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A B S T R A C T	   A R T I C L E   I N F O	

In	this	paper,	the	stochastic	location‐routing‐inventory	problem	is	considered
in	which	retailers’	demands	and	lead‐times	are	stochastic.	Demand	quantities	
follow	Poisson	distribution	and	lead‐times	are	functions	of	the	shortage	quan‐
tity.	It	is	also	assumed	that	both	retailers	and	distributors	hold	inventory	and	
follow	 (S‐1,	 S)	 inventory	 policy.	 According	 to	 these	 assumptions,	 we	 use	
METRIC	 (i.e.,	 Multi‐Echelon	 Technique	 for	 Recoverable	 Item	 Control)	 ap‐
proach	 to	model	 the	 problem.	 For	 this	 purpose,	 a	 mixed	 integer	 stochastic	
programming	 model	 is	 developed	 based	 on	 extending	 the	 basic	 location‐
inventory‐routing	 model	 by	 adding	 METRIC	 stochastic	 relations	 into	 the	
model.	 Since	 solving	 the	model	 with	 the	 exact	 method	 is	 very	 difficult,	 the	
Meta‐heuristics	are	used	 in	 solving	process.	 Specially,	 to	empower	 the	 solu‐
tion	 process,	 a	 hybrid	 method	 consists	 of	 simulated	 annealing	 and	 genetic	
algorithm	 is	 developed.	 The	 output	 results	 along	 with	 sensitivity	 analysis	
represent	 the	 capability	 of	 the	model	 in	 taking	 to	 account	 the	METRIC	 con‐
cepts	 in	 this	 type	of	 supply	 chain	problems.	Meanwhile,	 the	performance	of	
developed	hybrid	Meta‐heuristic	method	was	checked	and	approved.		
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1. Introduction 

In	 recent	 decades,	 integrated	models	 in	 supply	 chain	 have	 been	 under	 attention	 of	 many	 re‐
searchers.	The	main	decisions	of	any	supply	chain	are	location	and	assignment,	routing	and	in‐
ventory	 control	 in	production	and	distribution	centers.	 Since	 these	decisions	are	mutually	de‐
pendent,	considering	them	simultaneously	in	supply	chain	can	influence	greatly	on	reducing	the	
costs	and	increasing	supply	chain	efficiency.	Integration	of	these	three	decisions	is	done	in	loca‐
tion‐routing‐inventory	problem.	Liu	and	Lee	 [1]	proposed	 the	basic	 location‐routing‐inventory	
problem	 in	 2003.	 They	 used	 a	 heuristic	 method	 based	 on	 improvement	 search	 to	 tackle	 the	
problem,	but	however	the	solution	might	be	trapped	in	local	optimum.	Therefore,	Liu	and	Lin	[2]	
developed	 a	 new	 solution	 method	 for	 the	 problem.	 Their	 proposed	method	 was	 able	 to	 find	
global	optimum	instead	of	local	one.	In	2007,	Shen	and	Qi	[3]	embedded	routing	costs	in	the	lo‐
cation‐routing‐inventory	 problem.	 They	 added	 an	 approximation	 of	 routing	 costs,	 which	 was	
only	dependent	to	routing‐assignment	decisions,	to	the	model.	Ahmadi	Javid	and	Azad	[4]	pro‐
posed	a	model	that	had	great	advantage	compared	to	Shen	and	Qi’s	model.	They	calculated	rout‐
ing	 costs	 precisely	 by	 considering	 stochastic	 demand	 with	 normal	 distribution.	 In	 2008,	
Chanchan	et	 al.	 [5]	 considered	 the	 location‐routing‐inventory	problem	 for	 closed	 loop	 reverse	
logistics.	Li	et	al.	[6]	proposed	a	model	to	optimize	the	reverse	logistics	system	in	the	location‐
routing‐inventory	problem	for	gathering	urban	wastes.	Among	other	researches	in	this	field,	we	
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can	refer	to	Jiang	and	Ma	(2009)	[7]	and	Yang	et	al.	(2010)	[8]	that	developed	solution	methods	
based	 on	 meta	 heuristics.	 Sajjadi	 and	 Cheraghi	 (2011)	 [9]	 surveyed	 a	 three‐level,	 multiple‐
product	network	with	constrained	capacity	warehouse.	Nekooghadirli	et	al.	(2014)	[10]	consid‐
ered	 the	problem	 in	multiple‐periods	 and	multiple‐products	 situation	with	 two	objectives,	 in‐
cluding	minimization	of	total	costs	and	the	minimization	of	maximum	average	product	delivery‐
time.	Recently,	Chen	et	al.	[11]	surveyed	the	problem	considering	fuzzy	demands.	Other	papers	
in	the	literature	have	a	limited	view	to	the	inventory	problem	and	have	considered	it	as	part	of	a	
larger	 problem.	 Among	 those,	we	 can	 refer	 to	 Ambrosino	 and	M.	 Grazia	 Scutellà	 (2005)	 [12],	
Ahmadi	Javid	and	Seddighi	(2012)	[13],	Seyedhosseini	et	al.	(2014)	[14],	Guerrero	et	al.	(2013)	
[15],	and	Zhang	et	al.	(2014)	[16].	

As	stated	before,	we	use	the	METRIC	approach	to	model	the	problem.	The	METRIC	was	first	
proposed	by	Sherbrooke	[17]	in	1968	to	optimize	inventory	levels	of	spare	parts	at	warehouses	
of	US	Air	Force.	He	considered	that	the	repair	times	of	the	parts	are	stochastic	and	time	between	
two	arrival	demands	to	repair	or	replace	follows	exponential	distribution.	He	used	queue	theory	
to	calculate	performance	criteria	in	order	to	find	the	optimal	level	of	inventories.	Muckstadt	[18]	
generalized	Sherbrooke’s	METRIC	model	and	considered	a	 two‐level	hierarchical	 structure	 for	
the	products.	He	assumed	when	a	part	needs	to	be	repaired,	one	or	more	of	its	sub‐parts	(mod‐
ule)	needs	to	be	repaired.	So	the	model	should	state	the	inventory	level	of	both	parts	and	sub‐
parts.	Slay	[19]	developed	a	METRIC	model	and	named	it	VARI‐METRIC.	He	assumed	the	mean	of	
items	under	 repair	 equals	 to	 its	 variance	 and	used	negative	 binomial	 distribution	 to	 tackle	 it.	
Grave	 [20]	 used	 this	 distribution	 for	 two	 exact	 and	 approximate	methods	 in	 a	 multiple‐level	
problem.	Sherbrooke	[21]	considered	a	model	similar	to	Muckstadt	model,	but	used	a	different	
approximation	 approach.	 The	 numerical	 results	 showed	 that	 this	method	makes	 considerable	
improvement	in	METRIC	accuracy.	Many	researchers	later	developed	this	model	as	a	reference	
model	and	utilized	other	 improvements	 for	 it.	For	example,	Wang	et	al.	 [22]	developed	a	 two‐
level	 repairable	 inventory	 system	by	 considering	 stochastic	 lead	 time	 for	 replenishment.	 Rus‐
tenburg	 et	 al.	 [23]	 developed	 an	 exact	model	 for	multiple‐level	 problem	 and	Wong	 et	 al.	 [24]	
developed	an	analytical	model	to	determine	inventory	levels	of	spare	parts	in	a	repairable	inven‐
tory	system	with	multiple	factories,	multiple	distributors,	and	multiple	products.	

Andersson	and	Melchiors	[25]	considered	a	two‐level	model	with	a	central	depot	and	multi‐
ple	 retailers	 in	which	 customers’	 demands	were	 stochastic	 and	 followed	 Poisson	 distribution.	
They	considered	fixed	lead‐times,	continuous	review	and	(S‐1,	S)	inventory	policy	in	the	model.	
They	compared	the	proposed	model	with	METRIC	approach,	and	then	solved	the	model	for	13	
problems. 

In	this	paper,	we	propose	a	location‐routing‐inventory	model	in	which	the	(S‐1,	S)	inventory	
policy	is	considered	for	retailers	and	distributors.	In	addition,	we	consider	that	demands	of	re‐
tailers	 are	 stochastic	 and	 follow	Poisson	 distribution.	 The	 lead‐times	 of	 retailers	 are	 also	 sto‐
chastic	and	functions	of	shortage	at	distributors	according	to	METRIC	approach	relations.	Since	
the	proposed	model	is	NP‐hard,	an	efficient	hybrid	method	was	developed	to	solve	it.	The	hybrid	
method	consists	of	a	simulated	annealing	method	to	solve	the	location,	assignment	and	routing	
problem	and	a	genetic	algorithm	to	solve	the	inventory	problem.	It	is	able	to	find	the	solution	in	
reasonable	time. 

The	remainder	of	the	paper	is	organized	as	follows:	In	sections	2	and	3,	problem	and	model	
description	is	given,	respectively.	Then	the	mathematical	model	is	formulated	in	section	4.	Math‐
ematical	results	are	brought	in	section	5	and	finally	section	6	is	assigned	to	conclusion	remarks.	

2. Problem description 

The	problem	assumptions	are	as	follows: 

 A	three‐level	supply	chain	including	a	manufacturer,	multiple	distributor,	and	multiple	re‐
tailers	

 Demands	 process	 of	 retailers	 are	 stochastic	 and	 follow	 Poisson	 distribution.	 Therefore,	
demands	of	distributors	are	also	stochastic	and	follow	Poisson	distribution.	
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 The	manufacturer	has	no	limit	in	manufacturing	the	product	
 The	 locations	of	 the	manufacturer	and	retailers	are	known	and	the	objective	 is	 to	deter‐

mine	the	optimal	location	of	distributors	
 Inventory	is	held	in	warehouses	of	retailers	and	distributors.	
 The	retailers	and	distributors	follow	the	(S‐1,	S)	inventory	policy.	
 The	lead‐time	to	replenish	retailers	by	distributors	is	function	of	shortage	at	distributors.	

Therefore,	the	lead‐time	is	stochastic.	
	

The	main	objectives	of	the	problem	are	as	follows:	

 Determine	the	optimal	number	and	location	of	distributors	
 Assign	the	retailers	to	the	distributors	
 Determine	the	optimal	product	delivery	routes	from	distributors	to	retailers	
 Determine	optimal	inventory	levels	at	retailers	and	distributors	such	that	the	total	costs	of	

supply	chain	design	–	 including	holding	and	shortage	costs,	 routing	costs,	 establishment	
and	location	costs,	ordering	and	purchasing	costs	–	are	minimized.	

3. Model description 

The	symbols	used	in	this	model	are	as	follows.	
	

Indices: 

I		 	–				Index	of	retailers 
K	 	–				Index	of	distributors	
M	 	–				Index	of	retailers	and	distributors	(M	=	I	∪	K)	
V	 	–				Index	of	vehicles 

	

Parameters: 

fk	 	–				Fixed	activation	cost	of	distributor	k	
h0k	 	–				Unit	inventory	holding	cost	at	distributor	k	
hi	 	–				Unit	inventory	holding	cost	at	retailer	i	
πi	 	–				Unit	inventory	shortage	cost	at	retailer	i 
λi	 	–				Demand	rate	of	retailer	i	
C0k	 	–				Unit	purchase	cost	of	distributor	k	from	the	manufacturer 
A0k	 	–				Ordering	cost	of	distributor	k 
Cik	 	–				Unit	purchase	cost	of	retailer	i	from	distributor	k	
Aik	 	–				Unit	ordering	cost	of	retailer	i	from	distributor	k 
τ0k	 	–				Delivery	time	from	manufacturer	to	distributor	k 
τik	 	–				Delivery	time	from	distributor	k	to	retailer	i	
Tgh	 	–				Travel	cost	from	node	g	to	node	h	
Cap	 	–				Capacity	of	vehicle 
D(n)	–				Stochastic	demand	during	n	periods 
λ0k	 	–				The	received	demand	rate	of	distributor	k 
W0k			–				Random	variable	of	delay	in	the	warehouse	of	distributor	k	due	to	lack	of	inventory	
߬௜̅	 	–				Lead‐time	plus	waiting	time	of	retailer	i	

	

Decision	variables: 

zk	 			–				1	if	distributor	k	is	activated,	0	otherwise 
yik	 			–				1	if	retailer	i	is	assigned	to	distributor	k,	0	otherwise	
Xghv	 			–				1	if	the	node	h	is	serviced	immediately	after	node	g	using	vehicle	v,	0	otherwise	
Bkghiv	 –				1	if	vehicle	v	of	distributor	k	passes	nodes	g	and	h	to	service	retailer	i,	0	otherwise	
Ngv	 –				The	addition	variable	for	retailer	g	to	eliminate	sub‐tours	of	vehicle	v	
଴௞ܫ
ା 	 –				The	average	inventory	of	distributor	k 
଴௞ܫ
ି 	 –				The	average	shortage	of	distributor	k	
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௜ܫ
ା	 –				The	average	inventory	of	retailer	i 
௜ܫ
ି	 –				The	average	shortage	of	retailer	i	
S0k	 –				Stock	order‐up‐to	position	at	distributor	k	
Si:	 –				Stock	order‐up‐to	position	at	retailer	i	

As	stated	earlier,	the	distributors	and	retailers	hold	inventories	to	serve	the	demand	and	both	
follow	the	(S‐1,	S)	inventory	policy.	In	this	policy,	the	inventory	level	decreases	as	soon	as	a	de‐
mand	is	received	and	served.	By	decreasing	each	unit	of	inventory,	an	order	is	placed	to	substi‐
tute	the	reduced	product.	The	demand	is	stochastic	and	follows	Poisson	distribution	with	rate	of	
λi.	Each	retailer	is	assigned	to	a	distributor.	Therefore,	the	received	demand	of	each	distributor	
would	be	sum	of	demands	of	retailers	that	has	been	assigned	to	it	as	shown	in	the	following	rela‐
tion: 

଴௞ߣ ܭ߳݇∀(1) ൌ෍ߣ௜ݕ௜௞
௜ఢூ

 

Product	delivery	time	from	manufacturer	to	distributor	k	is	shown	by	߬଴୩	and	product	deliv‐
ery	 time	 from	distributor	k	 to	retailer	 i	 is	 shown	by	߬௜௞.	 In	addition,	 the	retailer	may	confront	
with	a	waiting	time	at	distributor	to	serve	retailer’s	need.	This	waiting	time	is	occurred	when	the	
distributor	faces	shortage	and	the	retailers	need	to	wait	until	distributor’s	replenishment.	This	
time	can	be	found	based	on	the	Little’s	law	as	follows: 

଴ܹ௞ ܭ߳݇∀(2) ൌ
଴௞ܫ
ି

଴௞ߣ
 

Hence,	the	total	retailer’s	waiting	time	to	replenishment	would	be: 

௜̅߬ ܫ߳݅∀(3) ൌ ෍ሺ߬௜௞ ൅ ଴ܹ௞ሻݕ௜௞
௞஫୏

 

In	order	to	find	average	inventory	and	average	shortage	at	distributors	using	the	METRIC	ap‐
proach,	 the	 following	 procedure	 should	 be	 accomplished.	 Let	 ݅଴௞

ା 	 be	 the	 stochastic	 inventory	
level	at	distributor	k	in	steady	state.	The	probability	of	inventory	level	at	j	(j		0	)	would	be: 

p(݅଴௞ ܭ߳݇∀(4)
ା 	=	j)	=	p(S0k	–	D(0k)	=	j)	=	p(D(0k)	=	S0k	–	j) 

Since	demand	process	was	supposed	stochastic	process	with	Poisson	distribution,	we	have:	

j)ൌ	–	S0k	=	p(D(0k) ܭ߳݇∀(5)
௘షഊబೖഓబೖሺఒబೖఛబೖሻ

ೄబೖషೕ

ሺௌబೖି௝ሻ!
 

Hence,	the	average	inventory	at	distributor	k	can	be	found	using	the	below	expected	value: 

଴௞ܫ ܭ߳݇∀(6)
ା ൌ෍݆ ቈ

݁ିሺఒబೖఛబೖሻሺߣ଴௞߬଴௞ሻௌబೖି௝

ሺܵ଴௞ െ ݆ሻ!
቉

ௌబೖ

௝ୀଵ

 

In	addition,	average	shortage	at	distributor	k	can	be	found	using	the	below	equation: 

଴௞ܫ	ܭ߳݇∀(7)
ି ൌ ෍ െ݆ ቈ

݁ିሺఒబೖఛబೖሻሺߣ଴௞߬଴ሻௌబೖି௝

ሺܵ଴௞ െ ݆ሻ!
቉

ିଵ

௝ୀିஶ

	

As	finding	the	average	shortage	at	distributor	k	using	the	above	equation	(7)	is	difficult,	let	de‐
fine	ܧሺܫ଴௞ሻ	as	follows:	

଴௞ሻܫሺܧ ܭ߳݇∀(8) ൌ ଴௞ܫ
ା െ ଴௞ܫ

ି  

And	so,	
଴௞ܫܭ߳݇∀(9)

ି ൌ ଴௞ܫ
ା െ  ሺI଴௞ሻܧ

On	the	other	hand:	

଴௞ሻܫሺܧ ܭ߳݇∀(10) ൌ ܵ଴௞ െ  ଴௞߬଴௞ߣ
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Hence,	the	average	shortage	equals: 

଴௞ܫ ܭ߳݇∀(11)
ି ൌ ଴௞ܫ

ା െ ሺܵ଴௞ െ  ଴௞߬଴௞ሻߣ

Similarly,	the	average	inventory	and	average	shortage	at	retailers	can	be	computed	but	with	
the	difference	that	߬̅௜ 	(as	introduced	in	Eq.	3)	was	used	instead	of	߬௜.	Hence,	the	average	invento‐
ry	and	average	shortage	at	retailer	i	would	be: 

௜ܫ ܫ߳݅∀(12)
ା ൌ෍݆ ቈ

݁ିሺఒ೔ఛത೔ሻሺߣ௜߬̅௜ሻ
ௌೕି௝

൫ ௝ܵ െ ݆൯!
቉

ௌ೔

௝ୀଵ

 

௜ܫܫ߳݅∀(13)
ି ൌ ௜ܫ

ା െ ሺ ௜ܵ െ  ௜߬̅௜ሻߣ

4. Mathematical description 

Based	on	assumptions,	notations	and	descriptions	in	previous	sections,	the	developed	location‐
routing‐inventory	optimization	model	is	proposed	as	follows:	

ݖ	݊݅ܯ ൌ 	෍ ௞݂ݖ௞
௞ఢ௄

൅෍ሺ݄௜ܫ௜
ା ൅ ௜ܫ௜ߨ

ିሻ
௜ఢூ

൅෍݄଴௞ܫ଴௞
ା

௞ఢ௄

൅෍ߣ଴௞ሺܥ଴௞ ൅ ௞ݖ଴௞ሻܣ ൅෍෍ߣ௜ሺܥ௜௞ ൅ ௜௞ݕ௜௞ሻܣ
௜ఢூ௞ఢ௄௞ఢ௄

൅ ෍ ෍෍ ௚ܶ௛ ௚ܺ௛௩

௩ఢ௏௛ఢெ௚ఢெ

	
(14)

Subject	to:	 	

෍ݕ௜௞
௞ఢ௄

ൌ 1  	ܫ߳݅∀ (15)

௜௞ݕ ൑  ௞ݖ 	ܫ߳݅∀	,	ܭ߳݇∀ (16)

଴௞ߣ ൌ෍ߣ௜ݕ௜௞
௜ఢூ

	 	ܭ߳݇∀ (17)

଴௞ܫ
ା ൌ෍݆ ቈ

݁ିሺఒబೖఛబೖሻሺߣ଴௞߬଴ሻௌబೖି௝

ሺܵ଴௞ െ ݆ሻ!
቉

ௌబೖ

௝ୀଵ

	 	ܭ߳݇∀ (18)

଴௞ܫ
ି ൌ ଴௞ܫ

ା െ ሺܵ଴௞ െ 	଴௞߬଴௞ሻߣ 	ܭ߳݇∀ (19)

଴ܹ௞ ൌ
଴௞ܫ
ି

଴௞ߣ
	 	ܭ߳݇∀ (20)

߬௜௞ ൌ෍෍ ෍ ௚ܶ௛ܤ௞௚௛௜௩
௚ఢெ௛ఢெ௩ఢ௏

	 ܭ߳݇∀ 	ܫ߳݅∀ (21)

௜௞ݕ ௚ܺ௜௩ ൑ 	௞௚௜௜௩ܤ ܭ߳݇∀ 	ܸ߳ݒ∀	ܯ߳݃∀,ܫ߳݅∀ (22)

௚ܺ௛௩ܤ௞௛௟௜௩ ൑ 	௞௚௛௜௩ܤ ܭ߳݇∀ ܫ߳݅∀ 	ܸ߳ݒ∀	ܯ݈߳	݄	݃∀ (23)

௞௚௛௜௩ܤ ൑ ௚ܺ௛௩	 ܭ߳݇∀ 	ܸ߳ݒ∀	ܯ݄߳	݃∀,ܫ߳݅∀ (24)

෍ܤ௞௚௛௜௩
௩ఢ௏

൑ 	௞ݖ ܭ߳݇∀ 	ܯ݄߳	݃∀,ܫ߳݅∀ (25)

߬̅௜ ൌ ෍ሺ߬௜௞ ൅ ଴ܹ௞ሻݕ௜௞
௞஫୏

  	ܫ߳݅∀ (26)

௜ܫ
ା ൌ෍݆ ቈ

݁ିሺఒ೔ఛത೔ሻሺߣ௜߬̅௜ሻ
ௌೕି௝

൫ ௝ܵ െ ݆൯!
቉

ௌ೔

௝ୀଵ

	 	ܫ߳݅∀ (27)

௜ܫ
ି ൌ ௜ܫ

ା െ ሺ ௜ܵ െ 	௜߬̅௜ሻߣ 	ܫ߳݅∀ (28)
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෍෍ߣ௜ ௚ܺ௜௩

௜ఢூ௚ఢெ

൑ 	݌ܽܥ 	ܸ߳ݒ∀ (29)

෍෍ ௚ܺ௜௩

௩ఢ௏௚ఢெ

ൌ 1	 	ܫ߳݅∀ (30)

෍෍ܺ௞௜௩
௜ఢூ௞ఢ௄

൑ 1	 	ܸ߳ݒ∀ (31)

෍ ௚ܺ௛௩

௚ఢெ

െ ෍ ܺ௛௚௩
௚ఢெ

ൌ 0	 ܯ݄߳∀ 	ܸ߳ݒ∀ (32)

෍ ܺ௞௛௩
௛ఢெ

െ ෍ ܺ௛௜௩
௛ఢெ

െ ௜௞ݕ ൑ 1  ܭ߳݇∀ 	ܸ߳ݒ∀	ܫ߳݅∀ (33)

௚ܰ௩ െ ௜ܰ௩ ൅ |ܫ| ௚ܺ௜௩ ൑ |ܫ| െ 1  ܫ߳݅∀  ܸ߳ݒ∀	ܯ߳݃ (34)

 1ሽ	௞߳ሼ0ݖ  ܭ߳݇∀ (35)

	1ሽ	௜௞߳ሼ0ݕ 	ܫ߳݅∀	,	ܭ߳݇∀ (36)

௚ܺ௛௩߳ሼ0	1ሽ  ∀݃ 	ܸ߳ݒ∀	,	ܯ݄߳ (37)

௞௚௛௜௩߳ሼ0ܤ 1ሽ	 ܭ߳݇∀ ܫ߳݅∀ 	ܸ߳ݒ∀	ܯ݄߳	݃∀, (38)

௚ܰ௩߳ሼ0	1ሽ  ∀݃ 	ܸ߳ݒ∀	,	ܯ߳ (39)

Si,	ܫ௜
ା,	ܫ௜

ି		0	 	(integer)	ܫ߳݅∀ (40)

S0k,	ܫ଴௞
ା ଴௞ܫ	,

ି 		0	 	(integer)	ܭ߳݇∀ (41)
	

The	 first	 term	of	objective	 function	shows	 fixed	activation	costs	of	distributors.	The	second	
and	 third	 represent	holding	and	 lack	of	 inventory	 costs	 through	 retailers	 and	distributors,	 re‐
spectively.	The	fourth	and	fifth	terms	correspond	to	selling	and	ordering	costs	of	retailers	and	
distributors.	The	last	term	expresses	routing	cost	with	lowest	cost‐to‐serve	from	distributors	to	
retailers.	Constraints	set	(Eq.	15)	ensures	that	each	retailer	is	assigned	to	only	one	distributor.	
Constraints	set	(Eq.	16)	prevents	assigning	the	retailers	to	inactive	distributors.	Constraints	sets	
(Eqs.	17	to	20)	and	(Eqs.	26	to	28)	were	explained	earlier.	

Constraints	set	(Eq.	21)	determines	delivery	time	between	retailer	i	and	distributor	k	based	
on	their	routing	travel	times.	Constraints	set	(Eq.	22)	explains	that	if	retailer	i	is	assigned	to	dis‐
tributor	k	with	a	route	from	node	g	to	i	then	the	route	g‐i	is	the	way	that	transfers	the	distributor	
k	 to	retailer	 i	 (i.e.	ܤ௞௚௜௜௩ ൌ 1).	Constraints	set	 (Eq.	23)	has	 the	same	concept	of	constraints	set	
(Eq.	22).	It	determines	that	with	existing	the	route	between	nodes	g	and	h	(i.e.	Xghv	=	1),	and	the	
route	between	h	and	i	underlaid	in	the	pass	of	distributor	k	to	retailer	i	(i.e.	Bkhliv	=	1),	the	route	
g‐h	should	be	laid	in	the	pass	of	distributor	k	to	retailer	i	(i.e.	Bkghiv	=	1).	Constraints	set	(Eq.	24)	
explains	that	when	a	route	can	be	laid	in	the	way	of	distributor	k	to	retailer	i	that	it	is	an	active	
route.	Constraints	set	(Eq.	25)	explains	that	when	a	route	can	be	defined	from	a	distributor	that	
the	distributor	is	active.	It	is	worth	mentioning	that	constraints	sets	(Eqs.	22	to	25)	are	supple‐
mentary	 to	 constraints	 set	 (Eq.	 21)	 to	 control	Bkghiv.	 Constraints	 set	 (Eq.	 29)	 explains	 capacity	
restriction	of	vehicles.	it	should	be	noted	that	all	vehicles	are	considered	the	same	capacity.	Con‐
straints	set	(Eq.	30)	determines	that	each	retailer	is	assigned	to	only	one	route	of	vehicle.	Con‐
straints	sets	(Eq.	31)	explains	that	several	vehicles	could	not	serve	in	one	route.	Constraints	set	
(Eq.	32)	ensures	arriving	and	leaving	of	the	vehicles	to	retailer	or	distributor	nodes.	Meanwhile,	
these	constraints	set	makes	the	routes	to	be	closed.	Constraints	set	(Eq.	33)	explains	that	a	route	
is	 activated	 between	 a	 distributor	 and	 retailer	 if	 the	 retailer	 has	 assigned	 to	 distributor.	 Con‐
straints	set	(Eq.	34)	ensures	eliminating	sub	tours	and	determines	that	each	distributor	should	
be	in	the	beginning	and	each	retailer	should	be	in	ending	of	each	route.	Finally,	constraints	sets	
(Eqs.	35	to	41)	are	standard	constraints	that	describe	the	nature	of	the	variables	considered	in	
the	model. 



An inventory model with METRIC approach in location‐routing‐inventory problem
 

Advances in Production Engineering & Management 12(2) 2017  121
 

5. Solution method 

Because	of	stochastically	nature	of	the	model,	solving	the	model	with	exact	methods	is	not	easy	
specially	in	medium	and	large‐scale	problems.	It	should	be	noted	that	some	constraints	contains	
variables	 (i.e.	Si)	 on	 their	 upper	 limit	 of	 summations.	Although	 the	model	 can	be	decomposed	
into	sub‐models	and	some	optimizations	solvers	(i.e.	GAMS,	Lingo)	can	solve	such	models;	but	
this	makes	the	exact	solution	approach	very	hard	and	even	impossible	in	some	larger	cases.		

In	such	circumstances,	Meta‐heuristics	are	used	instead	of	exact	methods	successfully.	There	
are	many	Meta‐heuristics	that	can	be	used	in	solving	process	but	specifically	genetic	algorithm	
and	simulated	annealing	are	widely	used	 in	similar	aspects.	Since	solving	 the	model	with	only	
one	Meta‐heuristic	is	very	complicated	a	hybrid	approach	is	developed	by	composing	these	two	
well‐known	Meta‐heuristics.	So,	a	hybrid	genetic‐simulated	annealing	algorithm	is	used	 in	 this	
study.	To	this	end,	the	model	is	decomposed	into	a	location‐routing	model,	which	is	solved	using	
simulated	annealing	and	METRIC	inventory	model,	which	is	solved	using	genetic	algorithm.		

The	location‐routing	solutions	is	developed	based	on	previous	studies	[26]	as	a	vector	of	pos‐
itive,	negative	and	zero	numbers	which	respectively	represent	retailers,	distributors	and	routes.	
Fig.	1	 illustrates	a	sample	of	this	vector	representation	and	related	routing.	 In	fact,	each	route,	
containing	a	distributor	and	 its	covering	retailer,	 is	started	and	ended	with	zeros.	Distributors	
without	retailers	are	not	located.	Algorithm	makes	the	neighborhoods	by	changing	the	vector	to	
reach	the	optimal	solution.		

	

	
Fig.	1	Sample	of	location‐routing	solution	in	SA	

	
In	 genetic	 algorithm,	 the	METRIC	 inventory	model	 is	 optimized	 after	 identifying	 the	 active	

distributors	and	related	retailers	 in	previous	algorithm.	The	chromosomes	represent	the	stock	
level	 of	 active	 distributors	 and	 retailers	 respectively.	 For	 example	 if	 two	 distributors	 and	 six	
retailers	 are	 activated,	 then	a	 string	with	 length	8	 is	developed	 such	as	 [4‐6,	8,	 9,	 11,	28,	35].	
Then	crossover	and	mutation	operators	are	used	to	generate	new	and	really	 feasible	offspring	
solutions	to	reach	the	best	near‐optimal	solutions	of	the	model.	Specifically	for	crossover,	single	
point	and	two	point	methods	and	 for	mutation,	bit	 inversion	method	was	used.	The	schematic	
representation	of	hybrid	algorithm	is	shown	in	Fig.	2. 
 

 
Fig.	2	Schematic	representation	of	developed	hybrid	SA‐GA	algorithm 
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6. Results and discussion 

Location	inventory	and	location	routing	inventory	models	are	categorized	in	p‐median	problems	
and	 accounted	 as	 NP‐hard	 problems.	 Hence,	 solving	 the	 models	 with	 deterministic	 methods	
would	be	very	hard;	specially	in	large	scale	sizes.	For	this	reason,	as	mentioned	in	previous	sec‐
tion,	 a	 hybrid	 genetic	 and	 simulated	 annealing	 algorithm	 is	 proposed	 as	 solution	method.	We	
used	Lingo	9	and	MATLAB	R2013b	to	solve	the	sample	problems	of	this	study	in	PC	with	Intel	
(R)	Core	i5	CPU	2.40Ghz	and	4.00	GB	RAM	specification.	

Parameter	tuning	for	genetic	and	simulated	annealing	algorithms	is	conducted	based	on	in‐
formation	brought	in	Tables	1	and	2.		

	
Table	1	Simulated	annealing	parameters	

ISA‐inner ISA‐main	R Tmin Tinitial	
5 20 0.9 0.01 700 

	
Table	2	Genetic	algorithm	parameters 

IGA Pmutaion Pcrossover Pop	size 
400 0.2 0.8 20 

	
In	Table	1,	Tinitial	and	Tmin	represent	initial	and	final	temperatures,	R	is	acceptance	threshold	of	

bad	neighborhood	solution	and	ISA‐inner	and	ISA‐main	depict	the	number	of	iterations	in	a	fixed	cer‐
tain	 temperature	 and	 in	 all	 temperatures,	 respectively.	 In	 Table	 2	Pop	 size	 is	 population	 size,	
Pcrossover	and	Pmutation	are	crossover	and	mutation	rates	of	the	algorithm	respectively	and	IGA	repre‐
sents	number	of	iterations	in	genetic	algorithm.	The	parameters	are	adjusted	based	on	Taguchi	
method;	 in	which	the	parameters	are	categorized	with	 three	high,	medium	and	 low	 levels	and	
then	the	method	identifies	the	best	values	of	the	parameters.	

In	addition,	 the	parameters	of	 the	model	are	determined	as	shown	in	Table	3.	As	observed,	
the	parameters	are	generated	randomly	with	uniform	distribution	in	their	specified	ranges.	

The	sample	problems	were	solved	with	regards	to 0 and	the	results	are	depicted	in	both	de‐
terministic	and	meta‐heuristic	methods.	Sample	problems	were	designed	in	three	short,	medium	
and	 large	 scale	 sizes.	The	deviations	of	meta‐heuristic	 from	deterministic	method	 in	objective	
function	are	brought	in	the	last	column	of	Table	4.		

As	 shown	 in	 Fig.	 3,	 the	 results	 illustrate	 that	meta‐heuristic	method	 decreases	 the	 solving	
time	of	large	scale	problems.	The	curve	of	deterministic	method	has	been	stopped	after	problem	
No	5	since	after	that,	the	time	is	exponentially	increased.	

	
Table	3	Location‐routing‐inventory	parameters	 

Pameters	 Distribution  Value 
fk  Uniform  U[3000,	5500] 
hi  Uniform  U[3,	6] 
πi  Uniform  U[7,	10] 
h0k  Uniform  U[3,	6] 
C0k  Uniform  U[20,	40] 
A0k  Uniform  U[20,	40] 
λi  Uniform  U[1,	40]	
Cik  Uniform  U[25,	45] 
Aik  Uniform  U[20,	40] 
Tgh  Uniform  U[0,	5]	
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Table	4	Results	of	location	routing	inventory	model	
 Meta	heuristic Deterministic     

Error,	%	Time Cost Time Cost 
Number	of 
retailers	

Number	of 
distributions	

No	# Scale	

				0.005 37.66 12483.44 3	12482.80 3	1 1 

Sh
or
t 				0.91 42.57 12257.18 184 12146.63 4 2	2 

				5.96	91.35 15899.94	1335	15004.29 6	3 3 
				2.57	300.79 27683.46	5874	26988.35 10 4 4 
				4.64 731.68 46388.44 41715 44331.11 15 6	5 

M
ed
iu
m
	

‐ 3624.24 125433.30 *	*	30	10	6 
‐ 2305.59 182542.83 *	*	45 14 7 
‐ 5702.48 239439.74	*	*	60 20 8 
‐	2236.25 270975.04 *	*	70 25 9 

La
rg
e ‐ 5986.73 301140.58 *	*	90 30 10 

‐ 1818.88 392606.95 *	* 120 35 11 
‐ 4911.29 456251.43	*	*	150 40	12 

	
	

Fig.	3	Comparison	of	deterministic	and	
meta‐heuristic	methods 

						Fig.	4	Error	percentage	of	Meta	heuristic	and	
						deterministic	methods	

	
In	 addition,	 the	 difference	 error	 between	 Meta	 heuristic	 and	 deterministic	 methods	 are	

brought	 in	 the	Fig.	4.	The	dotted	 lines	demonstrate	 the	predicted	values	with	moving	average	
(n1=	5).	As	shown,	the	developed	meta‐heuristic	has	trivial	difference	with	deterministic	method	
in	cost	objective	values	and	additionally	has	shorter	running	time	than	deterministic	method	in	
medium	and	large	scale	problems.	

Finally,	 sensitivity	 analyses	were	performed	 for	 all	 problems.	As	known,	 the	 stock	position	
(S)	 is	 one	 of	 the	most	 important	 variables	 in	METRIC	 approach.	 So,	 sensitivity	 analyses	were	
performed	on	changing	effects	of	 the	parameters	on	this	variable.	Generally,	 three	parameters	
were	used	in	the	analyses	including	holding	cost,	shortage	cost,	and	demand	rate.	

Here	as	an	instance,	the	analyses	were	illustrated	for	problem	No	5.	This	problem	is	a	medi‐
um	size	with	6	distributors	and	15	retailers.	Figs.	5	and	6	illustrate	the	results.	

Figs.	5(a)	and	5(b)	represent	changing	costs	of	retailer	and	their	effects	on	optimal	stock	level	
of	 retailer.	 Fig.	 5(c)	 represent	 the	 same	 for	 distributor.	 As	mentioned	 previously,	 shortage	 of	
distributor	is	inducted	as	delays	for	retailers	and	so	no	direct	analysis	was	brought	for	distribu‐
tor's	 shortage	 cost.	 As	 known,	 with	 increasing	 the	 holding	 cost	 the	 stock	 level	 of	 inventory	
should	be	decreased	accordingly	This	behavior	can	be	clearly	observed	in	Fig.	5(a).	In	contrast,	
by	increasing	shortage	cost,	the	stock	level	would	be	increased;	as	shown	in	Fig.	5(b).	Since	the	
model	tries	to	deal	less	with	lack	of	inventory	and	so	increases	the	stock	level.	Fig.	5(c)	has	the	
same	behavior	of	Fig.	5(a)	for	distributors.	

Figs	6(a)	and	6(b)	represent	the	changing	of	optimal	stock	level	in	different	demand	rates	in	
both	 retailer	 and	distributor	 levels.	As	 shown	 in	Fig.	 6(a),	 by	 increasing	 the	demand	 rate,	 the	
model	tries	to	increase	the	stock	level	to	prevent	the	shortfalls.	Meanwhile,	increasing	on	retail‐
er's	demand	would	 cause	as	well	 as	 increasing	on	distributor's	 demand.	 It	 is	 therefore	 logical	
that	with	increasing	this	parameter,	the	stock	level	of	distributor	is	also	increased. 
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Fig.	5	Sensitivity	analysis	of	optimal	S	based	on	inventory	costs	

	

Fig.	6	Sensitivity	analysis	of	S	based	on	demand	rate 

7. Conclusion 

Generally,	 a	 supply	 chain	 involves	 different	 level	 of	 decision‐making.	 Strategic	 and	 long	 term	
decisions	are	at	macro	level;	mid‐term	and	tactical	decisions	are	at	the	next	level	and	short‐term	
and	 operational	 decisions	 are	 at	 the	 lowest	 level.	 Nowadays	 organizations,	 for	 remaining	 in	
competitive	 market,	 are	 being	 forced	 to	 continuously	 improve	 their	 performance	 and	 in	 this	
viewpoint,	 one	 of	 the	most	 important	 improving	 factors,	would	 be	 supply	 chain	management	
decisions.	 In	 supply	 chain,	 location	 and	 allocation	 are	 of	 strategic	decisions,	 inventory	 control	
and	management	are	of	tactical	decision	and	transportation	is	of	operational	decisions.	Accord‐
ing	to	these	points,	in	this	study	an	integrated	supply	chain	model	is	investigated	that	includes	
simultaneous	 optimization	 of	 all	 decisions	 in	 location,	 inventory	 control,	 transportation	 and	
routing.	The	model	was	developed	in	stochastic	conditions	based	on	METRIC	approach	and	(S‐1,	
S)	 policy.	 The	model	was	 investigated	with	 stochastic	 conditions	 to	meet	 better	 to	 real‐world	
situations.	To	solve	 the	model,	a	hybrid	genetic	and	simulated	annealing	algorithm	was	devel‐
oped	and	used.		

Experimental	efforts	were	performed	with	12	sample	problems	in	different	(short,	medium,	
large)	 scales.	 The	 problems	were	 solved	 and	 sensitivity	 analyses	were	 performed	 on	 optimal	
stock	level	as	an	important	variable	of	the	model.	

As	 recommendation	 for	 future	 studies	 can	 be	mentioned	 to	 using	 other	 inventory	 policies	
such	 as	 (R,	Q)	 in	 the	model,	 developing	multi‐objective	 and	multi‐level	models	 and	 using	 the	
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vehicles with different capacities. Meanwhile the model can be developed with other objective 
functions such as minimization of transportation cost, maximization of customer satisfaction and 
minimization of the risk. 
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