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Abstract

Let a group of automorphisms lift along a regular covering projection of connected
graphs given combinatorially by means of voltages. The data that determine the lifted
group and its action are then conveniently encoded in terms of voltages as well. Along
these lines, an algorithm for testing whether the lifted group is a split extension of the
group of covering transformations has recently been proposed in the case when the group of
covering transformations is solvable. It consists of decomposing the covering into a series
of coverings with elementary abelian groups of covering transformations, and inductively
solving the problem at every elementary abelian step. Although the explicit construction of
the lifted group is not needed, it still involves time and space consuming constructions of
certain subgroups in the lifted group at every step except at the final one.

In this paper, an improved version that completely avoids such constructions is pre-
sented. From voltage distribution we first compute the weak action and the factor set that
determine the lifted group, and we then carry out the test by extracting the necessary in-
formation only from the corresponding weak actions and factor sets at every step. An
experimental comparison is made against the previous version.
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1 Introduction
Group extensions arising from lifting groups of automorphisms along regular graph cover-
ings play a significant role in analyzing symmetry properties of graphs; see, for example,
[5, 6, 9, 10, 13, 16, 19]. One therefore frequently needs to answer questions regarding
structural properties of such extensions.
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Specifically, let a group G of automorphisms of a graph X lift along a regular covering
projection ℘ : X̃ → X to a group G̃ of automorphisms of the covering graph X̃ . Then
the lifted group G̃ is an extension of the group of covering transformations CT(℘) by G.
Often, all of the data about the lifted group and its action are conveniently encoded on X
by means of voltages that determine ℘. In such a situation we can always reconstruct G̃
as a permutation group acting on X̃ , and then apply the known algorithms for permutation
groups in order to investigate its structure. However, taking into account complexity issues,
this reconstruction is expensive whenever CT(℘) is large. Instead, we wish to reduce the
investigation of structural properties of G̃ to the study of voltage distribution on X . A
natural question of interest is then the following: for a group G that lifts along ℘ given by
means of voltages, is the lifted group G̃ a split extension of CT(℘) by G?

There are efficient algorithms in computational group theory for testing whether a given
group extension splits (see, for example, [3] and [8, Chapters 7 and 8]), and these functions
have also been implemented in MAGMA [1]. Unfortunately, the algorithms as well as the
implementations address the case when extensions are input as permutation groups.

In [15], an algorithm for testing whether the lifted group G̃ splits is described in the case
when CT(℘) is (elementary) abelian. It is based on extracting all the necessary information
about G̃ from voltage distribution, rather then explicitly constructing G̃ as a permutation
group.

This idea is taken further in [17] to deal with the case of a solvable CT(℘). The algo-
rithm consists of decomposing ℘ into a series of regular covering projections with elemen-
tary abelian groups of covering transformations, and inductively applying the algorithm
from [15] at every elementary abelian step. Although the explicit construction of G̃ is
not needed, the algorithm still involves time and space consuming constructions of certain
subgroups isomorphic to G in the lifted group at (possibly) every step except at the finale
one.

In this paper, we improve the algorithm from [17] by avoiding such constructions en-
tirely. The approach is based on the fact that a group extension can be recaptured by have
it written as a crossed product extension in terms of the corresponding weak action and a
factor set. As a first step we compute the weak action and the factor set corresponding to
G̃ from voltage distribution. At each step, we then carry out our test by extracting all the
necessary information only from the corresponding weak actions and the factor sets.

The paper is organized as follows. In Section 2 we review some preliminary concepts
about regular graph coverings and lifting automorphisms as well as group extensions. In
Section 3 we discuss the problem of testing whether an extension splits in terms of weak
actions and factor sets. In Section 4 we then propose an improved algorithm for testing
whether the lifted group splits. Finally, we evaluate the performance of our algorithm in
comparison with the previous version [17] in Section 5. Experimental results confirm the
effectiveness of the improvements made.

2 Preliminaries
We begin with a review of some basic concepts in order to fix the notation and terminology.

2.1 Regular graph covers and lifts of automorphism

Throughout the paper, graphs are finite, simple and undirected. For a graph X we denote
by V (X), A(X) its vertex and arc set, respectively. The full automorphism group of X is
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denoted by Aut(X). For a detailed treatment of graph coverings and lifting automorphism
we refer the reader to [7, 12, 14].

A surjective graph homomorphism ℘ : X̃ → X is called a regular covering projection
if there exists a semiregular subgroup S℘ of Aut(X̃) such that its vertex orbits coincide
with the vertex fibres ℘−1(v), v ∈ V (X). In this setting we call X a base graph, and X̃ a
covering graph (or a cover). Regular covering projections ℘ : X̃ → X and ℘′ : X̃ ′ → X
are equivalent if there exists a graph isomorphism g̃ : X̃ → X̃ ′ such that ℘ = g̃℘′.

An automorphism g ∈ Aut(X) lifts along ℘ : X̃ → X if there exists an automorphism
g̃ ∈ Aut(X̃), called a lift of g, such that g̃℘ = ℘g. A group G ≤ Aut(X) lifts if each
g ∈ G lifts. The collection of all lifts of all elements in G forms a subgroup G̃ ≤ Aut(X̃),
called the lift of G or the lifted group. In particular, the lift of the trivial group, denoted
by CT(℘), is known as the group of covering transformations. If CT(℘) is an elemen-
tary abelian or a solvable group, the regular covering projection ℘ is called elementary
abelian or solvable, respectively. Observe that CT(℘) is a normal subgroup of G̃ and that
G̃/CT(℘) ∼= G, so G̃ is an extension of CT(℘) by G.

Regular covering projections can be grasped combinatorially as follows. LetN be a (fi-
nite) group. Define a voltage function ζ : A(X) → N such that ζ(v2, v1) = (ζ(v1, v2))−1

for each (v1, v2) ∈ A(X); that is, a function assigning mutually inverse elements in N to
mutually inverse arcs in X . We call N the voltage group, while the values of ζ are called
voltages. Further, construct the derived graph X ×ζ N with vertex set V (X) × N and
adjacency relation (v1, n) ∼ (v2, nζ(v1, v2)) whenever v1 ∼ v2. The projection

℘ζ : X ×ζ N → X, (v, n) 7→ v,

is then the derived regular covering projection, where the required semiregular subgroup
S℘ζ of Aut(X ×ζ N) arises from the action of N on the second coordinate by left multi-
plication on itself. Conversely, with any regular covering projection ℘ : X̃ → X there is an
associated voltage function ζ on X such that the derived covering projection ℘ζ is equiv-
alent to ℘. Since both graphs X̃ and X are connected, the voltage function ζ associated
with the projection ℘ is valued in N ∼= CT(℘) (viewed as an abstract group).

The fact that an automorphism lifts along a projection ℘ if and only if it lifts along
along any covering projection equivalent to ℘ allows us to study lifts of automorphisms
combinatorially in terms of voltage functions. Let ζ : A(X) → N be a voltage function
associated with a regular covering projection ℘ : X̃ → X of connected graphs. We note
that ζ can be naturally extended to walks: if W = v1v2 · · · vn−1vn is a walk in X , then
ζW = ζ(v1, v2) · · · ζ(vn−1, vn). By the basic lifting lemma, see [12, 14], g ∈ Aut(X)
lifts along ℘ if and only if there exists an automorphism g#v of N such that

g#v (ζW ) = ζg(W )

for all closed walks W in X rooted at a fixed vertex v. Of course, if g lifts, g#v is uniquely
determined by a map ζW ∗ 7→ ζg(W ∗), where W ∗ ranges over all fundamental closed
walks in X rooted at v.

2.2 Group extensions

A group E is called a (group) extension of a group N by a group G if there is a short exact
sequence

1→ N
i→ E

q→ G→ 1.
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It is called a split extension if there is a homomorphism j : G → E with qj = id. In
particular, the group E having a normal subgroup N is an extension of N by E/N , and it
is a split extension if there is a transversal of N in E – a system of representatives in E
of cosets of N in E – that forms a group. Such a group is called a complement of N in
E. Group extensions E and E′ of N by G are equivalent if there exists an isomorphism
α : E → E′ such that the diagram

N −−−−→ E −−−−→ G

id
y α

y yid

N −−−−→ E′ −−−−→ G

is commutative. Of course, if E and E′ are equivalent extensions, then E is split if and
only if E′ is split.

Suppose that the group E has a normal subgroup N . All of the data that determine
the group operation in E can be, up to equivalence of extensions, given in terms of N and
G = E/N . The approach is known and goes back to Schreier [11]. For each g ∈ G fix a
coset representative ḡ in E such that ḡN = g. Since N is normal, the element ḡ gives rise
to an automorphism g# ofN defined by g#(n) = ḡ n ḡ−1. Clearly, this definition depends
on the choice of ḡ, and hence the function

#: G→ Aut(N), g 7→ g#,

called a weak action, is not a group homomorphism in general. Further, the fact that the
elements {ḡ | g ∈ G} form a transversal of N in E implies that for any g1, g2 ∈ G we have
g1 g2 = F(g1, g2)g1g2 for some unique F(g1, g2) ∈ N . The function

F : G×G→ N, (g1, g2) 7→ g1 g2 g1g2
−1,

for this choice of coset representatives is called a factor set. It is natural to choose 1̄ = 1.
Then F(1, 1) = 1, and such a factor set is called normalized. This will be our standard
assumption without loss of generality. The weak action # and the factor set F defined
above determine a group operation on the set N × G; namely, N × G becomes a group,
denoted by N ext#,F G, under the multiplication

(n1, g1) ∗ (n2, g2) = (n1 g
#
1 (n2)F(g1, g2), g1g2). (2.1)

In fact, N ext#,F G is an extension of N by G, called the crossed product extension, and
is equivalent to E. More precisely, there exists an isomorphism

N ext#,F G→ E, (n, g) 7→ nḡ, (2.2)

mapping N × 1 onto N and 1×G onto the transversal {ḡ | g ∈ G}.

3 Testing whether an extension splits
Let N be a normal subgroup of a finite group E, and let G = E/N . We first briefly de-
scribe a general strategy for testing whether E is a split extension of N by G. In principal
we follow [3] and [8, Chapters 7 and 8], however, for reasons that will become appar-
ent in Section 4, we extract the necessary information from the crossed product extension
N ext#,F G that reconstructs E.
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Let G = 〈S |R〉 be a finite presentation of G, where S = {g1, . . . , gn} is a set of
generators and R = {r1(g1, . . . , gn), . . . , rm(g1, . . . , gn)} is a set of relators – that is, a
set of words in generators representing the identity element in G. We note that neither #
is determined uniquely by its values g#i for gi ∈ S, nor F is determined uniquely by its
values F(gi, gj) for gi, gj ∈ S. But this is not a problem; as we shall see in (3.2) and (3.3)
below, it is enough to only know the images g#i of the generators gi ∈ S under #, along
with some particular images under F .

A general transversal of N × 1 in N ext#,F G has the form {(δ(g), g) | g ∈ G} for a
function δ : G → N . The same function also determines a transversal of N in E, namely
{δ(g)ḡ | g ∈ G}, where {ḡ | g ∈ G} is a transversal of N in E giving rise to the isomor-
phism N ext#,F G→ E, (n, g) 7→ nḡ, see (2.2).

As it is known, E splits if and only if there exist coset representatives in E of the
generators of G satisfying the defining relators of G. More precisely, if and only if, for
each gi in S, there exists an element gi in E such that giN = gi and that, for each relator
rj in R, the word rj(g1, . . . , gn) obtained from rj by replacing each gi by gi whenever it
appears is a relator of E. In the context of a crossed product extension, N ext#,F G splits
if and only if there exists a function δ : S → N such that, for all rj ∈ R,

rj((δ(g1), g1), . . . , (δ(gn), gn)) = (1, 1) (3.1)

in N ext#,F G. Then the function δ defined on the generators extends to δ : G → N , and
a complement is generated by the set {(δ(g1), g1), . . . , (δ(gn), gn)}.

Let us now rewrite (3.1) explicitly in terms of the weak action and the factor set. Sup-
pose rj = gj1 · · · gjt ∈ R. Taking into account the multiplication rule (2.1) inN ext#,F G,
denoted by ∗, and considering (δ(g), g) as (δ(g), 1) ∗ (1, g), the condition (3.1) becomes

(δ(gj1)

t∏
k=2

g#j1 · · · g
#
jk−1

(δ(gjk)), 1) ∗ rj((1, g1), . . . , (1, gn)) = (1, 1). (3.2)

In this expression we can explicitly compute rj((1, g1), . . . , (1, gn)) as

(

t−1∏
k=2

g#j1 · · · g
#
jt−k

(F(gjt−k+1
, gjt−k+2

· · · gjt)) · F(gj1 , gj2 · · · gjt), 1). (3.3)

Think of values δ(gi) as being variables for the moment. Then each relation (3.2) gives
rise to an equation in N . It is important to stress out that for the construction of such an
equation we only need to know the values F(gjk , gjk+1

· · · gjt) and the automorphisms g#jk
for k = 1, . . . , t − 1. Considering all relators rj ∈ R thus yields a system of equations,
whose solutions correspond to complements. However, solving such a system is rather
hopeless in general.

3.1 Elementary abelian case

Let us therefore assume that N is an elementary abelian p-group of rank d. In this case, N
can be identify with d-dimensional vector space Zdp, the function # is a homomorphism that
defines an action of G on N , and the automorphisms g# of N are invertible d×d matrices.
We search for a complement by considering each δ(gi) in N as a vector with variable
entries xi,1, . . . , xi,d. Then each relation gives rise to d linear equations in the variables
xi,1, . . . , xi,d. Putting all together we obtain a non-homogeneous system of md equations,
whose set of all solutions is in bijective correspondence with all the complements.
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3.2 Solvable case

The case when N is solvable can be dealt with by choosing a characteristic series

N = N0 �N1 � · · ·�Nr = 1

such that each factor Nj−1/Nj is elementary abelian. The problem reduces into the same
problem on Nj−1/Nj and Nj inductively down the series. The following theorem is a
first step towards this reduction when the extension E is reconstructed as a crossed product
extension N ext#,F G.

Theorem 3.1. Let M,N be normal subgroups of a finite group E with M < N , and let
G = E/N .

(i) IfN ext#,F G reconstructsE, thenN/M ext#N/M ,FN/M G reconstructsE/M with

g#N/M (nM) = g#(n)M

FN/M (g1, g2) = F(g1, g2)M.

(ii) In particular, suppose that E/M splits, and let L/M be a complement of N/M in
E/M determined by a function δ : G → N/M . Let T be a transversal of M in N
and, for each δ(g), let δ(g) be the representative in T such that δ(g)M = δ(g). Then
M ext#δ,Fδ G reconstructs L with

g#δ(m) = δ(g) g#(m) δ(g)
−1

Fδ(g1, g2) = δ(g1) g#1 (δ(g2))F(g1, g2) δ(g1g2)
−1
.

Proof. Let M,N / E with M < N , and suppose that E is reconstructed in a form
of a crossed product extension N ext#,F G by taking a transversal {ḡ | g ∈ G}. Then
(E/M)/(N/M) ∼= E/N = G and {ḡM | g ∈ G} is a transversal of N/M in E/M . For
each g ∈ G we have the automorphism g#N/M of N/M defined by

g#N/M (nM) = ḡMnMḡ−1M = ḡ n ḡ−1M = g#(n)M,

and hence the weak action #N/M : G → Aut(N/M) is given by #N/M : g 7→ g#N/M .
Furthermore,

g1M g2M g1g1
−1M = g1 g2 g1g2

−1M = F(g1, g2)M

shows that the factor set FN/M : G×G→ N/M is given by

FN/M : (g1, g2) 7→ F(g1, g2)M.

This proves (i).
As for (ii), let L/M be a complement of N/M in E/M determined by δ : G→ N/M ;

that is, L/M has the form {δ(g)ḡM, | g ∈ G}. Fix a transversal T of M in N . For
each δ(g) in N/M choose the representative δ(g) in T such that δ(g)M = δ(g). Then
{δ(g) ḡ | g ∈ G} is a transversal of M in L. For g ∈ G the corresponding automorphism
g#δ of M is defined by

g#δ(m) = δ(g) ḡ m ḡ−1 δ(g)
−1

= δ(g) g#(m) δ(g)
−1
.
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Hence the weak action #δ : G → Aut(M) is given by #δ : g 7→ g#δ . It remains to
compute the corresponding factor set. We have

δ(g1) g1 δ(g2) g2 (δ(g1g2) g1g2)−1 = δ(g1) g1 δ(g2) g2 g1g2
−1 δ(g1g2)

−1

= δ(g1) g1 δ(g2) g1
−1 g1 g2 g1g2

−1 δ(g1g2)
−1

= δ(g1) g#1 (δ(g2))F(g1, g2) δ(g1g2)
−1
,

and so Fδ : G×G→M is given by

Fδ : (g1, g2) 7→ δ(g1) g#1 (δ(g2))F(g1, g2) δ(g1g2)
−1
.

This completes the proof.

To start the reduction we first need to test whether E/N1 is a split extension of N/N1

by G. By Theorem 3.1(i) we reconstruct E/N1 in a form of a crossed product extension
N/N1 ext#N/N1

,FN/N1
G, and test whether it is a split extension of N/N1 by G. Since

N/N1 is elementary abelian, this is done by solving a non-homogeneous system of linear
equations described in Subsection 3.1. If the system has no solution, then E does not split.
Otherwise, each solution δ uniquely determines a complement L/N1 of N/N1 in E/N1.
We further need to test each L (corresponding to each δ) for being a split extension of N1

by G. Using Theorem 3.1(ii) we reconstruct each such L in a form of a crossed product
extension N1 ext#δ,Fδ G, and continue down the series.

Suppose inductively that, for some j < r, we have complements L/Nj of N/Nj in
E/Nj , and that each L is reconstructed as a crossed product Nj ext#,F G. In order to test
whether each such L/Nj+1 is a split extension of Nj/Nj+1 by G we reconstruct L/Nj+1

in a form
Nj/Nj+1 ext#Nj/Nj+1

,FNj/Nj+1
G,

and test whether the latter is a split extension of Nj/Nj+1 by G. Again, Nj/Nj+1 is el-
ementary abelian, so we need to solve an appropriate linear system. If none of L/Nj+1

are split extensions, then neither is E. Otherwise, for each L/Nj+1 that splits, solutions
δ∗ uniquely determine complements L∗/Nj+1 of Nj/Nj+1 in L/Nj+1. Clearly, each
L∗/Nj+1 is also a complement of N/Nj+1 in E/Nj+1. Finally, we reconstruct each L∗ in
a form Nj+1 ext#δ∗ ,Fδ∗ G, and proceed to the next step.

Observe that at each step it is enough to consider complements only up to conjugacy.
Reduction up to conjugacy can be described by an action on the set of solutions δ∗ that
determine complements, see [3] and [8, Chapter 8] for more details.

4 An improved algorithm for testing whether the lifted group splits
The general method described in Section 3 will be now applied in the context of lifting
automorphisms along regular covering projections.

Let ζ : A(X) → N be a voltage function associated with a solvable regular covering
projection ℘ : X̃ → X of connected graphs, and let G ≤ Aut(X) lift to G̃. We derive
an algorithm for testing whether the lifted group G̃ is a split extension of CT(℘) by G.
In contrast with [17] we avoid the combinatorial reconstruction not only of the covering
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graph X̃ and the lifted group G̃, but also of the all intermediate elementary abelian regular
covering projections ℘j : Xj → Xj−1 in the decomposition

X̃ = Xn
℘n→ Xn−1 → · · · → X1

℘1→ X0 = X

of ℘ arising from a characteristic series N = N0 � N1 � · · · � Nr = 1 with elementary
abelian factors Nj−1/Nj . Consequently, we neither reconstruct the graphs Xj nor the
intermediate complements acting on Xj .

Instead, we first reconstruct G̃ in a form of a crossed product extension N ext#,F G
derived from the voltage function ζ : A(X)→ N . Recall from Preliminaries that, since G
lifts, for each g ∈ G, there exists an automorphism g#v of N uniquely determined by a
map ζW ∗ 7→ ζg(W ∗), where W ∗ ranges over all fundamental closed walks in X rooted at
v. As it is proved in [15], choosing a base vertex v, the function #: G → Aut(N), given
by

#: g 7→ g#v ,

is in fact the weak action, while the factor set F : G×G→ N is given by

F : (g1, g2) 7→ g#v1 (ζQ)(ζg1(Q))−1, for a walk Q from g2(v) to v.

In view of the approach in Section 3, if G has a presentation 〈S |R〉 we actually only
need to know the automorphisms g#vi for all gi ∈ S and, for each rj = gj1 · · · gjt ∈ R,
the values F(gjk , gjk+1

· · · gjt) for k = 1, . . . , t − 1. As each g#vi is uniquely determined
by ζW ∗ 7→ ζgi(W

∗), we only store the voltages ζW ∗ of the fundamental closed walks
W ∗ at v together with the voltages ζgi(W ∗) of the mapped walks. All these data can be
efficiently computed, for instance, by using breadth first search on X that starts at root v.
Finally, with these data in hand we simply follow the approach described in Subsection 3.2.

5 Performance
In order to verify the effectiveness of the proposed algorithm we compare its performance
with the previous version (called ISA, see [17]). The new version, called ISAI from now
on, has been implemented in MAGMA. The source code of both versions is available online
[18].

A test has been performed on a subset of the database described in [17]. In particular,
we have selected solvable regular covering projections for the complete graph K5, the
Petersen graph GP (5, 2), the Ljubljana graph L [4], and the graph F258A [2] along which
the full automorphism group lifts. Elementary abelian coverings have been eliminated
since ISAI actually coincides with ISA on such coverings. Both algorithms were run on an
2.93 GHz Quad-Core Intelr Xeonr processor X7350 at the Faculty of Mathematics and
Physics, University of Ljubljana.

Results are gathered in Tables 1-4. The first column shows the order of the covering
graph, while the second one describes the type of the voltage group: solvable, but not
abelian; or, abelian, but not elementary abelian. Further, the notation used in the third
column for identifying the voltage group is the library number in the database of small
groups in MAGMA. Execution times given in seconds (CPU time) are displayed in the
fourth and the fifth column (for ISA and ISAI, respectively). The last column indicates
whether the corresponding lift of the full automorphism group splits. As can be seen from
results, ISAI is clear winner of the comparison.
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Table 1: Performance comparison for the complete graph K5

Order of covering
graph

Type of voltage
group

Library number of
voltage group tISA(s) tISAI(s) Split?

30 Solvable 〈6, 1〉 0.010 0.010 true
120 Solvable 〈24, 12〉 0.050 0.040 true
240 Solvable 〈48, 28〉 0.520 0.090 false
480 Solvable 〈96, 230〉 0.350 0.040 true
640 Solvable 〈128, 2326〉 1.530 0.050 true
960 Solvable 〈192, 1542〉 1.530 0.060 true

1250 Abelian 〈250, 15〉 0.020 0.050 false
1280 Solvable 〈256, 55642〉 1.670 0.070 true

Table 2: Performance comparison for the Petersen graph
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAI(s) Split?

80 Solvable 〈8, 4〉 0.020 0.060 false
360 Solvable 〈36, 10〉 0.020 0.020 true
720 Solvable 〈72, 24〉 0.020 0.020 false

1080 Solvable 〈108, 17〉 0.610 0.040 true
1280 Solvable 〈128, 2321〉 1.770 0.020 false
1620 Solvable 〈162, 54〉 0.020 0.020 true
2160 Solvable 〈216, 33〉 0.030 0.030 false
2500 Abelian 〈250, 15〉 0.030 0.030 false
2560 Solvable 〈256, 55628〉 1.810 0.030 false

Table 3: Performance comparison for the Ljubljana graph L
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAI(s) Split?

896 Solvable 〈8, 4〉 0.650 0.030 true
1344 Solvable 〈12, 3〉 0.560 0.040 true
1792 Abelian 〈16, 2〉 0.630 0.030 true
2352 Solvable 〈21, 1〉 0.600 0.030 true
2688 Solvable 〈24, 11〉 3.090 0.040 true

Table 4: Performance comparison for the graph F258A
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAI(s) Split?

2064 Solvable 〈8, 4〉 2.660 0.120 true
3096 Abelian 〈12, 5〉 2.720 0.150 false
4128 Abelian 〈16, 2〉 2.670 0.130 true

Acknowledgement. The author would like to thank Aleksander Malnič for enlightening
discussions.
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