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Abstract

This note describes fast algorithms for computing the prime factors of connected, non-
bipartite graphs with respect to the direct product, and of connected graphs with respect
to the strong product. The complexities are O(mmin(n2,∆3)) for the direct product, and
O(ma(G)∆) for the strong, where n is the order of the graph G to be factored, m its size,
a(G) its arboricity, and ∆ its maximum degree. That is, the complexities are linear in m
for fixed ∆.
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1 Introduction
The Cartesian, direct, and strong products of graphs are the only nontrivial, associative
products defined on the Cartesian products of the vertex sets having the property that the
projections onto the factors are weak homomorphisms [4]. These products enjoy many
interesting algebraic properties, such as unique prime factorization. Connected graphs have
unique prime factor decompositions with respect to the Cartesian and the strong product in
the class Γ of simple graphs [9, 10, 1, 7], and connected nonbipartite graphs have unique
prime factor decompositions with respect to the direct product in the class Γ0 of graphs
where loops but not multiple edges are allowed [7].
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In the case of the Cartesian product the prime factors can be computed in linear time,
that is, in O(m) time, where m is the size of the graph; see [6].

For the other two products the situation is different. For the strong product the paper
[2] by Feigenbaum and Schäffer was the first that presented a polynomial algorithm for
the unique factorization of connected graphs. This was then extended to the factorization
of nonbipartite connected graphs with respect to the direct product by Imrich [5]. In both
papers the main aim was to show that the factorization was possible in polynomial time,
hence neither of [2, 5] contains an estimate of the complexity of the algorithm presented
there. A rough estimate shows that it is O(n4.5) in [2] and O(n5) in [5], where n is the
order of the graph.

Both algorithms depend on the factorization of auxiliary graphs with respect to the
Cartesian product. The auxiliary graphs are called Cartesian skeletons and are defined
algorithmically in [2, 5]. The algorithmic definition makes it difficult to work with them.

Later, non-algorithmic definitions were given [3], along with efficient algorithms that
compute them. However, it was not known whether it was possible to find the prime factors
with respect to the direct and the strong products within the same time complexities needed
for computing the skeletons.

The present paper shows that this is indeed the case. We prove that connected, nonbi-
partite graphs can be factored over the direct product in O(mmin(n2,∆3)) time, and that
the prime factors of connected graphs with respect to the strong product can be found in
O(ma(G)∆) time, where n is the order, m the size, ∆ the maximum degree, and a(G)
the arboricity of the graph G that is to be factored. (The arboricity a(G) of a graph G is
the minimum number of forests into which E(G) can be partitioned. It is easily seen that
a(G) ≤ ∆.)

Although both algorithms that are presented here have complexities close to O(n4) in
the worst case, which just slightly better than that of the algorithms of Feigenbaum and
Schäffer [2] (for the strong product) and of Imrich [5] (for the direct product), their main
advantage is that their complexities for graphs with known bounds on the maximum degree
or the arboricity (in the case of the strong product) and can be explicitly stated.

In particular, we wish to point out that, for fixed ∆ and growing m, we have m ≤ n∆,
hence n also grows, and ∆3 must eventually become smaller than n2. Also note that
a(G)∆ ≤ ∆2. Hence the complexities grow linearly in m for fixed ∆. Algorithms with
such complexities are called quasilinear.

On the way, in Section 2.1, we also prove new bounds on the number of prime factors
of a graph with respect to the strong and the direct product.

2 Definitions

We consider finite graphs G which may have loops but not multiple edges, and denote the
class of these graphs by Γ0, while Γ ⊂ Γ0 is the class of graphs without loops. An edge
joining g to g′ is denoted gg′. The open neighborhood of a vertex g is denoted N(g), or
NG(g) when it is necessary to indicate the graph under discussion. The closed neighbor-
hood of g is N [g] = N(g) ∪ {g}. Again, we often write this as NG[g].

Given graphs H and K, the Cartesian product H 2K, the direct product H ×K and
the strong product H � K, are defined on the Cartesian product V (H) × V (K) of the
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vertex sets of the factors and have the following edge sets:

E(H 2K) = {(h, k)(h′, k′) | hh′ ∈ E(H), k = k′, or h = h′, kk′ ∈ E(K)},
E(H ×K) = {(h, k)(h′, k′) | hh′ ∈ E(H) and kk′ ∈ E(K)},
E(H �K) = E(H 2K) ∪ E(H ×K).

(Examples are shown in Figure 1.) All three products are commutative and associative.
Also, the complete graph K1 on one vertex is a unit for 2 and �, as K1 2H ∼= H and
K1 � H ∼= H for all graphs H . The graph K∗1 consisting of a single vertex with a loop
satisfies K∗1 ×H ∼= H , and is the unit for ×.

H H H

H�K H ×K H �KK K K

u x

y

v

Figure 1: The three standard graph products

Let a = (a1, a2, . . . , ak) be a vertex of a product G = G1 ∗ G2 ∗ · · · ∗ Gk, where
∗ designates any of the symbols 2 ,×, or �. Then the Gi-layer Gai of Gi through a is
defined as the subgraph of G induced by the set of vertices

{(a1, a2, . . . , ai−1, xi, ai+1 . . . , ak) | xi ∈ V (Gi)} .

For the Cartesian and the strong product, the Gi-layers are isomorphic to Gi. For the direct
product, Gai ∼= Gi if all aj have a loop in Gj for j 6= i. Otherwise Gai has no edges.

We call the mapping a 7→ ai a projection. For a subgraph H of G, it restricts to a
mapping pi : H → Gi. For the direct product this is a homomorphism; for the other two
products it is a weak homomorphism1.

If X ⊆ V (G), the subgraph of G induced on X is denoted 〈X〉, or 〈X〉G if there is a
risk of ambiguity. As a consequence of the definitions, if Xi ⊆ V (Gi) for 1 ≤ i ≤ k, then

〈X1 ×X2 × · · · ×Xk〉G1 2G2 2 ···2Gk
= 〈X1〉G1 2 〈X2〉G2 2 · · · 2 〈Xk〉Gk

, (2.1)

where the × indicates the Cartesian product of sets.
A nontrivial graph is called prime with respect to a particular product if whenever it

is represented as a product of two factors, one of the factors is the unit for the product.
As already mentioned, connected graphs have unique prime factor decompositions with
respect to the Cartesian and the strong product in Γ, and connected nonbipartite graphs
have unique prime factor decompositions with respect to the direct product in Γ0.

There are two significant equivalence relations R and S on the vertex set of a graph.
To motivate this, note that Cartesian products possess a certain degree of rigidity; any
automorphism of H 2K is induced by automorphisms of H and K (or their transposition

1Recall that a homomorphims is an edge-preserving map, whereas a weak homomorphims either preserve
edges or maps them into single vertices.
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K

H

x′ x

z′ z y′ y

K

H

Figure 2: Left: Graphs H,K,H × K (solid) and Hs,Ks, (H × K)s (dotted). Right:
Graphs H,K,H ×K (solid) and Cartesian skeletons S(H), S(K), S(H ×K) (dotted).

if they are isomorphic). This is not so with the direct and strong products. For example,
in Figure 1 the vertices u and v of H ×K can be transposed. The same is true for x and
y in H � K. It is easy to see the reason for this. In the case of the direct product, the
interchange is possible becauseN(u) = N(v); it is possible for the strong product because
N [x] = N [y]. We declare that two vertices x, y are in relation R if N(x) = N(y), and
they are in relation S if N [x] = N [y]. Notice that both R and S are equivalence relations.

We say a graph is R-thin if every R-equivalence class consists of a single vertex; it is
S-thin if every S-equivalence class has a single vertex. In discussions of prime factoring
over the direct product, it is helpful (at least initially) to assume that all graphs are R-thin.
For the strong product, we assume S-thinness.

Another important concept is the Boolean square. The Boolean squareGs of a graphG
has vertex set V (Gs) = V (G) and edges E(Gs) = {xy | NG(x) ∩NG(y) 6= ∅}. The left
side of Figure 2 shows graphs H,K and H ×K (bold) and their Boolean squares (dotted).
It is easy to confirm that

(G1 ×G2)s = Gs1 ×Gs2,
and this is indeed reflected in the figure. Furthermore, lettingNG denote the graph G after
removal of all loops, we have

N ((G1 ×G2)s) = NGs1 �NGs2. (2.2)

The most important concept in this paper is a certain subgraph of Gs called the Carte-
sian skeleton. It is obtained from Gs by removal of the so-called dispensable edges.

We call an edge xy of Gs dispensable if x = y or if there exists some z ∈ V (G) for
which both of the following statements hold.

1. NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z)⊂ NG(y),
2. NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z)⊂ NG(x).

In Figure 2 (left) the edge xy is dispensable becauseNG(x)∩NG(y) ⊂ NG(x)∩NG(z)
andNG(y)∩NG(x) ⊂ NG(y)∩NG(z). Also, x′y′ is dispensable, asNG(x′) ⊂ NG(z′)⊂
NG(y′) and NG(y′) ∩NG(x′) ⊂ NG(y′) ∩NG(z′).
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H �K
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z y′ y

S[K]

S[H]

S[H �K] = S[H]�S[K]

Figure 3: Left: Graphs H,K,H � K; Right: Closed Cartesian skeletons S[H], S[K],
S[H �K].

The Cartesian skeleton of a graph G is the graph S(G) obtained from Gs by removing
all dispensable edges. For example, the dotted lines in Figure 2 (right) are the Cartesian
skeletons of H,K and H ×K. This figure illuminates a general principle that was proved
in [3]: If the product H ×K is R-thin and has no isolated vertices, then

S(H ×K) = S(H)2S(K). (2.3)

For the strong product a similar construction, the closed Cartesian skeleton S[G], is
useful. It is a subgraph of G obtained by removing all dispensable edges of G, where an
edge xy of G is dispensable if for some z ∈ V (G) both of the following conditions hold:

1 (strong). NG[x] ∩NG[y] ⊂ NG[x] ∩NG[z] or NG[x] ⊂ NG[z] ⊂ NG[y],
2 (strong). NG[y] ∩NG[x] ⊂ NG[y] ∩NG[z] or NG[y] ⊂ NG[z] ⊂ NG[x].

Figure 3 shows graphsH,K andH�K on the left and their closed Cartesian skeletons
S[H], S[K] and S[H �K] on the right. Notice the edge xy (for example) is dispensable,
becauseNG[x]∩NG[y] ⊂ NG[x]∩NG[z] andNG[y]∩NG[x] ⊂ NG[y]∩NG[z]. Also, x′y′

is dispensable, as NG[x′] ⊂ NG[z′] ⊂ NG[y′] and NG[y′] ∩NG[x′] ⊂ NG[y′] ∩NG[z′].
If H �K is S-thin, then, similarly to Equation (2.3), we have

S[H �K] = S[H]2S[K], (2.4)

as noted in reference [3], in which it is also shown that the Cartesian skeletons of connected
nonbipartite graphs are connected. Moreover, the condition of nonbipartiteness can be
dropped in the case of the closed Cartesian skeleton: S[G] is connected if G is.

Note that Equations (2.3) and (2.4) express equality of graphs, not just isomorphism.
That is, e.g., graphs S(H ×K) and S(H)2S(K) have identical vertex sets and edge sets.

The article [3] also presents algorithms and complexity analysis for computing S(G)
and S[G]. The skeleton S(G) can be computed in min{O(mn2), O(m∆3)} time. Its space
complexity is determined by the size of the output and is thus between O(n) and O(n2).

On the other hand, the closed Cartesian skeleton S[G] can be computed inO(ma(G)∆)
time, where a(G) is the arboricity of G, that is, the minimum number of forests into which
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theE(G) can be partitioned. One can show that δ/2 < a(G) ≤ ∆, where δ is the minimum
degree of G.2

2.1 Bounds on the number of factors

We will need bounds on the number of prime factors of graphs relative to different products.
A simple computation shows that a product of k nontrivial graphs has at least 2k ver-

tices. In other words, a graph on n vertices can have at most log2 n factors with respect to
any product. However, note that the strong product of k copies ofK2 isK2k , and that every
vertex has degree 2k − 1. Thus any vertex of a strong product of k nontrivial connected
factors has degree at least 2k − 1.

For the Cartesian product it is well known that a connected graph has at most δ factors.

Lemma 2.1. Suppose a graph G has n vertices and minimum degree δ. Then:

1. G has at most log2 n factors with respect to the Cartesian, direct, or strong product.

2. If G is connected, it has at most δ factors with respect to the Cartesian product.

3. IfG is connected, it has at most log2(δ+1) factors with respect to the strong product.

Proof. We have already addressed the first two statements. If G is connected, then so are
all of its strong product factors. IfG has k factors, then δ ≥ 2k−1, so log2(δ+1) ≥ k.

For the direct product we have the following corollary.

Corollary 2.2. A connected, nonbipartite graph has at most log2(δ∆ + 1) factors with
respect to the direct product.

Proof. Let G = G1 ×G2 × · · · ×Gk. Then Gs = Gs1 ×Gs2 × · · · ×Gsk, so any bound on
the number of factors ofGs also bounds the number of factors ofG. Equation (2.2) implies

NGs = NGs1 �NGs2 � · · ·�NGsk .

Hence k is also bounded by the number of factors of NGs over the strong product. As
log2(δNGs + 1) ≥ k, the assertion will follow as soon as we establish δG∆G ≥ δNGs .

Indeed, for any vertex x ofNGs the definition ofGs yields degG(x)∆G ≥ degNGs(x).
If x has minimum degree in G, this is δG∆G ≥ degNGs(x); thus δG∆G ≥ δNGs .

3 Thin graphs and the direct product
Suppose we want to compute the prime factorization G = G1 × G2 × · · · × Gk of an
R-thin, connected, nonbipartite graph G. The compatibility of the Cartesian skeleton with
the direct product as expressed in Equation (2.3) implies

S(G) = S(G1)2S(G2)2 · · · 2S(Gk). (3.1)

Because S(G) is connected, there is a Cartesian prime factorization

S(G) = 2
i∈I

Hi (3.2)

2These relations are not hard to show. The right side is routine. For the left side one invokes a theorem of
Nash-Williams [8], see [4, Exercise 20.2] and the hint thereto.
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that is unique up to the order and isomorphisms of the factors. By [4, p. 296], this equals
the presentation in (3.1) or a refinement of it. Thus the number of Cartesian factors of S(G)
can be larger than the number of direct factors of G. Since we can compute S(G) and its
prime factorization over 2 , our task is to find a partition J1, J2, . . . , Jk of I such that

S(Gi) = 2
j∈Ji

Hj

for all i, 1 ≤ i ≤ k.
Section 24.3 of [4] shows that each Ji is a minimal subset of I for which theHJi -layers

of HJi 2HI\Ji (where HJi = 2 j∈Ji Hj and HI\Ji = 2 j∈I\Ji Hj) correspond to
the layers of a factor of G with respect to the direct product. In other words, each Ji is
a minimal subset of I for which G = pJi(G) × pI\Ji(G), where pJi is the projection of
V (G) = V (S(G)) onto V (HJi), and pJi(G) is the smallest graph for which this projection
is a homomorphism. (The graph pI\Ji(G) is defined similarly.)

It is also shown there that the complexity of checking whether a subset J ⊆ I induces
a factoring G = pJ(G) × pI\J(G) is O(m |I|). As I has 2|I| subsets, the complexity of
checking them all is O

(
m 2|I||I|

)
.

Now, the Cartesian skeleton S(G) has the same number of vertices as G. By
Lemma 2.1, we infer that |I| ≤ log2 n. Hence the prime factors of G with respect to
the direct product can be computed from the Cartesian skeleton in O(m2log2 n log2 n) =
O(mn log n) time.

Recall that the Cartesian skeleton can be computed in min{O(mn2), O(m∆3)} time.
Clearly O(mn log n) ≤ O(mn2), so if n log2 n ≤ ∆3, then the prime factorization of G
over the direct product (from S(G)) does not cost more than the computation of S(G).
But, if ∆3 < n log2 n, then the computation of the Cartesian skeleton is cheaper than the
computation of the prime factorization as presented above.

If we could somehow reduce the number of subsets of I that must be investigated, then
we might be able to retain the time complexity O(m∆3) for the prime factorization of G
even when ∆3 < n log2 n. This is indeed possible.

But before stating it in the next proposition, we first recall an elemental fact about
vertex neighborhoods in direct products, namely if G = G1 ×G2 × · · · ×Gk, then

NG((a1, a2, . . . , ak)) = NG1(a1)×NG2(a2)× · · · ×NGk
(ak), (3.3)

where × is the Cartesian product of sets. Taking induced subgraphs, this becomes

〈NG((a1, a2, . . . , ak))〉G = 〈NG1
(a1)〉G1

× 〈NG2
(a2)〉G2

× · · · × 〈NGk
(ak)〉Gk

, (3.4)

where × is the direct product of graphs. A subgraph of a product that is a product of
subgraphs of the factors is called a box relative to the product. The above equation implies
that the subgraph induced on any open neighborhood of a graph is a box relative to any
direct product factorization of the graph.

Proposition 3.1. If G is a connected, nonbipartite R-thin graph of order n and size m,
then its direct product prime factorization can be found in min{O(mn2), O(m∆3)} time.

Proof. By the above arguments it suffices to treat the case ∆3 < n2; see also [4, p. 296].
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Let us have a closer look at the Cartesian skeleton of a graphGwith prime factorization
G1 ×G2 × · · · ×Gk. By our previous discussion we have:

G = G1 ×G2 × · · · ×Gk, (3.5)
S(G) = S(G1)2S(G2)2 · · · 2S(Gk), (3.6)
Gs = Gs1 ×Gs2 × · · · ×Gsk. (3.7)

Furthermore, given a ∈ V (G), the layersGai , S(Gi)
a and (Gsi )

a have the same vertex sets.
Moreover, the layers (Gsi )

a are all isomorphic to Gsi . Given v ∈ V (Gs), Equation (3.4)
applied to (3.7) gives

〈NGs(v)〉Gs =
k×
i=1

〈NGs
i
(vi)〉Gs

i
. (3.8)

Notice that all 〈NGs
i
(vi)〉Gs

i
are connected, but that they need not be prime (with respect to

the direct product), and that the Gsi may not be R-thin.
Equation (3.3) applied to (3.7) gives NGs(v) = NGs

1
(v1)×NGs

2
(v2)×· · ·×NGs

k
(vk).

Consider the subgraph of S(G) = S(G1)2S(G2)2 · · · 2S(Gk) induced on this vertex
set. Using Equation (2.1), we get

〈NGs(v)〉S(G) =
k

2
i=1
〈NGs

i
(vi)〉S(Gi). (3.9)

Call this box S(G)(v).
Comparing Equations (3.9) and (3.6), we see that S(G)(v) contains all edges of S(Gi)

v

that are incident with v for any i. Thus, the connected component of S(G)(v) through v
contains edges from all S(Gi). Clearly it is a box, and we denote it byB. By Equation (3.9)
we have

S(G) = S(G1) 2 S(G2) 2 · · · 2 S(Gk)

⊆ ⊆ ⊆ ⊆

B = B1 2 B2 2 · · · 2 Bk .
(3.10)

Observe that the number of vertices of S(G)(v) is the same as the number of vertices of
NGs(v), which is at most ∆2, a bound for the maximum degree ofGs. But then the number
of Cartesian factors of S(G)(v) is at most 2 log2 ∆, and this also bounds the number of
Cartesian factors of B. Thus the factoring of B in Equation (3.10) has a refinement B =
B′1 2B

′
2 2 · · · 2B′`, where ` ≤ 2 log2 ∆, and each B′s is a prime factor of some Bi.

(Recall that – as mentioned in the introduction – computing the prime factorization of
S(G) is linear in m, and hence this is also the case for B.)

From (3.10), we see that each Cartesian prime factor B′s of B is a prime factor of some
Bi, and hence i is the only index 1 ≤ i ≤ k for which S(Gi) has prime factors Hj with
E(B′s

v
) ∩ E(Hv

j ) 6= ∅. Form a new partition J ′1, J
′
2, . . . , J

′
` of I , where J ′s consists of

indices j ∈ I for which E(B′s
v
)∩E(Hv

j ) 6= ∅. This new partition need not be unique, for
an E(Hv

j ) may meet layers of several prime factors of B. To be definite, we define the J ′s
inductively by first declaring J ′s = {j ∈ I | E(B′1

v
) ∩ E(Hv

j ) 6= ∅} and thereafter J ′s =

{j ∈ I −⋃s−1
λ=1 J

′
λ | E(B′s

v
) ∩ E(Hv

j ) 6= ∅}.
Letting the ` graphs

H ′s = 2
j∈J′

s

Hj
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play the role of the Hi we thus see that we can find the prime factors of G from S(G) in

O(m22 log ∆2 log ∆) = O(m∆2 log ∆) = O(m∆3)

time, which is the same time complexity as that for computing S(G) if ∆3 ≤ n2.

4 Thin graphs and the strong product
Let G be a connected S-thin graph. It is uniquely factorable into prime graphs with respect
to the strong product, say as

G = G1 �G2 � · · ·�Gk .

By [3], the strong Cartesian skeleton of G is the Cartesian product of the strong Cartesian
skeletons of the Gi, in symbols,

S[G] = S[G1]2S[G2]2 · · · 2S[Gk] . (4.1)

Similarly to the case of the direct product, there is a unique prime factorization

S[G] = 2
i∈I

Hi.

It is equal to the the presentation in Equation (4.1) or to a refinement of it. Again our task
is to find a partition J1, J2, . . . , Jk of I such that

S[Gi] = 2
j∈Ji

Hj

for all i, 1 ≤ i ≤ k. As before we have to check all minimal subsets Ji of I . We have
to ensure that the HJi -layers of HJi 2HI\Ji (where HJi = 2 j∈Ji Hj and HI\Ji =

2 j∈I\Ji Hj) correspond to the layers of a factor of G with respect to the strong product.
(Again, see Section 24.3 of [4].)

Here too the complexity of doing this is O(m2log2 |I| log2 |I|). Since the bound log2 n
for |I| yields the bound O(mn log n), which will usually be larger than O(ma(G)∆), we
follow a similar approach as before.

Before beginning, we note that in the case of the strong product, Formulas (3.3)
and (3.4) play out as follows. If G = G1 �G2 � · · ·�Gk, then

NG[(a1, a2, . . . , ak)] = NG1 [a1]×NG2 [a2]× · · · ×NGk
[ak], (4.2)

where × is the Cartesian product of sets.

Proposition 4.1. Let G be a connected S-thin graph of order n and size m. Then its prime
factors with respect to the strong product can be computed in O(ma(G)∆) time.

Proof. The proof parallels that of Proposition 3.1. Choose a vertex v of minimal degree in
G and consider its closed neighborhood

NG[v] = NG1 [v1]×NG2 [v2]× · · · ×NGk
[vk].

By Equation (2.1), the subgraph of S[G] = S[G1]2S[G2]2 · · · 2S[Gk] induced on this
vertex set is the box

〈NG[v]〉S[G] = 〈NG1
[v1]〉S[G1] 2 〈NG2

[v2]〉S[G2] 2 · · · 2 〈NGk
[vk]〉S[Gk].
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As before, let B be the component of this box containing v. Then B is a box with no more
than δ + 1 vertices, and it factors as

S[G] = S[G1] 2 S[G2] 2 · · · 2 S[Gk]

⊆ ⊆ ⊆ ⊆

B = B1 2 B2 2 · · · 2 Bk .
(4.3)

This factoring of B has a refinement B = B′1 2B
′
2 2 · · · 2B′`, where ` ≤ log2(δ + 1),

and each B′s is a prime factor of some Bi. As in the proof of Proposition 3.1, we can
form a new partition J ′1, J

′
2, . . . , J

′
` of I , where J ′s consists of indices j ∈ I for which

E(B′s
v
) ∩ E(Hv

j ) 6= ∅. Arguing as before, we see that we can find the prime factors of G
from S[G] in

O
(
m2log δ log(δ + 1)

)
= O(mδ log δ)

time. From δ < 2a(G) we infer that O(mδ log δ) = O(ma(G)∆). The observation that
the prime factors of B can be computed in O(δ∆) time completes the proof.

We wish to point out that we have no guarantee that NG[v] is thin, which excludes it
from our present factorization methods.

5 Factoring graphs that are not thin
Up to here we have factored only thin graphs. The reason is that we made strong use of
properties of the Cartesian skeleton that do not hold if the graphs are not thin. In order to
factor a graph G that is not thin we first compute the quotient graphs G/R or G/S. These
are formed from G by contracting all R-classes (respectively all S-classes) of G to single
vertices. The resulting graphs are thin, and factored by the methods just described. (See
Section 8.2 of [4, 24.4].) Notice that one can compute G/R, respectively G/S, in O(m)
time.

Once G/R, respectively G/S, has been factored, the question is whether this leads
to factorization of G. While every factorization of G induces a factorization of G/R,
respectively G/S, this is not true in the other direction. For example, consider the graph
G consisting of a triangle C3 on the vertices v0v1v2 and two pendant edges v0a and v0b.
It is not R-thin, because the vertices a and b have the same neighborhoods. As G has 5
vertices, it is prime. Contracting the R-class {a, b} to a single vertex, we obtain the thin
graph G/R, which is a triangle with one pendant edge. It is easily seen that this graph is
the direct product of two copies of an edge with a loop. Similar examples are possible for
the strong product.

Hence, we observe that G may have fewer prime factors than G/R, respectively G/S.
We now use [4, 24.4] to compute them. First the direct product.

By [4, 24.4], connected, nonbipartite graphs G of size m and order n can be factored
with respect to the direct product in O(m2kk) time, where k is a bound on the number of
direct factors of G. With the general bound k ≤ log2 n this yields the bound O(mn2) for
the factorization of G.

If ∆3 < n2 we use the bound k ≤ log2(δ∆) from Corollary 2.2. It yields the estimate

m2kk ≤ m2log2(δ∆) log2(δ∆) ≤ mδ∆(log2 δ + log2 ∆) ≤ 2m∆3 .

Theorem 5.1. The prime factors (over the direct product) of a connected, nonbipartite
graph of size m, order n, and maximum degree ∆ can be found in O(mmin(n2,∆3))
time.
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For the strong product we have the same complexityO(m2kk), but here k is the number
of strong factors of G. Using the bound log2(δ + 1) for k we thus obtain the following.

O(m2kk) = O
(
m2log2(δ+1) log2(δ + 1)

)
= O

(
m(δ + 1)δ

)
= O(ma(G)∆) .

Theorem 5.2. The prime factors (over the strong product) of a connected graph of size m,
arboricity a(G), and maximum degree ∆ can be computed in O(ma(G)∆) time.
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[1] W. Dörfler and W. Imrich, Über das starke Produkt von endlichen Graphen,
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[2] J. Feigenbaum and A. A. Schäffer, Finding prime factors of strong direct product graphs in
polynomial time, Discrete Math., 109 (1992), 77–102.

[3] R. Hammack and W. Imrich, On Cartesian skeletons of graphs, Ars Math. Contemp., 2 (2009),
191–205.
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