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Vildana Sulić, Janez Peřs, Matej Kristan, Stanislav Kovačič
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Abstract. Visual sensor networks are the meeting point of two significantly different technologies: one is image
processing with high computation and storage demands, and the other is distributed sensor approach with low
power, low computational and storage capabilities. We propose a framework for hierarchical feature encoding
scheme for a frequent computer vision task – object recognition. The key of our approach is the principle that
individual nodes in the network hold only a small amount of information about objects seen by the network.
However, this information is sufficient to efficiently route network query,when a new, unknown object is
encountered. A set of criteria has to be fulfilled by the object recognition method to qualify for use in our
framework. The paper provides examples of three widely known object recognition approaches that can be easily
adapted for use in such hierarchical feature encoding scheme.
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Hierarhi čna shema znǎcilnic za razpoznavanje objektov v omrězju
vizualnih senzorjev

Povzetek.Članek obravnava problematiko uporabe algoritmov
računalnǐskega vida v omrězju vizualnih senzorjev. Tehnologija
senzorskih sistemov postavlja resne omejitve v zmogljivosti
tako samih senzorjev kot tudi prenosnih poti. Kot rešitev
predstavljamo metodo hierarhičnega zapisa značilnic za eno
najpogosteǰsih nalog rǎcunalnǐskega vida – razpoznavanje
objektov. Hierarhǐcna shema zagotavlja, da ima vsako vozlišče
na voljo le majhno kolǐcino informacije o opǎzenih objektih,
vendar pa je ta informacija dovolj za učinkovito usmerjanje
omrěznih poizvedb, ko je opǎzen nov, neznan objekt.̌Clanek
definira pogoje, ki jih morajo izpolnjevati metode razpoznavanja
objektov, da jih je mogǒce uporabiti v taǩsni hierarhǐcni shemi.
Kot primer podajamo prilagoditev treh splošno znanih metod
razpoznavanja objektov v predstavljeno hierarhično shemo.

Klju čne besede:omrězje vizualnih senzorjev, računalnǐski vid,
prepoznava objektov

1 Introduction

Computer vision deals with extracting useful information
from images and video sequences. One of the main
characteristics of computer vision algorithms is a large
amount of data that has to be processed, stored or
transmitted. Usually, a state-of-the-art hardware is
employed to deal with requirements that go along with
processing of digital images and digital video streams.
Such approach represents essentially astar network
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topology - a single powerful processing unit and a large
number of sensors. In the majority of applications,
these sensors are simply ordinary digital cameras, using
IEEE1394 or USB interface for example.

Many applications, such as video surveillance, traffic
or environment monitoring need a large number of visual
sensors. It is not unusual that the number of cameras
for modern application goes into hundreds, and the
requirements for processing such huge amounts of data
are correspondingly large. For such systems, a distributed
architecture is not a matter of choice, but a matter of
necessity.

Transition to distributed network topology of visual
sensors is not straightforward. Due to high processing,
transmission and storage requirements of computer vision
algorithms, the distributed network would be put under
unbearable strain if such algorithms are directly mapped
to the network. For example, in detection and recognition
of objects that have been previously seen by any of the
sensors, one of the following two scenarios would appear
in a distributed system:

• Captured visual information (images or extracted
features) from each sensor is distributed to all nodes
for local storage. Future detection of similar objects
is then performed locally by each sensor as new
images are acquired.

• Captured visual information is stored locally.
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However, each task of finding an object results in a
query, which is broadcasted across the network, for
comparison with the locally stored information on
each node, for each unknown object encountered.

In both scenarios, an enormous amount of data would
have to be transmitted across the network. In fact, it is
obvious that each node would need to have processing
and storage capabilities similar to the central unit in star
topology.

In this paper we propose a framework for hierarchical
feature encoding, where each node stores only a small
amount of information about an object previously seen
by the network. However, this information is sufficient to
efficiently route the network query, when a new, unknown
object is encountered.

In the remainder of the paper we define a set of
criteria which has to be fulfilled by the object recognition
method to qualify for use in the proposed framework.
We provide examples of three widely known object
recognition approaches that can be easily adapted for
use in such hierarchical feature encoding framework and
show that they fulfill those criteria.

1.1 Related work

Visual sensor networks (VSNs) are the meeting point
of two significantly different technologies. On one
side there is a distributed sensor approach, which puts
significant constraints on available processing power and
network transmission capabilities. On the other side
there are image processing and computer vision, which
are both computationally and data intensive. Therefore,
the main issues in VSNs revolve around the task of
achieving maximum performance on hardware with
limited capabilities.

The first major issue in VSNs is obviously the efficient
data transmission between the nodes. Transmission of
visual information usually requires a large bandwidth
and therefore specifically tailored optimization to the
distributed sensor topologies is highly desirable.

Data transmission techniques in VSNs can be roughly
categorized into three categories [1]. In the first category,
there are efficient image and video transmission methods
for transmission over a single hop. As an example in
[2], an energy efficient JPEG-2000 image transmission
system over VSNs that minimizes the overall processing
and transmission energy consumption is proposed.

In the second category, there are techniques that
consider the multihop transmission strategy based on a
hop-by-hop, such as [3], where authors show that their
scheme can greatly improve the image quality at the
destination in case of link impairments and node failure.

The third category includes end-to-end multi-path
transmission techniques in multihop networks, where

multi-path transmission is used to increase reliability.
One of many is [4], where a fast algorithm to trade-
off between the end-to-end energy cost and reliability
requirements of multi-path data transmission is proposed.

The next major issue in VSNs is their distributed
nature and the problems that arise from the distributed
sensor concept. In [5], decentralized methods for
obtaining the vision graph for a distributed camera
network are discussed. Authors propose a novel
framework to determine image relationships in large
networks of cameras. In [6], a fully distributed
calibration approach for 3D camera networks, using
belief propagation, is proposed. In [7], a novel distributed
approach to protect dense VSNs against eavesdropping
attacks is proposed.

There is a large body of research concerning
implementation of various computer vision tasks on
embedded platforms. In [8], an object recognition system
with real time capabilities for deployment on a DSP-based
embedded platform is proposed. An embedded platform,
capable of performing high-level computer vision tasks
such as vehicle and license plate detection in real–time
is presented in [9]. In [10], a stereo image for object
detection on an embedded system is used. In [11], authors
proposed a system that uses background subtraction for
target detection, 2-D integer-lifting wavelet transform
for feature extraction, support vector machine for target
classification and auto-regressive moving-average model
for target tracking. Those tasks are performed in each
sensor node, while multi-view localization algorithm is
implemented with collaboration between wireless sensor
nodes in a distributed P2P signal processing framework.
In [12], authors applied a multi-agent framework to the
management of a surveillance system using a VSN. A
software agent is embedded in each camera to control
the capture parameters. In [13], authors proposed a
technique for tracking objects across spatially separated,
uncalibrated, non-overlapping cameras. An autonomous
multicamera tracking method on distributed embedded
smart cameras is presented in [14]. In [15], authors
present a distributed network of smart cameras for real-
time tracking.

Our approach aims to facilitate efficient distribution
of features to a large number of visual sensors and
efficient routing of queries to those nodes, which
have enough information to perform object recognition.
Differently from many other studies, we do not deal
with implementation details or low level issues in data
transmission. Our approach aims to reduce the total
amount of data that has to be transmitted across the
network or stored in individual nodes. We intend
to achieve this by encoding features in a hierarchical
way, where less descriptive features are derived from
the original object features. Those less descriptive
features are used for efficient routing, while consuming
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significantly less network resources than full distribution
of original object features.

2 Hierarchical feature scheme for object
recognition

Major challenges in VSNs are related to the discrepancy
between computationally intensive image processing in
computer vision algorithms and relatively low processing
capabilities of nodes in a typical VSN. However, properly
designed VSN may provide significant storage and
computing capabilities as well, but in a highly distributed
manner. The algorithms that run on such network have
to be aware of this distributed nature to take advantage of
these capabilities.

Let us take a look at one of the examples of computer
vision – object recognition. The basic approach to this
task is as follows:

• Learning phase: a compact representation (model)
of the object is extracted from one or more images
and stored. In our case, such compact representation
consists of a number offeaturesand is represented
as feature vector.

• Recognition phase: the same compact representation
of an object (feature vector in our case) is extracted
from the newly acquired image. This vector is
compared to the feature vectors stored during the
learning phase to obtain a correspondence with one
of the learned objects.

A network of visual sensors is expected to encounter
a large number of objects. The purpose of learning in
such distributed environment is to provide the ability of
the network to recognize objects that have already been
seen by any of its nodes. Therefore, after a new image is
acquired, a node proceeds as follows:

1. Extraction of the relevant feature vector from the
visual representation of the object.

2. Distribution of the feature vector to other nodes that
comprise VSN.

As soon as a sufficient amount of knowledge (e.g.
sufficient number of feature vectors) has been extracted
by the network, object recognition can be performed
simultaneously with learning. In our case, we do
not explicitly deal with the concept of incremental
learning; as new images are acquired, networkknowledge
increases, but only due to the increase in the number
of stored feature vectors. The already acquired feature
vectors remain unchanged.

It is evident that an efficient mechanism to disseminate
knowledge (e.g. mechanism for distribution of feature
vectors) across the network is needed, as the complexity
of this problem increases non-linearly with the number of
nodes.

2.1 Hierarchical encoding structure

Hierarchy is the basic principle on which our feature
encoding is based. We require that theprimary
node (the visual sensor that has originally seen the
unknown object) retains complete information about the
object. Its neighbors receive less detailed, more abstract
information, which, in general, requires less storage space
and less transmission capacity. In this way the amount of
data transmitted across or stored in the network can be
significantly reduced.

Specifically, for an object recognition task such
structure requires that the feature vectorsx, which
are passed across the network, fulfill the four major
requirements.

Requirement 1: There exists a mappingf : xn 7→
xn+1, which translates leveln feature vectorxn into
higher, more abstract level (n + 1) feature vectorxn+1,
without access to the original visual data.

This requirement assumes that the primary node
extracts level 0 feature vectors,x0, directly from the
acquired image. Its direct neighbors receive level 1
feature vectors,x1, their neighbors receive level 2 feature
vectors,x2, and so on. Mappingf : xn 7→ xn+1 is
done on each of the nodes before transmitting the feature
vectorsxn+1 to its neighbors, until the maximum level of
abstraction is reached. From this point on, feature vectors
are forwarded unchanged.

Requirement 2: If I(x) is the storage space required
for the feature vectorx in bits, then it should hold that:
I(xn) ≥ I(xn+1).

Requirement 3: There exists a metricdn(xn
1 , xn

2 )
which provides a measure ofsimilarity between two
feature vectorsxn

1 andxn
2 of the same leveln.

The existence of the metric is essential both for
the object recognition itself and for the hierarchical
feature encoding scheme. The distancedn(xn

1 , xn
2 ), when

compared to the thresholdT , determines if the objects are
similar, dn(xn

1 , xn
2 ) ≤ T , or not,dn(xn

1 , xn
2 ) > T .

Requirement 4: Given two vectorsxn
1 and xn

2

which are similar,dn(xn
1 , xn

2 ) ≤ T , the corresponding
vectors on the next leveln + 1 should be at least
as similar as the vectors on the previous level,
dn+1(xn+1

1 , xn+1
2 ) ≤ dn(xn

1 , xn
2 ).

2.2 Propagation of the feature vectors

For a moment, let us assume that the primary node
has acquired an image of a new object and has already
discovered that the observed object had not been seen
before.

First, the feature vector is extracted and the random
identification number (ID) is generated and attached to the
feature vector. The actual procedure of feature extraction
depends on the recognition method used. The extracted
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vector is then stored locally and marked as being level
0 vector,x0. Then, using a mappingf : xn 7→ xn+1,
the next level feature vectorx1 is prepared, assigned the
same ID and broadcasted to all direct neighbors of the
primary node. Each receiving node attaches a tag to the
received vector, which uniquely determines the origin of
the feature vector. Due to Requirement 2, the level 1
feature vectorsx1 require less storage space than vectors
x0.

The process of applying the mappingf : xn 7→ xn+1

is repeated on each node, until every node has at least
someinformation about the object seen by the primary
node. Communication between nodes and unique IDs
ensures that the nodes refuse to accept any duplicated
feature vectors.

2.3 Object recognition

The task of object recognition is performed for any new
image that any of the nodes (cameras) acquire and can
reasonably believe that it contains object(s) of interest.It
is described in Algorithm 1. Again, we call the node that
has acquired the image theprimary node.

Algorithm 1 : Object recognition
Input: Image
Output: Object correspondence

1: Extract object features.
2: // Local search
3: for All levels in local storagedo
4: Apply the mappingf : xn 7→ xn+1 and calculate

next level featurexn+1 from xn.
5: Comparexn+1 with all the vectors of leveln + 1

from the local storage.
6: if No match is foundthen
7: Terminate the search, object is unknown.

Optionally, proceed with learning.
8: else ifMatch is found on the level 0then
9: Object has been seen locally.

10: else
11: // Some other node might have seen the object.
12: // Proceed with network search.
13: for All matching vectorsdo
14: Examine tags, attached to the locally stored

matching feature vector.
15: Forward level 0 features of the unknown

object to the neighbor, who provided locally
stored matching feature vector.

16: // Upon receiving forwarded features,
neighboring nodes start from Line 2 of the
Algorithm 1.

17: end for
18: end if
19: end for

As it can be seen, Algorithm 1 is recursive in its
nature. In the recognition phase, the primary node
generates the networkquerypacket, if the object has not
been seen locally, but it has been seen by any of the
other nodes. The query packet contains unmodified level
0 features of an unknown object, and is transmitted to
those primary node neighbors, which provided matching
features. Upon receiving the query packet, every node
runs Algorithm 1 from the Line 2 on.

The neighboring nodes process the forwarded features
of an unknown object in exactly the same way as if
they have acquired the image of an unknown object by
themselves. On each node the result of the processing is
either:

• The object is unknown (if there is no local match).
This result is not reported to the primary node.

• The object is known (match on level 0 is found).
This result is reported to the primary node.

• The object might have been seen by the network
(match found on one of the higher levels).

The effect of this algorithm is that, during the
recognition phase, features of an unknown object in the
unmodified form (level 0 features) are forwarded from
node to node along the trail, left by the propagated feature
vectors in the learning phase. If the primary node does
not receive any replies from the other nodes, the object is
unknown to the network. The efficiency of this approach
stems from the fact that features are forwarded only in the
direction, where there is a possibility that the object has
been seen.

3 Examples

Our hierarchical feature encoding framework does not
rely on any particular object recognition method. It only
provides the requirements that enable any recognition
method to be implemented in a distributed way. To
illustrate practical usage of the encoding framework, we
present application of three very common and widely
known recognition methods. The first two methods,
template matching and histogram matching, are trivial
and provided for illustrative purposes only. The third one,
principal component analysis, is widely used in many
object recognition tasks, such as face recognition [16].

3.1 Template matching

Let us limit our discussion to the simplest form of
template matching – direct comparison of two images
of the same dimensions. In this case, the feature
vector, representing the object, simply contains pixel
values of the original image. Following Requirement
1, we can define the mappingf : xn 7→ xn+1 as
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a simple subsampling operation, which reduces image
dimensions by calculating2 × 2 pixel averages. It is
obvious that Requirement 2 is fulfilled, as the resulting
image dimensions are halved and both the image and the
corresponding feature vector require only a quarter of the
original storage space.

The metric,dn(xn
1 , xn

2 ), can simply be the Euclidean
distance between the feature vectors. Since the vector
components are pixel values, it is easy to show that
the Requirement 4 holds. The situation is presented in
Figure 1.
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Figure 1. Mappingf : xn

7→ xn+1 in the case of template
matching.

Let us use metricdn to compare two images that
are nearly identical (for the sake of simplicity, let us
assume that every pixel has the value ofa), except for
the one pixel in image A, which has valuea + ǫ. The
original imagesAn andBn have dimensionsm × m and
the resized imagesAn+1 andBn+1 have the dimensions
m/2 × m/2. The metricdn is then

dn(xn
A, xn

B) = dn(An, Bn) =

=
√

∑m

i

∑m

j (An(i, j) − Bn(i, j))2

(1)
and the distances are:

d0(A0, B0) = ǫ

d1(A1, B1) = ǫ
4

· · ·

dn(An, Bn) = ǫ
4n

.

(2)

3.2 Histogram matching

Intensity and color histograms are a compact
representation of an object. Although in practice
[17] high dimensional histograms are used, we will
limit ourselves to the usage of one-dimensional intensity
histograms.

The intensity histogram for an 8-bit image may
contain up to 256 bins. Each bin contains a normalized
count of image pixels within a certain range of grey
levels. Accordingly, the elements of the feature vectors

are simply normalized histogram bin counts. Following
Requirement 1, we can define mappingf : xn 7→ xn+1

as an operation that combines adjoining bins, giving the
coarser representation of the original image. Again, it is
obvious that Requirement 2 is fulfilled, since the lower
number of bins requires less storage space.

The metric,dn(xn
1 , xn

2 ), can simply be the Hellinger
distance [17] (which is related to Bhattacharyya
coefficient) between the histograms:

dn(xn
A, xn

B) =
√

1 − ρ(hn
A, hn

B), (3)

where dn(xn
A, xn

B) is the distance between the feature
vectors, xn

A and xn
B , ρ(hn

A, hn
B) is Bhattacharyya

coefficient,ρ(hn
A, hn

B) =
∑p

i=1

√

hn
iAhn

iB , p is number
of bins, which is the same for both histograms, andhn

iA

and hn
iB are the normalized bin values fori-th bin in

histogramshn
A andhn

B , respectively.
Given the same example as in the previous section, the

corresponding histograms of imagesA andB are shown
in the first column of Figure 2. The histogram for image
A contains two non-zero bins,a anda + ǫ, whereas the
histogram for imageB contains only one,a.
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Figure 2. Mappingf : xn

7→ xn+1 in the case of histogram
matching.

The distancedn(xn
A, xn

B) for each leveln can be
calculated as follows. For level 0, where the 256-bin
histogram is used, the distance is:

d0(x0
A, x0

B) =
√

1 − ρ(h0
A, h0

B) =

=

√

1 − (
√

m·(m−1)
m·m

· m·m
m·m

+
√

1
m·m

· 0
m·m

+ · · ·)

d0(x0
A, x0

B) =

√

1 −
√

m2
−1

m2 ,

(4)
wherem is the dimension of the original (square) images,
x0

A, x0
B andh0

A, h0
B are level 0 feature vectors and level 0
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histograms, respectively. It can be seen that the distance
d0 is greater than 0. After performing mappingf , we
have two possible scenarios. If the binsa anda + ǫ are
the adjoining bins, the newly calculated histogramhn+1

A

will contain only one non-zero bin with the value 1 and
it will be the same as histogramhn+1

B , so the distance
√

1 − ρ(hn+1
A , hn+1

B ) will be 0. In the other scenario,
the bins are not adjoining and the mappingf will have

no effect on the distance
√

1 − ρ(hn+1
A , hn+1

B ), which
remains greater than 0. It can be seen that Requirement 4
is fulfilled as well.

3.3 Principal component analysis

Principal component analysis (PCA, also called the
Karhunen-Lóeve transform) is a vector space transform
for reducing the multidimensional data sets to lower
dimensions without significant loss of information. PCA
transforms the data to a new coordinate system in which
the basis vectors follow modes of greatest variance in data
[18]. In essence, properly constructed feature vectors
contain feature values, which are already ordered by
decreasing importance in terms of reconstruction of the
original data. In our case it is assumed that the PCA
transformation coefficients are obtained in advance and
that they remain fixed during the network operation.

This opens up a possibility of mapping functionf :
xn 7→ xn+1, which can be defined as dropping a certain
number of features of the lowest importance from the
feature vector. Again, it is obvious that Requirement 2
holds.

Considering the metric dn(xn
1 , xn

2 ), Euclidean
distance is commonly used when comparing the PCA-
based feature vectors. It is easy to show that Requirement
4 holds as well.
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Figure 3. Mappingf : xn

7→ xn+1 in the case of the
PCA-based feature vectors. Images A and B in the original
feature space (left) and images A and B in the transformed
feature space (right).

Ignoring one of the dimensions from the Euclidean
space never increases the distance between the two points,

as illustrated in Figure 3. At most, the distance remains
the same. The distancedn is always equal to or larger
than any of the distances|b1−a1| or |b2−a2|. This holds
also for high-dimensional cases. That means, regardless
of the order of features, the distance will always decrease
with decreased dimensionality of the feature vectors, and
Requirement 4 is fulfilled.

4 Conclusion

The paper focuses on solving an important conceptual
problem of mapping computer vision methods to a
visual sensor network, specifically on the issue of
knowledge propagation. Image processing and computer
vision methods operate on large amounts of data, which
can easily overload the communication-constrained
distributed network. We propose hierarchical feature
encoding that guarantees accessibility of any feature
vector from any node of the network. The approach
works without transmitting complete images or complete
feature vectors to every node whenever a new visual
information is obtained. We focus on a common task
in computer vision – object recognition, however, the
outlined designed principles have a wider applicability.
The proposition is accompanied with examples of simple
object recognition algorithms to show how they fit into
our framework. In future, we plan to simulate and
measure network behavior by applying the proposed
strategy to different algorithms. Adaptation of the state-
of-the-art computer vision methods to our framework is
planned, too.
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world tracking of multiple interacting targets for indoor-
sports applications. Computer Vision and Image
Understanding, 2008. In press.

[18] M. Sonka, V. Hlavac, and R. Boyle.Image Processing,
Analysis, and Machine Vision. Thomson Learning, third
edition, 2008.
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Stanislav Kovǎcič received his Ph.D. degree in Electrical
Engineering from the Faculty of Electrical Engineering of the
University of Ljubljana, Slovenia, in 1990. Currently he is a
vice-dean for Research and professor at the same faculty. His
research interests include active vision, image processing and
analysis, biomedical and machine vision applications.


