
162

Original scientific paper

 MIDEM Society

A fast simulation emulation engine
Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid

National Engineering School of Sfax, University of Sfax, Tunisia

Abstract: Due to the number of functionalities built on the system development, a mixed hardware software systems has increased.
To solve the problem of the cost, the flexibility, the time-to-market and the resulting behaviors, many verification methods are used in
the literature. This paper describes a new hardware/software co-verification method for System-On–a-Chip, based on the integration
of a SystemC simulator and an FPGA accelerator. Between the SystemC simulator [1,2] and the FPGA hardware platform, a simulation /
emulation engine based on different synchronization scheme was established to accelerate the verification and to control the context
switch. This work presents an extension for CODIS tool and it enables not only an easy and a high verification speed, with a low cost,
but also it presents the real behavior of hardware / software.

Keywords: Simulation; Emulation; SystemC ; Transaction Level Modeling; FPGA; Synchronization.

Hitro simulacijsko emulacijsko orodje
Izvleček: Z rastjo števila vgrajenih uporabnosti v sisteme naraščajo sistemi z mešano programsko in strojno opremo. Številne
verifikacijske metode so uporabljene v literaturi za reševanje problemov stroškov, fleksibilnosti, časa do predstavitvena trgu in
rezultirajočega obnašanja. V članku je predstavljena nova programsko/strojna metoda za verifikacijo sistema na čipu, ki temelji
na integraciji SystemC simulatorja in FPGA pospeševalnika. Med simulatorjem SystemC [1,2] in FPGA platformo je postavljeno
simulacijsko/emulacijsko orodje, ki temelji na različnih sinhronizacijskih shemah in pospešuje verifikacijo in nadzor nad vsebinskim
stikalom. Delo predstavlja razširitev CODIS orodja in ne predstavlja le enostavno in zelo hitro verifikacijo temveč dejansko obnašanje
strojne in programske opreme.

Ključne besede: simulacija, emulacija, SystemC, nivojsko modeliranje, FPGA, sinhronizacija

* Corresponding Author’s e-mail: mossaad_benayed@yahoo.fr

Journal of Microelectronics,
Electronic Components and Materials
Vol. 43, No. 3 (2013), 162 – 172

1 Introduction

Embedded systems are mostly heterogeneous de-
vices. Their design is based on hardware and software
components. These parts cannot be developed inde-
pendently, since their interaction is a key point of the
system behavior. Each part needs to be aware of the
characteristics of the other parts, in order to provide
optimized components. The best strategy adopted is
co-design, since it allows us to develop HW/SW com-
ponent concurrently [3].

Co-simulation is a key methodology in co-design that
allows verification of the hardware, the software, and
their interaction. The essential aim of the co-simulation
is to validate and to cover the performance as well as
the functionality. The main problem appears when the
system complexity grows and the validation becomes
more and more time consuming. To overcome this
challenge, and speed up HW/SW co-simulation, many
synchronization schemes are used.

As mentioned bellow, this paper presents an addition
work for CODIS platform. CODIS (COntinuous DIscrete
Simulation) [18] is a tool which can automatically pro-
duces co-simulation instances for continuous/discrete
systems simulation using SystemC and Simulink simu-
lators. This is done by generating and providing co-sim-
ulation interfaces and the co-simulation bus. To evalu-
ate the performances of simulation models generated
in CODIS, they measured the overhead given by the
simulation interfaces.

This paper is organized as follows. Section 2 summa-
rizes existing work on HW/SW co-simulation. Section
3 explains the proposed solution to accelerate the co-
simulation. Section 4 presents the Simulation Emula-
tion engine and his architecture. Finally, experimental
results are discussed in section 5, and concluding re-
marks in section 6.

163

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

2 Related work

Several co-simulation frameworks have been proposed
in the literature. They can be classified into two main
categories: homogenous and heterogeneous.

Homogenous frameworks [22] [23] use a single simula-
tor for the simulation of both HW/SW components. The
main advantage of this category is the simplification of
the design modeling and the good simulation perfor-
mance. However, homogenous frameworks suffer from
the huge time consummation and they are suitable
only in a very initial phase of the design, prior to HW/
SW partitioning.

Inversely, heterogeneous frameworks [19] [24] [25]
warrant a more accurate tuning between HW/SW com-
ponents and save much time in simulation. The major
problem in this category is the communication and
synchronization.

Several frameworks [4] [5] [6] are mainly focused on
Multilanguage system description, that is, an HDL for
hardware and a programming language for software.

All these heterogeneous co-simulations are based on
solving the problems of controlling and synchroniza-
tion several simulation engines. These frameworks
are adopted because of the best simulation perfor-
mance and the easiest integration but it was the only
possible choice when VHDL or Verilog simulation was
the highest possible level of abstraction for simulat-
ing hardware. To surmount this challenge, SystemC is
more adopted in hardware description. The advantage
of design with SystemC [7] [8] [9] is the use of the bus
as different abstraction layer to obtain more efficient
co-simulation and the HW/SW process are described
on C. This approach simplifies the implementation of
the initial model as well as the HW / SW partitioning. In
fact, HW components are simulated by using the Sys-
temC simulation kernel, while SW programs run on an
Instruction Set Simulator (ISS) [20] [21].

These frameworks are based on two essential steps.
The first is the Inter Process Communication (IPC) [26]
[27]. It is used to make the communication between
the ISS and the SystemC simulator. The second is the
Bus Wrapper. It ensures synchronization between Sys-
temC simulator and the ISS.

But these frameworks still suffer from some perfor-
mance bottlenecks, caused by the use of the ISS. How-
ever, ISS gives the best simulation accuracy. To acceler-
ate the simulation, in spite of the accuracy, the native
SW simulation is adopted using SystemC and time an-
notations. Some works try to improve the performance

estimation accuracy in native simulation by modeling
and simulating the OS behavior essentially the inter-
ruptions and preemption mechanism [10] [11].

Other works like [17] are based on multi-ISS to accel-
erate the simulation. But these frameworks suffer not
only from a complex synchronization scheme that in-
creases the overhead but also from the grandiose sim-
ulation time.

3 Conventional approaches

To increase the verification speed while maintaining
clock accuracy, an FPGA (Field Programmable Gate Ar-
ray) such as ALTERA DE2-70 is used. The FPGA presents
an easy and a fast environment for the target architec-
ture implementation. As known, if all modeled blocks
are implemented in hardware emulation, the system
cost, as well as the running and debugging cost, will
become expensive. Therefore, a combined method us-
ing an emulator and a simulator is the most adopted to
model SOCs (System On Chip).

One method is based on an abstraction approach [12].
This approach uses only few FPGAs operating at about
1 MHZ. This method is similar to an accelerated C/C++
simulation. So it suffers from lack of performance esti-
mation and no debugging.

Another method uses a transaction level C/C++ simu-
lator to model the application program [13], and the
FPGA to emulate the HW component.

A verification system that uses SystemC simulator to
simulate the HW component and FPGA board based
on target kernel architecture to simulate the SW appli-
cation is proposed. The key contribution of this work is
in the interoperability between the SystemC scheduler,
and the target kernel architecture deployed on the
FPGA.

The main advantages of our solution are:
- Increase the speed of SW validation without any

lost of accuracy since SW will be executed by the
target microprocessor.

- The base architecture (processor, bus and memo-
ry) is implemented in FPGA and the specific hard-
ware components are described and simulated
using SystemC.

- This framework represents a very useful platform
for software engineers to validate their code be-
fore the hardware components become available

- The replacement of the ISS by a real target pro-
cessor accelerates the simulation.

164

- A synchronization schemes between HW and SW
are described in this paper with respect of the
synchronization schemes between continuous
and discrete design used in CODIS tool.

- The target base architecture is implemented in
FPGA board at earlier stage. This fact conserves
the time to market and informs the software en-
gineers early about many characteristics as well
as the time execution of the SW components, en-
ergy consumption, etc.

- The interface module provides the communica-
tion and the synchronization without modifying
the SystemC kernel.

Figure 1 shows the verification environment. Two steps
are essential to make the environment verification:
communication and synchronization model. A Simula-
tion Emulation engine is described in the next section.

Figure 1: Combined simulator and emulator approach

4 Simulation emulation engine

Simulation engine presents the main problem of the
majority of co-simulations environments. It ensures
not only the communication between simulators and
emulators but also the synchronization and the con-
trol. Figure 2 shows the Simulation/Emulation engine
architecture. This section describes the communication
and the synchronization layers with the implementa-
tion adopted.

4.1 Communication

This under section gives a brief introduction to the
communication model and the associated library. A
USB (Universal Serial Bus) link is used in the communi-
cation between PC and FPGA because this kind of com-

munication has better speed than PCI which it adopted
in emulation [14]. The model is divided into receiving /
transmitting drivers models. Figure 3 shows the differ-
ent steps of the communication.

Figure 3: Communication model

- SW driver is made by Windows Driver Kit (WDK). This
driver is responsible for the data transmission to and
from the USB device. An operating system driver, run-
ning on the host system, responsible for receiving data
from the high level application, forming the informa-
tion packets as defined by the USB standard protocol,
and also in charge for transmission of the data packet
to the USB device. This driver will also be in charge of
receiving data form the USB core (ISP1362), and deliver
the received data to the high level application.

This driver contains essentially two main functions
Read and Write. To achieve these two functions, four
Win32 functions are used:
- CreateFile: required to connect application and

USB core.
- WriteFile: required for data transfer into USB core.
- ReadFile: required for data transfer from the USB

core into the application.
- ControlIODevice: requested for driver configura-

tion.

- Channel: after the comparison research between
the different kinds of communication channels, a USB
communication is adopted not only because the port-
ability but also because the speed of transaction is 480
Mbits/s; however, the speed of PCI is only 133 Mbits/s.

Figure 2: Simulation/Emulation engine architecture

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

165

- HW driver is based on Philips ISP1362 device core
that is integrated in emulation architecture with a pro-
cessor, bus and memory, as shown in the Figure 3. The
ISP1362 will manage the complete USB protocol from
the device side, and which will also be in charge of leav-
ing the received data in a buffer for resending when re-
quired. Note that the ISP1362 controller is used only in
emulation environment and not be considered in the
target architecture.

The ISP1362 provides the PIO (Programmed Input/Out-
put) mode for the processor to access its internal con-
trol registers and buffer memory. An interruption mode
is adopted to simulate the real behavior.

When an interrupt is activated, the processor halts nor-
mal operation and jump to the Interrupt Vector Table,
which is a region of memory. There is one interrupt vec-
tor for each type of interrupt that can occur, and each
interrupt vector is located at a unique memory address
in the table. Each interrupt vector contains the address
of the start of the Interrupt Service Routine (ISR) that
will run for that interrupt. The ISR retrieves data from
the ISP1362 Device Controller’s internal FIFO (First In
First Out) to NIOS II memory and sets up proper event
flags to execute the program [15].

The ISR is like a subroutine and contains code that is
executed once the ISR is entered. Once the code in the
ISR is completed, control is passed back to the main
program. If an interrupt event were to occur during this
period, the processor halt the last interrupt program
and jump to next interrupt program. When, it finished
the processor go back to first interrupt program. This
model is adopted to avoid the lost of data.

4.2 Synchronization schemes

A key part of the proposed verification is at first the syn-
chronization schemes between the SystemC simulator
and the target base architecture on FPGA board. Sec-
ondly, the model of synchronization between the dif-
ferent component of the Device Under Test (DUT). Note
that the synchronization schemes ignored the commu-
nication overhead and focus in the process simulation.

4.2.1 Simulator/Emulator Synchronization
We focus in this first part into the synchronization mod-
el between simulator and emulator. The SystemC simu-
lator is fixed as the master of environment verification
and the emulator based on target base architecture as
slave.

The synchronization models are different form layer
to layer. In RTL (Register Transfer Layer) layer the simu-
lator and the emulator are interconnected with sig-

nals. While, the simulation/emulation bus ensures the
transfer of data packet, in the TLM (Transaction Level
Modeling) layer. Figure 4 a) shows the synchronization
scheme for the RTL layer. Context switch presents the
main function of the Simulation/Emulation (SE) bus. It
assures the change of the control between simulator
and emulator. Figure 4 b) describes the functionality of
the Simulation/Emulation (SE) bus.

Figure 4: Simulation/Emulation Bus

The TLM layer is the most adopted in verification lan-
guage because it is easier and faster than RTL layer.

The communication so described in the last section en-
sures packets forms which are constructed as interface
between simulator and emulator (board).

Two forms of exchanged packets are used to perform
the synchronization scheme between the simulator
and the emulator, Figure 5.

Interruption packet shown in Figure 5 a) is the first
form. It consists of two parts: a header and a body. The
last one contains the routine number and the interrup-
tion time stamp. The header of this form presents the
type of synchronization and the routine number indi-
cates the routine Task to be executed. The time stamp
represents a synchronization point [31] and it is used
to execute the interrupt routine at the appropriate in-
stant.

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

166

Data packet shown in Figure 5 b) is the second form.
It comprises a header and the data. The header in this
case contains the synchronization type, the size of data
to send and the time stamp to synchronize when it is
necessary.

Note that any packet received by the target processor
side generates an USB interruption that can be exploit
in the implementation phase to interrupt the target
processor each time a packet is received.

Figure 5: Synchronization forms

The verification method is based on the following syn-
chronization schemes which respect the interaction
style that can be involved between HW and SW com-
ponents and the interaction style between continuous
and discrete model used in CODIS tool. Note that, in
the same design, HW and SW components may use dif-
ferent synchronization schemes. The execution time of
SW applications in the target base architecture is con-
sidered as simulation time.

- Scheme 1: The SW Task receives data periodically
from the hardware Task.

This scheme is based on FIFO memory between SW
Task and HW Task. The main idea consists on fixed
synchronization time between simulator and emula-
tor (see Figure 6). Because of the difference of speed,
the HW imposes a synchronization Time (Tsync). This Tsync
must be more than HW or SW Tasks time.

- Scheme 2: The SW Task waits the end of the hard-
ware Task.

When a hardware component is simulated by SystemC,
the SW Task uses a waiting loop for data (see Figure 7).
Once the hardware Task (Task1) is finished, the simula-
tor sends data to the SW Task and a context witch from
SystemC to board is taken. At this time, the SW Task
receives data and resumes the execution. Here, the ex-
ecution time of Task1 is modeled by the SystemC wait()
function. The amount of time used by the wait function
is sent to the SW part to inform it about the duration of
the waiting loop (see Figure 7). The SystemC and the

emulator need to exchange the time stamp every con-
text switch.

Figure 7: Synchronization model: scheme 2

- Scheme 3: The SW Task receives an interruption to
indicate the end of the hardware Task

This scheme is illustrated by the Figure 8. In this case,
the software does not use a waiting loop but the end
of the Task is indicated by interruption, so the software
can execute the Task instead of waiting. The Simulation
scheduler (see Figure 14), running on the target pro-
cessor, sends data to the simulation interfaces (arrow
0), which activates the hardware Task1. At the end of
Task 1 process, and before sending data to SW Task, the
wait_for_interrupt(sc_time) function is called (see Fig-
ure 9), so the simulator advances its time (arrow 1) and
sends an interrupt packet to inform emulator for the
next time stamp (arrow 2). At this time, the simulation
scheduler activates a timer with a period that coincides
with the received interruption time stamp and begins
the execution of an intermediate Task (an eventual user
background Task). When the timer is reached, it inter-
rupts the background Task. Thus the simulation sched-

Figure 6: Synchronization model: scheme 1

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

167

uler activates the Task 2 (the number of the interrup-
tion is received with the interrupt packet). The last one
may request data, thus the Task 1 resumes execution
and sends data packet (arrow 4), which activates Task 2.
Figure 10 shows the template of the code.

Figure 8: Synchronization model: scheme 3

Figure 9: Wait_for_interrupt code

Where t is an estimation of the Task 1 duration

Figure 10: Template of synchronization code

- Scheme 4: The SW Task may receive a random
interruption resulting from externally data recep-
tion

This scheme is illustrated by the Figure 11. The SystemC
begins the execution of the Task 1 and, when finished,
sends a data packet to the SW Task. The Task 2 starts
and the SystemC executes the Hardware_Input_Inter-
face : a process that models the input interfaces of the
hardware subsystem (its execution do not advances
the SystemC local time). The process may generate a
random interrupt packet which informs of the recep-
tion of a new data. The sent packet via USB generates

an USB interruption which will interrupt the Task 2.
Thus, the USB interruption plays the same role as the
hardware interruption. Once the interruption is oc-
curred, we need only to know, thanks to the received
interrupt packet, the interruption routine to execute
(here is Task 3).

Figure 11: Synchronization model: scheme 4

To ensure communication and to save synchronization
context, an array of shared registers is used. We fixed
that the HW / SW partitioning is static. Also, the sched-
uler is at the same time static and based on data de-
pendence. The last is used as a shared connection bus.
Although this register based on bus modeling is not
the same as the actual chip bus modeling, it is easy to
set up. The register array is implemented on the FPGA
board and can be accessed or Read / Write from the
simulator using interruption services routines.

The S/E Engine ensures the verification of sequential
and parallel applications. Two cases of sample are pre-
sented. The first is based on sequential Tasks and the
second is based on parallel and sequential Tasks.

The Figure 12 describes the two samples based on
data flow diagram and their synchronization model is
shown in Figure 13.

Task 1, Task 3 and Task 5 are hardware components.
Task 2 and Task 4 are software application.

For the sequential sample, the simulator begins the ex-
ecution of the first Task. When Task 1 finished, the simu-
lator sends an interrupt packet and data packet to the
emulator to begin Task 2 and the simulator is blocked
until he receives data packet from the emulator. At this
moment, the simulator executes Task 3 and the emula-
tor is blocked. When Task 3 finished, the simulator sends
an interrupt packet to the emulator. The last runs Task 4
and returns data packet to Task 5 in the simulator.

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

168

For the parallel sample, the simulator begins Task1 and
the emulator begins Task 4. When the simulator fin-
ished Task 1 he sends an interrupt packet to the emula-
tor. The last stops the execution of the Task 4 and save
the context then he receives the data packet and runs
Task 2. The simulator is blocked. When Task 2 is finished,
the emulator sends a data packet to the simulator and
return to the execution of Task 4. At this moment, the
simulator executes Task 3. When they finished, the
simulator sends an interrupt packet. When the Task 4 is
finished and the interrupt packet is sent, the emulator
sends a data packet and the simulator runs Task 5.

4.2.2 Hardware/Software Synchronization interface
In this part, the hardware / software of the DUT is pre-
sented.
The SystemC is constructed using a modular approach
to provide partitioning between the different function-

al elements of the overall controller. This facilitates the
movement of functionality between different models,
which proved useful during the control model design.
It also simplifies the addition and/or removal of models
from the system.

The hardware modules in SystemC are modeled in
TLM layer and the adopted channel is FIFO. An Inter-
face module is built to ensure the transaction between
HW/SW. When a module wants to read or write data to
the board, it makes connection with the TLM channel
that implements a high level description of bus. The
TLM channel assures the communication and the syn-
chronization. Figure 14 describes the synchronization
scheme for DUT.

Figure 14: Synchronization interface for DUT

5 Experimental results

Three steps are essential for the Simulation/Emulation
implementation and validation.

Figure 12: Data flow diagrams

Figure 13: Synchronization model for each sample

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

169

Step 1: Target base architecture
The verification idea is based on combined tools to sat-
isfy the HW/SW design. For the target base architecture
an FPGA type ALTERA DE2-70 is used as a board and
QuartusII, NIOSII IDE as tools. The first step is to set the
architecture model. Figure 15 shows the architecture
chosen. It contains the NIOSII processor [28], Avalon
bus, memory and the ISP1362 USB controller [29].

Figure 15: Target base architecture used

Step 2: Interfacing between HW/SW
This step concerns the addition of the interface module
in SystemC. The last module is the responsible of the
communication and the synchronization. When a con-
text switch to the board is required, the interface mod-
ule is called. The proposed interface can be added to
any design described on SystemC without modify the
kernel of SystemC like the work [30].

Step 3: Simulation results
In this section, two applications are proposed to vali-
date the Simulation / Emulation environment.

* Fingerprint recognition:
Paper [16] presents a novel technique for fingerprint
recognition based on DECOC classifier. Six steps are re-
quired for identification:
- Read the fingerprint: this phase reads the image

of finger from sensor.
- Filter: A Gabor filter is used to ameliorate the con-

trast of ridge in the image.
- Binarization: This step converts the image from

grayscale to binary system.
- Skeletonization: The neighborhood method is

used.
- Minutia extraction: This step extracts the charac-

teristics point in finger (Minutia) using the DECOC
classifier.

- Matching: The final step makes correspondence
between the input finger and the saved finger-
print.

Then, Based on the native execution of the fingerprint
recognition on a 2 GB RAM, 1.66 GHz Intel Core 2 Duo
processor with Windows XP operating system, we no-
tice that the time execution of the minutia extraction
is the minimum. We divided our system on hardware
components and software applications with respect of
the rule “the processes that has the more time expen-
sive will be HW components”.

The overall HW/SW configuration consists of the fol-
lowing entities:
- HW model of the read.
- HW model of the filter.
- HW model of the binarization.
- HW model of the matching.
- SW application of the skeletonization.
- SW application of the Minutia extraction.

Table 1 shows the simulation / emulation time of each
process.

Table 1: simulation/emulation time of fingerprint

Module Time (s)
HW Components Read of fingerprint

0.03
Filter

Binarization
Matching

Interface Interface 0.5
SW Applications Skeletonization 0.01

Minutia extraction
All Modules 0.54

To validate our simulation/emulation environment a
comparison with simulation based on MIPS32 as ISS is
made. Table 2 proves that the replacement of the ISS
decrease by thirteen times less the time of simulation.

Table 2: Comparison Simulation Time

Simulation
(MIPS32)

Our environ-
ment

Simulation time (s) 18 0.54

* 4 port router:
A small 4-port router is described in SystemC, an exten-
sion of the Multicast Helix Packet Switch example dis-
tributed with SystemC 2.0.1.

This router receives data packets on its input ports and
forwards them to the proper output port according to

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

170

a routing table embedded into the router. Whenever a
new packet arrives on one of the input ports, it is stored
into an internal buffer. If the buffer is full, the packet is
dropped. Each packet is then read from the buffer by
the main process of the router, and checked for errors
by a checksum algorithm.

If the checksum is correct the destination address
stored in the packet is used to find the right output
port using the routing table; otherwise the packet is
dropped. The packets consist of the following fields:
- Source address: the address of the producer.
- Destination address: the address of the consumer

to which the packet must be sent.
- Packet identifier: an integer value used for debug-

ging purposes only.
- Data field.
- Checksum: a 16 bit field used for error detection.

The overall HW/SW configuration consists of the fol-
lowing entities:
- HW model of the router.
- HW model of the packet generator (producer),

which is attached to an input port of the router,
and generates packets with a random destination
address.

- HW model of the packet destination (consumer),
which is attached to an output port of the router,
and analyzes the integrity of the received packet.

- SW application computing the checksum, execut-
ing on NIOS II processor.

Table 3 shows the simulation / emulation time with 10
exchanged packets.

Table 3: Simulation/Emulation Time of 4-port router

Module Time (s)

HW Components
Router

0.03Packet generator
Packet destination

Interface Interface 0.12
SW Applications Checksum 0.006

All Modules 0.156

To validate our simulation/emulation environment a
comparison with simulation based on MIPS32 as ISS is
made. Table 4 proves that the replacement of the ISS
decrease by fifty times less the time of simulation.

Table 4: Comparison Simulation Time

Simulation
(MIPS32)

Our environment

Simulation time (s) 8 0.156

Discussion

These two samples highlight the performance of our
environment with comparison with MIPS32 simula-
tor. The simulation time is decreased by averaging 38
times.
The difference of the interface time between the fin-
gerprint application and the 4-port router application
is justified by the quantity of data transferred in each
context switch. For the first sample, the interface con-
sumes much time because the totality of the image
must be transferred from/to the board.

6 Conclusion

The co-verification environment is based on synchro-
nization between SystemC simulator and FPGA board
emulator. The essential aim is to accelerate the simu-
lation with the replacement of an ISS with target base
architecture implemented in the board. The main fea-
tures of the proposed synchronization schemes are the
adaptation with CODIS tool. Experiments with real-life
examples proved the effectiveness of the proposed
system.

The resulting simulation/emulation time allows fast
functional validation of HW devices before actually de-
signing them and including onto a board, and, in par-
ticular, without changing the software executed on the
board. The results shows that the simulation/emulation
environment decreases the time simulation forty times
less than the simulation environment based on ISS.

Acknowledgments

We are grateful to Mr. Hatem Bentaher and Mme. Mas-
sira Ben Said for helpful suggestions and for English
correction.

References

1. OSCI; “Functional Specification for SystemC 2.0”,
available at www.systemc.org

2. T. Grotker, S Liao, G. Martin, S Swan, “System De-
sign with SystemC”, book published by Kluer Aca-
demic Publishers.

3. De Micheli, D., Ernst, R., and Wolf, W. Eds. Readings
in Hardware/Software Co-design, Morgan Kauf-
mann, 2001.

4. Liem, C., Nacabal, F., Valderrama, C., Paulin, P., and
Jerraya, A. 1997. System-on-chip cosimulation

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

171

and compilation. IEEE Design and Test of Comput.
14, 2, 16–25.

5. Valderrama, C.,Nacabal, F., Paulin, P., and Jerraya,
A. 1998. Automatic VHDL-C interface generation
for distributed cosimulation: Application to large
design examples. Design Autom. Embed. Syst. 3,
2/3, 199–217.

6. Coste, P., Hessel, F., Marrec, P. l., Sugar, Z., Romd-
hani, M., Suescun, R., Zergainoh, N., and Jerraya,
A. 1999. Multilanguage design of heterogene-
ous systems. In Proceedings of IEEE International
Workshop on Hardware-Software Codesign. 54–
58.

7. Liu, J., Lajolo, M., and Sangiovanni-Vincentelli, A.
1998. Software timing analysis using HW/SW co-
simulation and instruction set simulator. In Pro-
ceedings of the IEEE International Workshop on
Hardware/Software Co-design. 65–69.

8. Fummi, F., Martini, S., Perbellini, G., and Poncino,
M. 2004. Native ISS-SystemC integration for the
cosimulation of multi-processors SoC. In Proceed-
ings of the IEEE Conference on Design Automa-
tion and Test in Europe. 564–569.

9. Moussa, I., Grellier, T., and Nguyen, G. 2003. Explor-
ing SW performance using SoC transactionlevel
modelling. In Proceedings of the IEEE Conference
on Design Automation and Test in Europe. 120–
125.

10. Bouchhima, A. Yoo, S. Jarraya A., “Fast and ac-
curate timed execution of high level embedded
software using HW/SW interface simulation mod-
el”, Design Automation Conference: ASP-DAC, pp.
469 – 474, 2004.

11. Ziyi Jin, “A remote controlled embedded system
implemented in FPGA”, Master of Science The-
sis in the Programme of Integrated Electronic
System Design, Department of Computer Sci-
ence and Engineering CHALMERS UNIVERSITY
OF TECHNOLOGY UNIVERSITY OF GOTHENBURG
Göteborg, Sweden ,2009.

12. N. Kim, H. Choi, S. Lee, S. Lee, I-C. Park, C-M. Kyung,
„Virtual chip: making functional models work on
real target systems”, Proceedings of ACM/IEEE
Design Automation Conference (DAC 98), pp.170-
173, 1998.

13. Soha Hassoun, Senior Member, IEEE, Murali Kud-
lugi, Duaine Pryor, and Charles Selvidge “A Trans-
action-Based Unified Architecture for Simulation
and Emulation” IEEE transactions on very large
scale integration (vlsi) systems, vol. 13, no. 2, feb-
ruary 2005.

14. Jan Exalson, “USB COMPLETE Everything You
Need to Develop Custom USB Peripherals” book,
third edition, 2005.

15. ISP1362 Embedded Programming Guide Version
9 June 2002.

16. Mossaad Ben Ayed, Faouzi Bouchhima and Mo-
hamed Abid, “Automated Fingerprint Recognition
Using the DECOC Classifier”, International Journal
of Computer Information Systems and Industrial
Management Applications. Volume 4 (2012) pp.
546-553

17. S. Cordibella, F. Fummi, G. Perbellini, D. Quaglia,
“A HW/SW Co-Simulation Framework for the Veri-
fication of Multi-CPU systems”, IEEE transactions,
2008

18. F. Bouchhima, M. Brière, G. Nicolescu, M. Abid,
E. M. Aboulhamid, “A SystemC/Simulink Co-Simu-
lation Framework for Continuous/Discrete-Events
Simulation”, Behavioral Modeling and Simulation
Workshop, Proceedings of the 2006 IEEE Interna-
tional.

19. Primož Puhar, Andrej Žemva, “Hybrid functional
verification of a USB host controller”, Informacije
MIDEM – Journal of Microelectronics, Electronic
components and materials, Vol. 38, Iss. 2 (2008),
p94-102.

20. Xunying Zhang, Fei Hui, Qiang Wang, Xubang
Shen, “Integrated ISS and FPGA SoC HW/SW Co-
verification Environment Design”, 12th Interna-
tional Conference on Computer Supported Co-
operative Work in Design , 2008, p 1071-1075.

21. Mehrdad Reshadi, Nikil Dutt, “Hybrid-Compiled
Simulation: An Efficient Technique for Instruction-
Set Architecture Simulation”, ACM Transactions
on Embedded Computing Systems, Vol. 8, No. 3,
Article 20, April 2009.

22. Wei Qin, Joseph D’Errico, Xinping Zhu, “A Multi-
processing Approach to Accelerate Retargetable
and Portable Dynamic-compiled Instruction-set
Simulation”, The International Conference on
Hardware/Software Codesign and System Syn-
thesis, CODES+ISSS’06, 2006.

23. Carsten Gremzow, « Compiled Low-Level Virtual
Instruction Set Simulation and Profiling for Code
Partitioning and ASIP-Synthesis in Hardware/
Software Co-Design”, Proceedings of the 2007
Summer Computer Simulation Conference, SCSC
2007.

24. Hoeseok Yang, Youngmin Yi, Soonhoi Ha, “A Timed
HW/SW Coemulation Technique for Fast Yet Accu-
rate System Verification”, Proceedings of the 9th
international conference on Systems, architec-
tures, modeling and simulation,2009, Pages 74-
81.

25. Y.B. Liao, P. Li, A.W. Ruan, Y.W. Wang, W.C. Li, W. Li,
“Hierarchy Communication Channel in Transac-
tion-Level Hardware/Software Co-Emulation Sys-
tem”, Ninth International Workshop on Micropro-
cessor Test and Verification, 2008.

26. Franco Fummi, Giovanni Perbellini, Mirko Loghi,
Massimo Poncino, « ISS-Centric Modular HW/SW

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

172

Co-Simulation », Proceedings of the 2006 ACM
Great Lakes Symposium on VLSI GLSVLSI’06, April
30–May 2, 2006.

27. Luca Formaggio, Franco Fummi, Graziano Pra-
vadelli, « A TimingAccurate HW/SW Cosimulation
of an ISS with SystemC”, The International Confer-
ence on Hardware/Software Codesign and Sys-
tem Synthesis CODES+ISSS’04, September 8–10,
2004.

28. NIOS II Processor Reference. (2013) [Online]. Avail-
able: http://www.altera.com

29. ISP1362 Single-chip Universal Serial Bus On-The-
Go controller. (2013) [Online]. Available: http://
www.cs.columbia.edu

30. Franco Fummi, Mirko Loghi, Stefano Martini, Mar-
co Monguzzi, Giovanni Perbellini, Massimo Ponci-
no, «Virtual Hardware Prototyping through Timed
Hardware-Software Co-simulation », Proceedings
of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05), 2005.

31. J. Tratnik, P. Lemut, M. Vidmar, “Time-transfer
and synchronization equipment for high-perfor-
mance particle accelerators”, Informacije MIDEM
– Journal of Microelectronics, Electronic Compo-
nents and Materials, Vol 42, No 2 (2012), p115-
122.

Arrived: 22. 01. 2013
Accepted: 19. 08. 2013

M. B. Ayed et al; Informacije Midem, Vol. 43, No. 3(2013), 162 – 172

