23 ACTA BIOLOGICA SLOVENICA LJUBLJANA 2006 Vol. 49, [t. 2: 23–32 Sprejeto (accepted): 2007-01-29 Quantitative analysis of the macroinvertebrate community in the river Temenica (SE Slovenia) Kvantitativna analiza združbe makroinvertebratov v reki Temenici (JV Slovenia) Mojca PUST, Mihael J. TOMAN Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; E-mail: mihael.toman@bf.uni-lj.si. Abstract. Macroinvertebrate community of the river Temenica was investigated in order to asses the ecological quality of the stream. Different approaches were used in order to compare their usefulness. Surber sampler methodology was used and all together16 quantitative sam- ples were taken at four stream reaches every three months from October 2003 until July 2004. Saprobic and diversity indices showed severe deterioration of water quality longitudinally and a strong negative infl uence of the town Trebnje on the ecological state of the river Temenica. Multivariate methods DCA and CCA confi rmed those results, but also showed greater differences in community structure at sampling site 1 compared to sites 2 and 3 which was not detected using the indices. Key words: macroinvertebrates, water quality assesment, saprobic index, diversity indices, DCA, CCA Izvleček. Za oceno ekološke kakovosti reke Temenice smo raziskovali združbo makroin- vertebratov. Uporabili smo različne pristope, da bi primerjali njihovo uporabnost. Uporabljena je bila metodologija Surberjevega vzorčevalnika, vzorčili smo na štirih vzorčnih mestih vsake tri mesece od oktobra 2004 do julija 2004, skupno smo pobrali 16 kvantitativnih vzorcev. Saprobni in diverzitetni indeksi so pokazali resno poslabšanje kakovosti vode po toku navzdol in močan negativen vpliv mesta Trebnje na ekološko stanje reke Temenice. Multivariatni metodi DCA in CCA sta potrdili te rezultate, pokazali pa sta tudi večje razlike v strukturi združbe na vzorčnem mestu 1 v primerjavi z mestoma 2 in 3, ki jih z uporabo indeksov nismo zaznali. Ključne besede: makroinvertebrati, ocena kakovosti vode, saprobni indeks, diverzitetni indeksi, DCA, CCA Introduction Macroinvertebrates are extensively used in water quality assessment as they are considered good indicators of environmental pollution. There are various methods for assessing water quality which have different conceptual basis and may therefore provide different information about the aquatic environment. Many authors have compared different methods of summarising responses to pollution (CAO et al. 1996, ROSSARO & PIETRANGELO 1993). Water quality indices have been developed as a rou- tine technique for water monitoring. Saprobic index is often used as a measure of organic pollution (URBANIČ 2004) and is also in use by the Slovenian Ministry of the Environment for biomonitoring of surface waters. Diversity indices are known to be inaccurate at headwater reaches and were also reported to be insensitive to slight and moderate pollution (CAO et al. 1996). However, they can still be used as a complementary method. 24 Acta Biologica Slovenica, 49 (1), 2006 Multivariate methods are increasingly used in biological monitoring of water quality (CAO et al. 1996, ROSSARO & PIETRANGELO 1993). Their main advantage is that they can detect more subtile changes in community structure than the indices. They can also provide information on the responses of taxa to different environmental variables. The aim of this study was to asses the water quality of the stream Temenica using different methods (saprobic index, different diversity indices and multivariate methods DCA and CCA) and to compare the effectiveness of those methods. Description of study sites Our study area was the fi rst part of the disappearing stream Temenica in the south-eastern part of Slovenia. Its length is 25 km and the catchment area comprises 91 km2. The upper part of the stream (approx. 5 km) lies in a forested area with little human impact whereas the lowland part with meandering watercourse runs through cultivated land and by the town Trebnje, which is the largest settlement in the area. Elevations range from 560 m at the source to 260 m at the sinking point. Temperatures fl uctuate between 2,2–3 oC (winter) and 14,2–18,2 oC (summer). Stream pH lies within the range 8,1–8,7 and conductivity between 504 and 604 μScm–1. Sampling site 1 was established in the headwaters, site 2 at the beginning of lowland watercourse, and sites 3 and 4 upstream and downstream from Trebnje. Materials and methods Macroinvertebrates were sampled on four occasions between October 2003 and July 2004 with 3 month-intervals. At each sampling site 6 random sampling units were taken with a Surber sampler (500 cm2 sapling area and 0,5 mm mesh size). Several physical and chemical characteristics (Table 1) were measured at the same time. Table 1: Morphometric and physical characteristics of sampling sites on the river Temenica. Tabela 1: Morfometrične in fi zikalne značilnosti vzorčnih mest v reki Temenici. Stream reach Location Stream order* Distance from source (km) Altitude (m) Mean width (m) Mean depth (cm) Maximum temperature (C) 1 Pusti Javor 2 2 360 1,2 6 14,2 2 Stranje pri Velikem Gabru 3 10 300 3,1 31 14,1 3 Štefan 3 18 280 7,3 23 16,9 4 Gorenje Ponikve 3 23 270 5,9 22 18,2 * After Strahler (1952) All samples were fi xed in 4 % formaldehyde in the fi eld. In the laboratory, organisms were sorted, enumerated, identifi ed under a stereomicroscope and stored in 70 % ethyl alcohol. Macroinvertebrates were determined at least to the family level (except groups Hydrachnida and Collembola) using the keys of BAUERNFEIND & HUMPESCH (2001), BRINKHURST (1971), ELLIOT (1977), GERKEN & STERNBERG (1999), GLOER (2002), KARAMAN & PINKSTER (1977), NESEMANN (1997), REYNOLDSON (1987), SCHME- DTJE & KOHMANN (1992), TACHET (2000), TRONTELJ & SKET (2000), URBANIČ et al. (2003), WARINGER & GRAF (1997), ŽIŠKO (2000). Saprobic index was calculated using saprobic and indicative taxa values after WEGL (1983), MOOG (1995) and URBANIČ (2004) (Trichoptera). Number of taxa per sampling unit (S) and diversity indices (Shannon-Wiener index H’ = – Σ (p i * ln p i ), Eveness index E = H’/ln S and Simpson’s index D = 1 – Σ 25 p i 2) were calculated using PC-ORD (MCCUNE & MEFFORD 1999). One way ANOVAs were performed (using statistical package SPSS) to determine whether the differences in diversity among sampling sites were signifi cant. Multivariate methods used in this study included detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA). Both were performed using statistical package CANOCO. Data on taxa abundances were log transformed. CCA analysis was performed with reduced data matrix which included only suffi ciently common taxa (occurrence in at least 2 samples or at least 4 individuals present) and 5 statistically signifi cant variables (forward selection). Results A total of 76550 individuals, representing 120 taxa were collected (Table 2). Saprobic index (Fig. 1) indicates strong organic pollution at sampling site 4 where Tubifi cidae and Chironomidae were the most abundant. There is an apparent decrease in the value in summertime when Chironomidae (which have a lower saprobic value) outnumbered Tubifi cidae. Values of the saprobic index at the other three sites were very similar in all seasons and indicate low level of pollution. Box-plot presentations of taxa number (S) and values of Shannon-Wiener index (H’), Eveness index (E) and Simpson’s index (D) are shown in Figure 2. There is a signifi cant decrease in all the values at sampling site 4, which confi rms the results of the saprobic index. The number of taxa is also lower at site 1, but diversity indices at this site are equal or even higher (E) than at sites 2 and 3. Using one-way ANOVA we confi rmed satistically signifi cant differences in values S, H’ and E among sampling sites. DCA ordination of 16 samples is shown in Figure 3. The fi rst axis explains 40,5 % of the total variance and axis 2 further explains 12,5 %. Samples from each sampling site are clearly separated by the fi rst axis which represents the upstream-downstream gradient and presumably also the pollution gradient. There is a considerable gap between the samples from site 1 and the other samples which indicates signifi cant differences in community structure between the headwaters and the rest of the stream. Axis 2 is apparently related to the seasonal changes in community structure. M. Pust, M. Toman: Quantitative analysis of the macroinvertebrate community in the river ... Figure 1: Values of saprobic index at different seasons at four sampling sites of theTemenica river. Slika 1: Vrednosti saprobnega indeksa v različnih letnih časih na štirih vzorčnih mestih v reki Temenici. 26 Acta Biologica Slovenica, 49 (1), 2006 Ta bl e 2: T he a bu nd an ce o f ta xa a t t he s am pl in g si te s of T em en ic a. A bb re vi at io ns a re a dd ed o nl y fo r ta xa u se d in th e C C A Sa m pl in g si te 1 2 3 4 Sa m pl in g si te 1 2 3 4 Ta xa A bb re vi at io n Ta xa A bb re vi at io n Po ly ce lis fe lin a Po ly _f el 30 0 0 0 C ol le m bo la 3 0 0 0 D ug es ia sp . D ug e_ sp 0 37 8 17 8 Ep he m er a da ni ca E ph e_ da n 35 6 6 2 0 Pr os to m a sp . Pr os _s p 0 4 0 0 Ep he m er el la m aj or E ph e_ m aj 0 14 0 0 M er m ith id ae M er _i da e 0 23 3 15 4 Ep he m er el la ig ni ta E ph e_ ig n 2 37 6 15 3 17 H ol an dr ia na h ol an dr i H ol a_ ho l 3 22 32 38 1 0 C ae ni s m ac ru ra 0 0 0 1 Es pe ri an a es pe ri E sp e_ es p 0 8 36 7 4 Ec dy on ur us sp . E cd y_ sp 0 4 1 0 Es pe ri an a da ud eb ar tii E sp e_ da u 0 0 83 2 El ec tro ge na sp . E le c_ sp 49 5 0 0 Th eo do xu s d an ub ia lis T he o_ da n 0 0 17 4 0 Rh ith ro ge na sp . R hi t_ sp 54 32 1 0 Sa dl er ia na fl um in en si s 0 2 0 0 Ba et is sp . B ae t_ sp 39 71 2 24 4 18 7 Be lg ra nd ie lla sp . 0 1 0 0 C en tro pt ilu m lu te ol um 9 0 0 0 An cy lu s fl u vi at ili s A nc y_ fl u 0 17 2 0 3 Ac en tre lla si na ic a 0 4 0 0 Ra di x ba lth ic a R ad i_ ba l 0 1 3 3 H ab ro le pt oi de s c on fu sa H ab r_ co n 35 0 17 1 Ph ys a fo nt in al is Ph ys _f on 0 0 0 12 H ab ro ph le bi a fu sc a H ap h_ fu s 67 0 28 1 Pi si di um sp . Pi si _s p 1 90 65 86 H ab ro ph le bi a la ut a 2 0 0 0 H el ob de lla st ag na lis H el o_ st a 1 0 0 88 6 Pa ra le pt op hl eb ia su bm ar gi na ta Pa ra _s ub 0 0 6 0 Al bo gl os si ph on ia h ia lin a 0 0 1 0 Pe rl od es sp . P er l_ sp 20 10 5 55 2 G lo ss ip ho ni a co nc ol or G lo ss _c on 0 0 0 2 Is op er la sp 1 1 0 0 Tr oc he ta b yk ow sk ii 0 2 0 0 N em ou ra sp . N em o_ sp 33 0 0 0 D in a sp . D in a_ sp 0 0 0 9 Pr ot on em ur a sp . P ro t_ sp 16 0 0 0 Ei se ne lla te tr ae dr a E is en _t et 2 41 21 7 Le uc tr a sp . L eu c_ sp 9 0 3 0 L um br ic ul id ae L um _i da e 0 7 1 0 Br ac hy pt er a sp . B ra c_ sp 20 4 3 0 St yl od ri lu s h er in gi an us St yl _h er 21 7 69 9 24 9 22 19 C al op te ry x vi rg o C al o_ vi r 0 4 1 0 T ub ifi ci da e T ub _i da e 4 14 3 55 25 15 5 C al op te ry x sp le nd en s 3 10 0 0 N ai di da e N ai _i da e 2 32 16 44 Pl at yc ne m is p en ni pe s Pl at _p en 0 0 25 2 St yl ar ia la cu st ri s St yl _l ac 0 0 12 3 2 Le st es v ir id is 0 0 0 1 H yd ra ch ni da 1 0 0 0 L es tid ae ( ju v. ) 0 0 2 0 G am m ar us fo ss ar um G am m _f os 29 6 86 3 25 6 6 G om ph us v ul ga tis si m us G om p_ vu l 0 22 14 0 Sy nu re lla a m bu la ns Sy nu _a m b 0 0 3 4 O ny ch og om ph us fo rc ip at us O ny c_ fo r 0 11 48 0 As el lu s a qu at ic us A se l_ aq u 1 0 1 47 O ny ch og om ph us u nc at us O ny c_ un c 0 0 17 0 Au st ro po ta m ob iu s to rr en tiu m A us t_ to r 0 0 4 0 C or du le ga st er b ol to ni co m pl ex C or d_ bo l 10 0 0 0 27 Sa m pl in g si te 1 2 3 4 Sa m pl in g si te 1 2 85 0 Ta xa A bb re vi at io n Ta xa A bb re vi at io n 0 2 Ap he lo ch ei ru s a es tiv al is A ph e_ ae s 0 20 85 0 Le pi do st om a hi rt um 0 1 0 0 Si al is lu ta ri a 0 0 0 2 Po ta m op hy la x sp . 0 0 5 0 El m is sp . E lm i_ sp 14 39 8 13 61 1 O do nt oc er um a lb ic or ne 1 0 0 0 Es ol us sp . E so l_ sp 61 41 67 13 79 18 W or m al di a su bn ig ra W or m _s ub 0 0 19 0 Li m ni us sp . L im n_ sp 5 64 3 13 1 0 W or m al di a oc ci pi ta lis 1 0 0 0 O ul im ni us sp . O ul i_ sp 0 34 6 24 74 33 Pl ec tro cn em ia sp . 3 0 0 0 Ri ol us sp . R io l_ sp 7 65 37 7 1 Ps yc ho m ia k la pa le ki Ps yc _k la 0 5 0 0 St en el m is sp . 0 0 2 0 Ps yc ho m iid ae 3 0 0 0 H yd ra en a sp . H yd n_ sp 61 90 14 5 5 Ti no de s r os to ck i T in o_ ro s 7 0 0 0 H al ip lu s s p. 0 0 1 0 Ly pe re du ct a 1 0 0 0 D yt is ci da e 0 0 1 0 Ry ac op hi la tr is tis 2 1 0 0 Sc ir tid ae Sc i_ id ae 27 6 0 0 0 Ry ac op hi la sp . ( s.s tr. ) R ya c_ sp 2 3 2 0 Eu br ia sp . 0 1 0 0 N ot id ob ia c ili ar is 0 0 2 0 H yd ro ps yc he sa xo ni ca H yd r_ sa x 9 0 0 0 H yd ro pt ila sp . H yp t_ sp 1 1 26 5 H yd ro ps yc he p el lu ci du la H yd r_ pe l 0 71 8 0 At he ri x m ar gi na ta A th e_ m ar 46 14 7 15 0 H yd ro ps yc he a ng us tip en ni s H yd r_ an g 0 0 1 13 At he ri x ib is A th e_ ib i 0 6 0 0 H yd ro ps yc he si lta la i H yd r_ si l 0 11 0 0 A nt ho m yi da e A nt _i da e 0 0 39 1 H yd ro ps yc he sp . ( ju v.) H yd r_ sp 0 59 4 0 C hi ro no m in ae C hi _n ae 22 56 3 10 73 13 18 1 Si lo p ic eu s Si lo _p ic 0 57 1 7 0 O rt ho cl ad in ae O rt _i na e 18 4 29 2 33 9 38 18 Si lo p al lip es 0 1 0 0 Ta ny po di na e Ta n_ in ae 14 23 16 9 84 3 Ag ap et us d el ic at ul us A ga p_ de l 0 54 0 0 D ol ic ho po di da e D ol _i da e 0 1 4 0 G lo ss os om a bi fi d um 0 1 0 0 C er at op og on in i C er _i ni 0 7 4 12 At hr ip so de s c in er eu s A th r_ ci n 0 8 0 0 E m pi di da e E m p_ id ae 1 13 25 38 At hr ip so de s b ili ne at us A th r_ bi l 0 5 0 0 L im on iid ae L im _i da e 64 37 21 2 Le pt oc er us in te rr up tu s L ep t_ in t 0 0 24 0 Ps yc ho di da e Ps d_ id ae 0 1 21 6 Ad ic el la sp . 0 0 2 0 Si m ul iu m sp . Si m u_ sp 54 15 68 21 28 13 8 Se to de s s p. 0 0 1 0 Pr os im ul iu m sp . Pr os i_ sp 41 0 0 0 M ys ta ci de s a zu re a 0 10 0 0 St ra tio m yi da e St r_ id ae 2 2 1 0 Li m ne ph ilu s l un at us 0 0 1 2 Ta ba ni da e Ta b_ id ae 0 15 2 0 C ha et op te ry x m aj or C ha e_ m aj 17 0 0 0 T ip ul id ae 0 1 1 1 To ta l n um be r of in di vi du al s 21 85 14 87 5 12 33 4 47 15 6 To ta l n um be r of ta xa 55 69 73 46 M. Pust, M. Toman: Quantitative analysis of the macroinvertebrate community in the river ... 28 Acta Biologica Slovenica, 49 (1), 2006 With 5 selected environmental variables (Fig. 4a) used in the CCA, we explained 64 % of the variance of the taxa-environment relation. Eigenvalues of axes 1 and 2 are 0,38 and 0,28 and display 42 % of the variance. Axis 1 shows high correlation with stream order (R2 = –0,95), and stream width (R2 = –0,74). Taxa which appear on the extreme right side of the biplot (Fig. 4b) therefore prefer headwaters of the stream. Axis 2 is mostly correlated with saprobic index (R2 = 0,84) and may thus present the gradient of organic pollution. Taxa showing affi nity (in the upper part of the biplot) to this factor were mostly found at the sampling site 4. Figure 2: Box-plots of taxa number/sampling unit (S), Shannon-Wiener index (H’), Eveness index (E) and Sim- pson’s index (D) in different seasons at four sampling sites of the Temenica river. Slika 2: Diagrami kvartilov števila taksonov/vzorčno enoto (S), Shannon-Wienerjevega indeksa (H’), indeksa stalnosti (E) in Simpsonovega indeksa (D) v različnih letnih časih na štirih vzorčnih mestih v reki Temenici. 29M. Pust, M. Toman: Quantitative analysis of the macroinvertebrate community in the river ... Discussion Macroinvertebrate fauna in the fi rst part of Temenica is relatively diverse with signifi cant differen- ces in community structure among the sampling sites. The fourth site, which lies downstream from Trebnje (population approx. 3000), is especially dissimilar from the rest due to its high saprobic index, low diversity values of indices and the number of taxa. This indicates that the town of Trebnje is a major pollutant of the stream. On the other hand, neither the saprobic index nor the diversity indices showed signifi cant differences among the other three sampling sites. The values of saprobic index at the fourth sampling site are markedly varying between seasons as a result of changes in abundance of two most abundant groups – Tubifi cidae (Oligochaeta) and Chironomidae (Diptera). There were also signifi cant seasonal differences in diversity. This indicates the importance of monitoring over a longer period of time. The fi rst DCA axis can be interpreted both as the upstream-downstream gradient as in the study of ROSSARO & PIETRANGELO (1993) and the pollution gradient, as suggested by Cao et al. (1996). In comparison with the results of saprobic and diversity indices the samples of the sampling site 1 are here clearly separated from the other samples while the differences in community structure between site 4 and the other sites in much less pronounced than in the case of the indices. The reason for this distribution lies in the small number of individuals and different taxonomic structure at site 1, where the morphometric parameters (depth, width etc.) are very different from those at the other sampling sites. The second DCA axis represents seasonal differences among the samples which are very distinct at all four sampling sites. Group of taxa, found at sampling site 1 (correlated with stream order), is pointing out in the CCA biplot, as well as the taxa, characteristic for site 4 (correlation with saprobic index). This is in agreement with both the indices and the DCA results. Although indices did not show the difference in community structure between the fi rst and the two next sampling sites, they appear to be better at detecting severe pollution (site 4) than multivariate methods. Complementary use of different methods is therefore the most reasonable approach in water quality assessment. Figure 3: DCA ordination of samples. Slika 3: DCA ordinacija vzorcev. 30 Acta Biologica Slovenica, 49 (1), 2006 Figure 4: F1 X F2 plane of Canonical correspondence analysis (CCA) between 84 taxa and 5 selected environ- mental variables. See Table 2 for taxa abbreviations. Slika 4: F1 x F2 ravnina CCA ordinacijskega diagrama med 84 taksoni in 5 izbranimi okoljkimi spremenljivkami. Glej Tabelo 2 za okrajšave taksonov. 31 Conclusions 1. High values of saprobic index and low values of diversity indices at sampling site 4 indicate that the town Trebnje as the major pollutant of the Temenica river. Differences among other three sampling sites are not detectable with the use of indices. 2. Axis 1 of DCA biplot, representing the upstream-downstream gradient, revealed great diffe- rences in macroinvertebrate community structure between the fi rst and the second sampling site, whereas the distinction of the fourth sampling site is much less pronounced. Seasonal changes in community structure are distinct at all sampling sites. 3. Stream order and saprobic index were the most prominent factors affecting the longitudinal distribution of taxa. Taxa signifi cant for sites 1 and 4 were highly correlated with these two factors. Povzetek Makroinvertebrati se kot dobri pokazatelji obremenjevanja okolja veliko uporabljajo pri ocenje- vanju kakovosti voda. Metode, ki se pri tem uporabljajo pa temeljijo na različnih principih in lahko dajejo različne informacije o vodnem okolju. Zaradi številnih pomanjkljivosti indeksov, ki se običajno uporabljajo za rutinski biomonitoring celinskih voda, se v vrednotenju kakovosti čedalje pogosteje uporabljajo multivariatne metode. S temi lahko zaznamo manjše spremembe v združbi kot z indeksi, dajo pa nam lahko tudi informacije o odzivu taksonov na posamezne okoljske spremenljivke. V naši raziskavi smo z analizo združbe makroinvertebratov ocenjevali ekološko stanje prvega dela ponikalne reke Temenice, pri čemer smo uporabili različne metode, da bi preverili njihovo uporabnost pri ocenjevanju kakovosti voda. Kvantitativno vzorčenje s Surberjevim vzorčevalnikom smo izvajali vsake tri mesece od oktobra 2003 do julija 2004 na štirih vzorčnih mestih. Vrednosti saprobnega indeksa, diverzitetnih indeksov ter število taksonov na vzorčno enoto kažejo na močno poslabšanje kakovosti reke Temenice na zadnjem vzorčnem mestu v primerjavi s prvimi tremi in s tem na močan negativen vpliv mesta Trebnje na njeno ekološko stanje. Razvrstitev vzorcev po prvi DCA osi potrjuje našo domnevo o naraščanju obremenjevanja reke po toku navzdol, pri čemer pa četrto vzorčno mesto v primerjavi z rezultati indeksov ni tako izstopajoče. Večje razlike v združbi makroinvertebratov so po tej analizi med prvim vzorčnim mestom in ostalimi tremi. Na vseh vzorčnih mestih so izrazite tudi sezonske razlike v strukturi združbe. Najpomembnejši spremenljivki za razporeditev taksonov sta po rezultatih CCA red vodotoka in vrednost saprobneega indeksa, kar izpostavi taksone, ki so bili najbolj zastopani na prvem in zadnjem vzorčnem mestu. References ALLAN J. D. 2004: Stream ecology. Structure and function of running waters. Kluwer Academic Pu- blishers, Dordrecht/Boston/London, 388 pp. BAUERNFEIND E., HUMPESCH U.H. 2001: Die Eintagsfl iegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Verlag des Naturhistorischen Museums, Wien, 237 pp. BRINKHURST R. O. 1971: A guide for the identifi cation of British aquatic Oligochaeta. Freshwater Biological Association, Ambelside, 52 pp. CAO Y., BARK A.W. & WILLIAMS P. 1996: Measuring the responses of macroinvertebrate communities to water pollution: a comparison of multivariate approaches, biotic and diversity indices. Hydro- biologia 341: 1–19. ELLIOT J. M. 1977: A key to the larvae and adults of British freshwater Megaloptera and Neuroptera with notes on their life cycles and ecology. Freshwater biological association, 52 pp. M. Pust, M. Toman: Quantitative analysis of the macroinvertebrate community in the river ... 32 Acta Biologica Slovenica, 49 (1), 2006 GERKEN B., STERNBERG K: 1999: Die Exuvien Europäischer Libellen (Insecta: Odonata). Höxter und Jena, 354 pp. GLOER P. 2002: Mollusca I. Süsswassergastropoden. Nord und Mitteleuropas. Bestimungschlüssel, Lebensweise, Verbreitung. ConchBooks, 327 pp. KARAMAN G. S., PINKSTER S. 1977: Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia. Part I. Gammarus pulex – group and related species. Bijdr. Dierk. 47(1): 1–97. LOUNACI A., BROSSE S., THOMAS A., LEK S. 2000: Abundance, diversity and community structure of macroinvertebrates in an Algerian stream: the Sébaou wadi. Annls. Limnol. 36 (2): 132–133. MCCUNE B., MEFFORD M. J. 1999. PC-ORD. Multivariate analysis of Ecological Data, Version 4. MjM Software design, Gleneden Beach, Oregon, USA. MOOG O. 1995: Fauna aquatica Austriaca. Katalog zur autökologischen Einstufung aquatischer Orga- nismen Österreichs. Bundesmoinisterium für Land- und Worstwirtschaft, umwelt und Wasserwirtschaft, Wien, 426 pp. NESEMANN H. 1997: Egel und Krebsegel (Clitellata: Hirudinea, Branchiobdellida) Österreichs. Son- derheft der Ersten Vorarlberger Malakologischen Gesellschaft, Rankweil, 104 pp. PUST M. 2005: Kvantitativna analiza združbe makroinvertebratov v reki Temenici. Diplomska naloga, Univerza v Ljubljani, Biotehniška fakulteta, Odd. za biologijo, 72 pp. REYNOLDSON T.B. 1978: A key to the British species of Freshwater Triclads (Turbellaria, Paludicola). Freshwater biological association, 32 pp. ROSSARO B., PIETRANGELO A. 1993: Macroinvertebrate distribution in streams: a comparison of CA ordination with biotic indices. Hydrobiologia 263: 109–118. SCHMEDTJE U., KOHMANN F. 1992: Bestimugschlüssel für die Saprobier-DIN-Arten (Makrooganismen). Bayerisches Landesamt für Wasserwitschaft, 274 pp. TACHET H. 2000: Invertebrés d‘eau douce; systematique, biologie, écologie. CNRS editions, 590 pp. TER BRAAK C. J. F., ŠMILAUER P. 1998: CANOCO release 4 reference manual and user’s guide to Canoco for Windows – Software for canonocal community ordination. Ithaca, New york, Micro- computer Power. TRONTELJ P., SKET B. 2000: Molecular re-assesment of some phylogenetic, taxonomic and biogeo- graphic relationships between the leech genera Dina and Trocheta (Hirudinea: Erpobdellidae). Hydrobiologia 438: 227–235. URBANIČ G., WARINGER J., GRAF W. 2003. The larva and distribution of Psychomyia klapaleki Malicky, 1995 (Trichoptera: Psychomyiidae). Lauterbornia, 46: 135–140. URBANIČ G. 2004: Ekologija in razširjenost mladoletnic (Insecta: Trichoptera) v nekaterih vodotokih v Sloveniji. Dokt. disertacija. Ljubljana, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za biologijo, 188 pp. URBANIČ G., TOMAN M. J. & KRUŠNIK C. 2004: Microhabitat type selection of caddisfl y larvae (Insecta: Trichoptera) in a shallow lowland stream. Hydrobiologia 00: 1–12. WEGL R. 1983. Index für die Limnosaprobität. Wasser und abwasser 26: 1–175. ŽIŠKO A. 2000. Morfološke prilagoditve bibice (Synurella ambulans, Crustacea: Amphipoda) na po- dzemeljske habitate. Dipl. delo, Ljubljana, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za biologijo, 46 pp.