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Nowadays, image classification is one of the hottest and most difficult research domains. It involves two
aspects of problem. One is image feature representation and coding, the other is the usage of classifier. For
better accuracy and running efficiency of high dimension characteristics circumstance in image classifica-
tion, this paper proposes a novel framework for multi-class image classification based on fast stochastic
gradient boosting. We produce the image feature representation by extracting PHOW descriptor of im-
age, then map the descriptor though additive kernels, finally classify image though fast stochastic gradient
boosting. In order to further boost the running efficiency, We propose method of local parallelism and an
error control mechanism for simplifying the iterating process. Experiments are tested on two data sets:
Optdigits, 15-Scenes. The experiments compare decision tree, random forest, extremely random trees,
stochastic gradient boosting and its fast versions. The experiment justifies that (1) stochastic gradient
boosting and its extensions are apparent superior to other algorithms on overall accuracy; (2) our fast
stochastic gradient boosting algorithm greatly saves time while keeping high overall accuracy.

Povzetek: Predstavljena je primerjava algoritmov za večrazredno klasifikacijo slik.

1 Introduction

With the extensive application of the Internet, search en-
gines have become an important tool for people to obtain
information, including image information which is one of
the most important and interesting information. Traditional
search engines on the Internet, including Google, Bing and
Baidu have launched a corresponding image search func-
tion, but this kind of searching is mainly operated by the file
names or related text information of the images. However,
it has obvious limitations such as: file name or related in-
formation is not accurately related with the image content.
So information retrieval based on image content becomes
one of the hottest studies of the image retrieval. image clas-
sification is based on the image content-based information
retrieval, which is based on visual information. Image clas-
sification mainly involves two aspects: One is the image
feature representation and coding, on the other hand is a
classifier selection.

Haralick etc. [1] first proposed a method for feature
representation based on image texture features, which is
considering the texture characteristics of the image feature
space relations, texture and spectral information and its sta-
tistical characteristics. Later, considering rotation, affine
and other factors, people gradually propose feature rep-
resentation methods such as LBP [2], SIFT [3], HOG [4]
and etc. Statistical represented feature coding method has
been widely used, for example a typical representative of

the texture histogram representation (histogram of textons)
[5] and bag of words or bag of features [6] coding. In recent
years, people also proposed a histogram-based pyramid en-
coding as PHOG (Pyramid Histogram Of Gradient) [7] and
PHOW (Pyramid Histogram Of visual Word) [8]. In order
to further improving the discriminative capability of feature
descriptors, people propose kernel transformation such as
Vedaldi’s additive kernel transformation [9] can effectively
enhance classification performance.

Several classifiers have been successfully used for im-
age classification such as support vector machines, ran-
dom forests and so on [10]. Haralick etc. [11] first pro-
pose method based on image characteristics, using the lin-
ear discriminant maximum and minimum decision rules to
classify discrimination on the data set and aerial imagery
sandstone micrographs. They obtain more than 80% accu-
racy rate. Ridgeway etc. [12] introduce method based on
the corners with features and weighted K nearest neighbor
classifier for image classification. They obtain of 93.6%
accuracy rate in the 2716 image data sets, and promote per-
formance of the method to three categories (land, forests
and mountains, sunset and sunrise). Chapelle etc. [13] use
histogram features and support vector machine classifier
to achieve the classification performance of 89% accuracy
rate on the Corel14 data set. Foody etc. [14] apply support
vector machines for remote sensing image classification.
They obtain 93.5% accuracy rate, better than the tree algo-
rithm of 90.3% and discriminant analysis method of 90%
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accuracy rate.
This paper presents a framework to enhance the natural

image classification performance based on PHOW features
representation and fast stochastic gradient, and we obtain
more than 99% and 84% accuracy rate on the data set Opt-
digits and 15-Scenes respectively.

2 Fast stochastic gradient boosting
algorithm

2.1 Analysis and comparison of algorithms
based on decision tree

Traditional classification and regression trees (Classifica-
tion and Regression Tree, CART) proposed by Breiman
[15] is a simple and effective method, but there are many
flaws [16]: 1) because decision tree is based on local opti-
mum principle, this will led to the whole tree is not often
global optimal. 2) inaccuracies and abnormal training sam-
ples have a great impact on the CART. 3) The imbalances
of training sample types also affect CART performance.

Improving and enhancing the performance of classifica-
tion and regression trees is a valuable question. In recent
years, bagging and boosting method is the most effective
ways. Bagging method [17] is an autonomous improving
method, which is a random subtree building based on sub-
sampling over all training samples to obtain samples.

Bagging method proposed by the Breiman [18] is also
based on random forest, which use decision trees as a meta-
classifier with independent clustering method (Bootstrap
aggregation, Bagging), thus produces different training set
to generate each component classifier, and finally deter-
mine the final classification results by a simple majority
vote.

Extreme random tree [19] is similar to the random for-
est. The tree pieces are combined to form a multi-classifier,
the difference with the random forest mainly involving two
sides:

1) Sampling the original training samples with replace-
ment strategy, aiming at reducing bias;

2) Splitting test threshold of each decision tree node
is selected at random. Assuming split test expression is
split(x) > θ, where x is to be classified samples, split is
the test function in the random forest classifier, θ is usu-
ally based on a sample of a feature set, and in the extreme
random forest classifier, θ is randomly selected.

Boosting method [20] is the method, which is starting
from the basic classification tree, though iterative process,
wrong classification of data give higher weights to build
a new round of classification trees greater emphasising on
these error detection data. Final classifier classification is
based on the principle of majority voting. Despite boost-
ing method is not accurate in some particular cases. But in
most cases, it significantly enhances the classification ac-
curacy [21].

Gradient Boosting proposed by Friedman [22] is further
improvement over boosting. Their difference with the tra-
ditional approach is to improve every computing in order
to reduce losses. In order to eliminate losses, it create a
new model in the direction of the gradient to reduce losses
so that the gradient can be descent. The big difference
with conventional methods is that the new model is cre-
ated from residual losses of the gradient direction of the
model in order to reduce losses. Inspiring by bagging ran-
dom thoughts of Breiman, Friedman introduced stochastic
gradient boosting based on random sub-sampling to obtain
training samples [23].

In short, bagging and boosting methods both can be
called to vote or integrated approach to generate a set of
sub-tree or forests, while classification is according to the
sub-tree or forest in the whole set or voting on every tree.
The difference is that they generate different sub-tree or
forests by different ways.

2.2 Fast stochastic gradient boosting
algorithm

Fast stochastic gradient boosting algorithm is shown in the
Algorithm 1. where π(i)N1 is the random combinations of
set of integers 1, 2, ..., N , assuming sample size of random
down-sampling is N̂ < N , The corresponding sample re-
sult is (yπ(i), xπ(i))

N̂
1 . Fm(x) is for the first m points. L

is the loss function, M is the number of weak classifiers,
C is class sample, R is the leaf node region, J is a termi-
nal leaf number of nodes, ρ is the optimal weak classifier
coefficient, S is the number of samples to detect the error,
err and errmin are the exit variable, parallel refers paral-
lel processing.

Algorithm inputs are training samples, outputs ˜F (x) are
the output set of weak classifiers.

The step 1 to 17 of the algorithm is weak classifier train-
ing processes consisting of three components: The step 2 is
randomized sampling. The steps 3 to 10 is weak classifier
training stages. The step 11 to 16 is error detection.

The step 2 obtains training samples by randomly sam-
pling for each weak classifier. The step 3 to 10 is weak clas-
sifiers training process by classes in turn, which contains:
1) calculating the loss, the loss for classification problems
using deviance loss; 2) by calculating the value of the loss
of function in the negative gradient of the current model,
which was estimated as a residual;3) training a decision tree
classifier based on the basic decision tree;4) updating resid-
uals;5) calculating the optimal weak classifier coefficients;
6) generating a new weak classifiers.

The step 11 to 16 is error detection. Classification train-
ing and each error detection are simultaneously. Weak clas-
sifiers stop training when the error is less than a certain
threshold.

Finally, the step 18 is the results of linear combination of
weak classifiers constituting the set of training stochastic
gradient boosting tree model.
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Algorithm 1 Fast stochastic gradient boosting algorithm.
Input:

training data set : T = (x1, y1), (x2, y2), ..., (xN , yN ), xi ∈ RN , y ∈ Y ∈ R,N is the number of training samples.
initialization : F0(x) = 0,M = 100, err = 0, errmin = 0.0001.

Output:
combination set of classification trees : F̂ (x)
.

1: for m = 1 to M do
2: random sampling of (parallel): π(m)(̂N)1 = rand_perm(m)N1
3: for k = 0 to C do
4: calculating loss : pk(x) = exp(Fk(x))/

∑C
l=1 exp(Fl(x)), k = 1, 2, ..., C

5: calculating the gradient (parallel):

ỹπ(i)k = −

[
∂L(

{
yπ(i)l, Fl(xπ(i))

}C
l=1

)

∂Fkxπ(i)

]
{Fl(x)=Fl,m−1(x)}Y1

= yπ(i)k − pk,m−1(xπ(i)), i = 1, 2, ..., Ñ

6: basic training for weak classifiers (parallel): Based on the decision tree (CART).

7: calculating residuals (parallel): {Rjkm}Jj=1 = J − terminal_node_tree(
{
ỹπ(i)k, xπ(i)

}Ñ
1
)

8: calculating the optimal weak classifier coefficients :

ρjkm = argmin
C − 1

C

∑
xπ(i)∈Rjkm ỹπ(i)k∑

xπ(i)∈Rjkm

∣∣ỹπ(i)k∣∣ (1− ∣∣ỹπ(i)k∣∣) , j = 1, 2, ..., J

9: generating new weak classifiers :

Fkm(x) = Fkm−1(x) +
∑J

j=1
ρjkm1(x ∈ Rjkm)

10: end for
11: training error detection:
12: sampling : {test(m)}S1 = rand_perm {m}N1
13: detection error (parallel): err = predict({test(m)}S1 )
14: if err < errmin then
15: exit from weak classifiers cycle
16: end if
17: end for
18: obtaining a combination set of classification trees :

F̃ (x) = FMC(x) =

M∑
m=1

C∑
k=1

Fkm(x)
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Stochastic gradient boosting algorithm for its high accu-
racy rate received wide acclaim and is considered one of
the most effective methods of statistical learning in classi-
fication, but its operational performance is poor, we pro-
pose two ways to improve its running performance: local
parallelization and error detection shorten training times of
weak classifiers.

The increasing popularity of multi-core processors to en-
hance the running performance of traditional algorithms
provides another effective way. We propose a bottle-
neck module by way of parallel processing to enhance the
stochastic gradient algorithm to improve running perfor-
mance. First we consider parallel algorithms necessary and
sufficient condition:

1) parallel algorithms have obvious advantages in large
scale computing, and stochastic gradient boosting algo-
rithm in step 2,5,6,7,13 involving the operation of the entire
training samples, and general training samples exceeding
thousands of pieces of data, so we consider parallel pro-
cessing at these steps.

2) parallel algorithm must have a premise which is sep-
arability. Stochastic gradient boosting algorithm can not
directly do paralleling at whole, because the algorithm is a
additive model, each weak classifier training data is from
error residuals of former process. So we can not be paral-
lelized algorithm from the beginning of step 1,3. We can
only do a local parallel processing.

Secondly, we tested the algorithm’s main bottleneck
module (refer to the module which has the inner loop in
thousands) (see Table 1). The running count is the total
count of overall algorithm (outer loop), The running time
is running time of a single module running once. The run-
ning time of sampling and prediction is scale of microsec-
onds, paralleling processing achieves few performance im-
provement. However calculation and residual gradient are
in milliseconds. Parallel processing performance has sig-
nificantly improved. The weak classifier training gain more
performance improvement (10 milliseconds scale), since
the whole number of cycles is up to 1000 times, thus im-
proving overall training capability will reach 10 seconds.
So parallel processing algorithms is necessary when algo-
rithm involves huge data or are time-consuming.

In addition, the stochastic gradient algorithm to enhance
the performance bottleneck lies in the number of basic clas-
sifiers. We tested the relationship between the number of
classifiers and accuracy on the Optdigits data sets (see Fig-
ure 1). Classification accuracy was found to significantly
increase with the increasement of the number of iteration
process. The accuracy rate increase is not very obvious,
even stagnation when iterations is up to 25. So, it is nec-
essary to control the total number of iterations through the
detection accuracy of the test sample in the training phase.
To this end we introduce random sampling in order to op-
timize the training error detection methods to improve the
stochastic gradient iterations through the step 11 to 16 (see
Algorithm 1).
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Figure 1: The relationship between classifying accuracy
and quantity of weak classifiers on Optdigits data set.

3 Enhance image classification
based on fast stochastic gradient
boosting

This article discusses the general image classification
methods and processes, we propose a fast stochastic gra-
dient boosting to enhance image classification based the
framework in Figure 2. First, we the extract image fea-
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Figure 2: The framework of image classification.

ture descriptor though PHOW features which are improved
multi-scale dense SIFT descriptors, including basic steps:
At first step, dense SIFT descriptors are calculated by di-
viding image into different scales with a fixed pixel Box
(see Figure 3 line (a)). The descriptors of each grid point is
calculated with four different diameter circular masks; For
the second step, after extracting K-means clustering for the
descriptors, a histogram is formed. At third step, we sum
histogram pyramid to build space feature descriptors (see
Figure 3 line (b)). Secondly, the characteristics of addi-
tive kernel transformation can generate better description
of features. For finite dimensional distribution (histogram)
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Figure 3: Image appearance representation based on
PHOW.

x, y, Additive kernel is defined as :

K(x, y) =

B∑
b=1

k(xb, yb) (1)

Here, b is a histogram of the number of each sub-grid, B is
the total number of sub-grid, xb, yb is the distribution of ev-
ery little grid, k : R+

0 ×R
+
0 −→ R

+
0 in the non-negative real

number is a positive definite kernel. We proposed Vedaldi’s
χ2 kernel transform for feature transformation.

Finally, We use the feature descriptors for fast stochastic
gradient boosting algorithm to enhance the performance of
classification model. At testing stage, we also need to ex-
tract features, then do kernel transformation of PHOW to
form feature descriptor, again use a classification model to
prediction. Our biggest advantage is that the entire frame-
work is simple, good computing performance, and suitable
for multi-category classification of natural images.

3.1 Experimental data sets
Optdigits data set[27] is a collection of data set standard-
ized extracting of bit image by the U.S. National Institute
of Standards and Technology handwritten Optical Charac-
ter Recognition. It has 64 positive integers of feature infor-
mation, the range is from 0 to 16. This data set consists of
5620 instances, belonging to 10 categories. we randomly
selected 10%, 20% and 30%, 40% and 50% of total sample
as the training sample, and the rest for test samples.

15-Scenes data set[28] is processed in accordance with
the flow chart of our proposed framework (see Figure 2).
The original 15-Scenes data set consists of 15 data cate-
gories, a total of 4485 images. We randomly select 10%
and 20%, 30% and 40% and 50% of each class sample
for the training sample, and the rest used to do the test
samples. We use the PHOW descriptor for image features
to describe each image. After kernel transformation with
additive eventually, we get 36,000 dimensional feature de-
scriptors for a single image.

3.2 Parameters
1) Maximum decision tree depth: The default value was
set to 1. With the value increase, classification accuracy

and running time will increase. We set maximum depth
to 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 respectively. We
found the highest accuracy rate when the maximum depth
is 10. With similar way, we found that entropy rules of split
consideration criterion get better performance.

2) The maximum depth of random random forest was
similar with decision tree. The number of decision trees:
we tested the value of 20, 40, 60, 80, 100, 120, 140, 160,
180 and 200 respectively. We found that the number in-
creases, the execution time also increases, and after over
the value of 100, the improvement of the accuracy rate was
not obvious. So we set it to 100. The accuracy of the ran-
dom forest was used to control the iteration. We tested the
value of 0.0001, 0.001, 0.01 and 0.1 respectively. We found
that the smaller the value was, the longer the execution time
was, and after over the value of 0.001, the accuracy had no
substantially change. We set it to 0.001.

3) The extreme random tree’s settings was similar with
random forests for consistent comparing standard.

4) With similar ways, we found that we get better perfor-
mance (good balance in accuracy and running time) when
the stochastic gradient enhance maximum tree depth is set
to 10, cross entropy loss chosen for loss function type , 0.1
set to shrinkage factor, 0.8 set to proportional sampling un-
der, and 100 chosen for maximum lift.

5) Similarly, in order to enhance the fast stochastic gra-
dient boosting based on the stochastic gradient boosting,
the control error was set to: 0.0001, random verification
sampling ratio was set as follows: 50%.

3.3 Experimental setup
We used C++ of Microsoft visual studio 2012 to pro-
gram with opencv2.4.3[24], Intel TBB[25] and darwin 1.6
platform[26]. We tested results in win7 (64) platform with
hardware of Intel P6100 dual-core CPU and 6GB memory.

We converted the data set to comma delimitedM×N in
the form of a text file, M represented the number of (ie, the
number of records) data rows, N was the number of each
data attribute values. The final column was class marker.

We used TBB parallel libary for parallel processing. In
Algorithm 1: At steps of 2,5,7,13, We used TBB with tbb ::
parallel_for. At step 6 involving recursive tree, we used
TBB with tbb :: task_list to achieve parallelism.

In order to better reflect the effectiveness of the pro-
posed framework, we have two types of data sets in the test,
Optdigits for low-dimensional data, 15-Scenes for high-
dimensional data, and extract the sample test to verify the
practicality for different circumstance.

In addition to verify the feasibility of stochastic gradient
boosting algorithm and its fast versions, our experiments
compared the decision tree, random forest, extreme ran-
dom tree, stochastic gradient boosting , stochastic gradient
boosting with error check and SVM (support vector ma-
chine). Experiment results were indicated in Table 2, 3,
and Figure 4 to 7.
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Figure 4: The performances of six algorithms on Optdigits.

3.4 Experimental results and analysis

Table 2-3 is a averaged results tested three times under the
same conditions. Where h is hours, m represents minutes,
s is seconds, ms is milliseconds, such as: 1h2m3s4ms rep-
resents 1 hour, 2 minutes, 3 seconds, and 4 milliseconds.
dt is a decision tree, rt is random forests, et is extreme ran-
dom tree, gbt is stochastic gradient boosting, pgbt is fast
stochastic gradient boosting, pcgbt is the fast stochastic
gradient boosting with error check, and SVM is support
vector machine.

1) With increase of the proportion of each sampling, al-
gorithm accuracy rate increases, however the correspond-
ing training time also increases. This indicates the ade-
quacy of the training sample for classification accuracy is
critical, but the running performance will be affected in the
training. In practical applications, we should consider the
two factors, and try to find the best balance between them.

2) Total accuracy comparison: As can be seen from Ta-
ble 2-3 and Figure 4-5 (a), stochastic gradient boosting and
fast stochastic gradient boosting have same overall accu-
racy. Overall accuracy on 15-Scenes data set from high
to low is stochastic gradient boosting, stochastic gradient
boosting with error detection, random forest, extreme ran-
dom tree and decision tree. The main difference on Optdig-
its data set lies in that decision tree was significantly better
than random forests, furthermore compared with random
gradient boosting, the accuracy of our stochastic gradient
boosting with error check also has a certain decline of ac-
curacy, but is still significantly better than the decision tree
and random forest.

3) Running time comparison: From Table 2 to 3 and Fig-
ure 4 to 5 (b) shows that the training runtime performance
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Figure 5: The performances of six algorithms on 15-
Scenes.

in descending order is decision tree, fast stochastic gradi-
ent boosting with error detection, random forests and ran-
dom forests extreme, fast stochastic gradient boosting and
stochastic gradient boosting. Stochastic gradient boosting
with error detection is about 10 times fast than the original
stochastic gradient boosting on the data set Optdigits and 8
times on 15-Scenes data set.

4) Average recall,average precision and total accuracy
comparisons: from figure 4 to 7, we can see that the cures
have similar curve tendency. This shows that total accuracy
basically reflect the performance of classifier on Optdigits
and 15-Scenes data set respectively.

5) Comparison with support vector machine: from table
2 and table 3, we can see that the total accuracy of SVM
is superior to decision tree, random forest trees and ex-
tremely random trees, however inferior to stochastic boost-
ing tree based methods. Furthermore, on 15-Scenes data
set SVM is failed when the training sampling percentages
reach 40% and 50%. On the side of the training time, SVM
is slower than decision tree, random forest trees and ex-
tremely random trees, but faster the stochastic boosting tree
based methods.

4 Conclusions

By comparing each algorithm, we have following the ex-
perimental findings: 1) Stochastic gradient boosting is sig-
nificantly better than decision tree, random forest and ex-
treme random tree. 2) We proposed parallel stochastic gra-
dient boosting algorithm to enhance the running perfor-
mance. Experimental result of our method is significantly
better than the original stochastic gradient boosting algo-
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Figure 6: The performances of six algorithms on Optdigits.

rithm. Furthermore, fast stochastic gradient boosting with
error detection improves running performance to a new
stage, while keeping the overall accuracy comparing to the
original stochastic gradient boosting. Experiments testify
that our improvement ways are effective and practical.

The main contributions of this paper are :
1) We presents a framework based on PHOW features

and fast stochastic gradient boosting for natural image clas-
sification. From training sample selection, feature extract-
ing, classifier selection to the last performance evaluation,
we give a detailed analysis and commentary.

2) We analyze the running performance and bottlenecks
of the stochastic gradient boosting. According to the cir-
cumstance of bottlenecks and current widely used multi-
core computing, we presented modified stochastic gradi-
ent boosting to improve the performance of by local paral-
lelism.

3) Due to reason of that increasing number of weak clas-
sifiers does not always bring better accuracy, and to further
reduce the space and time of weak classifier training itera-
tions, we introduce an error control mechanism in training
phase to reduce the number of iterations of the method at
the expense of a certain degree of accuracy degeneration.
However, by this way we get further improvement of the
running performance.

4) In this paper, a parallel realization of serial algorithm
are thoroughly discussed. Taking stochastic gradient boost-
ing as example, we proposed a well-established ideas and
methods of these kind of problems, namely: 1) to detect
bottlenecks, determining the optimization core; 2) the task
segmentation, transforming a serial program by paralleliza-
tion ideas; 3) implementation based on TBB parallel archi-
tecture.
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Figure 7: The performances of six algorithms on 15-
Scenes.
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Modules Sampling calculating the
gradient

weak classifier
training

computing
residuals

Prediction

Running count 100 1000 1000 1000 100
Serial Time 170us 2.2ms 62ms 1.6ms 0.5ms
Parallel Time 150us 1.3ms 50ms 1.2ms 0.4ms

Table 1: Serial and parallel executing time of bottleneck modules on Optdigits data set.

Accuracy ( % ) / Time 10 % 20 % 30 % 40 % 50 %
dt 99.16/6.0ms 99.20/17.0ms 99.24/19.9ms 99.37/25.0ms 99.52/34.0ms
rt 97.37/933ms 98.19/2.0s 98.42/3.1s 98.50/4.3s 98.54/5.5s
ert 97.27/1.4s 97.68/2.8s 98.47/4.2s 98.54/5.8s 98.72/7.2s
gbt 99.60/6.1s 99.84/12.2s 99.85/18.5s 99.82/25.8s 99.85/33.2s
pgbt 99.60/4.5s 99.84/10.2s 99.85/16.5s 99.82/20.4s 99.85/29.3
pcgbt 98.55/206ms 98.88/1.2s 99.42/1.3s 99.50/2.3s 99.50/4.5s
SVM 98.52/406ms 98.60/1.8s 98.62/2.1s 98.73/3.5s 98.80/6.5s

Table 2: The Comparison of accuracy and running time of six algorithms on Optdigits with different sampling.

Accuracy ( % ) / Time 10 % 20 % 30 % 40 % 50 %
dt 40.56/3s 42.53/6s 47.80/10s 50.34/14s 52.56/16s
rt 47.44/8m 50.43/20m 51.24/32m 56.89/44m 61.28/1h11m
ert 41.77/27m 42.37/31m 43.58/48m 45.68/55m 46.27/1h31m
gbt 69.18/1h6m 70.77/2h26m 78.13/3h35m 85.56/4h55m 89.15/6h22m

pgbt 69.18/54m 70.77/2h1m 78.13/2h/57m 85.56/4h12m 89.15/5h10m
pcgbt 66.32/3m 68.25/14m 73.05/20m 81.33/31m 84.01/45m
pcgbt 66.32/3m 68.25/14m 73.05/20m 81.33/31m 84.01/45m
SVM 65.44/10m 67.31/34m 72.16/66m invalid invalid

Table 3: The comparison of accuracy and running time of six algorithms on 15-Scenes with different sampling.


