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Abstract

The paper represents engineeringly reasonable transfor-
mation of surface displacements of horizontaly layered 
half-space. The latter shows in the half-space present types 
of waves. It is shown that surface waves are expressed 
through residues in poles of the integrand and the volume 
waves are expressed as integrals along corresponding 
branch cuts. The singularity which always appears in 
the basic singular solution in elastodynamics is in this 
case exactly excluded. In the second part of the paper the 
appearance and behaviour of Stonely waves is investigated 
in greater detail. It is shown that in the case of layers of 
finite thickness their appearance and velocities depends 
not only on the material characteristics of neighbouring 
layers but also on their thickness.
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1 INTRODUCTION

Waves, which are generated in the source of vibrations 
due to natural (f. ex. earthquakes), technical (f. ex. rail-
way traffic, pilot driving) and man-made agitations, are 
propagated through the soil and disturb the functioning 
of sensitive instruments, cause human discomfort, and 
can possibly lead to structural damage. Investigating 
wave propagation is one of the main interests of applied 
mechanics and civil engineering because of its impor-
tance for dynamic structure-soil interaction, foundation 
engineering, seismology, and geophysical methods for 
determining the structure of foundation soils. As a 
rule, the soil is modeled as a half space in all problems 
displaying local soil characteristics or soil movement in 
the immediate vicinity of the selected point. The prob-
lematic nature of soil propagation in three-dimensional 
homogeneous and mainly layered half-space mainly has 
aroused significant scientific attention. 

Knowledge of soil propagation in a layered half-space 
is thus of key importance and has always attracted 
much scientific attention. Bromwich [1] was the first 
to investigate wave propagation in half-continuous 
solid medium covered with a solid layer of continuous 
thickness. His work, which refers to standing waves with 
wave lengths greater than the thickness of the top layer, 
was continued by Love [2] who also investigated waves 
with equal or smaller lengths than the thickness of the 
top layer. Sezawa [3] studied the dispersion of elastic 
waves which propagate on the surface of layered bodies 
and on curved surfaces, whilst Thomson [4] investigated 
the transmission of elastic waves through a layered solid 
medium. Dispersion of surface waves in a multi-layered 
medium was studies by Haskell [5]. The classical work 
by Ewing, Jardetzky and Press [6], which also summa-
rized contributions of several other authors, must also be 
mentioned in this review. 

The authors of this contribution have chosen Green’s 
function as a starting point for wave propagation in 
horizontally layered half-space. They [7] first formulated 
Green’s function for the elastic layer loaded on the 
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surface with concentrated harmonic force of a general 
direction. Then, by taking into account the findings of 
Kobayashi [8], they expressed Green’s function of a half-
space, i. e. a layer of continuous thickness described with 
integrals for a half-continuous integration field, with 
integrals along suitably chosen branch cuts and residues 
in the poles of integrands. The solutions described in 
this article lead to the exact solution of Green’s function 
of a horizontally layered half-space described in the 
article [9].

It results from the above quoted works that it is 
possible to express the displacements on the surface of 
a horizontally layered half-space as a sum of products 
of integrals and corner functions due to a concentrated 
time-dependent force of general direction acting on 
the surface. The concentrated force of general direction 
can namely be presented with two components, i. e. a 
vertical and a horizontal one. The fact that the solution 
of integrals using discreet Fourier-Bessel transformation 
does not provide satisfactory accuracy and convergence 
near the source point especially motivated the authors to 
adopt an alternative three-step approach to the solution 
of the integrals. As shown in this article, after the adop-
tion of three steps, the integrals in the form that does 
not observe the singularity where it exists are written as 
integrals along branch cuts and residues in the poles of 
the integrand. This confirms the facts originating in the 
theory of elastodynamics, namely that it is possible to 
express surface waves in an elastic medium with poles 
and that volume waves are given with integrals along 
nodal cuts. 

This approach has opened completely new possibilities 
to study surface waves. This article presents the results of 
the new approach. 

In passing from a homogenous half-space to a horizon-
tally layered half-space, Stonely waves can be generated 
besides Rayleigh waves. The magnitude of the system 
of equations for determining integration constants 
quickly increases with the increase of the number of 
layers, which is evident from the article by [9]. This also 
means that Stonely poles can occur beside Rayleigh 
poles in solutions. It is thus reasonable to investigate the 
phenomenon of singularity in the integrand more in 
detail. In the continuation, the article will show at which 
ratios of thickness and shear modulus of two adjoining 
layers Stonely waves occur and how the thickness of 
layers affects the speed of Stonely and Rayleigh waves. 

2 THREE STEP SOLUTION

The thesis that it is engineeringly reasonable to trans-
form surface displacements of a layered half-space into 
the from which is easy to calculate and which clearly 
shows wave types present in the half-space, is empha-
sized in the works [10], [11], [9]. For an axis-symmetri-
cal example of vertically concentrated load [9] exerted 
on the surface of a top layer, as well as for a tangentially 
loaded layered half-space [11], displacements are 
expressed as a sum of integrals:

I r F J r dn( )= ( )⋅ ⋅( )⋅
∞

∫ η η η
0

        (1)

multiplied with adequate trigonometric functions with 
a circumferential coordinate as an argument. In these 
integrals, J  is the Bessel function of the first kind of 
order  and  n  is the order of the function which can 
adopt the values of  0 , 1  and 2 . It is known from scien-
tific literature that the evaluation of these integrals with 
discrete Fourier-Bessel transformation does not lead to 
required accuracy and stability, especially when the inte-
grals become singular at r → 0  . Mathematical analysis 
and mechanical understanding of the problem result in 
an alternative approach to the evaluation of the integrals 
shown in [11]. The authors evaluated the integrals of 
type (1) in three steps using the so-called method of 
the »expected shape«. The first step is the extraction of 
singularity. In an innovative way and observing the fact 
that

lim lim

lim

r r
I r F J r d

F J r

→ →

∞

→∞

∞

( )= ( )⋅ ⋅( )⋅ =

= ( )⋅ ⋅( )

∫

∫

0 0
0

0

0
0

η η η

η η
η

⋅⋅ = ⋅ ⋅( )⋅ =
∞

∫d C J r d C
r

η η η0
0

   (2)

the integrals which contain singularity are divided into 
two parts: a regular integral and a singular integral:

I r
r

C I r( )= ⋅ + ( )
1

1  ,       (2a)

where I r1( )  is: 

I r F C J r d1
0

0( )= ( )−⎡
⎣⎢

⎤
⎦⎥
⋅ ⋅( )⋅

∞

∫ η η η .        (3)

A singular integral has a simple integrand so that it 
can be analytically solved, whilst regular integrals are 
better to be calculated using discrete Fourier-Bessel 
transformation. The next step leads to their even simpler 
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calculation. It is namely evident that the below functions 
are present in the function F η( )  of the integrand:

α η γ β η ϑi i i i= − = −2 2 2 2, ,
      (4)

where

γ ϑi
Li

T
i

Ti

T

k
k

k
k

= =
1 1

;        (4a)

kLi  or  kTi , respectively, are wave numbers of longitudi-
nal or transversal waves, and hi   is the thickness of the 
i-th layer. 

So, it is reasonable to substitute the mechanical 
understanding of the function F η( )  with its analytical 
approach and a suitable selection of branch cuts to make 
the function uniform. A branch cut, which is shown in 
Fig. (1), was first selected inventively. 

If we wish that the function F η( )  is an even function 
of the variable η  on the real  η -axis we must modify 
accordingly exponential functions (4) which are neither 
even nor odd. To make these exponential functions 
uniform and even they are replaced with their analytical 
continuation: 

e e e ei i
i i

i i
i ih

h
h

h
± ⋅

± ⋅
± ⋅

± ⋅

= =α
η
η

α
β

η
η

β

; .        (5)

The mentioned modification, which makes the inte-
grands even, allows the Bessel function to be divided 
into two parts: 

2 J z h z h zi i i( )= ( )+ −( )         (6)

and consequently to transforms Hankel’s inverse inte-
grands, which are present in the derived components of 
Green’s function, into integrals with the integral range 
from minus infinite to infinite: 

I r F C J r d

F C h r

i

i

1
0

0

1
2

( )= ( )−⎡
⎣⎢

⎤
⎦⎥
⋅ ⋅( )⋅

= ⋅ ( )−⎡
⎣⎢

⎤
⎦⎥
⋅ ⋅(

∞

∞

∫

∫

η η η

η η ))⋅ + ( )−⎡
⎣⎢

⎤
⎦⎥
⋅ ⋅( )⋅

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

= ⋅ ( )−⎡

−∞
∫d F C h r d

F C

iη η η η

η

0

1
2 ⎣⎣⎢

⎤
⎦⎥
⋅ ⋅( )⋅ = ⋅ ( )

−∞

∞

∫ h r d I ri η η
1
2 2

   (7)

The final or the third step is the evaluation of the integral 
I r2 ( ) . It is shown in [11] that this integral can be evalu-
ated with a contour integration in the complex plane of 
the Hankel parameter. Based on the theorem of residua 
[12] we obtain:

I I I I I I i resR b r b2 2 2 2 1 2 2 2 2+ −+ + + + + = ∑π ,       (8)

where the direction of the integration is evident from 
Fig. 2.
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Figure 1. Branch points and poles of expressions αi  and  βi  with a branch cut. For clearer presentation
material damping, which is expressed with the complex shear modulus µ µ ϕ

i i
ie= ⋅0 , is considered.
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Expression (8) is reasonably re-arranged:

I I I i res I I Ib r b2 2 2 2 1 2 2 22= + = − − −− + ∑π  ,      (9)

or written in the form:

I C
r

i res I I Ib r b= + − − −∑2 2 1 2 2 2π  .      (10)

Inverse Hankel integrals, which occur in the compo-
nents of Green’s function, adopt the below final form 
using the described alternative three-step approach:

 I C
r

i res F J r dn
a

b

i

i

= + + ( )⋅ ⋅( )⋅∑ ∫∑2π η η η�  .      (11)

Equation (11) provides engineeringly reasonable 
transformation of displacements of a layered half-space 
surface because it transparently shows the types of waves 
present in the half-space. The first member presents 
singularity which always appears in the basic singular 
solution in elastodynamics and which is excluded from 
inverse Henkel integrals that define the components of 
Green’s function. Linking the findings of mathemati-
cal physics with the findings in theoretic and applied 
mechanics leads to the conclusion that surface waves 
in Eq. (11) are expressed with residues in the poles of 
the integrand, whilst volume waves are expressed with 
integrals along branch cuts.

3 STONELY WAVES

In evaluating Green’s function it was shown that the 
contribution of the second member of Eq. (11) is very 
important. As already said, it manifests the contribu-
tion of surface waves which is defined with the poles of 
integrands. In a homogenous half-space, two conjugated 
complex poles only appear which define the presence 
of Rayleigh waves. The system of equations quickly 
increases with the increase of the number of layers, due 
to the requirement that continuity conditions on contact 
planes of individual layers be fulfilled. So, the equation 
system matrix for determining unknown integration 
constants increases in accordance with equation 4 2⋅ +n  
in case of vertical concentrated force acting on the 
surface. In case of tangential concentrated surface load, 
the size of the system matrix is dictated with equation 
6 3⋅ +n . In both cases, n  presents the number of layers. 
Besides Rayleigh waves, which always appear on the 
surface of a half-space, Stonely waves can also appear on 
contact surfaces. The presence of surface waves is defined 
in the system of equations with zeros of the system deter-
minant or with singularities of integrands in integrals for 
the inverse transformation of expressions for individual 
components of Green’s function. The search for the 
integrand singularity becomes more demanding when 
the system increases; yet, numerical calculation of singu-
larity greatly reduces the speed of evaluating Green’s 
function and hinders the automation of the calculation 
process. Therefore, it is sensible to investigate the process 
of singularity in integrands more in detail. 

Figure 2. The integration path of the evaluation of Hankel inverse integrals which are present in the components of
Green’s function. The first member of the c  indexes of the expressions in this figure is valid for all displacements

of a horizontally layered half-space surface. Material damping is considered for clearer presentation.
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Rayleigh’s waves always appear when the medium 
through which waving is propagated has an unob-
structed surface. Stonely waves appear on contact 
surfaces between individual layers, yet only at certain 
ratios of thicknesses and shear modula of two neigh-
bouring layers. The range of the appearance of Stonely 
waves is investigated on an example of two half-spaces. 

Figure 3. Model of two half-spaces.

As shown in Fig. 3, we take two homogenous elastic 
isotropic half-spaces with different thicknesses and 
different shear modula which are loaded at their contact 
surface with a vertical concentrated force. The problem 
is mathematically formulated so that the vector of 
displacement for each half-space is written by using 
potentials [13] in the form:

� � �
u=∇⋅ +∇×ϕ ψ        (12)

The system of so linked partial differential equations, 
which presents the equations of movement,

µ λ µ ρ⋅∇ + +( )⋅∇⋅ ∇•( )= ⋅
∂
∂

2
2

2
� � � �

�
u u u

t
       (13)

disintegrates into the system of non-linked differential 
differential equations

∇ ⋅ = ⋅
∂
∂

2
2

2

2

1
ϕ

ϕ
c tL

        (14)

∇ ⋅ = ⋅
∂
∂

2
2

2

2

1�
�

ψ
ψ

c tT

 ,       (15)

where cL  and cT  are the speeds of longitudinal or shear 
wave front, respectively. They are translated into the 
frequency domain with the Fourier exponential transfor-

mation t →ω  . The studied elastodynamic problem is 
axially symmetrical, which dictates the use of the cylin-
drical coordinate system. Furthermore, the component 
of the displacement in the direction ϑ  equals zero, both 
potentials, the scalar one ϕ  and the vector one 

�
ψ , must 

be independent of ϑ , and therefore the components of 
the vector potential 

�
ψ  in the directions r  and z   must 

also equal zero. The individual components of the vector 
of displacement therefore resume the form:

�
u

r z

z r

r

r

r

r

=

∂
∂

−
∂
∂

∂
∂

+ ⋅
∂ ⋅( )
∂

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪
ϕ ψ

ϕ ψ

ϑ

ϑ

0

1

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪

        (16)

and partial differential equations (14) and (15):

∂
∂

+ ⋅
∂
∂

+
∂
∂

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅ =

2

2

2

2

2
1 0

ϕ ϕ ϕ ω
ϕr r r

L
rr r r z c

       (17)

∂
∂

+ ⋅
∂
∂

+
∂
∂

− +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅ =

2

2

2

2 2

2
1 0

ψ ψ ψ ψ ω
ψϑ ϑ ϑ ϑ

ϑr r r z r cT

 .      (18)

The relationship between the components of tension and 
displacements has the form:

σ µ λ
ω

ϕz
L

r
w
z c

= ⋅ ⋅
∂
∂

− ⋅
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅2

2

       (19)

τ µ µ
ω

ψϑzr
T

u
z c

= ⋅ ⋅
∂
∂

− ⋅
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅2

2

 .       (20)

Partial differential equations (17) and (18) are trans-
formed into ordinary differential equations using Hankel 
integral transformation r → ξ :

d
dz cL

2 0

2
2

2
0 0

�
�ϕ ξ

ξ
ω

ϕ ξ
( )

− −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ( )=        (21)

d
dz cT

2 1

2
2

2
1 0

�
�ψ ξ

ξ
ω

ψ ξ
( )

+ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ( )=        (22)

The transformed components of the vector of displace-
ment have the form

� � �u d
dz

1 0 1ξ ξ ϕ ξ ψ ξ( )=− ⋅ ( )− ( )        (23)
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� � �w d
dz

0 0 1ξ ϕ ξ ξ ψ ξ( )= ( )+ ⋅ ( )        (24)

We then also transform the expressions for normal and 
shear tensions:

� � �σ ξ µ ξ
ω

ϕ ξ ξ ψz
Tc

d
dz

0 2
2

02 2( )= ⋅ ⋅ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ( )+ ⋅ ⋅ 11 ξ( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
    (25)

� �τ ξ µ ξ ϕ ξ ξ
ω

rz
T

d
dz c

1 0 2
2

2 2( )=− ⋅ ⋅ ⋅ ( )+ ⋅ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ��ψ ξ1( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

.   (26)

Transformed differential Eqs. (21) and (22) for the 
potentials �ϕ ξ0 ( )  and �ψ ξ1( ) are ordinary homogeneous 
differential equations where z is the only variable. Their 
general solutions are:

�ϕ ξ ξ0
1

2 2
2

2 2= ⋅ − ⋅( )+ ⋅ − − ⋅( )Φ Φexp expk z k zL L   (27)

�ψ ξ ξ1
1

2 2
2

2 2= ⋅ − ⋅( )+ ⋅ − − ⋅( )Ψ Ψexp expk z k zT T , (28)

where Φ1 , Φ2 , Ψ1
 and Ψ2   are integration constants 

dependent on the variable ξ , whilst the coefficients kL  
and kT  are wave numbers belonging to the speed of the 
longitudinal or shear front, respectively. They are defined 
with the expressions:

c
kL

L

= =
+ ⋅ω λ µ

ρ
2

        (29)

c
kT

T

= =
ω µ

ρ
 .       (30)

The positivity of the square root is required in the expo-
nents of expressions (27) and (28). In case of a half-space 
and considering radiation condition and the selected 
coordinate system, it holds true that the constants Φ1
and Ψ1 must equal zero, or the value of the potentials 
would increase beyond any limit with an increasing 
value of the variable z. In case of a half-space, general 
solutions (27) and (28) for the potentials �ϕ0   and �ψ1   
therefore equal:

�ϕ ξ0
2

2 2= ⋅ − − ⋅( )Φ exp k zL        (31)

�ψ ξ1
2

2 2= ⋅ − − ⋅( )Ψ exp k zT  .      (32)

Radiation damping is considered in the studied case 
of two half-spaces, and the following substitutions are 
introduced:

ξ η= ⋅kT1        (33)

c
c

k
k

T

L

L

T

= =
+ ⋅

=
− ⋅
⋅ −( )

=
µ

λ µ
ν
ν

γ
2

1 2
2 1

       (34)

ϑ2
2

1

=
k
k

T

T

 .       (35)

General solutions for individual potentials therefore are:

�ϕ π η γ ζ π α ζ1
0

1 1
2

1
2

1 1 12 2= ⋅ ⋅ ⋅ − ⋅( )= ⋅ ⋅ ⋅ ⋅( )C C, ,exp exp   (36)

�ψ π η ζ π β ζ1
1

1 3
2

1 3 12 1 2= ⋅ ⋅ ⋅ − ⋅( )= ⋅ ⋅ ⋅ ⋅( )C C, ,exp exp     (37)

�ϕ π η γ ζ π α ζ2
0

2 2
2

2
2

2 2 22 2= ⋅ − ⋅ ⋅ − ⋅( )= ⋅ − ⋅ ⋅ ⋅( )C C, ,exp exp   (38)

�ψ π η ϑ ζ π β ζ2
1

2 4
2

2
2

2 4 22 2= ⋅ − ⋅ ⋅ − ⋅( )= ⋅ − ⋅ ⋅ ⋅( )C C, ,exp exp ,(39)

where ζ  is the coordinate z  standardized with respect 
to the wave length of shear waves of the first half-space. 
Four continuity conditions are available to determine 
unknown constants in general solutions (36) - (39). The 
equality of normal and shear tensions, as well as of verti-
cal and horizontal displacements, must be assured on 
the contact surface of half-spaces.

� �σ σz z z z, ,1
0

0 2
0

0
0

= =
− =         (40)

� �τ τzr z zr z, ,1
1

0 2
1

0
0

= =
− =        (41)

� �w w
z z1

0

0 2
0

0
0

= =
− =       (42)

� �u u
z z1

1

0 2
1

0
0

= =
− =  .      (43)

Real zeros of the determinant of the so obtained equa-
tion system show the relationships of speeds of shear 
waves in the first medium and of Stoneley waves. Unlike 
Rayleigh waves, which are always present on the surface 
of a half-space, Stonely waves only appear at certain 
ratios of thicknesses and shear modula. The latter is 
represented by the graph in Fig. 4, where the abscissa is 
represented by the ratio of densities ρ ρ2 1( ) , and
the ordinate by the ratio of shear modula µ µ2 1( ) .
The range where real solutions appear (it is possible to 
show that there are only two), is limited with two curves. 
The curve A  is defined with the requirement that the 
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Figure 5. Three dimensional view of finding the appearance range of Stonely waves.

Figure 4. The range of the appearance of Stonely waves. Figure 6. Speed changes of Stonely waves.
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speed of a Stonely wave cS( )  equals the speed of a shear 
wave in the first medium cT1( ) , which also physically 
presents one of the limits of a possible solution range. 
The curve B  is defined with the requirement that the 
speed of a Stonely wave equals the speed of a shear wave 
in the second medium. An interesting three-dimen-
sional view (Fig. 5) of finding the mentioned curves is 
presented in [10], where the author first searches for the 
intersection of the plane 0  and the surface defined with 
an equation of a determinant evaluated in η=1 , and 
then for the intersection of the plane 0  and the surface 
defined with an equation of a determinant evaluated in 
η µ ρ= 2 2 .

The change of speed of Stonely waves in the area where 
they occur is shown in Fig. 6, in which the abscissa 
is represented by the logarithm of the ratio of thick-
nesses or shear modula, respectively, and the ordinate 
is represented by the ratio of speeds of shear waves in 
the first medium and Stonely waves. To do this, we first 
draw a line in Fig. 4 that represents a symmetrical line 
of the odd quadrants ρ ρ µ µ2 1 2 1=  ; we then draw the 
change of speeds of Stonely waves along the symmetrical 
line. When the thickness and the shear modulus of the 
second medium are infinitely small, a Stonely wave is 
transformed into a Rayleigh wave for the first medium 
because this medium behaves as a homogenous half-
space with a free surface. Contrary to this, a Stonely 
wave is transformed into a Rayleigh wave for the second 
medium when the thickness and the shear modulus of 
the first medium are infinitely small. When the thick-
nesses and shear modula of both media are the same, 
both half-spaces form a homogenous space, and a 
Stonely wave is transformed into a shear volume wave. 

The appearance of Stonely waves does not only depend 
on characteristics of both media that are in contact but 
also on their thickness. To investigate this phenomenon 
it is reasonable to study the layer on an elastic homog-
enous half-space. In this case, general solutions (27) and 
(28) for individual potentials can be written in the below 
form considering a radiation condition and substitutions 
(33) - (35):

�ϕ π α ζ π α ζ1
0

1 1 1 1 2 12 2= ⋅ ⋅ ⋅ ⋅( )+ ⋅ − ⋅ ⋅ ⋅( )C C, ,exp exp     (40)

�ψ π β ζ π β ζ1
1

1 3 1 1 4 12 2= ⋅ ⋅ ⋅ ⋅( )+ ⋅ − ⋅ ⋅ ⋅( )C C, ,exp exp     (41)

�ϕ π α ζ2
0

2 2 22= ⋅ − ⋅ ⋅ ⋅( )C , exp       (42)

�ψ π β ζ2
1

2 4 22= ⋅ − ⋅ ⋅ ⋅( )C , exp  ,       (43)

where ζ  represents a coordinate z  standardized with 
respect to the length of shear waves of the first half-space.

Figure 7. A model of a layer on a homogenous half-space.

To determine unknown constants in general solutions 
(40) - (43) two boundary conditions on a free surface 

z=( )0  are available

�σ ξ
ω
πz z

P0

0 2
( ) =−

( )

⋅=
        (44)

�τ ξzr z

1

0
0( ) =

=
        (45)

as well as four continuity conditions on the contact 
surface z h=( )1 :

� �σ σz z h z z, ,1
0

2
0

01 1 2
0

= =
− =         (46)

� �τ τzr z h zr z, ,1
1

2
1

01 1 2
0

= =
− =        (47)

� �w w
z h z1

0
2
0

01 1 2
0

= =
− =         (48)

� �u u
z h z1

1
2
1

01 1 2
0

= =
− =  .      (49)

The zeros of the determinant of the system of equations 
(44) - (49) represent poles of solutions of the system 
of equations in a transformed domain. The mentioned 
poles define the speeds of surface waves which appear 
at the surface of the total half-space and on the contact 
surface between a layer and a half-space. 

In the studied case of an elastic layer on a homogenous 
half-space, we wish to investigate how the occurrence 
of Stonely waves depends on the thickness of the layer. 
To do this, we seek the zeros of the determinant of 
the system for different thicknesses of a layer, with a 
requirement that the ratio of thicknesses of both media 
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equals the ratio of their shear modula. We so obtain 
dispersion curves of the speed of surface waves, which 
are shown in Fig. 8, in which the abscissa is presented 
by the ratio of the layer thickness and wave length of a 
shear wave in the layer Z1( ) , and the ordinate by the 
ratio of the speed of shear waves in a layer and the speed 
of Rayleigh waves c cT R1( ) or Stonely waves c cT S1( ) , 
respectively. As expected, Rayleigh waves always occur 
without respect to the thickness of a layer. Their speed, 
however, quickly changes with the layer thickness when 
the latter is smaller than the wave length of a shear wave 
in a layer. Contrary to this, Stonely waves only appear 
at layer thicknesses that are greater than certain limit 
values depending on the ratio of thicknesses or shear 
modula, respectively, in both media. In a limit case, 
when the layer thickness approaches infinity, the speed 
of Stonely waves stabilizes at values obtained with the 
interaction of two half-spaces from the previous chapter. 
The speed of Rayleigh waves, however, approaches the 
values obtained for the case of a homogenous half-space 
with layer characteristics. 

4 CONCLUSIONS

This article presents and alternative approach to the 
evaluation of inverse Hankel integrals which appear 
in the components of Green’s function for a layered 
half-space on the surface of a top layer loaded with a 
concentrated force of general direction. This approach 
completely abolishes weak points of past procedures. 
After three steps of an innovative solution, described in 
this article, integrals pass into a form which transpar-
ently shows types of waves present in a half-space. 
Besides a better physical interpretation, this form allows 
a simple, numerically economical, and robust calcula-
tion. The results give a better physical insight into a 
layered half-space, which has been unknown up to the 
present, and open ways, due to their transparency, to 
studies of an inverse problem. 

This article concentrates on the studies of possible 
appearance and behavior of Stonely waves. The appear-
ance of Stonely and Rayleigh waves and consequently 
the finding of the integral poles, which is always numeri-
cal due to sophisticated expressions, is namely that 
segment of the Green’s function solving procedure which 
greatly hinders the introduction of a universal algorithm 
for calculation. It is shown that the appearance of 

Figure 8. Dispersion diagram.
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Stonely waves only depends on material characteristics 
of both media, in case when two half-spaces are in 
contact. As soon as the thickness of an individual half-
space becomes final, it is thickness, too, that influences 
the appearance and behaviour of Stonely waves. On 
the basis of the above procedures, we can namely fairly 
accurately limit the ratios of shear modula and material 
thicknesses of two proximate layers at which Stonely 
waves appear. This somehow facilitates the calculation 
procedure, yet the presented semi-analytical method is 
too sophisticated to be used for calculations in everyday 
engineering applications. Its advantage, however, is the 
accuracy of the obtained results. Taken as such, its basic 
aim and value lie in the comparison of engineering 
adequacy with other approximate methods for studying 
dynamic soil-structure interaction based on fundamen-
tal solutions. If we wish to obtain practical applicability 
of the presented method, the calculation process must 
be inevitably simplified, yet the simplifications must not 
affect the accuracy of the results. A relatively submis-
sive behavior of roots in expressions for integrands in 
the complex  η-plane further motivates us to consider 
the change of the integration path as one of possible 
simplifications in the calculation. In further investiga-
tions the integration path should be led so that the 
system of equations for integration constants could be 
solved numerically with optional accuracy and no longer 
with symbols. This would set the starting-points for an 
extremely fast, accurate and stabile procedure for deter-
mining a three-dimensional Green’s function which, by 
considering the fact that it includes both, boundary and 
continuous conditions as well as radiation condition, 
presents a basis for calculating a dynamic stiffness soil 
matrix. This will be shown in our next articles that are in 
the phase of preparation. 
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