of
genus two isometric? Up to our knowledge the problem is still open but, quite likely, can
be solved positively. The aim of this paper is to give a positive solution of an analogous
problem for bridgeless graphs of genus two (Theorem 3.1). Also, we show that there are
two isospectral bridgeless graphs of genus three that are not isomorphic (Figure 5). Because
of the intrinsic link between Riemann surfaces and graphs we hope that our result will be
helpful to make a progress in solution of the Buser problem.

2 Preliminary results
2.1 Laplacian matrix and Laplacian spectrum

The Laplacian matrix of a graph and its eigenvalues can be used in several areas of math-
ematical research and have a physical interpretation in various physical and chemical the-
ories. The related adjacency matrix of a graph and its eigenvalues were much more inves-
tigated in the past than the Laplacian matrix. At the same time, the Laplacian spectrum is
much more natural and more important than the adjacency matrix spectrum because of it
numerous application in mathematical physics, chemistry and financial mathematics.

Graphs in this paper are finite and undirected, but they may have loops and multiple
edges. Denote by V (G) and E(G), respectively, the number of vertices and edges of a
graph G. Following [2] we denote by g(G) = E(G) − V (G) + 1 the genus of G. This
is the dimension of the first homology group of G. In graph theory, the term ”genus” is
traditionally used for a different concept, namely, the smallest genus of any surface in
which the graph can be embedded, and the integer g = g(G) is called the cyclomatic or
the Betti number of G. We call g the genus of G in order to highlight the analogy with
Riemann surfaces.

A bridge is an edge of a graph G whose deletion increases the number of connected
components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle.
A graph is said to be bridgeless if it contains no bridges.

Let G be a graph. Denote by V(G) and E(G) the set of vertices and edges of a graph G
respectively. For each u, v ∈ V(G), we set auv to be equal to the number of edges between
u and v. The matrix A = A(G) = [auv]u,v∈V(G), is called the adjacency matrix of the
graph G.

Let d(v) denote the valency of v ∈ V(G), d(v) =
∑

u auv, and let D = D(G) be
the diagonal matrix indexed by V(G) and with dvv = d(v). The matrix L = L(G) =
D(G) − A(G) is called the Laplacian matrix of G. It should be noted that loops have no
influence on L(G). Throughout the paper we shall denote by µ(G, x) the characteristic
polynomial of L(G). For brevity, we will call µ(G, x) the Laplacian polynomial of G. Its
roots will be called the Laplacian eigenvalues (or sometimes just eigenvalues) of G. They
will be denoted by µ1(G) ≤ µ2(G) ≤ . . . ≤ µn(G), (n = V (G)), always enumerated in
increasing order and repeated according to their multiplicity. Recall [17] that for connected
graph G we always have µ1(G) = 0 and µ2(G) > 0.

Two graphsG andH are called Laplacian isospectral (or isospectral) if their Laplacian
polynomials coincide: µ(G, x) = µ(H,x).

The matrix L(G) is sometimes called the Kirchhoff matrix of G due to its role in the
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well-known Matrix-Tree Theorem which is usually attributed to Kirchhoff. A generaliza-
tion of the Matrix-Tree-Theorem was obtained in 1967 by A. K. Kel’mans who gave a
combinatorial interpretation to all the coefficients of µ(X,x) in terms of the numbers of
certain subforests of a graph X; see [15] and [17] for references and history of question.
We present the result by Kel’mans in the following form.

Theorem 2.1. [15] If µ(X,x) = xn−c1xn−1+ . . .+(−1)icix
n−i+ . . .+(−1)n−1cn−1x

then
ci =

∑
S⊂V, |S|=n−i

T (XS),

where T (H) is the number of spanning trees of H, and XS is obtained from X by identify-
ing all points of S to a single point.

2.2 Theta graphs

Let u and v are two (not necessary distinct) vertices. Denote by Θ(k, l,m) the graph con-
sisting of three internally disjoint paths joining u to v with lengths k, l,m ≥ 0 (see Fig.
1). We set σ1 = σ1(k, l,m) = k + l + m,σ2 = σ2(k, l,m) = k l + l m + km, and
σ3 = σ3(k, l,m) = k lm. It is easy to see that two graphs Θ(k, l,m) and Θ(k′, l′,m′) are
isomorphic if and only if the unordered triples {k, l,m} and {k′, l′,m′} coincide; equiva-
lently, σ1 = σ′1, σ2 = σ′2 and σ3 = σ′3, where σ′1 = σ1(k′, l′,m′), σ′2 = σ2(k′, l′,m′), and
σ′3 = σ1(k′, l′,m′).

Figure 1: Theta graph Θ(k, l,m).

We make the following useful observations:

(i) If σ2 > 0, then Θ(k, l,m) is a graph of genus two. In this case at least two of numbers
{k, l,m} are positive.

(ii) If σ1 > 0, σ2 = 0, then Θ(k, l,m) is a graph of genus one. Then exactly one of
numbers {k, l,m} is positive and the other two are zero. Moreover, Θ(k, l,m) =
Ck+l+m is a cyclic graph with k + l +m edges.
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(iii) If σ1 = 0, then k = l = m = 0 and Θ(k, l,m) is a graph of genus zero. More
precisely, Θ(k, l,m) = Θ(0, 0, 0) consists of one vertex.

Lemma 2.2. Let G be an arbitrary bridgeless graph of genus two. Then G is isomorphic
to Θ(k, l,m) for some k, l,m with σ2 = k l + l m+ km > 0.

Proof. Since the graph G is bridgeless it has no vertices of valency one. Denote by H the
graph obtained from G by deleting of all vertices of valency two. Suppose that H has V
vertices of valences n1, n2, . . . , nV and E edges. Since the valency of each vertex of H is
at least three we have ni ≥ 3, i = 1, 2, . . . , V. Note that deleting of a vertex of valency two
decreases the number of vertices and the number of edges of a graph by one. So, it does
not affect the genus and H is still a graph of genus two. Thus g(H) = 1− V +E = 2 and
E = V + 1. Counting the sum of valences of H through vertices and through edges we
obtain

n1 + n2 + . . .+ nV = 2E.

Hence
3V ≤ n1 + n2 + . . .+ nV = 2E = 2V + 2,

or V ≤ 2.

If V = 1 then n1 = 4 and H is the figure eight graph consisting of one vertex and
two loops. Putting back the vertices of valency two on the graph H we obtain the graph G
isomorphic to Θ(k, l, 0) for some positive k and l. In particular, σ2 = k l > 0.

If V = 2 then n1 = n2 = 3 and H is the theta graph consisting of two vertices and
three edges. The graphG is obtained fromH by adding the vertices of valency two. Hence,
G is isomorphic to Θ(k, l,m) for some positive k, l,m.

3 Main results
3.1 The main theorem and lemmas

The main result of the paper is the following theorem.

Theorem 3.1. Two genus two bridgeless graphs are Laplacian isospectral if and only if
they are isomorphic.

The proof of the theorem is based on the following three lemmas.

Lemma 3.2. Let G = Θ(k, l,m) be a theta graph and let µ(G, x) = xn− c1xn−1 + . . .+
(−1)n−1cn−1x be its Laplacian polynomial. Then n = k+ l+m− 1, c1 = 2(k+ l+m)
and cn−1 = (k l + l m+ km)(k + l +m− 1).

Proof. The number of vertices, edges and spanning trees of graph G are given by

V (G) = k + l +m− 1, E(G) = k + l +m, T (G) = k l + l m+ km.

Then by ([15], formulas 2.15 and 2.16) we have n = V (G) = k + l + m − 1, c1 =
2E(G) = 2(k+ l+m) and cn−1 = V (G) ·T (G) = (k l+ l m+km)(k+ l+m−1).
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Lemma 3.3. Let G = Θ(k, l,m) be a theta graph and let µ(G, x) = xn− c1xn−1 + . . .+
(−1)n−1cn−1x be its Laplacian polynomial. Then

cn−2 = A(σ1, σ2) +B(σ1, σ2)σ3

where A(s, t) = (4t−3st−2s2t+ s3t+ 4t2− st2)/12, B(s, t) = (3−4s+ s2−3t)/12,
σ1 = k + l +m, σ2 = k l + l m+ km, and σ3 = k lm.

Proof. By Theorem 2.1
cn−2 =

∑
S⊂V, |S|=2

T (XS), (3.1)

where XS runs through all graphs obtained from G = Θ(k, l,m) by gluing two vertices.
There are exactly four types of such graphs G1, G2, G3, and G4 shown in the Fig. 2. We
will enumerate the spanning trees of each type separately.

Type G1. Glue two 3-valent vertices of graph G. As a result we obtain the graph G1

shown on Fig. 2. The number of spanning trees of this graph is T1 = T (Ck) · T (Cl) ·
T (Cm) = k lm.

Type G2. Glue one 3-valent and one 2-valent vertices of graph G. The graph of type
G2 shown in Fig. 2 is obtained by gluing the upper 3-valent of graph G and a 2-valent
vertex on the path of G labelled by k. For given i, 1 ≤ i ≤ k − 1 the number of spanning
trees for a graph of type G2 is equal to T (Ci) · T (Θ(k− i, l, m)) = iσ2(k− i, l, m). We

set F (k, l, m) =
k−1∑
i=1

iσ2(k− i, l, m). Then the total number of spanning trees for graphs

of type G2 is
T2 = 2(F (k, l, m) + F (l, m, k) + F (m, k, l)).

The multiple 2 is needed since the graph Θ(k, l,m) has two 3-valent vertices.
Type G3. Glue two 2-valent vertices of graph G lying on different paths. We choose

one of them on the path labelled by k and the second on the path labbeled by l. Fix i, 1 ≤
i ≤ k − 1 and j, 1 ≤ j ≤ l − 1 and consider a graph of type G3 shown in Fig. 2. This
is a graph of genus three. To create a spanning tree on this graph we have to delete three
edges. There are two different ways to do this. Firstly, we delete edges on three of the
four paths labeled by i, j, k− i and l− j. This be done in σ3(i, j, k− i, l− j) ways, where
σ3(x, y, z, t) = xyz+xyt+xzt+yzt. Secondly, if we delete an edge from the path labeled
by m (in m possible ways) then we have to remove one edge from the pair of paths i, j and
one edge from the pair k− i, k− j. Then we have m((i+ j)(k− i+ l− j)) possibilities to
obtain a tree. As the result graph under consideration has G3(i, j, k, l, m) = σ3(i, j, k −
i, l − j) +m((i+ j)(k − i+ l − j) spanning trees. We set

J(k, l, m) =

k−1∑
i=1

l−1∑
j=1

G3(i, j, k, l, m).

Then the total number of spanning trees for graphs of type G3 is

T3 = J(k, l, m) + J(l, m, k) + J(m, k, l).

Type G4. Glue two 2-valent vertices lying on the same path of graph G. Choose the
path labelled by k. Let us fix i and j such that 1 ≤ i < j ≤ k − 1. Then the number
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of spanning trees for a given graph of type G4 is T (Cj−i)T (Θ(k + i − j, l,m)) = (j −
i)σ2(k + i− j, l,m). We set

H(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

(j − i)σ2(k + i− j, l,m).

As a result, the number of spanning trees of the given type is

T4 = H(k, l, m) +H(l, m, k) +H(m, k, l).

Putting the obtained formulas in Mathematica 8 by (3.1) we get

cn−2 = T1 + T2 + T3 + T4 = A(σ1, σ2) +B(σ1, σ2)σ3.

Figure 2: The graphs obtained from Θ(k, l,m) by gluing two vertices

Lemma 3.4. Let G = Θ(k, l,m) be a theta graph and let

µ(G, x) = xn − c1xn−1 + . . .+ (−1)n−1cn−1x

be its Laplacian polynomial. Then

cn−3 = C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 ,

where

C(s, t) = (−34t+ 21st+ 25s2t− 10s3t− 3s4t+ s5t− 50t2 + 10st2

+ 12s2t2 − 2s3t2 − 16t3 + st3)/360,

D(s, t) = (−45 + 50s+ 5s2 − 12s3 + 2s4 + 24st− 9s2t+ 15t2)/360,

E(s, t) = −3(−8 + 3s)/360.
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Proof. By Theorem 2.1
cn−3 =

∑
S⊂V, |S|=3

T (XS), (3.2)

where XS runs through all graphs obtained from G = Θ(k, l,m) by gluing three vertices.
There are six types of such graphs W1,W2,W3,W4,W5, and W6 shown on the Fig. 3. We
examine the spanning trees of each type separately.

TypeW1. To create a graph of typeW1 we identify two 3-valent vertices of graphG and
one 2-valent vertex ofG (say on the path labelled by k). The obtained graph is shown in the

Fig. 3, has i(k − i)l m spanning trees. Consider the sum Fw(k, l, m) =
k−1∑
i=1

i(k − i)l m.

Find the total number of spanning trees for graphs of type W1 by the formula

Tw
1 = Fw(k, l, m) + Fw(l, m, k) + Fw(m, k, l).

Type W2. Glue one 3-valent vertices of graph G and two 2-valent vertices lying on
different paths of G (say on the paths labelled by k an l), obtaining a graph in Fig. 3. For
given i and j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1, the number of spanning trees for graph of

type W2 is ijσ2(k − i, l − j,m). We set Hw(k, l, m) =
k−1∑
i=1

l−1∑
j=1

ijσ2(k − i, l − j,m).

Taking into account that graph Θ(k, l,m) has two 3-valent vertices we obtain the following
formula the number of spanning trees for graphs of type W2 :

Tw
2 = 2(Hw(k, l, m) +Hw(l, m, k) +Hw(m, k, l)).

Type W3. Glue one 3-valent vertices and two 2-valent vertices lying on the same path
of G. For fixed i and j, 1 ≤ i < j ≤ k− 1, we have i(j − i)σ2(k− j, l,m) spanning trees
for graph of type W3. Summing over i and j we get

Jw(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

i(j − i)σ2(k − j, l,m).

Finally, the number of spanning trees for graphs of type W3 is given by

Tw
3 = 2(Jw(k, l, m) + Jw(l, m, k) + Jw(m, k, l)).

Type W4. Glue three 2-valent vertices all lying on different paths of G. Fix i, j and
s, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1, 1 ≤ s ≤ m− 1. Then the number of spanning trees for
a given graph of type W4 is equal to σ2(i, j, s)σ2(k − i, l − j,m− s). Summing over i, j
and s we obtain the total number of spanning trees for graphs of type W4 :

Tw
4 =

k−1∑
i=1

l−1∑
j=1

m−1∑
s=1

σ2(i, j, s)σ2(k − i, l − j,m− s).

Type W5. Glue two 2-valent vertices lying on a path and one 2-valent vertex lying on
the other path ofG. Denote byG3(i, j, k, l,m) the graph of typeG3 shown in Fig. 2. From
the proof of previous Lemma we have T (G3(i, j, k, l,m)) = σ3(i, j, k− i, l− j) +m((i+
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j)(k − i+ l− j)). Fix i, j and s, 1 ≤ i < j ≤ k − 1, 1 ≤ s ≤ l− 1. Then the number of
spanning trees for a graph of type W5 in Fig. 3 is equal to

T (Cj−i)T (G3(i, s, k + i− j, l,m)) = (j − i)T (G3(i, s, k + i− j, l,m)).

Consider the sum

Kw(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

l−1∑
s=1

(j − i)T (G3(i, s, k + i− j, l,m)).

Then the number of spanning trees for graphs of type W3 is given by

Tw
5 = Kw(k, l, m) +Kw(l, m, k) +Kw(m, k, l)

+Kw(k, m, l) +Kw(l, k, m) +Kw(m, l, k). (3.3)

Type W6. Glue three 2-valent vertices on the same path of G. Fixed i, j and s such that
1 ≤ s < i < j ≤ k − 1. Then the number of spanning trees for a given graph of type W6

is equal to

T (Ci−s)T (Cj−i)T (Θ(k − j + s, l,m)) = (i− s)(j − i)σ2(k − j + s, l,m).

Summing over i, j and s we obtain

Lw(k, l,m) =
∑

1≤s<i<j≤k−1

(i− s)(j − i)σ2(k − j + s, l,m).

The total number of spanning trees in this case

Tw
6 = Lw(k, l, m) + Lw(l, m, k) + Lw(m, k, l).

By (3.4) and straightforward calculation in Mathematica.8 we obtain

cn−3 = Tw
1 + Tw

2 + Tw
3 + Tw

4 + Tw
5 + Tw

6

= C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 .

3.2 Proof of the main theorem

Proof. LetG andG′ be two bridgeless graphs of genus two. Then by Lemma 1 for suitable
{k, l,m} and {k′, l′,m′} we have

G = Θ(k, l,m) and G′ = Θ(k′, l′,m′).

Denote by µ(G, x) = xn − c1xn−1 + . . .+ (−1)n−1cn−1x and

µ(G′, x) = xn
′
− c1xn

′−1 + . . .+ (−1)n
′−1cn′−1x

their Laplacian polynomials.
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Figure 3: The graphs obtained from Θ(k, l,m) by gluing three vertices

Suppose that the graphs G and G′ are isospectral. Then n′ = n, c′1 = c1, . . . , c
′
n−1 =

cn−1. From the second and the last equalities by Lemma 2 we obtain

2σ1 = 2σ′1 and σ2(σ1 − 1) = σ′2(σ′1 − 1). (3.4)

Since both graphs are of genus 2 we have σ1 > 1 and σ′1 > 1. Then the system of equations
(3.4) gives σ1 = σ′1 and σ2 = σ′2. The theorem will be proved if we show that σ3 = σ′3.
We will do this in two steps. First of all, we note that by [13] isospectral graphs with
n ≤ 5 vertices are isomorphic. So, we can assume that n = k + l + m − 1 > 5, that is,
σ1 = k + l +m > 6.

By Lemma 3,
cn−2 = A(σ1, σ2) +B(σ1, σ2)σ3, (3.5)

whereA(s, t) = (4t−3st−2s2t+s3t+4t2−st2)/12 andB(s, t) = (3−4s+s2−3t)/12.
Step 1. B(σ1, σ2) 6= 0. Since c′n−2 = cn−2, σ1 = σ′1 and σ2 = σ′2 from (3.5) we

obtain
B(σ1, σ2)σ′3 = B(σ1, σ2)σ3. (3.6)

Hence σ3 = σ′3 and the theorem is proved.
Step 2. B(σ1, σ2) = 0. Then by Lemma 3

cn−3 = C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 , (3.7)

where

C(s, t) = (−34t+ 21st+ 25s2t− 10s3t− 3s4t+ s5t− 50t2 + 10st2

+ 12s2t2 − 2s3t2 − 16t3 + st3)/360,

D(s, t) = (−45 + 50s+ 5s2 − 12s3 + 2s4 + 24st− 9s2t+ 15t2)/360,

E(s, t) = −3(−8 + 3s)/360.
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Since c′n−3 = cn−3, σ1 = σ′1 and σ2 = σ′2 from (3.7) we obtain

D(σ1, σ2)σ′3 + E(σ1, σ2)σ′3
2

= D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 . (3.8)

We note that E(σ1, σ2) 6= 0 for any integer σ1. Then the above equation has two
solutions with respect to σ′3. The first solution is σ′3 = σ3 and the second one is

σ′3 = −D(σ1, σ2)

E(σ1, σ2)
− σ3. (3.9)

In the first case the theorem is proved. So we assume that σ′3 is given by equation (3.9).
Recall thatB(σ1, σ2) = 0. Then σ2 = (3−4σ1+σ2

1)/3 and equation (3.9) can be rewritten
in the form

σ′3 =
1

729
(2(425− 357σ1 − 144σ2

1 + 27σ3
1)− 490

−8 + 3σ1
)− σ3. (3.10)

Since σ3 and σ′3 are integers the number

N = 2(425− 357σ1 − 144σ2
1 + 27σ3

1)− 490

−8 + 3σ1

is an integer divisible by 729. Moreover, −8 + 3σ1 is a divisor of 490 and the number
σ2 = (3 − 4σ1 + σ2

1)/3 is a positive integer. There are a finite number possibilities of a
positive integer σ1 to satisfy these three conditions, namely, σ1 ∈ {6, 19, 166}. The case
σ1 = 6 can be excluded since we suggested that σ1 > 6. Another way to exclude σ1 = 6
is to check that in this case σ′3 = −3− σ3 is negative.

Consider the remaining cases σ1 = 19 and σ1 = 166. By (3.10) in these cases we have
σ′3 = 348−σ3 and σ′3 = 327789−σ3 respectively. The respective values of σ2 are 96 and
8965.

Let σ1 = 19.We have the following system of equations to find positive integer param-
eters k, l,m, σ3 of the graph G = Θ(k, l,m) :

k + l +m = 19, k l + l m+mk = 96, k l m = σ3.

This system has only one solution {k, l,m} = {3, 4, 12}, σ3 = 144.
Now we are able to find parameters k′, l′,m′, σ′3 of the graph G′ = Θ(k′, l′,m′). First

of all, σ′3 = 348− σ3 = 204. Then we have

k′ + l′ +m′ = 19, k′l′ + l′m′ +m′k = 96, k′l′m′ = 204.

The latter system has no integer solutions. So the case σ1 = 19 is impossible.
Let σ1 = 166. We have the following system k, l,m, σ3.

k + l +m = 166, k l + l m+mk = 8965, k l m = σ3.

This system has only one solution {k, l,m} = {39, 59, 68}, σ3 = 39 · 59 · 68.
Find parameters k′, l′,m′, σ′3 of the graph G′ = Θ(k′, l′,m′). Now, σ′3 = 327789 −

σ3 = 171321. Then we have

k′ + l′ +m′ = 166, k′l′ + l′m′ +m′k′ = 8965, k′l′m′ = 171321.

The system has no integer solutions. The case σ1 = 166 is also impossible.
This completes the proof.



A. Mednykh and I. Mednykh: Isospectral genus two graphs are isomorphic 233

4 Final remarks
1. The main Theorem 3.1 is not valid for genus two graphs with bridges. Indeed, the

following two graphs (see Fig. 4) constructed in [12] are isospectral. They share the
Laplacian polynomial

−72x+ 192x2 − 176x3 + 73x4 − 14x5 + x6.

The first of these graphs is bridgeless, while the second one has a bridge.

Figure 4: Isospectral graphs of genus two. The second graph has a bridge.

2. There are isospectral bridgeless graphs of genus three which are not isomorphic (see
Fig. 5). These two graphs were constructed in [13].They share the Laplacian poly-
nomial

−384x+ 1520x2 − 2288x3 + 1715x4 − 708x5 + 164x6 − 20x7 + x8.

Figure 5: Isospectral graphs of genus three.

3. Any bridgeless graph of genus one is isomorphic to a cyclic graph Cn for some n ≥
1. If two cyclic graphs Cm and Cn are isospectral then their Laplace polynomials are
of the same degree m = n. Hence, the graphs are isomorphic.
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At the same time, there are isospectral unicycle graphs [20]. For example, the two
genus one graphs shown on Fig. 6 share the Laplacian polynomial

28x− 146x2 + 250x3 − 194x4 + 75x5 − 14x6 + x7.

Figure 6: Isospectral graphs of genus one.

4. One can hear the genus of a graph. That is, the genus of a graph G is completely
determined by its Laplace spectrum. Indeed, g(G) = 1 − V (G) + E(G). Let
µ(G, x) = xn−c1xn−1+. . .+(−1)n−1cn−1x be the Laplacian polynomial ofG. By
the arguments from the proof of Lemma 3.2 we have n = V (G) and c1 = 2E(G).
Thus V (G) and E(G), as well as the genus, are uniquely determined by the Lapla-
cian polynomial.

It follows from this observation, the previous remark, and the main result of the paper
that the bridgeless graphs of genera one and two are recognisable by their Laplacian
spectra among all bridgeless graphs.

5. One cannot hear a bridge of a graph. Indeed, the two graphs in Fig. 4 are isospectral.
We are not able to recognise the existence of a bridge of the second graph by its
spectrum.
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