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Abstract— Distribution is one of the major sources of carbon emissions and this issue has been addressed by 
Green Vehicle Routing Problem (GVRP). This problem aims to fulfill the demand of a set of customers using a 

homogeneous fleet of Alternative Fuel Vehicles (AFV) originating from a single depot. The problem also includes 

a set of Alternative Fuel Stations (AFS) that can serve the AFVs. Since AFVs started to operate very recently, 

Alternative Fuel Stations servicing them are very few. Therefore, the driving span of the AFVs is very limited. This 

makes the routing decisions of AFVs more difficult. In this study, we formulated a multi-objective optimization 

model of Green Vehicle Routing Problem with two conflicting objective functions. While the first objective of our 

GVRP formulation aims to minimize total 𝑪𝑶𝟐 emission, which is proportional to the distance, the second aims to 

minimize the maximum traveling time of all routes. To solve this multi-objective problem, we used 𝜺-constraint 

method, a multi-objective optimization technique, and found the Pareto optimal solutions. The problem is 

formulated as a Mixed-Integer Linear Programming (MILP) model in IBM OPL CPLEX. To test our proposed method, 

we generated two hypothetical but realistic distribution cases in Izmir, Turkey.  The first case study focuses on an 

inner-city distribution in Izmir, and the second case study involves a regional distribution in the Aegean Region 

of Turkey. We presented the Pareto optimal solutions and showed that there is a tradeoff between the maximum 

distribution time and carbon emissions. The results showed that routes become shorter, the number of generated 

routes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the maximum 

traveling time decreases. We also showed that as maximum traveling time decreases, the solution time 

significantly decreases. 

Index Terms— Green Vehicle Routing Problem, Alternative Fuel Vehicles, 𝜀-Constraint, Multi-Objective 

Optimization, Pareto Optimality 

 

 

I. INTRODUCTION    

Factors such as technological developments, globalization and population growth have certain 

effects on the corporate strategy of companies. In the 1990s, the effects of globalization caused the 

competition to rise [1]. Therefore, firms were required to keep the price levels at a minimum. This 

situation forced many firms to lower internal costs in order to increase profits. The concept of Supply 

Chain Management was developed and studied for companies to minimize their operational costs. 

The main objective of Supply Chain Management is to provide the required products to the 

customers at the right time, at the right place, and at a low price. This goal can only be attained by 

effectively managing supply chain operations while minimizing operational costs. A basic supply 

chain would consist of suppliers, manufacturers, wholesalers (or distributors), and retailers. An 

illustration of a simple supply chain structure consisting of suppliers, manufacturers, distributors, 

retailers, and customers is given in Figure 1. 

Companies try to find the best way of improving their supply chain management by optimally 

planning their operations, such as strategic planning, demand planning, warehousing and logistics 

planning, manufacturing planning, inventory control, purchasing, and transportation planning. All 

these topics involve different decision processes. For example, in strategic planning, deciding the 
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location of factories and warehouses is the main focus, while in transportation planning finding the 

best the distribution plan among suppliers, manufacturers, retailers and end customers is the goal. 

 

  
Figure. 1. A typical supply chain 

 

 

Determination of a good transportation plan is difficult because the road infrastructure changes 

constantly due to the addition of new roads or the existence of roadworks. In addition, the variety of 

products has increased based on customer demands and it makes shipping activities even more 

difficult by forcing companies to find an optimal way of deliveries in order to minimize the distance, 

the fuel usage, 𝐶𝑂2 emission, and therefore maximize their profits. 

Companies try to find more efficient ways to reach their customers from their depots and satisfy 

demand at the right time at the minimum cost. The Vehicle Routing Problem (VRP) addresses this 

issue. Vehicle Routing Problem is a generalization of Traveling Salesperson Problem (TSP) and it aims 

to reduce the transportation costs, avoid delivery delays, satisfy customer expectations, save fuel, 

and reduce environmental effects. Therefore, the VRP is very important for delivery costs and 

environmental effects. Figure 2 shows an example of VRP where the distributions to the customers 

are operated from a single depot using multiple routes (and vehicles). 

 

 

 
Figure. 2. An example of the VRP 

 

 

Green Vehicle Routing Problem (GVRP), first proposed by Erdogan and Miller-Hooks [2], focuses on 

the environmental aspects of the VRP. The use of vehicles creates pollution, wastage of fuel and 

traffic congestion. In the United States, 97% of energy for transportation involves the usage of 

gasoline. Throughout the world, new methods to reduce transportation pollution have been planned 

and implemented. For instance, municipal corporations, public enterprises, voluntary association, 
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and private companies are altering their traditional fleets of trucks to Alternative Fuel Vehicles (AFVs) 

that use non-petroleum fuel types such as biodiesel, electricity, and hydrogen. This is done mainly to 

minimize the negative impacts on the environment and adapt to the current environmental 

regulations. Green Vehicle Routing Problem includes a homogeneous fleet of AFVs and a set of 

Alternative Fuel Stations (AFSs) and aims to minimize total distance traveled by the vehicles. 

In this study, we developed a Multi-Objective Green Vehicle Problem (MOGVRP) by extending the 

GVRP. The problem has two conflicting objectives that are minimizing 𝐶𝑂2 emission and the maximum 

traveling time of the routes. These two objectives are conflicting because as the maximum traveling 

time decreases, routes become shorter and the number of routes increases. Therefore, the total 

carbon emission, which is proportional to total distance, increases. We modeled the problem as a 

Mixed-Integer Linear Programming (MILP) model and used Epsilon Constraint Method to solve this 

multi-objective problem by using IBM OPL CPLEX. We also tested our model on two hypothetical but 

realistic case studies in Izmir, Turkey. The first case study focuses on an inner-city distribution in Izmir, 

and the second case study involves a regional distribution in the Aegean Region of Turkey. We 

obtained the distances and durations among locations (customers, alternative fuel stations, and the 

depot) by using Google Maps. We showed that there is a tradeoff between the maximum distribution 

time and carbon emissions and presented the Pareto optimal solutions.   

This study is organized as follows. In Section 2, the relevant VRP literature is summarized. In Section 3, 

the problem formulation is presented. Section 4 explains the solution methodologies used in our study. 

The results and managerial insights are provided in Section 5. The conclusion and future work are 

given in Section 6. 

 

II. LITERATURE REVIEW 

Green Vehicle Routing Problem was first proposed by [2] as an extension of the Vehicle Routing 

Problem and aims to minimize the total distance of deliveries to a set of customers using a 

homogenous fleet of alternative fuel vehicles that are originating from a single depot. It is important 

to point out that Alternative Fuel Stations are also added to the problem with the sole purpose of 

serving AFVs. Our study extends GVRP by adding another objective of minimizing the maximum travel 

time of the routes and therefore turning it to a multi-objective problem. In another GVRP study, [3] 

has designed a simulated annealing heuristic based exact solution to solve the GVRP.  

Pollution is an issue that has an impact on the environment; therefore, extensions of VRP relating to 

minimizing the negative effects of pollution were investigated in various studies. This line of research 

specifically names the problem as the Pollution-Routing Problem (PRP) and the major studies are [4], 

[5], [6], and [7]. The Pollution-Routing Problem is a recent extension of the Vehicle Routing Problem 

which decides the optimal routes for a set of vehicles to serve a number of customers while 

managing the speed of each vehicle on each route in order to minimize fuel consumption, emission 

and driver costs. Bektas and Laporte [4] introduced a more extensive objective function that 

accounts for the travel distance, the total amount of emissions, travel times, fuel consumption, and 

distribution costs. Demir et al. [5] presented an Adaptive Large Neighborhood Search (ALNS) 

algorithm, which integrates the classical ALNS scheme with a specially designed vehicle speed 

optimization algorithm for solving the PRP. A heterogeneous fleet of vehicles was added to the PRP 

by [6]. The main goal of [6] is to minimize the sum of vehicle fixed costs and routing costs where the 

latter includes the cost of fuel and 𝐶𝑂2  emissions, and driver cost. Demir et al. [7] proposed a bi-

objective PRP to minimize fuel consumption and total driving time. In their study, the combination of 

ALNS and a speed optimization procedure were used to solve the bi-objective PRP. 

There are a variety of extensions to the classical Vehicle Routing Problem in the literature, such as 

multi-depot, time-windows, and heterogeneous fleet. 
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The multi-depot vehicle routing problem (MDVRP) is the problem of delivering goods to a set of 

customers with a set of vehicles originating from several depots. It was initially presented by [8]. In 

another study, [9] applied the MDVRP in the healthcare sector using a heterogeneous fleet in which 

a set of heterogeneous vehicles (each belonging to a different facility) providing transportation 

services to patients. There are different vehicle types with different fleet sizes located in multiple 

healthcare facilities. Variable Neighborhood Search and Tabu Search algorithms were used to solve 

the problem in [9]. Another example is proposed by [10], which includes time windows of customers 

and a fleet of vehicles used for the delivery and installation of electronics. This is an important subject 

in the literature because transportation of installation services is a requirement for many companies 

that manufacture or sell products that are difficult to set up. Furthermore, [11] aimed to provide 

militaristic solutions for unmanned vehicle routing.  A set of mixed ground and aerial vehicles at 

several depots traveling to certain targets were considered in their study and a branch-and-cut 

algorithm was developed. Crevier, Cordeau, and Laporte [12] presented a variant of the MDVRP by 

including intermediate depots to aid the vehicles to replenish. To solve the problem, a heuristic 

combining the Adaptive Memory Principle and a Tabu Search method was developed. Various 

heuristic solution methodologies presented by [13], [14], [15], and [16] to solve the MDVRP. 

 

The Vehicle Routing Problem with Time Windows (VRPTW) is a significant variation of VRP. In VRPTW, 

a vehicle must visit each customer within a specific time interval. The VRPTW was introduced to the 

literature by [17]. The model of this study aims to minimize route durations. [18] formulated the VRPTW 

as a set partitioning problem and solved the problem by using column generation. Furthermore, [19] 

formulated a Multi-Objective Genetic Algorithm for VRPTW. In their study, the first objective is to 

minimize the total distance while the second is to minimize the number of vehicles used. [20] 

proposed Vehicle Routing Problem with Soft Time Windows and Stochastic Travel Times where time 

windows of the customers are large. The objective function of the model considers both 

transportation cost and service cost and Tabu Search method was used to solve the model. Leung 

et al. [21] extended the VRPTW by considering simultaneous pick-up and delivery. In their study, 

customers require both pick-up and delivery services within the specified time windows. The main 

objective is to minimize the total distance traveled by the vehicles.  

VRP with the heterogeneous fleet (HVRP) includes multiple vehicle types with different capacities, 

fixed and variable costs. The main purpose of the HVRP is to minimize total variable routing cost and 

the vehicle fix costs. Angelelli and Mansini [22] proposed an HVRP with two-dimensional loading 

constraints.  The problem considers two-dimensional loading configuration of products according to 

their sizes. A Simulated Annealing heuristic with a local search (SA_HLS) was used to solve the 

problem. Belfiore and Yoshizaki [23] extended the HVRP by considering time windows of customers 

and developed a Tabu Search algorithm to solve it. Furthermore, [24] developed an HVRP with time 

windows and split deliveries. They proposed a Scatter-Search (SS) approach to solving the model. 

Jair et al. [25] proposed the HVRP with time windows and multiple products where customers 

demand different types of products. In their study, an Ant Colony Optimization algorithm was 

developed to solve the problem. 

Furthermore, several multi-objective models were presented in the VRP literature ([7], [19], [26], [27]). 

For example, [26] proposed a hybrid meta-heuristic for multi-objective vehicle routing problems with 

time windows. Their model aims to minimize total distance traveled and the workload imbalance 

that is the ratio of distance traveled by a vehicle and load of the vehicle. The multi-objective 

optimization has also been used for militaristic purposes. Guerriero et al. [27] proposed a  VRP with 

soft time windows for Autonomous Unmanned Aerial Vehicles (UAVs). The problem has three 

objectives that are the minimization of total distance traveled by the UAVs, minimization of the 

number of vehicles (UAVs) and maximization of customer satisfaction. 
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III. PROBLEM DEFINITION AND FORMULATION 

The aim of the GVRP is to find the optimal routes of a set of homogeneous AFV fleet that depart from 

a single depot in order to meet the customer demands. The fuel capacity of vehicles are set and 

Alternative Fuel Stations that vehicles can replenish their fuel are considered in the model. In addition, 

the maximum traveling time of a route is included in the model.  

 

In this study, we developed a Multi-Objective Green Vehicle Routing Problem (MOGVRP) that is an 

extension of the GVRP, which is originally proposed by [2]. The first objective of the problem is to 

minimize total 𝐶𝑂2 emission that is proportional to total distance traveled by the vehicles. The second 

objective minimizes the maximum traveling time of all routes. The mathematical model is presented 

below. 
 

Sets: 

D          Set of Depots 

C  Set of Customers 

𝐶0  Set of Depot and Customers: 𝐷 ∪  𝐶 

F Set of Alternative Fuel Stations  

𝐹0  Set of Depot and Alternative Fuel Stations: 𝐷 ∪  𝐹 

V Set of All Nodes: 𝐷 ∪ 𝐶 ∪  𝐹 

E  Set of Edges: (𝑣𝑖  , 𝑣𝑗): 𝑣𝑖  , 𝑣𝑗  𝜖 𝑉 

 

Parameters: 

  

∝ 𝐶𝑂2 emission (in kg) per km  

𝑑𝑖𝑗 Distance from node i to node j: (𝑖, 𝑗) 𝜖 𝐸  

M A sufficiently large number 

r    Vehicle fuel consumption rate (liters per km) 

Q Vehicle fuel tank capacity 

𝑠𝑖  Service time at node i: 𝑖 ∈ 𝑉 

𝑡𝑖𝑗  Travel time (hours) from node i to node j: (𝑖, 𝑗) 𝜖 𝐸 

 

Decision variables: 

𝑥𝑖𝑗  {
1 𝐼𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

𝑦𝑗   The remaining fuel level before arriving to j. This variable is reset to Q upon visiting a fuel station 

or the depot 

𝜏𝑗  Arrival time of a vehicle at j (departure from the depot is assumed to be zero) 

𝑇𝑚𝑎𝑥     Maximum traveling time of all routes 

 
 

 

 

 

 

 

min ∑ ∝ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝑉′

𝑖≠𝑗

                                                                                                                                (1) 

 
min  𝑇𝑚𝑎𝑥                                                                                                                                               (2) 
 
𝑠. 𝑡.  
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∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝐼

𝑗∈𝑉′

𝑗≠𝑖

                                                                                                                      (3) 

 

∑ 𝑥𝑖𝑗

𝑗∈𝑉′

𝑗≠𝑖

≤ 1, ∀𝑖 ∈ 𝐹0                                                                                                                    (4) 

 

∑ 𝑥𝑗𝑖

𝑖∈𝑉′

𝑗≠𝑖

− ∑ 𝑥𝑖𝑗 = 0, ∀𝑗 ∈ 𝑉′

𝑖∈𝑉′

𝑗≠𝑖

                                                                                                 (5) 

 

∑ 𝑥0𝑗

𝑗∈𝑉′\{0}

≤ 𝑚                                                                                                                                    (6) 

 

∑ 𝑥𝑗0 ≤ 𝑚

𝑗∈𝑉′\{0}

                                                                                                                                    (7)  

𝜏𝑗 ≥ 𝜏𝑖 + (𝑡𝑖𝑗 + 𝑝𝑖)𝑥𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗),                ∀ 𝑖 ∈ 𝑉′, 𝑗 ∈ 𝑉′\{0} 𝑎𝑛𝑑 𝑖 ≠ 𝑗                    (8) 

0 ≤ 𝜏0 ≤ 𝑇𝑚𝑎𝑥                                                                                                                                      (9) 

𝑡0𝑗 ≤ 𝜏𝑗 ≤ 𝑇𝑚𝑎𝑥 − (𝑡𝑗0 + 𝑝𝑗),                               ∀𝑗 ∈ 𝑉′\{0}                                                     (10) 

𝑦𝑗 ≤ 𝑦𝑖 − 𝑟 ∙ 𝑑𝑖𝑗𝑥𝑖𝑗 + 𝑄(1 − 𝑥𝑖𝑗),                        ∀𝑗 ∈ 𝐼 𝑎𝑛𝑑 𝑖 ∈ 𝑉′, 𝑖 ≠ 𝑗                              (11) 

𝑦𝑗 = 𝑄,                                                                        ∀𝑗 ∈  𝐹0                                                           (12)   

𝑦𝑗 ≥ 𝑚𝑖𝑛{𝑟 ∙ 𝑑𝑗0, 𝑟 ∙ (𝑑𝑗𝑙 + 𝑑𝑙0)},                         ∀𝑗 ∈ 𝐼, ∀𝑙 ∈ 𝐹′                                               (13) 

𝑥𝑖,𝑗 ∈ {0,1},                                                                ∀𝑖, 𝑗 ∈ 𝑉                                                          (14)  
 

 

Objective Function (1) minimizes the total 𝐶𝑂2 emission while objective function (2) minimizes the 

maximum traveling time of all routes. Constraints (3) ensures that a vehicle arrives at a customer 

exactly once, while Constraint (4) ensures that a vehicle departs from a customer exactly once. 

Constraints (5) is the flow balance constraint. Constraint (6) and (7) limit the number of available 

vehicles that may depart from and arrive at the depot. Constraint (8) calculates the time of arrival 

at each location. Constraint (9) sets the minimum departure time of the vehicles from the depot to 

zero and limits the arrival times of vehicles to the depot to 𝑇𝑚𝑎𝑥. Constraint (10) guarantees that the 

duration of each route does not exceed the maximum traveling time. Constraint (11) calculates the 

vehicle fuel level when it arrives at a customer. Constraint (12) guarantees that when a vehicle visits 

an AFS, the fuel tank of the vehicle becomes full. Constraint (13) ensures that vehicles have enough 

fuel to return the depot when they arrive at the last customer in the route. Lastly, Constraint (14) is the 

boundary constraint. 

 

IV. METHODOLOGY 

A.      Multi-Objective Optimization 

Without loss of generality, a multi-objective optimization problem can be defined as a minimization 

problem of the form as shown in (14) through (16). 

Minimize 𝑓(𝑥)  =  (𝑓
1

(𝑥),  𝑓
2

(𝑥) … …  𝑓
𝑛

(𝑥))           (14) 
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Subject to; 

𝑔𝑖  (𝑥) ≤  0    ∀𝑖 =  1, … . . , 𝑝            (15) 

ℎ𝑖(𝑥)  =  0 ∀𝑖 =  1, … . . . , 𝑞            (16) 

Many real-world optimization problems involve multiple objectives. Since the objectives are generally 

conflicting, there is no way to find an optimal solution which is best for all objectives. Instead, there is 

a set of optimal solutions (i.e., Pareto optimal solutions) can be found. As in (14), a reduction in any 

objective function value can only be achieved by an increase in another objective function value. 

In the Pareto optimal set of solutions, no solution dominates another. By definition, solution A 

dominates solution B if at least one objective of “A” is better than “B” and the remaining objectives 

are at least as good as the ones of “B”. In this example, “A” is called a non-dominated solution if 

there is no other solution dominates “A”. Note that, the set of Pareto Optimal solutions contains only 

non-dominated solutions.  

The primary goals in the multi-objective optimization are: 

1) Preserving non-dominated solutions, 

2) Improving progress of the algorithm toward the Pareto front, 

3) Maintaining solution diversification in the Pareto front, 

4) Providing an abundant number of non-dominated solutions to the decision maker. 

Multi-objective optimization formulations are applied in various engineering optimization problems. 

Minimizing cost, emission, time, work-in-process and stocks and maximizing profit, performance and 

customer satisfaction are the examples of multiple conflicting objectives of many real-life 

engineering problems. In multi-objective optimization, there is no single optimal solution but a set of 

Pareto optimal solutions that are equally good. At this point, it is the decision maker’s choice to select 

one of the solutions from the Pareto Optimal Solutions set.  

In our model, we have two main objectives. Those are minimizing the maximum traveling time of all 

routes and minimizing the total 𝐶𝑂2 emission. To obtain the true Pareto optimal solutions of the 

problem, we used 𝜀-constraint method. 

 

 

 

 

B.      𝜀-Constraint Method 

 

We applied 𝜀-constraint method to analyze the trade-off between 𝐶𝑂2 emission and maximum 

traveling time. 𝜀-constraint method is one of the most common optimization methods in the multi-

objective literature. Equations (17) and (18) explains the procedure of the 𝜀-constraint method. 

For a multi-objective optimization problem, as shown in (17), x is the decision variable vector and 

𝑓1(𝑥) through 𝑓𝑛(𝑥) are the n objectives of the problem that are to be minimized. 



Logistics & Sustainable Transport 

Vol. 10, No. 1, June 2019, 31-44 

doi: 10.2478/jlst-2019-0003 
 

38 

 

 

min(𝑓1(𝑥),  𝑓2(𝑥) … …  𝑓𝑛(𝑥) )                                                                                                                                             (17) 

 

𝜀-constraint method optimizes one of the objective functions by converting the other objectives into 

constraints as shown in (18).  

 

min 𝑓1(𝑥)  

Subject to; 

𝑓2(𝑥) ≤  𝑐2 

𝑓2(𝑥) ≤  𝑐2                                                                                                                                                          (18) 

...... 

...... 

𝑓𝑛(𝑥) ≤  𝑐𝑛 

 

The method solves the problem iteratively by changing the right-hand-side (RHS) of each constrained 

objective, 𝑐𝑖, by a small 𝜀 value at each iteration. The iterations start from the upper bound of each 

objective and end at its lower bound. Thus, a different solution is obtained at each iteration. 

Various multi-objective approaches were developed in the literature such as NSGA-II, SPEA-II, 

MOEA/D and weighted sum method. We have chosen 𝜀-constraint method because it has some 

advantages over the other methods. These advantages of the 𝜀-constraint method are summarized 

as follows: 

 

1- It gives the true Pareto Optimal solutions or yields a very close approximation, 

2- Each iteration generates a different solution, 

3- The number of obtained solutions can be pre-adjusted by changing the value of 𝜀. 

 

In our problem, we have two objectives: (1) minimization of total carbon emissions, and (2) 

minimization of maximum traveling time of all routes. Equation (19) explains the procedure of the 𝜀-

constraint for our problem. The RHS value changes at each iteration t by an 𝜀𝑡 value. Therefore, each 

iteration generates different 𝐶𝑂2 emission and maximum traveling time values. 

min ∑ ∝ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝑉′

𝑖≠𝑗

  

s.t.                           (19) 

𝑇𝑚𝑎𝑥 ≤  𝑅𝐻𝑆𝑇𝑚𝑎𝑥
− 𝜀𝑡  

𝜀𝑡 = 𝑡 ∗  𝜀  

 

V. RESULTS 

We created two different distribution scenarios: (1) City distribution (İzmir, Turkey), and (2) Regional 

distribution (Aegean region of Turkey). For both scenarios, we selected the locations of 13 different 

customers, 3 fuel stations and 1 depot using Google Maps. Tables 1 and 2 show the names and 

coordinates of the selected locations. After obtaining the coordinates of the locations, we 

generated the distance and traveling time matrices by using Google Maps Api in R programming 

language. Service times (loading and unloading times) at customers are randomly generated 

between 15 and 45 minutes, while the service times of alternative fuel stations are randomly 

generated between 5 and 10 minutes. The fuel capacity of vehicles is selected as 100 liters for İzmir 

city case, while it is selected as 500 liters for Aegean region case because we assumed that small-
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sized vehicles are used in inner-city distribution.  Lastly, the number of available vehicles is selected 

as 8. 

 

Table 1. The names and coordinates of the locations of Izmir city scenario 

Location No Location Name Latitude Longitude 

0 Kemalpasa (Depot) 38.443019 27.382101 

1 Urla 38.325408 26.766736 

2 Torbali 38.15387 27.3613 

3 Buca 38.384972 27.173453 

4 Gaziemir 38.325188 27.12748 

5 Alsancak 38.440644 27.154587 

6 Menderes 38.251641 27.134917 

7 Narlibahce 38.392787 27.008523 

8 Menemen 38.609575 27.068201 

9 Foca 38.662059 26.753541 

10 Bornova 38.486544 27.212053 

11 Camonu 38.102358 27.15145 

12 Bademler 38.273696 26.829623 

13 VillaKent 38.602069 26.919441    

14 Torbali  (Fuel Station) 38.209473 27.33527 

15 Balcova  (Fuel 

Station) 

38.397213 27.066138 

16 Menemen  (Fuel 

Station) 

38.682503 27.010836   

 

 

 

 

 

Table 2. The names and coordinates of the location of Aegean region scenario 

Location No Location Name Latitude Longitude 

0 Kemalpasa(Depot) 38.443019 27.382101 

1 Akhisar 38.934484 27.845407 

2 Ayvalik 39.263005 26.732903 
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3 Demirci 39.047515 28.654982 

4 Odemis 38.230259 27.971609 

5 Aydin 37.849461 27.823558 

6 Mugla 37.211026 28.362027 

7 Denizli 37.774926 29.078012 

8 Usak 38.675099 29.405645 

9 Kutahya 39.419277 29.981497 

10 Dursunbey 39.586409 28.628718 

11 Afyon 38.768686 30.490718 

12 Burdur 37.717731 30.281475 

13 Susurluk 39.861124 28.153807 

14 Civril (Fuel Station) 38.300789 29.735007 

15 Sogutcuk  (Fuel 

Station) 

37.496792 28.109612 

16 Kirkagac  (Fuel 

Station) 

39.273171 27.897975 

 

The MILP model was coded in IBM CPLEX Optimization Studio and executed in an 8GB RAM, Intel® 

Core™ i7-4510U CPU @2.00 GHz processor Linux computer. 𝜀-Constraint method is used to obtain 

Pareto Optimal solutions.  

 

Figure 6 shows the Pareto Optimal solutions of the İzmir city scenario. 28 non-dominated solutions 

were obtained. The solution with the minimum traveling time is at the one extreme and has 

827.234 𝐶𝑂2 kg emission and 3.7 hours maximum traveling time. The solution with the minimum total 

emission is at the other extreme and has 420.084 kg 𝐶𝑂2 emission and 8.05 hours of maximum traveling 

time.  
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Figure. 6. Pareto optimal solutions for İzmir City scenario 

 

Figure 7 illustrates the optimal routes of these two extreme solutions of Izmir city scenario. On the map, 

Depot, Customers, and Alternative Fuel Stations are numbered. The names and coordinates of these 

locations can be found in Table 1. As shown in Figure 7, the number of routes increases and routes 

become shorter as the maximum traveling time decreases for İzmir city scenario. Thus, no alternative 

fuel station was visited for the scenario with the lowest 𝑇𝑚𝑎𝑥 value (Figure 7a), however, five vehicles 

were used. In the scenario with the highest 𝑇𝑚𝑎𝑥 value (Figure 7b), only two routes were used and the 

vehicle refuels at an alternative fuel station in the longest route.  

 

            a) Lowest 𝑇𝑚𝑎𝑥 and highest emission                   b) Highest 𝑇𝑚𝑎𝑥 and lowest emission 

Figure 7. The optimal routes of two extreme solutions of Izmir city scenario 

 

 

Figure 8 shows the Pareto Optimal solutions of the Aegean region scenario. 15 non-dominated 

solutions were obtained in this scenario. The solution with the lowest 𝑇𝑚𝑎𝑥 value generated the highest 

𝐶𝑂2 emission (3801.779 kg) and 10.7 hours of maximum traveling time. The solution with the highest 

𝑇𝑚𝑎𝑥 value yielded the lowest 𝐶𝑂2 emission (2329.912 kg) and 16 hours of maximum traveling time.
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Figure 8. Pareto optimal solutions for Aegean region scenario 

 

 

Figure 9 illustrates the optimal routes of these two extreme solutions of the Aegean region scenario. 

On the maps, Depot, Customers, and Alternative Fuel Stations are numbered. The names and 

coordinates of these locations can be found in Table 2. According to Figure 9, more routes (five) 

were used, routes become shorter, and no alternative fuel station was visited when maximum 

traveling time is the lowest (Figure 9a) in Aegean distribution scenario.  Only three routes were used 

and one of the vehicles refueled at an alternative fuel station when the maximum traveling time is 

the highest (Figure 9b). 

 

 
 

            a) Lowest 𝑇𝑚𝑎𝑥 and highest emission                   b) Highest 𝑇𝑚𝑎𝑥 and lowest emission 

Figure 9. Optimal routes of two extreme solutions of Aegean region scenario 
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As for the solution times, the mean and standard deviation of solution times are 36.668 and 64.819, 

while the minimum and maximum solution times are 1.129 and 340.833 for Izmir city scenario. The 

mean and standard deviation of solution times are 11.327 and 12.808, while the minimum and 

maximum solution times are 0.585 and 43.663 for Aegean region scenario. As  𝑇𝑚𝑎𝑥 reduces, solution 

time also reduces for both scenarios. 

 

VI. CONCLUSION 

 

The Vehicle Routing Problem is one of the most popular combinatorial optimization problems. The aim 
of the VRP is to deliver goods to a set of customers with a fleet of vehicles departing from a depot at 
a minimum cost. Rather than minimizing cost, the aim of the VRP may also be minimizing emission, 
time, and distance or maximizing the service level. As an extension to the original VRP problem, the 
Green Vehicle Routing Problem focuses on the environmental aspects of the VRP. It considers a 
homogeneous fleet of Alternative Fuel Vehicles originating from a single depot and uses a set of 
Alternative Fuel Stations to refuel the vehicles. It aims to minimize the total distance of the routes.  

 

In this paper, we formulated a Multi-Objective Green Vehicle Routing Problem by extending the 
GVRP. Our multi-objective problem includes two objectives: (1) minimizing the maximum traveling 
time of all routes, and (2) minimizing the total 𝐶𝑂2 emission, which is proportional to the total distance. 
These two objectives are conflicting because as the maximum traveling time decreases, the routes 
become shorter and more routes are used. Therefore, the total 𝐶𝑂2 emission increases. We modeled 
the problem as a Mixed Integer Linear Programming model and coded in IBM OPL CPLEX. Since the 
problem is multi-objective, we applied 𝜀-Constraint method to generate Pareto optimal solutions.  

 

The proposed method has been tested on two hypothetical but realistic case studies. The first case 
study considers a city distribution, whereas the second one addresses a regional distribution. The data 
of the problem are generated to reflect a real-life distribution operation. We determined 13 customers, 
three AFSs and one depot locations in both scenarios. Results show that 𝐶𝑂2 emission decreases as 
maximum traveling time increases. In addition, routes become shorter, the number of generated 
routes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the 
maximum traveling time decreases. Also, as maximum traveling time decreases, the solution time 
significantly decreases. Furthermore, CPLEX solves the problem very fast for 17 locations. However, 
when the number of locations increases above 20, the solution time starts to increase dramatically. 
Thus, the future study may consider developing an effective heuristic algorithm to solve the large 
instances in a shorter time. In addition, extending the problem by considering different AFV types, the 
impact of vehicle load on emission, or multi-depot can be other directions for future research.    
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