Short communication The Combinatorial Isomer Enumeration of 1, 3, 5-trimethylbenzene by Fujita's Topological Index Ali Moghani,1* Mohammad Reza Sorouhesh2 and Soroor Naghdi1 1 Department of Color Physics, Institute for Colorants Paints and Coatings, Tehran, Iran 2 Department of Mathematics, Islamic Azad University, South Tehran branch, Tehran, Iran * Corresponding author: E-mail: moghani @icrc.ac.ir Received: 24-08-2009 Abstract The unmatured full non-rigid group of 1,3,5-trimethylbenzene is isomorphic to the wreath product of the cyclic group of order three and the symmetric group of order six on three letters (see Int. J. Quantum Chem. 2007, 107, 340 and Bull. Chem. Soc. Jpn. 2008, 81, 279). In this paper the unit subduced cycle index table introduced by S. Fujita of the full nonrigid group 1,3,5-trimethylbenzene of order 162 are successfully derived for the first time. Keywords: Non-rigid molecule group, Unit subduced cycle index, 1,3,5-trimethylbenzene. 1. Introduction Chemically, for any non-rigid molecules, there are one or more contortional large amplitude vibrations, such as inversion or internal rotation, which lead to tunneling splitting. Because of this deformability, such molecules exhibit some remarkable properties of intermolecular dynamics, which can be surveyed more easily by resorting to Group theory. A complete set of molecular conversion operations that commute with the nuclear motion operator includes total rotation operations, describing the molecule rotating as a whole and the non-rigid tunneling motion operations that depict molecular moieties moving with respect to the rest of the molecule. Such a set forms a group called the full non-rigid group (f-NRG).1-3 In 1960's, Longuet-Higgins3 investigated the symmetry groups of non-rigid molecules, where changes from one conformation to another can occur effortlessly. The method described here is appropriate for molecules consisting of a number of CH3 groups attached to a rigid framework.3-10 Through the present study, we intend to probe the unite subduced cycle indices for the f-NRG 1,3,5-tri- methylbenzene as are presented introduced by S. Fujita.11-18 The motivations for this study, utilizing GAP19 are the authors previous works on the chemical molecules.20-25 2. Experimental In this section, in respect to Fujita's symbols, we describe some notations that will be kept thoroughly in this paper. Let G be an arbitrary finite group and h1, h2, e G, we say h1 and h2 are Q-conjugate, denoted by h2 - Qh2, if we can find any t e G such that t1 (h1) t = (h2). Obviously, this Q-conjugacy is an equivalence relation on group G and it generates equivalence classes that are called dominant classes. Therefore G is partitioned into the dominant classes as follows: G = K1 + K2+ ••• + Ks. Now assume that an action P of G on a set X and a subgroup H of G are given. So by considering the set X consisting of all the H's, right cosets,and the partition of G induced by these cosets; G = ®rfHgi, we have an action of G on X and a permutation representation signified by G(/H) correspon- dingly. If Gj and Gj be any subgroups of an arbitrary finite group G, a subduced representation denoted G(/Gi) I Gj is known as a subgroup of the coset representation G(/Gi) that contains only the elements associated with the elements in Gj.11-14 The table of marks of a finite group G is a square matrix M(G) = (mik) 11 < k 2, the group G is an unmatured concerning subgroup H.13-17 Theorem: The wreath products of the matured finite groups are again a matured group, but the wreath products of some finite groups with at least one unmatured group should be an unmatured group.25 3. Results and Discussion According to the above Theorem and ref. 27, the f-NRG 1,3,5-trimethylbenzene (TMB) is an unmatured group isomorphic to C3 wr S3 of order 162, see Figure 1. In order to compute the mark table M34x34 and then the set SSGX of TMB with the symmetry X = C3 wr S3, run the program below in the GAP prompt as follows: LogTo("1,3,5-trimethylbenzene.txt"); c3:=CyclicGroup(IsPermGroup,(3)); Table 1 (continued) USCI G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G(/G1) s18 »9 s18 9 s18 9 s18 9 s18 9 s18 9 s18 9 s18 9 s18 9 s18 9 s6 27 s6 27 s6 27 s3 54 s3 54 s2 81 si62 G(/G2) S9 s9 s9 s9 s9 s9 s9 s 3s3 s18s9 s 3s3 s18s9 s 3s3 s18s9 s 3s3 s18s9 4 s18s9 s 3s3 s18s9 s3 27 s3 27 s3 27 s3 27 s54s27 s81 s81 G(/G3) S18 3 s18 3 s9 s18 3 s3 18 s 9 s3 18 s3 18 s 9 s 9 s9 s9 s9 s3 18 s3 18 s2 27 s54 G(/G4) S6 »9 s6 9 s4s6 93 s6 9 s2s3 18 6 s3 18 s3 18 s s6 18 6 s2s3 18 6 s3 18 s9 s2 27 s2 27 s54 s18 s2 27 s54 G(/G;) s9 s9 s4s6 93 s9 s2s3 18 6 s9 s6 s2s3 18 6 s2s3 18 6 s3 18 s3 18 s9 s6 s9 s6 s9 s3 18 s18 s2 27 s54 G(/Gj) s9 s9 s2s12 93 s9 s s6 18 6 s3 18 s2s3 18 6 s3 18 s2s3 18 6 s3 18 s9 s2 27 s2 27 s54 s18 s2 27 s54 G(/G7) s6 9 s6 9 s6 9 s9 6 s3 18 s3 18 s s6 18 6 s2s3 18 6 s2s3 18 6 s3 18 s6 9 s2 27 s2 27 s54 s18 s2 27 s54 G(/G„) s4s6 93 s4s6 93 s6 s9 s9 s3 18 s3 18 s3 18 s3 18 s3 18 s2s3 96 s2 27 s9 s2 27 s3 18 s54 s2 27 s54 G(/G,) s9 s9 s2s3 93 s9 s s3 18 3 33 s6 s3 s s3 18 3 33 s6 s3 s18s9 s9 s9 s9 s9 s9 s18s9 s27 s27 G(/G10) s9 s9 s2s3 93 s3 9 s s3 s18s3 s18s9 s18s9 s18s9 s18s6s3 s18s9 s9 s27 s27 s27 s18s9 s27 s27 G(/G11) s9 s9 s3 s9 s9 s18s9 s18s9 s s3 s18s3 s s3 s18s3 s18s6s3 s18s9 s9 s27 s27 s27 s18s9 s27 s27 G(/G12) s9 s9 s s6 93 s9 s s3 96 s18s9 s s3 18 3 s18s9 s18s6s3 s18s9 s9 s27 s27 s27 s18s9 s27 s27 G(/G13) s9 3 s9 3 s3 9 s9 3 s18s9 s3s3 s6s3 s18s9 s18s9 s 4s s6s3 3 3 s6s3 s3 9 s3 9 s3 9 s3 9 s18s9 s27 s27 G(/G14) 2 2 s9s3 s2s3 93 s9 s9 s9 s9 s9 s9 s18s9 2 s9s6s3 s27 s9 s27 s9 s27 s27 s27 G(/G15) s3 s3 s3 s3 s3 s29 s3 s3 s3 s3 s3 s3 s3 s3 s3 s29 s18 G(/G16) s3 s3 s6 3 s6 3 s3 6 s3 6 s3 6 s3 6 s2s3 62 s3 s3 s2 9 s2 s18 s3 s29 s18 G(/G17) S92 S92 s3 s? s3 s6 s s3 s6s2 s s3 s6s2 s3 s6 s3 si8 s3 s2 s2 s18 s3 s6 s2 s18 G(/G18) S92 S92 s3 s2 si8 s2s2 s6s3 s4s3 32 s2s2 s6s3 s3 si8 s2 s3 s2 s3 s18 s2 s18 G(/G19) S4S6 31 s4s6 31 s2 9 s6 3 s2s3 62 s6 3 22 s6s3 s18 s3 6 s2s3 62 s2 9 s6 3 s2 9 s3 6 s18 s2 9 s18 G(/G20) S92 S92 s4s6 31 s2 s9 si8 22 s6s3 s18 22 s6s3 s3 si8 s3 s2 s2 s9 s18 s3 s6 s2 s18 G(/G21) s3 s3 s29 s5s3 31 s2s3 62 s3 s3 s18 s3 s3 s29 s29 s s3 93 s18 s18 s2 s18 G(/G22) s9 s9 s2s3 31 s9 3 s6s13 s3 s9 s6s3 s6s3 s9 s3 3 s3 3 s3 3 s9 s6s3 s9 s9 G(/G23) s3 s3 s3 s3 s3 s3 s6s3 s3s3 s2si s6s3 s6s3 s6s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s6s3 s9 s9 G(/G24) s9 s9 s3 s9 s6s3 33 s2si s6s3 s6s3 s6s3 s9 s3 s9 s9 s9 s6s3 s9 s9 G(/G25) s9 s9 s3 3 s9 s6s3 s6s3 s3 3 3 s6s13 s6s3 s9 s3 3 s9 s9 s9 s6s3 s9 s9 G(/G26) s3 s3 s3 s3 s3 s3 s6s3 s6s3 s3 s3 s6s3 s6s2s1 s6s3 s3 s3 s9 s9 s9 s6s3 s9 s9 G(/G27) 33 S2S1 33 s2si s9 s3 s9 s3 s9 s9 s6s3 s32s2s1 s9 s3 s9 s3 s9 s9 s9 G(/G28) s2 s2 s6 s2 3 s3 2 s3 2 s3 2 s3 2 s3 2 s6 s6 s23 s3 2 s6 s3 2 s6 s6 G(/G29) s6 s6 s2 s2 s3 s23 s23 s6 s6 s6 s3 s2 s23 s23 s23 s3 s2 s6 s2 s3 s6 G(/G30) s2 s2 s2 s s3 31 s23 s23 s6 s6 s6 s6 s23 s23 s23 s6 s6 s3 s6 G(/G31) s3 s3 si s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 G(/G32) si si s3 s3 s2si s2si s2si s2si s2si s3 s? s3 s3 s3 s2si s3 s3 G(/G33) s2 s2 s2 s2 s2 s2 s2 s21 s2 s2 s2 s2 s2 s2 s2 s2 s2 G(/G34) s1 s1 s1 s1 s1 s1 s1 si s1 s1 s1 s1 s1 s1 s1 s1 s1 s3:=SymmetricGroup(IsPermGroup,(3)); X:=WreathProduct(c3,s3); Order(X); IsPermGroup(X); s:=ConjugacyClassesSubgroups(X); Sort("s"); M:=TableOfMarks(X); Display(s); LogTo( ); Print("1,3,5-trimethylbenzene.txt" Column26:=A*(Inv); Print("Column26", "\n"); 'In"); Afterwards, it can be seen that the non-redundant set of subgroups of X with size 34 consists of the following elements required to calculate all the Fujita's topological indices (i.e. USCIs) as collected in Table 1: Now, we utilize GAP to calculate all the USCIs of X for TMB. As a matter of fact, for instance, to calculate the column no. 26 in Table 1 (i.e. for G26 of order 18) equiva-lently for i = 1 to 34, Z(G(G) I G26, sd), the following program is operated in GAP system as well: G26=GroupWithGenerators((7,8,9),(1,2,3)(4,5,6),(1,4) (2,5)(3,6)); M26:=TableOfMarks(G26); Inv:=(M26)" -1; S26:=ConjugacyClassesSubgroups(G26); Sort(s26); A:=[[18,0,0,0,0,0,0,0,0,0,0,0], [9,9,0,0,0,0,0,0, 0,0,0,0], [6,0,6,0,0,0,0,0,0,0,0,0], [6,0,0,6,0,0,0,0 ,0,0,0,0], [6,0,0,0,6,0,0,0,0,0,0,0], [6,0,0,0,0,6,0, 0,0,0,0,0], [3,3,3,0,0,0,3,0,0,0,0,0], [3,3,0,3,0,0,0 ,3,0,0,0,0], [3,3,0,0,3,0,0,0,3,0,0,0], [3,3,0,0,0,3, 0,0,0,3,0,0], [2,0,2,2,2,2,0,0,0,0,2,0], [1,1,1,1,1,1 ,1,1,1,1,1,1]]; Figure 1: Structure of 1,3,5-trimethylbenzene 4. Conclusions By applying similar and above calculation for other columns, we are able to calculate Fujita's combinatorial enumeration USCI table of 1,3,5-trimethylbenzene stored in Table 1 which would also be valuable in other applications such as in the context of chemical applications of graph theory and aromatic compounds.1-18' 28 5. Acknowledgment The authors were in part supported by a grant from Islamic Azad University, South Tehran Branch. 6. References 1. F. A. Cotton, Chemical Application of Group Theory, Wiley-International, 1971 New York. 2. I. Hargittai, H. Hargitta, Symmetry through the Eyes of a Chemist, VCH, 1986 Weinheim. 3. H. C. Longuet-Higgins, Mol. Phys. 1963, 6, 445-460. 4. Y. G. Smeyers, Adv. Quantum. Chem. 1992, 24, 1-47. 5. S. L. Altmann, Induced Representation in Crystal & Molecules; Academic Press, London, 1977. 6. P. R. Bunker, Molecular Symmetry in Spectroscopy; Academic Press, New York 1979. 7. J. S. Lomont, Applications of Finite Groups, Academic: New York 1959. 8. K. Balasubramanian, J. Phys. Chem. 2004, 10, 5527-5536. 9. K. Balasubramanian, Chem. Phys. Lett. 2004, 391, 64-68. 10. K. Balasubramanian, Chem. Phys. Lett. 2004, 398, 15-21. 11. S. Fujita, J. Math. Chem. 1999, 12, 173-195. 12. S. Fujita, J. Graph Theory 1994,18, 349-371. 13. S. Fujita, Bull. Chem. Soc. Jpn. 1998, 71, 2071-2080. 14. S. Fujita, Bull. Chem. Soc. Jpn. 1998, 71, 2309-2321. 15. S. Fujita, MATCH Commun. Math. Comput. Chem. 2006, 55, 237-270. 16. S. Fujita, MATCH Commun. Math. Comput. Chem. 2007, 57, 5-48. 17. S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers, Univ. Kragujevac, Kra-gujevac 2007. 18. S. Fujita, Theor. Chim. Acta 1995, 91, 291-314. 19. GAP, Groups, Algorithms and Programming, -system.org, Lehrstuhl für Mathematik, RWTH, Aachen 1995 20. A. Moghani, J. Serb. Chem. Soc. 2008, 73, 189-195. 21. M. R Darafsheh, A. Moghani, Bull. Chem. Soc. Jpn. 2008, 81, 279-282. 22. M. R. Darafsheh, A. Moghani, S. Naghdi Sedeh, Acta Chim. Slov. 2008, 55, 602-607. 23. M. R. Darafsheh, A. Moghani, M. Karami, A. Zaeembashi, S. Naghdi, Int. J. Chem. Model. 2009, 1 (3/4), 435-444. 24. A. Moghani, M. R. Sorouhesh, S. Naghdi, J. Serb. Chem. Soc. 2010, 75, 91-99. 25. A. Moghani, Bull. Chem. Soc. Jpn. 2009, 82 (9), 1103-1106. 26. A. Kerber, MATCH Commun. Math. Comput. Chem. 2002, 46, 151-198. 27. M. R. Darafsheh, A. Darafsheh, A. R. Ashrafi, Int. J. Quant. Chem. 2007,107, 340-344. 28. M. Randic, Acta Cryst. A 1978, 34, 275-282. Povzetek Nezrela, popolnoma nerigidna grupa 1,3,5-trimetilbenzena je izomorfna s spletnim produktom ciklične grupe tretjega reda in simetrične grupe šestega reda na treh črkah (gl. Int. J. Quantum Chem. 2007, 107, 340 and Bull. Chem. Soc. Jpn. 2008, 81, 279).V tem prispevku prvič uspešno izpeljemo tabelo enotnih zmanjšanih cikličnih indeksov (ki jo je vpeljal S. Fujita) za popolnoma nerigidno grupo 1,3,5-trimetilbenzena reda 162.