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XML constraints are either schema constraints representing rules about document structure (e.g. a DTD,
an XML Schema definition or a specification in Relax-NG), or integrity constraints, which are rules about
the values contained in documents (e.g. primary keys, foreign keys, etc.).
We address the problem of incrementally verifying these constraints when documents are modified by
updates. The structure of an XML document is a tree, whose nodes are element (or attribute) names and
whose leaves are associated to values contained in the document. Considered updates are insertion, deletion
or replacement of any subtree in the XML tree. Schema constraints are represented by tree automata and
tree grammars. Key and foreign key constraints are represented by attribute grammars, adding semantic
rules to schema grammars, to carry key and foreign key values (to verify their properties).
Our incremental validation tests both schema and integrity constraints while treating the sequence of up-
dates, in only one pass over the document. Only nodes involved in updates trigger validation tests. An
analysis of complexity shows that worst cases are determined by the shape of the XML tree being pro-
cessed (asymptotic upper bounds are presented). Experimental results show that our algorithms behave
efficiently in practice.

Povzetek: Opisana je inkrementalna verifikacija podatkovnih baz XML.

1 Introduction

XML is now a standard for exchanging data and, by exten-
sion, for representing information. For reliable exchange
as well as for information system design, it is necessary to
define rules that data must conform to.

XML documents can be represented as unranked trees:
nodes are identified by a position and associated to a la-
bel, which is the name of an element or an attribute. Our
tree representation of an XML document is exemplified in
Fig.1. This figure shows the representation of part of an
XML document, which will be used in some of our exam-
ples. Notice that the data values in the XML document
appear as leaves of its tree representation.

XML documents can be constrained either by struc-
tural rules or semantic rules. Rules about the structure
of documents are called a schema: there are several for-
malisms to express these constraints, e.g. DTD, XML

Schema (XSD) [4] or Relax-NG [41]. It is a well known
fact that a schema can be represented by a tree grammar.
From this grammar, it is easy to derive a tree automa-
ton [20, 43]: the validation of the document wrt the schema
is the run of this tree automaton over the XML tree.

Integrity constraints impose restrictions to the values that
may appear in XML documents. Integrity constraints (e.g.,
primary and foreign keys) are devised to improve the se-
mantic expressiveness of XML, in the same way as their
counterpart in relational databases. In this paper we pro-
pose to represent integrity constraints by attribute gram-
mars [8, 40], adding semantic rules to schema grammars,
to carry key and foreign key values (to verify their proper-
ties).

We address the problem of incremental validation of
updates performed on a valid XML document (i.e., one
that respects a given set of constraints), represented by the
XML tree T . In our approach, update operations corre-
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spond to the insertion, the deletion and the replacement
of subtrees of T . They are results of a user request’s pre-
processing. A user can modify an XML document either by
using a text editor such as XmlSpy [1] or Stylus studio [46],
or by means of a program, written in an update language
such as XSLT [26] or UpdateX [47], which is embedded in
XQuery [16].

In the case of a text editor, different scenarios are pos-
sible: validity is tested while the user changes his docu-
ment (this method is cumbersome and not realistic since it
implies verification after each change) or validity tests are
explicitly activated (by the user) after the performance of
several changes. In the latter context, some updates can be
“subsumed” by others (e.g., the user can build or change a
part of the document and finally delete it). Thus, before ap-
plying an incremental validation method one should define
which updates are to be taken into account. To this end, one
can either use pre-processing over the set of changes per-
formed by the user or compute the difference between the
last verified version and the current (modified) one. In both
cases, the overhead caused by this pre-processing may be
greater than incremental validation profit, this is why most
of the existing XML editors apply a complete re-validation.

The use of a language to specify updates open different
possibilities of work. Considering the integration of such
an approach to a text editor framework, we may imagine
that an update language editor would be capable of spec-
ifying update positions and then our algorithms would di-
rectly apply. More generally, an update language allows
to specify updates such as, for example: increment by 10
percents all accounts of a given consumer. Thus, it allows
to manage XML documents from a database point of view.
To this end, update languages integrated in XQuery are the
most promising solutions. The W3C has edited a first pub-
lic working draft on XQuery Update Facility [22]: it recom-
mends that the evaluation of any expression produces either
a new XML document or a pending update list, which is a
set of update primitives. An update primitive has a target
node and consists in insertions, deletions or replacements
to be operated at this node (or just before, or just after or
just under this node, in case of insertions). The update list
can be held in wait until an operation (upd:applyUpdate)
is performed. An operation of validation (upd:revalidate)
must exist.

Update operations considered in this paper can be seen
as updates in such an update pending list.

Only updates that do not violate constraints are accepted.
Thus, before applying updates on a valid tree, we need to
test whether these updates do not violate the validity of the
tree. The goal of an incremental validation method is to
perform these tests without testing the entire tree, but just
the part of it which is concerned by the updates. In accor-
dance with the snapshot semantics [14, 47], document va-
lidity is assured just after considering the whole sequence
of updates. The snapshot semantics consists in delaying
update application to the end of query evaluation. In this

way, all updates always refer to the original document1.
In the following, we roughly explain how the incremen-

tal validation tests are performed. Let UpdateTable be the
sequence of updates to be performed on an XML tree T .
To visit T we proceed in a depth-first visit of the XML
document, triggering tests and actions according to the re-
quired updates (in UpdateTable). To simplify our expla-
nation, schema and integrity constraints are treated as sep-
arated sub-routines. A system that makes these routines
work together is a simple generalization of the one pre-
sented in this paper. The sub-routines can be summarized
as follows.
Schema constraint routine:
• When an update node is reached, the required update is
taken into account (considered as done). Nodes which are
descendant of update nodes are skipped i.e., they are not
treated.

• For each node p which is an ascendant of an update posi-
tion a validation step is activated when reaching the close
tag corresponding to p. A validation step at position p ver-
ifies whether p’s children (in the updated tree version) re-
spect schema constraints. For instance, if a sequence re-
quires updates on positions 0.1.2 and 0.3 of Fig. 1 then a
validation step is activated on nodes 0.1, 0 and ε.

• All other nodes (those that are not on the path between
the root and an update position) are skipped, i.e., no action
is triggered on them.

Integrity constraint routine:
• Similarly to the schema constraint routine, when an up-
date node is reached, the required update is taken into
account (considered as done). However, contrary to the
schema constraint routine, in the integrity constraint rou-
tine the removal of a subtree (rooted at an update position
p) triggers the subtree traversal for searching key and for-
eign key values involved in the update. For instance, con-
sider a key constraint on the document of Fig. 1 establish-
ing that in a collection, a recipe is uniquely identified by
its name and author. We assume that a deletion is required
at position 0.1. The deletion “treatment” is activated (in
order to find key values) when the open tag <recipe> is
reached. After the traversal of the subtree rooted at position
0.1, i.e., when reaching the close tag </recipe> a ver-
ification test is performed. This test consists in checking
whether the key value 〈Shrimp Soup, J.Fox〉 (involved
in the deletion) is referenced by a non deleted foreign key.
To perform this test the routine uses an auxiliary struc-
ture (called keyTree) created during the first key validation
(from scratch). During the tree traversal necessary to ana-
lyze an update sequence, some marks can be inserted into
the keyTree to indicate that the document is temporarily in-
valid. A subsequent update in the same transaction can re-
establish validity and remove the mark.

1The language XQuery! (“XQueryBang”) [33] extends XQuery 1.0
with compositional updates, offering user-level control over update appli-
cation. The user controls update semantics via an operator called “snap”
(for snapshot). However, it can also implements snapshot semantics.
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Figure 1: Tree representation of an XML document.

• When reaching the root, a final test verifies if any viola-
tion mark exists in keyTree (i.e., a constraint violation not
corrected until the end of the traversal).

• All other nodes are skipped. 2

XML trees are treated in the style of SAX [3], in order to
allow the treatment of much bigger XML documents [42]2.
This choice implies a complete XML tree traversal but it
avoids the use of an auxiliary structure for incrementally
verifying some kinds of schema constraints. It is worth
noting that, although our algorithm visits all nodes in the
XML tree, only some nodes trigger validation actions while
others are just “skipped” (i.e., no action is activated when
reaching them). The cost of skipping nodes is not rele-
vant when compared to the cost of validation actions. Thus,
in Sections 3.2 and 4.3 we consider the complexity of our
method only wrt the total number of validation actions that
should be performed.

The algorithms presented in this paper have been imple-
mented in Java, and experimental results demonstrate ad-
vantages of the incremental schema verification over the
verification from scratch, for multiple updates over large
XML documents. Experimental results obtained with our
key and foreign key validation routines are also good, de-
spite their theoretical complexity: curves grow almost lin-
early with the size of the processed document. Tests for
the incremental key verification programs give even better
results than those for the verification from scratch.

The main contribution of this paper is the integration of
incremental schema, key and foreign key validation, while
dealing with multiple updates. It extends our previous
work [7, 17, 18] not only in this aspect but also in the use
of attribute grammars to deal with integrity constraint veri-
fication.

2It is also possible to consider our routines in a DOM context. In this
case space requirements are bigger, but time complexity can be smaller.

By dealing with unranked trees, usually much shorter
than the binary ones, the complexity of our incremental
schema validation method happens to be similar to the one
proposed in [11, 45]. However, contrary to [11, 45], our
update operations can be applied at any node of the XML
tree and auxiliary structures are not necessary when using
DTD and XSD. In terms of key validation, our proposition
is close to [23], but contrary to them, we treat foreign keys
and multiple updates. Moreover, our routines for schema
validation and integrity constraint verification can work si-
multaneously.

This paper is organized as follows. Section 2 introduces
some necessary concepts. In Section 3 we consider the
validation wrt schema constraints while in Section 4 we
present our validation method wrt key and foreign key con-
straints. In section 5 we conclude and discuss some per-
spectives.

2 Background

An XML document is an unranked labeled tree where: (i)
the XML outermost element is the tree root and (ii) every
XML element has its sub-elements and attributes as chil-
dren. Elements and attributes associated with arbitrary text
have a data child. Fig. 1 shows an XML tree.

To define our trees formally, let U be the set of all finite
strings of positive integers (which usually we separate by
dots) with the empty string ε as the identity. The prefix
relation in U , denoted by ¹ is defined by: u ¹ v iff u.w =
v for some w ∈ U .

Now, if Σ is an alphabet then a Σ-valued tree T (or just
a tree) is a mapping T : dom(T ) → Σ, where dom(T )
is a tree domain. A finite subset dom(T ) ⊆ U is a (fi-
nite) tree domain if: (1) u ¹ v, v ∈ dom(T ) implies
u ∈ dom(T ) and (2) j ≥ 0, u.j ∈ dom(T ), 0 ≤ i ≤
j ⇒ u.i ∈ dom(T ).
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Each tree domain may be regarded as an unlabeled tree,
i.e., a set of tree positions. We write T (p) = a for p ∈
dom(T ) to indicate that the symbol a is the label in Σ as-
sociated with the node at position p. For XML trees, Σ is
composed by element and attribute labels together with the
label data. We consider the existence of a function value
that returns the value associated with a given data node.

Let T be an XML tree, valid wrt some integrity and
schema constraints, and consider updates on it. We assume
three update operations (insert, delete and replace) whose
goal is to perform changes on XML trees. Fig. 2 illustrates
the individual effect of each update operation over T .

In this paper we are interested in multiple updates, i.e.,
we suppose an input file containing a sequence of update
operations that we want to apply over an XML tree The
effective application of this sequence of updates depends
on its capability of preserving document validity. In other
words, a valid XML tree is updated (according to a given
update sequence) only if its updated version remains valid.
The acceptance of updates relies on incremental validation,
i.e., only the validity of the part of the original document
directly affected by the updates is checked.

A sequence of updates is treated as one unique transac-
tion, i.e., we assure validity just after considering the whole
sequence of updates - and not after each update of the se-
quence, independently. In other words, as a valid docu-
ment is transformed by using a sequence of primitive oper-
ations, the document can be temporarily invalid but in the
end validity is restored. This extends our previous work in
[7, 17, 18] and follows the ideas in [14, 47].

Let UpdateTable be the relation that contains updates to
be performed on an XML tree. Each tuple in UpdateTable
contains the information concerning the update position p
and the update operation op. In this paper we assume that
UpdateTable is the result of a pre-processing over a set of
updates required by a user. In the resulting UpdateTable
the following properties hold:
P1 - An update position in an UpdateTable always refers
to the original tree. Consider for instance the tree of Fig. 1.
In an UpdateTable an insertion operation refers to position
0.3 even if a deletion at position 0.1 precedes it.
P2 -An update on a position p excludes updates on descen-
dants of p. In other words, there are not in UpdateTable
two update positions p and p′ such that p ¹ p′.
P3 - UpdateTable then one of the operations involving p
can be replace or delete, but all others are insert.
P4 - Updates in an UpdateTable are ordered by position,
according to the document order.

3 Schema verification

A tree automaton can be built from a schema specified us-
ing schema languages such as DTD, XSD or RELAX NG.
In our approach, we use a bottom-up unranked tree automa-
ton capable of dealing with both (unordered) attributes and
(ordered) elements in XML trees [17].

Definition 1 - Non-deterministic bottom-up finite tree
automaton: A tree automaton over Σ is a tuple A =
(Q, Σ, Qf , ∆) where Q is a set of states, Qf ⊆ Q is a
set of final states and ∆ is a set of transition rules of the
form a, S, E → q where (i) a ∈ Σ; (ii) S is a pair of dis-
joint sets of states, i.e., S = (Scompulsory, Soptional) (with
Scompulsory ⊆ Q and Soptional ⊆ Q); (iii) E is a regular
expression over Q and (iv) q ∈ Q. 2

The tree automatonA obtained from a schema specifica-
tion D may have different characteristics according to the
schema language used for D. These characteristics, dis-
cussed below, match the taxonomy of regular tree gram-
mars introduced in [42].

LetA = (Q, Σ, Qf , ∆) be a tree automaton. Two differ-
ent states q1 and q2 in Q are competing if ∆ contains dif-
ferent transition rules (a, S1, E1 → q1 and a, S2, E2 → q2)
which share the same label a. Notice that we assume that
no two transition rules have the same state in the right-hand
side and the same label in the left-hand side, since two rules
of this kind can be written as a single one. A regular ex-
pression E in a transition rule restrains competition of two
competing states q1 and q2 if for any sequence of states αU ,
αV , and αW , either αUq1αV or αUq2αW fails to match E.

Based on the concepts of competing states and
competition-restrictive regular expressions, regular tree
languages are classified as follows:
C1− Regular tree languages (RTL): A regular tree lan-
guage is a language accepted by any tree automaton spec-
ified by Definition 1. The automaton obtained from a spe-
cialized DTD recognizes languages in this class.
C2− Local tree languages (LTL): A local tree language is
a regular tree language accepted by a tree automaton that
does not have competing states. This means that, in this
case, each label is associated to only one transition rule.
The automaton obtained from a DTD recognizes languages
in this class.
C3− Single-type tree languages (STTL): A single-type
tree language is a regular tree language accepted by a tree
automaton having the following characteristics: (i) For
each transition rule, the states in its regular expression do
not compete with each other and (ii) the set Qf is a sin-
gleton. The combination of these two characteristics im-
plies that although it is possible to have competing states,
the result of a successful3 execution of such an automaton
can consider just a single type (state) for each node of the
tree. The automaton obtained from a schema written in
XSD recognizes languages in this class.
C4− Restrained-competition tree languages (RCTL): A
restrained-competition tree language is a regular tree lan-
guage accepted by a tree automaton having the following
characteristics: (i) For each transition rule, its regular ex-
pression restraints competition of states and (ii) the set Qf

is a singleton. No schema language proposed for XML is
classified as a RCTL.

3See below the definition of the run of a tree automaton over a tree.
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Figure 2: Update operations over a tree T . (i) Insertion at a frontier position. (ii) Insertion at a position of dom(T ).
Right siblings are shifted right. (iii) Deletion. Right siblings are shifted left. (iv) Replace.

Notice that, as shown in [42], the expressiveness of the
above classes of languages can be expressed by the hierar-
chy LTL⊂ STTL⊂ RCTL⊂ RTL (where L1 ⊂ L2 means
that L2 is strictly more expressive than L1).

Example 1 Let A = (Q, Σ, Qf , ∆) be a tree automaton where
Qf = {qC}. Consider the following transition rules with qA1 and
qA2 as competing states. Assume that states q1, q2 and q3 are de-
fined by simple transition rules that do not introduce competition
and do not have regular expressions involving qA1 and qA2.

(1) a, (∅, ∅), q1q2? → qA1

(2) a, (∅, ∅), q1q3? → qA2

(3) b, (∅, ∅), (qA1 | qA2)
∗ → qB

(3′) b, (∅, ∅), (qA1)
∗ → qB

(4) c, (∅, ∅), (qB)∗ → qC

In this context, consider different sets ∆ containing subsets of
the above rules: Firstly, consider a set ∆ with rules (1), (2), (3)
and (4). The language recognized by A is a RTL which is not a
STTL. Secondly, assume that ∆ contains rules (1), (2), (3′) and
(4). Then the language recognized by A is a STTL which is not
a LTL. Finally, assume ∆ has no competing states (e.g., from the
above rules, only rules (1), (3′) and (4) are in ∆). In this case,
the language recognized by A is a LTL. 2

The execution of a tree automaton A over an XML tree
corresponds to the validation of the XML document wrt
to the schema constraints represented by A. In its general
form, a run r of A over an XML tree T is a tree such that:
(i) dom(r) = dom(T ) and (ii) each position p is assigned
a set of states Qp. The assignment r(p) = Qp is done by
verifying whether the attribute and element constraints im-
posed to p’s children are respected. The setQp is composed
by all the states q such that:

1. There exists a transition rule
a, (Scompulsory, Soptional), E → q in A.

2. T (p) = a.

3. Scompulsory ⊆ Qatt and Qatt\Scompulsory ⊆
Soptional where Qatt is the set containing the states
associated to each attribute child of p.

4. There is a word w = q1, . . . , qn in L(E) such that
q1 ∈ Q1, . . . , qn ∈ Qn, where Q1 . . .Qn are the set
of states associated to each element child of p.

A run r is successful if r(ε) is a set containing at least
one final state. A tree T is valid if a successful run exists
on it. A tree is locally valid if the set r(ε) contains only
states that belong to A but that are not final states. This
notion is very useful in an update context [17].

Restricted forms of schema languages permit simplified
versions of run. For instance, in a run of a tree automa-
ton for (simple) DTD, the sets Qp are always singleton.
This situation considerably simplifies the implementation
of item (4) above [17]. Moreover, implementations can
be enhanced by considering the fact that XML documents
should be read sequentially to be validated. While read-
ing an XML document, we can store information useful to
avoid the possible ambiguity of state assignment, expressed
by the transition rules. For instance, in the implementation
of the run of a tree automaton for XSD, each tree node can
always be associated to one single state. This state is ob-
tained by intersecting a set of “expected” states (computed
during the sequential reading of the document so far) and
the set of states obtained by the bottom-up application of
the rules of the automaton (Proposition 1).

3.1 Incremental schema verification
Given a tree T and a sequence of updates over T , the incre-
mental validation problem consists in checking whether the
updated tree complies with the schema, by validating only
the part of the tree involved by the updates. We propose a
method to perform the incremental validation of an XML
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tree T by triggering a local validation method only on po-
sitions that are a prefix of an update position p (including
both the root position ε and p itself).

Remark: When considering the most general classes of
schema languages, during an incremental validation, we
need to know which states were assigned by a previous val-
idation to each node of the tree being updated. A data struc-
ture containing the result of the run over the original doc-
ument should be kept. However, schema verification for
languages in STTL (i.e., XSD) and LTL (i.e., DTD), does
not impose the need for auxiliary, permanent data struc-
tures [42]. 2
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Figure 3: XML tree and update operations.

The following example illustrates our method in an intu-
itive way.

Example 2 Consider the XML tree of Fig. 3, where update
positions are marked. Bold arcs represent the necessary tree
transversal for our method, to check the validity of the updates
we want to perform.

Let us suppose that there is a tree automaton A, representing
the schema to be verified. We also suppose that the original tree
(Fig. 3) is valid w.r.t. A, and that the subtrees being inserted are
locally valid w.r.t. A. It is interesting to remark that:

• When the open tag <d> (at position 0.1) is reached, the dele-
tion operation is taken into account and the subtree rooted at this
position is skipped. To verify whether this deletion can be ac-
cepted, we should consider the transition rules in A associated to
the parent of the update position. This test is performed when the
close tag </a> (position 0) is found. Notice that to perform this
test we need to know the state assigned to position 0.0, but we do
not need to go below this position (those nodes, when they exist,
are skipped).
• When the second open tag <a> (position 1) is reached, the
insertion operation is taken into account and the new, locally valid
subtree, t1 (rooted at this position) is inserted. This implies that if
all the updates are accepted, right-hand side siblings of position 1
are shifted to the right. We proceed by reading nodes at (original)
positions 1 and 2. Notice that we can skip all nodes below position
2, since there is no update position below this point.
• The replace operation at position 3 combines the effects of a
deletion and an insertion.
• The close tag </root> activates a validity test that takes into
account the root’s children. This test follows the definition of the
run of the tree automaton. 2

The implementation of this approach is done by Algo-
rithm 1. This algorithm takes a tree automaton representing

the schema, an XML document and a sequence of updates
to be performed on the document. The algorithm checks
whether the updates should be accepted or not. It proceeds
by treating the XML tree in document order. During the
execution, the path from the root to the current position
p defines a borderline between nodes already treated and
those not already considered.

Our algorithm keeps two structures in order to perform
the validation. The first one stores the states allowed at
the current position by the tree automaton. The second one
contains, for each position p′ on the borderline path, the
states really assigned to the left-hand side children of p′.
In the following, we formally define these structures.

Definition 2 - Permissible states for children of a posi-
tion p: Let PSC(p) be inductively defined on positions p as
follows:

PSC(ε) = {q | ∃ a, S,E → qa ∈ ∆
such that t(ε) = a, q is a state
appearing in E and qa ∈ Qf}

PSC(pi) = {q | ∃ a, S,E → qa ∈ ∆
such that t(pi) = a, q is a state
appearing in E and qa ∈ PSC (p)} 2

Roughly speaking, for each position pi (labeled a, child
of node p), the set PSC (pi) contains the states that can
be associated to pi’s children. To this end, we find those
states appearing in the regular expression E, for each rule
associated to the label a. Notice however that we consider
only transition rules that can be applied at the current node,
according to the label of pi’s father (i.e., only those rules
having a head that belongs to the set of states PSC (p)).
For instance, suppose two rules a, S1, E1 → qa1 and
a, S2, E2 → qa2. Consider now that an element struct1
has a child that should conform to rule a, S1, E1 → qa1

while an element struct2 has a child that should conform
to rule a, S2, E2 → qa2. When computing the state associ-
ated to an element labeled a that is a child of struct1, state
qa2 is not considered. This is possible because PSC (p) for
the element being treated contains just qa1.

The following definition shows how each position p is
associated to a list composed by the set of states assigned
by the tree automaton to p’s children. This list is built tak-
ing into account the updates to be performed on the XML
document.

Definition 3 - State attribution for the children of a posi-
tion p: Given a position p, the list SAC(p) is composed
by the sets of states associated (by the schema verifica-
tion process) to the children of position p, i.e., SAC (p) =
[Qatt,Q1, . . . ,Qn], where each set Qi, for 1 ≤ i ≤ n is
calculated as described in Fig. 4. Moreover, the set Qatt

contains the states associated to p’s children that are at-
tributes. The set Φ contains the states associated to the
root of the subtree being inserted at position p, i.e., the re-
sult of a successful local validation. 2
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Qi =





{ } If pi is a delete position
Φ ∩ PSC (p) If pi is an insert or a replace position
{q | q ∈ PSC (p), t(pi) = a, there is a rule a, S, E → q}

If pi has no descendant update positions
{q | there is a rule a, (Scompulsory, Soptional), E → q, such that

t(pi) = a, for Qatt of SAC (pi) we have Scompulsory ⊆ Qatt

and Qatt \ Scompulsory ⊆ Soptional and L(E) ∩ L(SAC (pi)) 6= ∅ }
If pi is an ascendant of an update position

Figure 4: Calculation of the sets Qi.

The construction of each set Qi in the list SAC (p) de-
pends on the situation of p wrt the update positions. When
pi is an update position the set Qi takes into account the
type of the update. If pi is an ancestor of an update posi-
tion then it represents a position where a validity test may
be necessary. In this case, Qi is the set of states associ-
ated to pi when the validation at this position succeeds. If
there is no update over a descendant of pi, then Qi con-
tains all possible states for pi. Now we present Algorithm 1
that is responsible for the construction of both PSC (p) and
SAC (p), for each position p.

Algorithm 1 - Incremental Validation of Multiple Updates
Input:
(i) doc: An XML document
(ii) A = (Q, Σ, Qf , ∆): A tree automaton
(iii) UpdateTable: A relation that contains updates to be per-
formed on doc.
Each tuple in UpdateTable has the form 〈pos, op, Tpos, Φ〉
where pos is an update position (considering the tree represen-
tation of doc), op is an update operation, Tpos is the subtree to
be inserted at pos (when op is an insertion or a replace operation)
and Φ is the set of states associated to the root of Tpos by the exe-
cution of A over Tpos (i.e., the result of the local validation). All
inserted subtrees are considered to be locally valid.
Output: If the XML document remains valid after all operations
in UpdateTable the algorithm returns the Boolean value true,
otherwise false.

(1) for each event v in the document
(2) skip:= false;
(3) switch v do
(4) case start of element a at position p:
(5) if a 6=“<root>”{
(6) if ∃ u = (p, delete, Tp, Φ) ∈ UpdateTable

then skip:= true;
(7) if ∃ u = (p, replace, Tp, Φ) ∈ UpdateTable

then {
(8) Compute Qp (Definition 3);
(9) if (Qp = ∅) then report “invalid” and halt;
(10) SAC (father(p)) = SAC (father(p))@Qp;

//Append Qp to SAC (father(p))
(11) skip:= true;
(12) }
(13) for each u = (p, insert, Tp, Φ) ∈ UpdateTable

do {
(14) Compute Qp (Definition 3);
(15) if (Qp = ∅) then report “invalid” and halt;
(16) SAC (father(p)) = SAC (father(p))@Qp;
(17) }

(18) if 6 ∃u′ = (p′, op′, T ′, Φ′) ∈ UpdateTable
such that p ≺ p′ {
//If there is no update over a descendant of p

(19) Compute Qp (Definition 3);
(20) SAC (father(p)) = SAC (father(p))@Qp;
(21) skip:= true;
(22) }
(23) }
(24) if a =“<root>” or ¬skip then {

//If p is an ascendant of an update position
(25) Compute PSC (p) (Definition 2);
(26) SAC (p) = SAC (p)@Qatt;

//Starting the construction of the list SAC (p)
(27) }
(28) if skip then skipSubTree(doc, a, p);
(29) case end of element a at position p:
(30) foreach u = (p.i, insrt, Tp.i, Φ) ∈ UpdateTable

where p.i is a frontier position do {
(31) Compute Qp.i (Definition 3);
(32) if (Qp.i = ∅) then report “invalid” and halt;
(33) SAC (p) = SAC (p)@Qp.i;
(34) }
(35) Compute Qp (Definition 3);
(36) if (Qp = ∅) then report “invalid” and halt;
(37) if a 6=“</root>”

then SAC (father(p)) = SAC (father(p))@Qp;
(38) report “valid” 2

Algorithm 1 processes the XML document as it is done
by SAX [3]. While reading the XML document, the algo-
rithm uses the information in UpdateTable to decide which
nodes should be treated. When arriving to an open tag rep-
resenting a position p concerned by an update, different ac-
tions are performed according to the update operation:

delete: The subtree rooted at p is skipped. This subtree
will not appear in the result and thus should not be consid-
ered in the validation process (line 6).

replace: The subtree rooted at p is changed to a new one
(indicated by Tp in the UpdateTable). The set of states
Qp indicates whether the locally valid subtree Tp is al-
lowed at this position. The set Qp is appended to the list
SAC (father(p)) to form the list that should contain the
states associated to each sibling of p. The (original) sub-
tree rooted at p is skipped (lines 7-12).

insert: The validation process is similar to the previous
case for each insertion at p (lines 13-17), but the (original)
subtree rooted at p is not skipped since it will appear in the
updated document on the right of the inserted subtrees.
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When we are in a position p (labeled a) where there
is no update over a descendant (lines 18-22) we can skip
the subtree rooted at p. The list SAC (father(p)) is ap-
pended with the set {q | there is a rule a, S, E → q in
∆ such that q ∈ PSC (father(p)) and T (p) = a}. In
other words, in SAC (father(p)), the set Qp contains the
permissible states for the child at position p. We use skip-
SubTree (line 28) to “skip nodes” until reaching a position
important for the incremental validation process. Notice
that when such a position is reached, skipSubTree changes
the value of the variable skip accordingly.

When reaching an open tag representing a position p
that is an ascendant of an update position, the structures
PSC (p) and SAC (p) should be initialized (lines 24-27) .
The set PSC (p) contains the states that can be associated
to the children of the element at position p (labeled a). To
this end, we find the states appearing in the regular expres-
sion E of rules associated to label a. Only rules that can
apply to the current element are considered, i.e., only those
having a head that belongs to PSC (father(p)) (see Defi-
nition 2).

When reaching a close tag representing a position p we
verify firstly if there is an insert operation on the frontier
position (i.e., on a position pi 6∈ dom(T ) such that p ∈
dom(T )). In this case, the insertion is performed (lines 30-
34) .

Next (lines 35-37), we should test whether the p’s chil-
dren respect the schema. In fact, reaching a (not skipped)
close tag (representing position p), means that updates were
performed over p’s descendants.

Schema constraints for the current node p (labeled a)
are verified by taking into account the list SAC (p) (i.e.,
[Qatt,Q1, . . . ,Qn]) which, at this point, is completely
built. Recall that the set Qatt contains the states associated
to the attributes of p while the sets Q1, . . . ,Qn contain the
states associated to each element child of p (in the docu-
ment order). In fact, at this point of the algorithm, our goal
is to find the set Qp to be appended to SAC (father(p)).
This computation corresponds to the last case of Defini-
tion 3.

More precisely, we consider the language L(SAC (p))
which is defined by the regular expression (q0

1 | q1
1 |

. . . | qk1
1 ) . . . (q0

n | q1
n | . . . | qkm

n ) where each ki =
|Qi| and each qj

i ∈ Qi (with 1 ≤ i ≤ n). The
resulting set of states Qp is composed by all states q
for which we can find transition rules in ∆ of the form
a, (Scompulsory, Soptional), E → q, that respect all the fol-
lowing properties: (1) q is a state in PSC (father(p)); (2)
Scompulsory ⊆ Qatt; (3) Qatt \ Scompulsory ⊆ Soptional

and (4) L(E) ∩ L(SAC (p)) 6= ∅.
Notice that Algorithm 1 considers all the updates over

the children of a node p before performing the validity test
on p.

Example 3 Let A = (Q, Σ, Qf , ∆) be a tree automaton where
Qf = {qr}. The set ∆ contains all the transition rules below to-
gether with rules data, (∅, ∅), ε → qdata, and α, (∅, ∅), qdata →

d b

c

d

m n

b

c

a a{q1}

{q} {qd}

{qc}

{q2}

{qd}{q′}

{qn}

{qm}
{qc}

x
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{q4}

???
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r

{q3}

{qr}

ε

0

0.0
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0.0.0.0 0.0.0.1 0.0.0.2

Figure 5: XML tree and its running tree: (a) before updates
(b) after insertions.

qα (for α ∈ {c, d, m, n}).

(1)r, (∅, ∅), q3 | q4.qc → qr (2)x, (∅, ∅), q2 → q4

(3)x, (∅, ∅), q1 → q3 (4)a, (∅, ∅), q.q∗d → q1

(5)a, (∅, ∅), q′.q∗d → q2 (6)b, (∅, ∅), qc → q

(7)b, (∅, ∅), qc.qm.qn → q′

Fig. 5(a) shows a valid XML tree wrt the schema constraints ex-
pressed by A. Fig. 5(b) shows the tree we shall obtain after two
insertions on the frontier position 0.0.0.1. In both cases, the result
of the running is showed by the set of states associated to each po-
sition. Notice that the two insertions on 0.0.0.1 generate changes
not only on the set of states associated to its father (0.0.0) but also
on the sets of states associated its ancestors. Note that even the
set of states associated to the root changes and the tree is not valid
anymore! This example illustrates why, when dealing with non
LTL , the validator tests the ancestors of the update position (and
not just its parent). We propose an algorithm that performs tests
until reaching the root, but optimizations are possible: one should
perform tests until reaching a node whose associated set of states
does not need to be changed.

To illustrate the execution of Algorithm 1, consider, in the table
below, the situation of structures PSC () and SAC () at some spe-
cific instants, during the incremental validation process that take
into account the updates illustrated by Fig. 5(b).

Position Situation Situation Situation
of PSC () of SAC () of SAC ()
when we when we when we
reach <b> reach </b> reach <d>

0.0.0 {qc, qm, qn} [{qc}, {qm}, {qn}]
0.0 {q, q′, qd} [ ] [{q′}]
0 {q1, q2} [ ] [ ]
ε {q3, q4, qc} [ ] [ ]

According to Definition 2, when <b> is reached, states
qc, qm, qn are put in PSC (0.0.0) since they appear in rules (6)
and (7) (which have label b and whose right-hand side are in
PSC (0.0)).

When we reach </b> the list SAC (0.0.0) is complete since
it now contains the set of states assigned to all the children of
position 0.0.0. Notice that SAC (0.0) is an empty list since we
still do not know the states that are effectively associated to its
children. As </b> is found, SAC (0.0.0) is popped and the state
associated to the leftmost child of position 0.0 can be computed.
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Indeed, when we reach <d>, the list SAC (0.0) is not empty any-
more - it contains the set of the states we effectively associate to
position 0.0.0 (chosen among those in PSC (0.0) and taking into
account the transition rules that apply). 2

Our algorithm is general, however, as shown in the fol-
lowing proposition, for the case of single-type tree lan-
guages, SAC (p) (for each position p) is a list of singleton
sets. In this case, the operation L(E) ∩L(SAC (p)) 6= ∅ is
reduced to the verification of a word to belong to a regular
language.

Proposition 1 Given a schema defining languages in
STTL, for each position p in Algorithm 1, we have that the
set of states assigned to element children that are not delete
positions is always a singleton set, that is:
If SAC (p) = [Qatt,Q1, . . . ,Qn] then | Qi |= 1, for all
1 ≤ i ≤ n. 2

PROOF: By cases, on the definition of each Qi:
If pi is an insert or a replace position. In this case, we have
Qi = Φ ∩ PSC (p). If we suppose that {q1, q2} ⊆ Qi, then
(i) Both states q1 and q2 are in competition (since they belong
to Φ) and (ii) they belong to the same regular expression in a
transition rule (since they belong to PSC (p)). The conjunction
of the two conditions above contradicts the definition of a single-
typed language, to which the schema belongs.
If pi has no descendant update positions. In this case the set
Qi = {q | q ∈ PSC (p), T (pi) = a, there is a rule a, S, E →
q}.
If we suppose that {q1, q2} ⊆ Qi, then, by the definition of Qi,
the states q1 and q2 compete to each other (since there is only
one label associated to the position pi of the tree), leading to a
contradiction.
If pi is an ascendant of an update position. In this case the
set Qi is also defined as being composed by states which are in
the right-hand side of a rule for a given label a. The existence
of more than one state in this set contradicts the definition of a
single-typed language, to which the schema belongs. 2

Proposition 1 allows us to define a simplification on Al-
gorithm 1, to use single states instead of sets of states, in
such a way that, for these classes of tree languages, we can
represent SAC (p) = [Qatt,Q1, . . . ,Qn] as a set of states
Qatt and a word of states.

Notice that while performing validation tests, a new up-
dated XML tree is being built (as a modified copy of the
original one). If the incremental validation succeeds, a
commit is performed and this updated version is estab-
lished as our current version. Otherwise, the commit is
not performed and the original XML document stays as
our current version. The next section considers the imple-
mentation of our method, comparing it to a validation from
scratch.

3.2 Complexity and experimental results

As said in Section 1, the complexity of our method is pre-
sented taking into account that the cost of “skipping” nodes

is not relevant when compared to the cost of validation ac-
tions. In this context, notice that in Algorithm 1, valida-
tion steps are performed only for those nodes p ∈ dom(T )
which are ascendants of update positions.

Let E be the regular expression defining the structure of
p’s children. When a DTD or XSD schema is used, each
validation step corresponds to checking whether a word w
is in L(E). The word w is the concatenation of the states
associated to p’s children. Thus, for DTD or XSD schema
each validation step is O(|w|).

When a specialized DTD schema is used, each valida-
tion step corresponds to checking if there is a word w =
qi, . . . , qn in L(E) such that qi ∈ Qi, . . . , qn ∈ Qn (see the
definition of a run, in Section 3). In other words, we should
test if L(Eaux)∩L(E) 6= ∅, where Eaux is the regular ex-
pression representing all the words we can build from the
concatenation of the states associated to p’s children, i.e.,
Eaux = (q0

1 | q1
1 | . . . | qk1

1 ) . . . (q0
n | q1

n | . . . | qkn
n ). This

test is done by the intersection of the two automata MEaux

and ME . The solution of this problem runs in time O(n2)
where n is the size of the automata [35, 36].

Thus, if we assume that n is the maximum number of
children of a node (fan out) in an XML tree T , then a val-
idation step runs in time O(n) (for DTD or XML schema)
or in time O(n2) (for specialized DTD).

Let m be the number of updates to be performed on a
tree t (of depth h). Given an update position p, in the
worst-case, a validation step should be performed for each
node on the path between p and the root. For a worst-case
analysis, we can also consider that all m updates are per-
formed on the leaves. We also suppose that all the paths
from nodes p to the root are disjoint. In this case, the com-
plexity of our algorithm can be stated as O(m.n.h) (DTD
or XML Schema) or O(m.n2.h) (when specialized DTD is
considered).

Notice that, in a general XML setting, updates can hap-
pen at any level of the tree (so that the limit imposed by h
is seldom reached). Moreover, when dealing with multiple
updates, part of the paths between the update nodes and the
root are common to two or more of these updates. In this
case, only one validation action is performed for the shared
nodes.

The worst-case of our algorithm is reached for a very un-
usual configuration of the tree being processed (the config-
uration maximizing the product n.h). In this configuration,
one half of the nodes are leafs, children of the root, while
the others form a list (pending from the root).

Other singular configurations are:

• A flat tree, where all the nodes (except the root) are
leaves, and children of the root node. In this case, the
depth of the tree is one and the complexity expressions are
reduced to O(m.n) (DTD or XML Schema) or O(m.n2)
(specialized DTD).

• A list, where there is exactly one leaf node and the
maximum fan-out of the tree nodes is one. In this case,
both complexity expressions are reduced to O(m.h) (DTD,
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XML Schema or specialized DTD).

• If we consider an n-ranked, balanced tree t, its depth
is given by h = logn |t|, where |t| is the size of the
tree. In this case, the complexity expressions are re-
duced to O(m.n. logn |t|) (DTD or XML Schema) or
O(m.n2. logn |t|) (specialized DTD).

Notice that when dealing with a DTD, we just need to
verify whether the state associated to the father of an up-
date position changes (see [17]). This is easily done by us-
ing transition rules. Thus, for multiple updates with DTD,
we just need to perform verifications until reaching the fa-
ther of the update position which is the nearest to the root.
Example 3 illustrates that this optimization cannot be ap-
plied to non-LTL schemas.

Experimental results (Table 1) show that our incremental
algorithm behaves very efficiently in practice. In order to
compare these approaches we use ten XML documents of
different sizes (from 3, 000 to 61, 000, 000 nodes). These
documents are in the STTL class of languages and describe
different car suppliers. They are valid wrt an XSD whose
principal schema constraints are expressed by the following
transition rules:

supplier, (∅, ∅), q+
shopq∗garage → qsupplier

shop, (∅, ∅), q∗newV eh → qshop

garage, (∅, ∅), q+
oldV eh → qgarage

vehicle, ({id}, {type}), qnameqcvqcat? → qnewV eh

vehicle, ({id}, ∅), qnameqcvqkm? → qoldV eh

Given an XML document, we consider a sequence of 50
updates over it. Our implementation is just a prototype in
Java. Experiments were performed on a 1.5 GHz Pentium
M system with 512MB of memory and a 40GB, 5400rpm
hard drive.

Table 1 and Fig. 6 show the superiority of Xerces [2]
when only validation from scratch is considered. This is
a natural result when comparing a prototype with a com-
mercial product. However, when we compare our incre-
mental validation method (Algorithm 1) to a validation
from scratch approach Table 1 and Fig. 7 show that our
incremental validation method is very efficient for large
documents4. Indeed, it takes almost a third of the time
needed for Xerces to validate 50 updates on a document
having 61, 000, 000 nodes. Similarly, it takes about half of
the time needed for Xerces to validate documents having
10, 000, 000 nodes.

A sufficient condition for commutative update lists is
given in [34]. In this paper, our UpdateTable respects this
condition and thus, single updates can be performed in any
order, without changing the result of the global update on
the XML tree. However, as our validation process is done
by using SAX, a left-right computation of updates is more
efficient than one that considers tree nodes at random. If
we do not care about loading all the XML file, a bottom up
computation might be proposed, since all update positions

4For small documents, the number of updates represents changes over
a high percentage of the document. In this case, incremental validation
cost is close to our validation from scratch cost and thus it is worse than
Xerces, a commercial product.
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Figure 6: Comparing validation from scratch performed by
Xerces and our prototype.
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Figure 7: Xerces (validation from scratch) × Our incre-
mental validation method.

activate validation verification on their ancestor nodes. In-
deed, schema validation performance depends on the depth
of update nodes as discussed before.

3.3 Related work

The importance of algorithms for the efficient validation of
XML documents grows together with the use of schema
languages. Algorithms for the incremental validation are
very useful when dealing with very large XML documents,
since they can substantially reduce the amount of time of
the verification process. Several XML document editors
such as XML Mind [5] and XMLSpy [1] include features
for the validation of documents (wrt one or more schema
languages). However, the documentation of most of these
tools include little or no information on their validation al-
gorithms.

In [42] validation algorithms are presented but incremen-
tal validation is not considered. One of the most referenced
work dealing with incremental validation of XML docu-
ments wrt schema constraint is [11, 45]. In those papers
incremental validation methods wrt DTD, XSD and spe-
cialized DTDs are presented. Their approach is based on
word automata, built from schema descriptions. The words
considered are lines (i.e., paths) computed from a binary
version of the document tree. Not only the binary version
of the document tree is stored as auxiliary data, but also
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Document characteristics Existing product Our method
Attributes Attributes + Elements Xerces (ms) From scratch (ms) Incremental (ms)

700 3K 451 683 658 ( 50 updates)
6.5K 25K 727 814 773 ( 50 updates)
13K 50K 929 1 156 991 ( 50 updates)
52K 200K 1 509 2 435 1 520 ( 50 updates)

170K 600K 3 095 6 357 2 258 ( 50 updates)
500K 1.7M 7 855 18 100 4 526 ( 50 updates)
1.5M 5.2M 22 208 53 625 11 160 ( 50 updates)
2.4M 10.5M 45 065 107 195 23 200 ( 50 updates)
6M 21M 88 270 214 280 37 883 ( 50 updates)
18M 61.5M 186 144 532 505 66 009 ( 50 updates)

Table 1: Experimental results.

trees of transition relations, one for each line, representing
the potentially legal evolutions of the line. This is impor-
tant to notice because this is the reason why the method can
hardly generalize to updates on whole subtrees: such an up-
date would require to compute again ALL auxiliary data,
i.e., (i) the binary tree, (ii) the set of lines and (iii) trees of
transition relations. Indeed, the method is applied only for
updates on nodes: insertion or deletion of leaves, and re-
naming of one node. In [11, 45], they propose two main in-
cremental algorithms to validate a number m of updates on
the leaves of a given tree T . The first algorithm, for DTD
and XSD, has time complexity O(m.log|T |), and uses an
auxiliary structure of size O(|T |). The second algorithm,
for specialized DTDs, has time complexity O(m.log2|T |)
and also uses an auxiliary structure of size O(|T |).

Our approach deals with multiple updates and incremen-
tal validation over an unranked tree. As we have already
said, our algorithm visits all the nodes of an XML tree but
only some nodes trigger the validation actions that repre-
sent the relevant cost of the approach. Thus, we can say that
our time complexity is similar to the one found in [11, 45].
For updates on leaves and for node renaming, their method
may be more efficient than ours because the use of trees of
transition relations is quite efficient for incremental word
verification. However these updates are very special ones:
for more general updates, as considered in our paper (in-
volving whole subtrees), our method performs a minimum
of tests without maintaining huge auxiliary structures.

Due to our use of unranked trees instead of the binary
trees of [11, 45], each validation step on our method can be
more expensive, but our XML tree is usually much shorter.
Moreover, our work differs from that in [45] in four main
aspects:

1. Our update operations can be applied at any node of
the tree, and not just on the leaves. This feature permits
us to change large areas of the XML tree with one single
operation.

2. In [45], testing whether a word belongs to a language is
done in an incremental way by storing an auxiliary struc-
ture. This optimization might be easily integrated in our
algorithm for verifying child state word, but it seems to be

interesting only in case of very large fan-out.

3. When dealing with DTD and XSD we do not use any
auxiliary structures to store the result of a previous valida-
tion process.

4. Integrity constraint verification for keys and foreign keys
is naturally integrated to our algorithm (Section 4).

4 Integrity constraint verification
In this section we present our constraint language, called
CTK (for Context-Target-Key), and we show that con-
straints in CTK can be compiled to an attribute grammar.
CTK is used to specify absolute and relative keys, together
with foreign keys. As in [21], CTK uses path expressions
built from a fragment of XPath. This XPath fragment in-
cludes (a) the empty path ε, (b) an element or attribute
name, (c) a wildcard matching any single node name (_),
(d) an arbitrary downward path (//) and (e) the concatena-
tion of paths (P/Q where P and Q are paths, as defined
by these rules). Indeed, this fragment is the same used by
XML Schema to specify integrity constraints ([15]). No-
tice that a given path defines a language whose symbols
are XML labels. Path expressions are, in fact, regular ex-
pressions over XML labels.

The following example illustrates how keys and foreign
keys are specified. Next we define their syntax and seman-
tics.

Example 4 The XML document represented by the tree T in
Fig. 1 describes a collection of cooking recipes. Each collection
maintains a categorized list of recipes, and a list of the top recipes.
We want to validate this document wrt the following keys and
foreign key, defined in CTK:

- K1 : (/, (./collection, {./category}))
It indicates that, for the whole document, every collection must
be uniquely identified by its category.

- K2: (/collection, (.//recipe, {./name, ./author}))
It means that, in the context of a collection, a recipe is uniquely
identified by its name and author.

- K3: (//recipe, (./ingredient, {./name}))
Similarly to K2, it indicates that, in the context of a recipe, each
ingredient is uniquely identified by its name.
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- FK4: (/collection, (./top_recipes/top_recipe,
{./recipe_name, ./author_name}) ⊆ (.//recipe,
{./name, ./author})) where (/collection, (.//recipe,
{./name, ./author})) is the key K2.
The foreign key constraint indicates that, in a collection, the
name and the author of a top recipe must already exist as the
name and the author of a recipe (in the same collection, but
disregarding the order). 2

Definition 4 - CTK key and foreign key syntax [21]:
A key is represented by an expression (P, (P ′, {P 1,
. . . , Pm})) in which the path P is called the context path;
P ′ is the target path and P 1, . . . , Pm are the key paths.

A foreign key is represented by (P, (P ′0,
{P 1

0 , . . . , Pm
0 }) ⊆ (P ′, {P 1, . . . , Pm})) where (P, (P ′,

{P 1, . . . , Pm})) is a key K and P 1
0 , . . . , Pm

0 are called
foreign key paths. 2

In this paper, key and foreign key specifications respect
the following constraints: (a) Context and target paths
should reach element nodes; (b) Key paths always exist and
are unique and (c) Key (or foreign key) paths are required
to end at a node associated to a value, i.e., attribute nodes
or elements having just one child of type data. Notice that
our key specification corresponds to a special case of strong
keys defined in [21] and thus it imposes the uniqueness of
a key and equality of key values (i.e., keys values cannot
be null). This concept is similar to the concept of key in
relational databases.

In the following definition we use the notion of tuple in
a named perspective as described in [6]. Thus, tuples are
functions that associate a non-null value to each compo-
nent (name). The order of values appearing in the tuple is
not important since each component value is associated to
its name (in our case, the name of the tuple component is an
XML label, i.e., the name of the element or attribute whose
value we want to consider). Thus, wrt the textual repre-
sentation of an XML element, the definition below states
that the order of elements (or attributes) is unimportant in
defining equality.

Definition 5 - Semantics of CTK keys and foreign keys:
An XML tree T satisfies a key (P, (P ′, {P 1, . . . , Pm}))
if for each context position p reached by following path P
from the root, the following two conditions hold:

(i) For each target position p′ reachable from p via P ′ there
exists a unique position ph from p′, for each Ph(1 ≤ h ≤
m), and

(ii) For any target positions p′ and p′′, reachable from p via
P ′, whenever τ ′ = τ ′′ (where tuples5 τ ′ and τ ′′ are built
following P 1 . . . Pm from p′ and p′′, respectively) then p′

and p′′ must be the same position.

Similarly, an XML tree T satisfies a foreign key
(P, (P ′0, {P10, . . . , P

m
0 }) ⊆ (P ′, {P 1, . . . , Pm})) if:

5A tuple τ has the general format τ = [τ(P 1) : v1, . . . , τ(P m) :
vm]. We use τ(P h) to denote the name (label) of the component of τ
corresponding to the node reached via P h from a given target position.

(i) It satisfies its associated key K = (P, (P ′,
{P1, . . . , Pm})), and

(ii) For each target position p′0 reachable from the context
position p via P ′ there exists a unique position ph from p′,
for each Ph(1 ≤ h ≤ m), and

(iii) Each tuple τ0 = [τ0(P 1
0 ) : v1, . . . , τ0(Pm

0 ) : vm], that
was built following the paths P/P ′0/P 1

0 , . . . , P/P ′0/Pm
0

is equivalent in value to a tuple τ = [τ(P 1) :
v1, . . . , τ(Pm) : vm], built following paths P/P ′/P 1, . . . ,
P/P ′/Pm. In other words, for each 1 ≤ h ≤ m, the
τ0-component name Ph

0 corresponds to the τ -component
name Ph and their values are equal. 2

Example 5 In Example 4, if we assume an inversion of the two
rightmost children of position 0.3.0 of Fig. 1 (author_name on
position 0.3.0.1 and recipe_name on position 0.3.0.2) then we
obtain tuples [recipe_name: Mushroom Soup, author_name: M.
Smith] and [name: Mushroom Soup, author: M. Smith] which are
equivalent in value. This is because foreign key specification re-
lates recipe_name to name and author_name to author. Thus, ac-
cording to Definition 5, the foreign key is satisfied. This remark
is also valid when comparing key values.

2

In order to perform the validation of key constraints,
we represent the paths in key definitions by finite state
automata: for a context path P , we have the automaton
M = 〈Θ, Σ, δ, e, F 〉. This automaton will be referred to as
the context automaton. It is defined to recognize the lan-
guage generated by the path (regular expression) P .

Similar automata are defined for target, key and foreign
key paths: For a target path P ′, its corresponding target
automaton is defined as M ′ = 〈Θ′,Σ, δ′, e′, F ′〉; and for
key or foreign key paths P 1, . . . , Pm, their key or foreign
key automata are M ′′ = 〈Θ′′,Σ, δ′′, e′′, F ′′〉.

We denote by M.e the current state e of the finite state
automaton M . M.e is the configuration of the automaton,
representing a snapshot of it during its run. We illustrate
the above definitions with an example.

Example 6 Fig. 8 illustrates finite state automata that corre-
spond to the (context, target and key) paths in K1, K2, K3 and
FK4 of Example 4. Given the XML tree of Fig. 1, those finite
state automata are used in the tree traversal to perform constraints
validation. 2

4.1 Key and foreign key validation:
attribute grammar approach

We consider a context-free grammar G = (VN , VT , P , B)
where VN is the set of non-terminals, VT is the set of termi-
nals, P is the list of productions, and B is the start symbol.
In order to add “extra” information to a non-terminal sym-
bol we can attach a set of attributes to it. An attribute can
represent anything: a string, a number, a type, a memory
location or whatever [8]. An attribute grammar is G aug-
mented by semantic rules, which are declarative specifica-
tions describing how the attached attributes are computed.
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Figure 8: Context, target and key automata corresponding
to keys K1, K2, K3 and to the foreign key FK4.

Production Attributes
R → α1 . . . αm R.conf := { M.q0 }

/* Inherited Attributes */
for each αi (1 ≤ i ≤ m) do

αi .conf := { M.q′ | δM (q0, αi) = q′ }
if (q0 ∈ FM ) then

αi .conf := αi .conf ∪
{ M ′.q′1 | δM′ (q′0, αi) = q′1 }

end for
/* Synthesized Attributes */
if (q0 ∈ FM ) then

R.cK:=〈∀w, z: w 6= z ⇒ αw.t ∩ αz.t = ∅〉
if (∃ FK ⊆ K) ∧ (q0 ∈ FMF K ) ∧

(R.tF K ⊆ R.tK) then
R.cF K := 〈true〉

if (q0 /∈ FM ) then

R.c := 〈∀xw : αw.c = 〈xw〉 ⇒
m∧

w=1
xw〉

Table 2: Attribute Grammar for Keys and Foreign Keys
(Root block).

Thus, the value of an attribute at a parse tree node is defined
by a semantic rule associated to the production used at that
node [8].

We recall that a schema can be seen as an extended con-
text free grammar G (regular tree grammar)[37]. Thus,
in the context of integrity constraint verification one may
augment G, whose production rules are those defining the
schema, by semantics rules [44], using attributes which
represent information about integrity constraints. In our
case, as we assume that integrity constraint validation is
independent from schema verification, we consider G as a
simpler grammar just describing any XML tree. We write
A → α1 . . . αm to indicate that the semantic rule applies to
the node labeled a and to its children (labeled αi). The se-
mantic rules provide a mechanism for annotating the nodes
of a tree with attributes, which can work either bottom-
up for synthesized attributes or top-down for inherited at-
tributes.

Tables 2, 3 and 4 present the attribute grammar for keys
and foreign keys. In these tables the definition of semantic

rules for a key K (or a foreign key FK) is given according
to the kind of production rules. Indeed, we classify our
production rules into three kinds, according to the XML
node over which they can be applied:
1: Rules applied at the root node (root block in Table 2).
2: Rules applied at the leaves (or data) nodes (data block in
Table 4).
3: General rules, applied at all other nodes (general block
in Table 3).

We use the top-down direction, i.e., inherited attributes,
in order to determine the role of each node wrt keys and
foreign keys, defined according to language CTK. We de-
fine just one inherited attribute, called conf. For each node,
conf is computed by executing the finite state automata that
recognize the paths in the definition of K (or FK).

In this way, Table 2 defines, for each key or foreign key,
how the attributes conf are computed for a rule in which
the left-hand side is a symbol that represents the root node.
To this end, we firstly assign to the root node the set of
values {M.q0} where M.q0 is the initial configuration of
the context automaton M . Then, we compute the value of
conf for each child of the root (by executing M ), without
forgetting to verify whether we need to change from the
context to the target automaton.

In Table 3 the computation of conf is similar to the one
performed for the root’s children in Table 2. Notice that to
compute the value of conf for a node α, we start by consid-
ering each configuration M.q in the set of values associated
to the attribute conf of its parent A. We should also verify
if it is necessary to change from one automaton to another.

Example 7 - Consider the XML document, key K2 and foreign
key FK4 of Example 6 with their corresponding finite state au-
tomata (respectively M2, M ′

2, M ′′
2 and M4, M ′

4, M ′′
4 ). We have

one inherited attribute conf for each key or foreign key, as illus-
trated in Fig. 9. The attributes conf K2 and conf FK4 are computed
top-down by the execution of their finite state automata. For in-
stance, at the root node, we assign to conf K2 and conf FK4 their
corresponding initial configuration, respectively the sets {M2.e0}
and {M4.e0}. In order to compute conf K2 for node collection
we execute a first transition in M2 using the label collection as
input. The result is the set {M2.e1}. Similarly, the computation
of conf FK4 for node collection results in {M4.e1}. 2

We use the bottom-up direction, i.e., synthesized at-
tributes, to carry the values that are part of a key or for-
eign key up to their context node. At this level, we ver-
ify if the integrity constraints are respected. For each key
(or foreign key) definition K (according to language CTK),
we use three attributes, called c, t and k, for (respectively)
context values, target values and key values. At each node,
these attributes receive values depending on the role of the
node for K (i.e., the value of attribute conf ), and depending
also on values of c, t and k from children nodes.

In this context, Table 4 shows that an attribute k obtains
the data value of a leaf whose parent is a key node for some
K. Then, Table 3 defines the values of the synthesized
attributes concerning a node p (labeled A) in the following
way:
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Production Attributes
A → α1 . . . αm /* Inherited Attributes */

for each αi (1 ≤ i ≤ m) do
for each M.q ∈ A.conf do

αi .conf := {M.q′ | δM (q, αi) = q′}
if (M = M) ∧ (q ∈ FM ) then αi .conf := αi .conf ∪ {M ′.q′1 | δM′ (q′0, αi) = q′1}
if (M = M ′) ∧ (q ∈ FM′ ) then αi .conf := αi .conf ∪ {M ′′.q′′1 | δM′′ (q′′0 , αi) = q′′1 }

end for
end for
/* Synthesized Attributes */
for each configuration M.q in A.conf do

if (M = M ′′) ∧ (q /∈ FM′′ ) then A.k := < α1.k . . . αm.k >

if (M = M ′) ∧ (q ∈ FM′ ) ∧ (|< α1.k . . . αm.k >|= n) then A.t := A.t ∪ { < α1.k . . . αm.k > }

if (M = M ′) ∧ (q /∈ FM′ ) ∧ (∀w, z : w 6= z ⇒ αw.t ∩ αz.t = ∅) thenA.t :=
m⋃

w=1
αw.t

if (M = M) ∧ (q ∈ FM ) then A.cK:= 〈∀w, z : w 6= z ⇒ αw.t ∩ αz.t = ∅〉
if (∃ FK ⊆ K) ∧ (M = MF K) ∧ (q ∈ FMF K ) ∧ (A.tF K ⊆ A.tK) then A.cF K := 〈true〉
if (M = M) ∧ (q /∈ FM ) then A.c :=〈∀xw :αw.c=〈xw〉⇒

m∧
w=1

xw〉
end for

Table 3: Attribute Grammar for Keys and Foreign Keys (General block).

Production Attributes
A → data /* Synthesized Attributes */

for each configuration M.q in A.conf do
if (M = M ′′) ∧ (q ∈ FM′′ )

then A.k := < value(data) >
end for

Table 4: Attribute Grammar for Keys and Foreign Keys
(Data block).

1. If p is in a key path, then its attribute k is the tuple com-
posed by the key values (those associated to the attribute k
of each child of p).

2. If p is a target node, then its attribute t is a set contain-
ing the tuple composed by the key values carried up from
p’s children. This tuple is computed from the values of
attributes k, as explained in item 1. Notice that the assign-
ment of a value to the attribute t depends on the verification
of the key size (i.e., the size of the key tuple must respect
the key definition).

3. If p is in a target path and if all the tuple values carried up
by p’s children are distinct, then the attribute t for node p is
assigned with the union of the sets containing these tuples.

4. If p is a context node for a key and the tuple values
carried up by p’s children are distinct, then the attribute c
(wrt the key K) is assigned with a tuple containing the value
true. Otherwise the tuple contains the value false.

5. If p is a context node for a foreign key and the tuple val-
ues carried up by p’s children are also key values, then the
attribute c (wrt the foreign key FK) is assigned with a tu-
ple containing the value true. Otherwise the tuple contains
false.

6. If p is in a context path, then the attribute c is assigned
with a tuple containing the conjunction value of c’s values
obtained from p’s children.

Finally, Table 2 shows how to compute synthesized at-
tributes for the root, distinguishing whether it is a context
(for a key or a foreign key) or not.

<!DOCTYPE keyTree[
<!ELEMENT keyTree (context*)>
<!ATTLIST keyTree nameKey CDATA #REQUIRED>
<!ELEMENT context (target+)>
<!ATTLIST context pos CDATA #REQUIRED>
<!ELEMENT target (key+)>
<!ATTLIST target pos CDATA #REQUIRED

refCount CDATA #REQUIRED>
<!ELEMENT key #PCDATA>]

Figure 11: DTD specifying the structure keyTree

From the above explanation, we see that the values of
attributes c are computed from those of attributes t which
are, in turn, built from the values of the attributes k.

Example 8 - As in Example 7 we show in Fig. 10 how the syn-
thesized attributes are computed for K2 and FK4 for nodes in the
key, target and context paths:

Key path: The data values for K2, obtained from nodes name and
author, are collected in each k2. For FK4, recipe_name and
author_name are the foreign key nodes and their data values are
collected in attributes k4.

Target path: For K2, the key values are also concatenated into a
tuple and kept in a singleton set when reaching target node recipe.
At target node top_recipe, the attribute t4 receives a singleton
set containing the tuple obtained by the concatenation of the key
values for FK4. Node top_recipes is in the target path and its
attribute t4 groups all the target tuples coming from target nodes.

Context path: At the context node collection, as all the tuples
collected in the various t2 are all distinct, then the attribute cK2

is set to true. Still at node collection, the set of tuples coming
from t4 is compared to those coming from the various t2. As
all the tuples in t4 are contained in the set formed by the various
t2, then the attribute cFK4 is set to true. It means that for the
concerned collection node, the foreign key FK4 is valid.

At the root node, the attributes c2 and c4 are set to true, indicating
that the document respects K2 and FK4. In order to show neatly
the attribute values that are synthesized, those attributes (c, t or k)
for K2 or FK4 that are not concerned in the position are hidden.
2

At the same time that we compute the synthesized at-
tributes for a key, we build its corresponding keyTree. The
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Figure 9: Inherited Attribute conf for K2 and FK4.
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Figure 10: Synthesized Attributes for K2 and FK4.

keyTrees are structures storing the position of each context
and target nodes together with the key values associated to
each key node. Fig. 11 describes this structure index us-
ing the notation of DTDs. For each key constraint K that
should be respected by the XML document, we keep its
keyTreeK . Also, for each key, a reference counter refCount
is used to store how many times the key is referenced by
a foreign key. The keyTrees are kept to facilitate validation
of keys and foreign keys in update operations, as the accep-
tance of an update operation wrt integrity constraints relies
on information about key values. Fig. 12 shows keyTreeK2

that stores the key values and information for K2.

0.20.1

...

@pos

@nameKey

@pos @refCount key key @pos @refCount key key

targettarget

context

keyTree

Shrimp Soup

0

0 J. Fox 1 Mushroom Soup M. Smith

K2

Figure 12: KeyTreeK2 built over the XML document of
Fig. 1.

4.2 Incremental integrity constraint
verification

We consider a collection of keys Kj (1 ≤ j ≤ m) and for-
eign keys FKj ((m + 1) ≤ j ≤ n) constraints that should
be respected by a subtree T ′ being inserted, replaced or
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deleted. The execution of our key and foreign key con-
straints validator over a tree T ′ gives a tuple 〈〈l1, . . . , ln〉,
〈keyTreeK1

[T ′, ε],. . . , keyTreeKm
[T ′, ε]〉〉 where:

- 〈l1, . . . , ln〉 is a n-tuple of tuples 〈c, t, k〉. Each tuple
〈c, t, k〉 represents the synthesized attributes computed for
one key (or foreign key) at the root position ε of T ′.

- 〈keyTreeK1
[T ′, ε], . . . , keyTreeKm [T ′, ε]〉 is a m-tuple

containing one keyTree for each key.

Notice that the n-tuple that represents the synthesized
attributes has two distinct parts: tuples l1, . . . , lm represent
keys and tuples lm+1, . . . , ln represent foreign keys.

We introduce now the notion of local validity for keys
and foreign keys. When performing an insertion we want
to ensure that the new subtree T ′ has no internal validity
problems (as, for instance, duplicated values for a key K).

Definition 6 - Local Validity: Let T ′ be an XML tree.
Let Kj (1 ≤ j ≤ m) be a collection of keys and FKj

((m + 1) ≤ j ≤ n) be a collection of foreign keys,
both defined according to language CTK. The tree T ′ is
locally valid if the result of the validation gives a tuple
〈〈l1, . . . , ln〉, 〈keyTreeK1

[T ′, ε], . . . , keyTreeKm
[T ′, ε]〉〉 re-

specting the conditions below.
For each tuple lj (1 ≤ j ≤ n) we have:

(i) If the root of T ′ is a target position for Kj (or FKj) or a
position in the target path then all tuples in the set specified
by the attribute tj , which is in tuple lj , has length mj (i.e.,
its length equals the number of elements composing a key
(or foreign key) tuple).

(ii) If the root of T ′ is a context position for Kj (or FKj),
or a position in the context path, then the attribute cj in lj
is a tuple containing the value true. 2

Given a tree T and a sequence of updates over T , the in-
cremental validation problem wrt integrity constraints con-
sists in checking whether the updated tree does not violate
any constraints, by visiting only the part of T involved by
the updates. We propose an algorithm, similar to Algo-
rithm 1, to perform the incremental validation of an XML
tree T .

Example 9 Consider the XML tree of Fig. 3 where update po-
sitions are marked. As in Section 3, updates are treated in the
document order. Now, we remark that, in the incremental valida-
tion wrt integrity constraints the following steps are performed:

1. When the open tag <d> (position 0.1) is reached, the deletion
operation is taken into account and a search of key and foreign
key values is triggered in order to verify whether there are key
or foreign key values in the subtree rooted at the deletion posi-
tion. If such kind of values are found, we use the corresponding
keyTree to test whether the deletion does not imply any violation
of integrity constraints. If a violation is detected we mark posi-
tion 0.1 (in keyTree) and the document is considered to be tem-
porarily invalid. Only after analyzing late updates we can decide
whether this deletion operation can be performed. A late update
can indeed restore document validity (e.g., by removing foreign
key references from a key involved in our delete operation). In
this case, our deletion can be performed.

2. When the open tag <a> at position 1 is reached, we use the
corresponding keyTree to test whether the insertion does not imply
any violation of integrity constraints. We consider the insertion
as performed (similarly to Section 3). If the insertion represents a
violation of an integrity constraint, then there is a subtree where
key values are duplicated wrt those being inserted. We mark this
subtree in keyTree and proceed as in the above item. Notice that,
similarly to Section 3, we can skip nodes below position 2.

3. The replace operation at position 3 combines the effects of a
deletion and an insertion.

4. At the end of the tree traversal a final validity test is executed.
It consists on verifying whether the resulting keyTree does not
contain any violation label (meaning that a postponed violation
correction was not performed).

The implementation of this approach is done by the follow-
ing algorithm. Notice that it uses the UpdateTable to obtain
the update positions. When an update position is reached,
different tests are performed, according to the update oper-
ation.

Algorithm 2 - Incremental Validation of Keys in Multiple Up-
dates
Input:
(i) doc: An XML document.
(ii) UpdateTable: A relation that contains updates to
be performed on doc. Each tuple has the general form
〈pos, op, Tpos, Φ〉, similar to Algorithm 1.
(iii) KeysFSA: Set of finite state automata describing the paths
that appear in the keys and foreign keys.
(iv) KeyTree: Structure that contains the key values resulting
from the last validation performed on doc.
Output:
If doc remains valid after all operations in UpdateTable the al-
gorithm returns the Boolean value true, otherwise false.
Local Variables:
(i) CONF : structure storing the inherited attributes.
(ii) SY NT : structure storing the synthesized attributes.
(iii) keyTreeTmp: copy of the initial keyTree.

(1) keyTreeTmp := KeyTree
(2) CONFε := InitializeInhAttributes(KeysFSA)
(3) foreach event v in doc do
(4) switch (v) do
(5) case start of element a at position p
(6) Compute CONFp using KeysFSA
(7) foreach u = (p, insert, Tp, Φ) ∈ UpdateTable do
(8) if (¬insert(doc, p, Tp, keyTreeTmp))
(9) then report “invalid” and halt
(10) if 6 ∃u′ = (p′, op′, T ′, Φ′) ∈ UpdateTable

such that p ≺ p′

(11) then skipSubTree(doc, a, p);
(12) case end of element a at position p
(13) Compute SY NTp using CONFp

(14) if ∃ u = (p, delete, Φ) ∈ UpdateTable
(15) then if (¬delete(doc, p, SY NTp, keyTreeTmp))
(16) then report “invalid” and halt
(17) if ∃ u = (p, replace, Tp, Φ) ∈ UpdateTable
(18) then if ¬replace(doc, p, SY NTp, Tp, keyTreeTmp)
(19) then report “invalid” and halt
(20) case value
(21) str := value(p)
(22) Compute SY NTp using CONFp and str
(23) if (¬valid(keyTreeTmp))

then report “invalid” and halt
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(24) return true 2

Algorithm 2 describes the incremental validation of key
and foreign key constraints while reading the XML tree in
the document order. Firstly, we make a work version of the
initial valid keyTree. This work version will be changed as
we process a sequence of update operations. At the end of
this sequence we check whether the obtained keyTreeTmp
is valid and, only in this case, it will replace the original
keyTree.

The algorithm uses two structures to store the attribute
values, namely CONF and SYNT. At each position p, the
structure CONFp keeps the roles of p wrt the keys and for-
eign keys being verified. Indeed, CONFp contains one in-
herited attribute conf (as defined in Tables 2 and 3) for each
key and foreign key at position p. The structure SYNTp

contains a tuple formed by the synthesized attributes k, t,
and c (see Tables 2, 3 and 4) for each key and foreign key
at position p.

When reaching an open tag at position p, the inherited
values to be stored in CONFp are computed and all re-
quested insertions at this position are performed according
to our insertion method (Algorithm 3). On the other hand,
when reaching a close tag in position p, we compute the
synthesized values to be kept in SYNTp and we perform the
requested deletions and replacements. Recall that the com-
putation of synthesized values depends not only on CONFp

but also on the result of each SYNTp′ (where p′ is a child
of p). Notice that SYNTp is necessary in delete and replace
operations, since for each key and foreign key, we need to
remove key and foreign key values from the corresponding
keyTreeTmp (see Algorithm 4).

Algorithm 3 defines the operation
insert(T, p, T ′, keyTreeTmp) to include a new sub-
tree T ′ in an XML tree T at position p. It first computes
the tuple τ which is the result of the local validation
for T ′. Recall that τ is composed by tuples containing
the synthesized attributes and by the (partial) keyTrees
associated to T ′.

An insert operation is accepted or rejected. If an inser-
tion is accepted then the key or foreign key values found
in T ′ are inserted in the corresponding keyTreeTmp. No-
tice that an insertion is temporarily accepted in two cases,
namely:
• If the key tuple value corresponding to a foreign key in-
stance being inserted does not exist. In this case, we add
the new key tuple value to keyTreeTmp and we mark it with
a null value at attribute pos.
• If the insertion of a key instance generates duplicated tu-
ple values for a key. In this case, we mark the original tuple
in keyTreeTmp as a duplicate value.

In both cases, we postpone the final decision of rejecting
or accepting the insertion. We just mark the involved tu-
ples in keyTreeTmp, keeping the document temporarily in-
valid. We should notice the difference between duplicating
key values and key (or foreign key) components. Indeed, if
the subtree to be inserted requests a duplication of key (or
foreign key) component nodes, then it is rejected since we

assume that nodes composing a key (or a foreign key) must
be unique. For instance, if we consider the key K1 of Ex-
ample 6, then the insertion at position 0.0 of a new category
under a collection (position 0) is rejected. As category is
the key node for K1, the subtree rooted at collection cannot
have more than one category child.

Algorithm 3 - The insert operation:
insert(T, p, T ′, keyTreeTmp)

(1) if ((τ := LocalValidation(T, p, T ′)) = ’invalid’)
then return false

(2) for each tuple li = 〈ki, ti, ci〉 (1 ≤ i ≤ m) in τ ,
corresponding to Ki do

(3) if (ki 6= <>) then return false
(4) if (ti 6= ∅) then

Find the context position p′ (above p) for Ki

(5) for each tuple v ∈ ti do
(6) if ∃u = v in keyTreeTmpKi [T, p′] then
(7) if u is associated to an attribute pos 6= null
(8) then Mark u in keyTreeTmpKi [T, p′]

with dup = “yes”
(9) Add keyTreeKi [T

′, p] to keyTreeTmpKi [T, p′]
(10) if (ci = 〈true〉) then
(11) Add keyTreeKi [T

′, p] to keyTreeTmpKi [T, ε]
(12) for each tuple lj = 〈kj , tj , cj〉 (m + 1 ≤ j ≤ n),

corresponding to FKj do
(13) if (kj 6= <>) then return false
(14) if (tj 6= ∅) then
(15) Find the context position p′ (above p) for FKj

(16) for each tuple v ∈ tj do
(17) if ∃u = v in keyTreeTmpKi [T, p′] then
(18) increment refCount of tuple u by 1
(19) else build a subtree β which corresponds to

tuple u as follows:
(20) ? Attribute pos is null
(21) ? Attribute refCount is 1
(22) ? Key values compose the tuple u
(23) add the subtree β in keyTreeTmpKi [T, p′]
(24) as rightmost child of context node p′. 2

The insertion of a new subtree rooted at position p is
possible if the following tests succeed:

1. The subtree being inserted is locally valid.

2. For each key Ki (1 ≤ i ≤ m) :

(a) If p is a position in the key path (i.e., a position below
the target node) then the update operation implies the du-
plication of key nodes. In this case, the insertion is rejected.

(b) If p is a position in the target path, then we insert the
new key values in keyTreeTmpKi under the corresponding
context. The key value may already exist in keyTreeTmpKi .
It is necessary to test if it exists as a duplicate or as an
“incomplete” insertion triggered by the previous insertion
of a foreign key. The test consists in verifying whether
attribute pos is null.

If there are duplicated key values wrt the one being in-
serted, then the duplication is annotated by adding dup =
“yes” in keyTreeTmpKi . If the insertion corresponds to an
incomplete previous insertion, it is completed by changing
the value of attribute pos.
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(c) If p is a position in the context path, then the insertion is
accepted since tree T ′ is locally valid wrt key and foreign
keys (item (1)) .

3. For each foreign key FKj (m + 1 ≤ j ≤ n) :

(a) If p is a position in the foreign key path, then we proceed
as in item 2(a).

(b) If p is a position in the target path, then we are insert-
ing new foreign keys wrt a key Ki. We increment the ref-
Count (in keyTreeTmpKi) of each Ki tuple corresponding
to a foreign key tuple being inserted. If there is not a corre-
sponding tuple in keyTreeTmpKi

then a subtree containing
the key values which correspond to the inserted foreign key
is added to keyTreeTmpKi

as the rightmost child of the con-
cerned context. For this subtree, attributes pos = null and
refCount = 1.

Algorithm 4 defines the update operation
delete(T, p, σ, keyTreeTmp) where p is the position
to be removed from the XML tree T , and σ is the tuple
resulting from the local validation of the subtree T ′

originally rooted at p.
If a deletion is accepted, then the key and foreign key

values are removed from the corresponding keyTreeTmp.
Notice that a deletion is temporarily accepted if it concerns
a key tuple whose refCount is not 0. Indeed, in this case,
the deletion is finally accepted only if all the foreign keys
referencing this tuple are also removed from T . We post-
pone the final decision of accepting or rejecting the deletion
to the end of the update sequence. We consider that key (or
foreign key) nodes cannot be deleted.

Algorithm 4 - The delete operation:
delete(T, p, σ, keyTreeTmp)

(1) for each tuple li = 〈ki, ti, ci〉 (1 ≤ i ≤ m) ∈ σ,
corresponding to Ki at position p do

(2) if (ki 6= <>) then return false
(3) if (ti 6= ∅) then
(4) Find the context position p′ (above p) for Ki.
(5) for each tuple v ∈ ti do
(6) Find the tuple u = v in keyTreeTmpKi [T, p′]
(7) if refCount associated to tuple u is 0
(8) then remove u from keyTreeTmpKi [T, p′]
(9) else mark tuple u in keyTreeTmpKi [T, p′]

with del = “yes”
(10) if (ci = 〈true〉) then
(11) for each context pos p′ under or equal p do
(12) remove keyTreeTmpKi

[T,p′]from keyTreeTmpKi
[T,p]

(13) for each tuple lj = 〈kj , tj , cj〉 (m + 1 ≤ j ≤ n)
in σ, corresponding to FKj do

(14) if (kj 6= <>) then return false
(15) if (tj 6= ∅) then
(16) Find the context position p′ (above p) for FKj

(17) for each tuple v ∈ tj do
(18) Obtain the tuple u that is referenced by v in

keyTreeTmpKi [T, p′];
(19) Decrement refCount associated to u by 1;
(20) if (refCount = 0) and (del = yes) in u
(21) then remove u from keyTreeTmpKi

[T, p′] 2

To remove a subtree rooted at position p we execute the
following tests for keys and foreign keys:

1. For each key Ki (1 ≤ i ≤ m):

(a) If p is a position in the key path, then the deletion is
rejected.

(b) If p is a position in the target path and if each target to
be deleted is not referenced by any foreign key, then the
deletion is accepted. Otherwise, the corresponding target
in keyTreeTmpKi

is labeled to be deleted subsequently.

(c) If p is a position in the context path, then the deletion is
possible for all contexts, since we are removing key values
and also the foreign key values that reference them.

2. For each foreign key FKj (1 ≤ j ≤ n):

(a) If p is a position in the foreign key path, then the dele-
tion is rejected.

(b) If p is a position in a target path, then the deletion is
accepted and we decrease the corresponding refCounts in
keyTreeTmpKi . If refCount turns to 0 and the target tuple in
keyTreeTmpKi

was earlier marked to be deleted, then this
tuple is removed.

The replace operation combines the deletion and the
insertion but it is not equivalent to the update se-
quence (insert(T, p, T ′, τ, keyTreeTmp); delete(T , p, σ,
keyTreeTmp)) since it allows the replacement of key (or
foreign key) nodes. For instance, the replace operation
allows the substitution of a recipe author, even if author is
part of key K2 of Example 6 (recall that the delete oper-
ation does not allow this removal). If there is a replace
operation to be performed at position 0.2.1 (to change the
value M. Smith to L. Greene), it is accepted if key K2 is
still respected after the update.

Example 10 We suppose the XML tree of Fig. 1 and an update
sequence composed by: (1) An insertion of a new recipe at posi-
tion 0.1; (2) A deletion at position 0.2; (3) A deletion at position
0.3.0.

The initial XML tree is valid, and we keep a work version of its
keyTree in the new structure keyTreeTmp, used here to verify the
validity of the updates wrt key and foreign keys. In this example
we consider keys K2 and FK4 defined in Example 6. The update
sequence is examined while reading the XML tree, as shown in
Algorithm 2. In this way, the tests are performed in the following
order:

1. When we reach the open tag of element recipe at position 0.1,
we find that there is an insertion to be performed. The new subtree
to be inserted is a new recipe that contains instructions and ingre-
dients for preparing a broccoli soup. To check if this insertion is
valid, the insert operation in Algorithm 3 is performed. The new
key values are inserted in keyTreeTmpK2 under the collection of
soups (context at position 0, prefix of position 0.1), as shown in
Fig. 13. Notice that attributes pos are not updated yet.

2. When the close tag of element recipe at position 0.2 is reached,
there is a deletion to be performed (the removal of the mushroom
soup recipe). To verify if this deletion is accepted, the delete op-
eration in Algorithm 4 is performed. It also concerns key K2,
and the key values under position 0.2 must be removed from
keyTreeTmpK2 under the collection of soups (context at position
0). Fig. 14 shows that this deletion is postponed, since the ref-
Count associated to mushroom soup in keyTreeTmpK2 is 1.
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Figure 13: keyTreeTmpK2 after insertion at position 0.1.
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Figure 14: keyTreeTmpK2 after deletion at position 0.2.

3. When the close tag of element top_recipe at position 0.3.0 is
reached, the deletion of the top recipe with number = 1 (mush-
room soup) should be done. Since this deletion concerns FK4

(that references K2), the foreign key values under position 0.3.0
are removed from keyTreeTmpK2 in the collection of soups (con-
text at position 0). This is done by decreasing of 1 the corre-
sponding refCount for mushroom soup. At this point, as refCount
becomes 0 and the mushroom soup tuple was already marked to
be deleted, then the deletion (earlier postponed) is accepted, as
illustrated in Fig. 15. At the end of the update sequence, we tra-
verse keyTreeTmpK2 in order to: (a) update attributes pos and (b)
verify the existence of violation marks.
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target

@poskeykey@refCount

@nameKey
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Shrimp Soup J. Fox0Broccoli Soup D.Simon

targetK2

Figure 15: keyTreeTmpK2 after deletion at position
0.3.0.

Notice that we consider that the user provides our algo-
rithm with a set of updates. The processing of these up-
dates is performed in the document order, i.e., in the order
in which the nodes of the XML tree are visited6. This or-
dering is natural to our algorithm and is the most efficient
one, since we will perform only one pass over the tree.

The semantics of our method is independent of the order
in which the update operations are processed. Our method
has the following properties:

6This is why we present UpdateTable as a sequence built in a pre-
processing phase from a given set of updates and respecting properties
stated in Section 2.

• The operations are performed only whenever possible. In
the presence of errors in the verification of constraints, our
algorithm will not perform the updates. (this condition is
similar to that for transactions, in the context of relational
databases).

• The updates are performed if and only if there exists an
ordering for them, whose final result preserves the validity
of the document wrt the verified constraints.

Notice that the second condition above is verified since
our method is as general as possible. It has the same ef-
fect as the ordering which enables us to accept most update
sequences, that is: (i) remove foreign keys; (ii) remove pri-
mary keys; (iii) insert primary keys; (iv) insert foreign keys.

This condition means that our method is as general as
possible, accepting the largest class of possible sets of up-
dates.

4.3 Complexity and experimental results

The validation method proposed in Section 4.1 requires
only one pass on the XML document. As in [24], its run-
ning time is linear in the size of the XML document. This
complexity is not affected by the shape of the XML doc-
ument, but it can be affected by the size of the keyTree.
Indeed the time and space complexities of our method are
based on the size of the keyTree which indicates the number
of key instances existing in the document (i.e., the number
of target nodes). When the keyTree is big, the following
steps are time consuming: the set inclusion test done (once)
at the root level (Table 2) and list comparisons at the con-
text level, which are performed once for each key. The
space complexity for our method corresponds to the size of
keyTree. Each keyTree is a subset of the document, contain-
ing only the necessary information to verify the validity wrt
a given integrity constraint.
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In Algorithm 2, each update position p activates a val-
idation step (i.e., Algorithm 3 or Algorithm 4) which de-
pends on the kind of the required update. To find if key and
foreign key values are involved in the update, algorithms
consult the list τ containing the result of the local valida-
tion of the subtree Tp (being inserted of deleted). The list τ
is built in time O(|Tp|). We recall that insertions and dele-
tions trigger a subtree traversal to find the key and foreign
key values.

Algorithm 3 and 4 go through the resulting list τ in order
to detect non empty lists (i.e., those that correspond to the
key (or foreign) values being inserted or deleted). Then the
algorithms compare these values to those in the keyTree. To
this end, Algorithm 3 and 4 visit key nodes in the keyTree
corresponding to the context under which the insertion or
deletion is required. Let n be the number of key and foreign
key constraints and let ntarget be the maximum number
of target nodes (i.e., key tuples). This operation runs in
time O(n.ntarget.c2) where c2 is the maximum number of
components of a composed key (i.e., the number of key
nodes under a target).

In the worst case, each insertion (validation of the sub-
tree being inserted and Algorithm 3) and each deletion (Al-
gorithm 4) runs in time O(|Tp| + n.ntarget.c2). Let m be
the number of updates. Since validation steps are needed
only on update positions, if we disregard the value of c2

then the cost of incremental validation under m updates is
O(m.(|Tp|+ n.ntarget)). The last step of our incremental
validation corresponds to visiting and updating keyTrees.
To this end, we need to visit all the attribute nodes of each
keyTree concerned by the updates. This routine runs in time
O(n.ntarget).

The implementation of our validation method was done
in Java, and the Xerces SAX Parser was used for reading
the XML documents and loading them into our data struc-
tures. Each key or foreign key is checked by running the
finite state automata that corresponds to its path. We use
two stack structures to store the inherited and synthesized
attributes.

We now present the results of a preliminary experimen-
tal analysis of our validation method. All tests were exe-
cuted on the same 1.7GHz Pentium 4 machine with 256MB
memory, running Windows 2000. For these tests, we used
4 XML documents, varying in the number of nodes (XML
elements and attributes) from 250, 000 to 1, 000, 000.

To verify the validity of a set of keys and foreign keys
over an XML document, we fixed the number of keys to
2 and foreign keys to 1, and we varied the size of the
XML document to verify the method’s performance. The
CPU time required to check the validation from scratch of
the XML document wrt the given keys and foreign key is
shown in Fig. 16 (a).

To verify the checking time wrt the number of integrity
constraints, we fixed the size of the XML document to
500, 000 and we varied the number of keys and foreign
keys from 1 to 5. The results (for validation from scratch)
are shown in Fig. 16 (b).

The implementation of our incremental validation
method was also done in Java. The sequence of updates
is treated as a unique transaction and the updates are tested
in one traversal of the XML tree. In fact, the sequence of
updates is treated before being applied, so that the update
positions are sorted in the sequential order of the XML tree
lecture.

Our method incorporates the operations insert and delete
and tests for each operation, by using the KeyTree, if the
XML tree still respects the predefined set of integrity con-
straints. The KeyTree is stored in a hash table structure
that associates each constraint (primary key) with values
(the various contexts obtained for the constraint and their
corresponding targets, attributes, key data values and for-
eign key references). The hash table structure organizes
the constraints information reducing look up time and it
also improves the verification performance (Fig. 17).

The local validation of each subtree to be inserted or
deleted is triggered when the update position is reached.
The result of this local validation is loaded into new data
structures and a new KeyTree is built for the subtree.
We can note that if the update does not concern the set of
keys and foreign keys, then the local validation is an empty
structure, meaning that there are no verifications to be ex-
ecuted. On the other hand, updates concerning constraints
that have composed key paths are the ones which demand
more comparisons.

Fig. 18 summarizes the behavior of our algorithm for
the incremental validation of keys and foreign keys. We
ran two experiments, similarly to the ones for the valida-
tion from scratch, using a sequence of 50 updates. In the
first one we varied the size of the XML document to test
the updates wrt five fixed keys and foreign keys. The sec-
ond experiment was done by fixing the XML document size
(500, 000 nodes) and varying the number of constraints.

Our last experiments aim at assessing the systems capa-
bilities with respect to keyTree construction. As an exam-
ple consider an absolute key, composed of three parts (an
order is identified by its number, the product number and
the supplier number). The validation of this key generates a
keyTree containing all values found for this key if they are
all different. Clearly, the size of the keyTree may vary dras-
tically with respect to the number of key instances found in
the document, and it is of particular interest for incremen-
tal validation. Fig. 19 shows the time response considering
XML documents that contain from 102 to 105 key instances
for validation from scratch. A sequence of 50 updates was
considered for incremental validation.

4.4 Related work

In this paper, we present the validation of XML documents
wrt schema and its verification wrt integrity constraints in
an independent way. However, if we assume that the given
integrity constraints are consistent with the given schema,
then the integration of both validation routines is a straight-
forward generalization of our method.
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Figure 19: Number of key instances × checking time (in seconds): (a) Validation from scratch for an absolute key. (b)
Incremental validation.

In [21], the independence of key syntax from schema
constraints is presented as an advantage. One can wonder
if this advantage is so clear since structural and integrity
constraints are both parts of database design, implementa-
tion and optimization. However, as shown in [10], verify-
ing consistency of structural and integrity constraints for
XML documents is a difficult problem. In several cases,
in order to reason about satisfiability and implication, it is
better to consider only integrity constraints.

Proposals that deal with both structural and integrity
constraints usually impose restrictions on schema defini-
tions. In [30], for instance, the authors propose an Unified
Constraint Model (UCM) which is tightly coupled with the
schema model. The schema is defined using the type sys-
tem of XQuery algebra [32] which captures the structural
aspects of XSD. Validating a document wrt schema con-
straints corresponds to finding a unique type assignment to
each position on an XML tree. In other words, schemas
must only define LTL (Section 3). In UCM it is possible
to define the “key of a type” by specifying the type name
together with the key components (defined by path expres-
sions). A drawback of [30] is the lack of relative and for-
eign key constraints.

In [31] key paths are composed of a (possibly
empty) ranked sequence of up symbols (i.e., Kleene
closure cannot be used) followed by a nonempty simple
(downward) path. For instance, consider a document
with information about conference proceedings. Pro-
ceedings are identified by an absolute key keyProc =

(/bib/proc/, {confName, confY ear}) containing the
name of the conference and its year. As articles are iden-
tified by numbers inside a proceedings, we need a relative
key to express this constraint. Thus, we write keyArticle =

(/bib/proc/article/, {numArticle, [up]/confName,

[up]/confY ear}) where up is a wildcard denot-
ing a move up on the XML tree. Such a syn-
tactic possibility can be translated into CTK. Let
K1 = (/, (bib/proc/, {confName, confY ear})) and
K2 = (/bib/ proc/, (article/, {numArticle})) be two CTK
keys. Notice that keyArticle holds if K1 and K2 do.
More generally, let k be the length of the longest upward

wildcard sequence in a constraint C. It can be shown that
there is a set {C1, ..., Ck} of CTK constraints such that if
{C1, ..., Ck} is verified then C is verified too.

The goal of [12], where XPath and XSD are used to
express constraints, is to perform incremental constraint
checking. Their approach differs from ours since in [12]
constraints are translated into logic formula and updates on
documents are related to computation of incremental ver-
sions of the formula. They use schema information to opti-
mize their computation.

In [24], a validator for XML constraints is presented for
incrementally checking updates. Its performance is linear
in the size of the part being updated, for each key being
checked. Although this work is similar to ours, it is worth
noting that in [24] foreign keys are not treated and the
incremental validation is considered only for a single up-
date. In our approach, as the validation of keys and foreign
keys is done for multiple updates, the maintenance of the
keyTree is performed progressively (while considering the
update sequence). The keyTree can be temporarily invalid.
In this way, our complexity is bound to the number and type
of update operations, the number of constraints that are be-
ing verified and the number of tuple values corresponding
to a constraint.

The current work extends and merges our previous pro-
posals which have considered XML document validation
only under single updates. In [17], we propose an in-
cremental schema validation method, but only wrt DTD.
In [7, 18] we use a tree transducer to address the problem
of the key validation. In the current paper integrity con-
straints are specified by an attribute grammar which makes
our validation strategy simpler. At this point, some simi-
lar aspects with [13] can be observed. In [13] XML doc-
uments are mapped to relational databases. Indeed, rela-
tional DBMS are tuned to efficiently validate integrity con-
straints. Nevertheless, when relying on a relational DBMS,
the system must factorize XML documents before it can
store them in its data structures. This entails format map-
pings and interchanges between XML’s hierarchical struc-
ture and the DBMS structures, which raises non trivial, the-
oretical questions about the relational database design on
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the one hand, and XML update (and XML query) transla-
tions on the other hand (as shown in, e.g., [19, 48, 38]).

Proposals for mapping XML in RDBMS by considering
XML integrity constraints exist [25, 28, 27, 39]. However,
in [28, 27], the authors state that it is impossible to effec-
tively propagate all forms of XML constraints supported by
XML Schema, including keys and foreign keys, even when
the transformations (from XML to relational) are trivial. In
contrast [39] does not deal with such theoretical considera-
tion, but the authors present an ad hoc translation of XML
constraints in a relational framework. Experimental results
reported in [39] compare this proposal to the one in [9],
and conclude that the translation of keys and foreign keys
leads to improve query execution time in the context of re-
lational databases.

Authors in [25] notice that, in current propositions, the
design of the relational database aimed to store XML data
is tuned either for updates (enforcing the constraints ef-
ficiently), or for queries workload (to achieve better per-
formance), however, to find a good compromise for both
seems to be still an open problem. Indeed, as noticed
in [38], one big, open challenge is to efficiently process
queries to hierarchical XML data, in a database whose fun-
damental storage is table-based and whose fundamental
query engine is tuple-oriented.

Update processing is even a bigger challenge in this con-
text: for instance one can notice that since a single XML
update may affect several tuples in the relational store,
transactions must be carefully used to prevent anomalies.
Moreover, the XML “view” of the relational database must
be updatable, i.e. there must be a unique, side effect free
translation from any update on this view to the underlying
relations. In [19] the authors show that this is still an open
problem for XML views that are not defined by general
nested relational algebra or that can not be rewritten into a
nest-last relational form.

To conclude, the use of relational databases for allow-
ing data to be imported, accessed and exported in the XML
format is still an important challenge, addressed by some of
the so-called “native XML data stores”. As argued in [48],
a natural implementation of such systems keeps an XML
logical format (even if the underlying storage is relational
or object-oriented) in order to achieve scalability, data-
access speed and reliability. We can place our work in this
context.

5 Conclusions and perspectives

In this paper we present a method to incrementally verify
multiple updates in the presence of schema and integrity
constraints in XML documents. Update operations are the
insertion, deletion and replacement of any subtree of the
XML tree. The validity of the resulting XML document
is determined only after having analyzed all update opera-
tions in a given set of updates. If the resulting document
does not violate the imposed constraints, then updates are

committed and the document is permanently changed.
Though there exist previous works on schema validation

on the hand, and key verification on the other hand, our
approach is new in the sense that it considers them both si-
multaneously, in one single pass over the XML document
being processed. This implies to deal with interesting re-
search topics, including incremental validation, unranked
tree processing (not translated into ranked trees) and at-
tribute grammars, as well as with non-elementary and non-
single update operations on XML documents.

The incremental verification of schema constraints is
performed by using a bottom-up tree automaton to re-
validate just the parts of the XML document affected by
the updates. Our algorithm is not restricted to schemas
specified by DTDs or XML Schema, but it also works
on schemas obtained from any regular tree grammar, even
those which are not local or single typed tree grammars.
Attribute grammars are used to formalize the process of in-
tegrity constraints verification.

The algorithms presented here have been implemented
in Java, and experimental results show that the incremen-
tal schema verification has advantages over the verification
from scratch, for multiple updates and for large XML doc-
uments. In large scale tests, our incremental schema vali-
dation algorithm (although implemented without optimiza-
tion) uses almost one third of the time needed for the vali-
dation from scratch performed by a highly optimized com-
mercial product.

The experimental results obtained with our key and for-
eign key validation routines are also encouraging. Despite
their theoretical complexity, their behavior led to a graphic
which grows almost linearly with the size of the processed
document (Fig. 16). Results for the incremental key verifi-
cation programs are similar, but more efficient, to those of
the verification from scratch. Indeed, the incremental ver-
ification of keys is, in the limit, better than the verification
from scratch (compare the results in Fig. 16 and 18).

Our asymptotic time complexity and experimental re-
sults show the efficiency of our incremental validation
of updates: it is at least as efficient as those proposed
by [23, 45] (even if it is hard to compare precisely). More-
over, it has some advantages over them, such as space re-
quirements, multiple updates on any tree node and flexibil-
ity of integrating schema and key constraint validation.

Several directions have to be investigated for future
work:

Integration of our approach into an existing update
framework: We have designed algorithms to run in the
"back office" of a framework enabling the performance of
updates over XML documents. As discussed in Introduc-
tion, it can be either a text editor and/or an update language.
Next step will be to integrate our routines in such a frame-
work.

New update operations: Our set of update opera-
tions conforms to recent recommendations for updates in
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XQuery ([22]), but it does not include insertion or deletion
of a node in a path, say under position p, i.e., an update op-
eration allowing changes on the hierarchy by the addition
or the removal of one level. Although these operations are
not explicitly recommended by [22], they may be useful
for some applications. Nevertheless, before implementa-
tion, their semantics must be carefully specified: this new
kind of insertion consists in adding to the child axis a new
node that becomes the father of one child of p. Moreover,
it can also be the nesting of several children of p under one
new level: in that case, the update must contain the spec-
ification of which children become children of the newly
inserted node. The new kind of deletion might be the in-
verse operation.

New classes of constraints: Our integrity constraint val-
idator can be adapted to verify different constraints such as
XML functional (XFD) and inclusion dependencies. Such
constraints can be expressed in a language very similar to
CTK. The approach to implement them can be exactly the
same as the one presented here for keys and foreign keys
(using the attribute grammar): we just need to adapt the
positions where tests must be performed and the kind of
tests to be performed.

Use of a more expressive constraint language: One of
the first possibilities to consider is to extend our key con-
straint language to include other XPath expressions, such
as predicates or the use of other axes. XPath has been
widely used in XML query languages and in XML spec-
ifications. In practice, many applications do not need the
excessive power of the full XPath (which makes it rather
expensive to process); they use only a fragment of XPath.
Considering the sub-languages of XPath studied in [15],
we notice that path expressions in CTK belongs to Xr the
XPath sublanguage which allows navigation along the an-
cestor and descendant axes (while others permit only par-
ent and child axes); but does not allow upward navigation
or the use of qualifiers (predicates). Indeed, since Xr is
the sublanguage used by XML Schema to specify integrity
constraints ([15]) we have (until now) considered that our
CTK was well adapted to most of the practical cases. Nev-
ertheless, it would be interesting to extend our proposition
to a quite general constraint language such as the one pre-
sented in [29].
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