THE NOVEL ROUTE FOR SYNTHESIS OF TELLURIUM TETRACHLORIDE, AND REDETERMINATION OF ITS STRUCTURE AT LOWER TEMPERATURE BY X-RAY CRYSTALLOGRAPHY.

Abdolali Alemi,^a Esmaiel Soleimani,^{*a} Zoya A. Starikova^b

a : Inorganic Synthesis Laboratory, Faculty of Chemistry, Tabriz University, Tabriz,
IRAN Phone : 0098 41 355998, Fax : 0098 41 340191, soleimani@ark.tabrizu.ac.ir
b : X-ray Structural Center, General and Technical Chemistry Division, Academy of
Science of Russia, star@xrpent.ineos.ac.ru

Received 1.12.1999

Abstract

The reaction of iodine trichloride with tellurium in a sealed evacuated glass ampoule at 250 °C yields yellow-green, moisture sensitive crystals of TeCl₄. The crystal structure of TeCl₄ has been determined in low temperature at 100 K from three-dimensional X-ray data collection. The compound crystallizes in space group *C2/c* of monoclinic system with unit cell dimensions a = 16.846(3)Å, b = 10.347(2)Å, c = 15.051(3) Å, $\beta = 116.87(3)$ °, Z = 8, V = 2340.2(8) Å³, $\rho_c = 3.059$ g/cm³, final *R* indices [*I*>2 σ (*I*)] *R* = 0.0507, *wR* = 0.1304, and *R* indices (all data) *R* = 0.0564, *wR* = 0.1341.

The structure consists of tetramers, Te_4Cl_{16} , which have a cubane-like structure. The Te atoms occupy the half of the corners with T_d symmetry. Each Te atom has been attached to three terminal Cl atoms with an average distance of 2.325Å. The coordination of the Te atom is completed to a distorted octahedron by three bridging chlorine atoms with much longer Te-Cl bond lengths (average 2.915Å). In the polar limiting case the structure may be described, in a rough approximation, as an arrangement of $TeCl_3^+$ ions with nearly C_{3v} symmetry and of Cl⁻ ions. The structure data suggest possible concentration of the nonbonding Te electrons toward the center of the cubane skeleton.

Introduction

The compounds R_3EX_2 (R = alkyl, aryl, mixed arylalkyl, substituted aryl ; E = P, As, Sb; X = Cl, Br, I) and R_2FX_2 (R = alkyl, aryl, mixed arylalkyl, substituted aryl ; F = S, Se ; $X_2 = Cl_2$, Br₂, I₂, ICl, IBr) are a subject of considerable current interest [1-6]. They were found significant use as reagent in synthetic organic and inorganic chemistry [7-11] . Recently structural study of these compounds were interested some of the chemists [12-16] .The dihalogen adducts of tertiary phosphines [17,18] , arsines [2] , tertiary phosphine sulfides [15,19] , selenides [13, 20] , organo-selenium compounds [6, 21] and selenoamides [22-24] have all received considerable study from a variety of research groups in the last few years. It is surprising that many of the dihalogen compounds formed lie close the ionic and covalent borderline are influenced not only by aggregation (solid, liquid, gas) or the nature of solvent, but also by effect of organo-substituents , R , the donor atoms, the indentity of the halogen.

Thus, for example, dimethylselenide diiodine adopts a three coordinate charge transfer (CT) structure, Me₂Se-I-I [6] whereas the corresponding dibromide adopts a disphenoidal structure, Me₂SeBr₂ [6]. On the other hand, Me₂SBr₂ is a charge transfer compelex, Me₂S-Br-Br [25], thus illustrating the importance of the donor atom on the nature of the dihalogen adduct produced. Similarly Ph₃As-I-I [2] is a charge transfer complex, whereas Ph₃AsBr₂ [2] is trigonal bipyramidal.

Recently, we have prepared adduct $Cl_2Se-ICl$ [26] from the reaction of Se and ICl_3 in a sealed evacuated ampoule. In an analogous attempt to synthesis adduct $Cl_2Te-ICl$ from the reaction of Te and ICl_3 , we have obtained yellow-green crystals of $TeCl_4$ by chemical vapour transport reaction.

Experimental

Iodine trichlorid (ICl₃) was prepared by interaction finely powdered iodine crystals and potassium chlorate (KClO₃) with together addition gradually dropwise concentrated HCl. Then it was recrystallized in absolute ethanol, and dried over CaCl₂ in vacuum. Tellurium was used as purchased.

Preparation of TeCl₄

0.2300 g Te and 0.6130 g ICl₃ are filled in a glass ampoule of 25 cm length and 1.5 cm inner diameter. The glass ampoule was evacuated and simultaneously heated with burner flame. The ampoule is placed in a horizontal tube furnace in a temperature gradient from 250 °C to 100 °C with the educt mixture at the hot side. Within three days yellow-green crystals of TeCl₄ were transported into the colder part of the ampoule. The yield was nearly quantitative.

Due to the high sensitivity towards moist air charging and opening of the reaction ampoule and collection of crystals were performed in the glove box filled with argon atmosphere.

Crystal Structure Analysis

The single crystal of TeCl₄ with size 0.1 x 0.1 x 0.2 mm was fixed to glass capillary tube, which was closed by flame for X-ray diffraction study. Intensity data were collected at 100 °K on a Rigaku AFC7R diffractometer. Preliminary precession photographs showed the monoclinic crystal system with the Laue group 2/m and the centered unit cell. The systematic extinction *hol* only present for l = 2n was confirmed in the diffractometer data set and led to the space groups C2/c or Cc. The centrosymmetry of the structure with the space group C2/c was confirmed through the structure analysis. 13755 reflections collected with 2 θ range for data collection 4.78 ° to 60.16 °.A structure mode was obtained by direct method and refined by full matrix least square on F² with anisotropic displacement parameters for all atoms. The maximum and minimum peaks on the final difference Fourier map corresponded to 4.262 and -3.507 eÅ⁻³.

Crystallographic data and details of structure analysis are given in Table 1. Table 2 contains the atomic coordinates and equivalent isotropic displacement parameters. Bond lengths and angles are given in Table 3. Table 4 contains the anisotropic displacement parameters.

Details of the crystal structure determination can be ordered from FACHINFORMATIONSZENTRUM KARLSRUHE, 76344 Eggenstein-Leopoldshafen, under the depository number CSD-411157.

Identification code	TeCl ₄
Empirical formula	Cl_8Te_2
Formula weight	538.80
Temperature	100(1) °K
Wavelength	0.7103 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a = 16.846(3) \text{ Å}, \alpha = 90^{\circ}$
	$b = 10.347(2)$ Å, $\beta = 116.87(3)^{\circ}$
	$c = 15.051(3) \text{ Å}, \gamma = 90^{\circ}$
Z	8
Volume	2340.2(8) Å ³
Calculated density	3.059 Mgm^{-3}
Absorption coefficient	6.750 mm^{-1}
F(000)	1920
Crystal size	0.1 x 0.1 x 0.2 mm
θ range for data collection	2.39° to 30.08°
Limiting indices	$-23 \le h \le 23$, $-14 \le k \le 14$, $-21 \le l \le 21$
Reflections collected	13755
Independent reflections	3395 ($R_{int} = 0.0831$)
Completeness to data	up to $\theta = 30.08^{\circ} 98.9 \%$
Max. and Min. transmission	1.258 and 0.352
Refinement method	Full-matrix least-squares on F ²
Data /restraints /parameters	3395 / 0 / 91
Goodness-of-fit on F^2	1.009
Final <i>R</i> indices [$I > 2\sigma(I)$]	R = 0.0507, wR = 0.1304
R indices (all data)	R = 0.0564, wR = 0.1341
Largest diff. peak and hole	4.262 and -3.507 eÅ ⁻³

Table 1. Crystal data and structure refinement for $TeCl_4$.

Atom	X	Y	Z	ų	
Te(1)	3571(1)	5248(1)	1797(1)	14(1)	
Te(2)	5019(1)	2317(1)	3918(1)	14(1)	
Cl(1)	5003(1)	5124(1)	3801(1)	18(1)	
Cl(2)	3647(1)	2443(1)	1821(1)	19(1)	
Cl(3)	2526(1)	5208(2)	129(1)	23(1)	
Cl(4)	2547(1)	5117(2)	2434(1)	23(1)	
Cl(5)	3661(1)	7498(1)	1878(1)	25(1)	
Cl(6)	6176(1)	2377(1)	5520(1)	21(1)	
Cl(7)	3901(1)	2401(1)	4414(1)	20(1)	
Cl(8)	5003(1)	77(1)	3770(1)	21(1)	
Table	3 Bond leng	the [Å] and an	gles $\begin{bmatrix} 0 \end{bmatrix}$ for Te	Cl.	
Te(1)-Cl(4)	2.324(2)	Te(1)-CI(3)	2.325(2)	
Te(1)-Cl(5)	2.333(2)	Te(1)-CI(1)	2.891(2)	
Te(1)-Cl(2)	2.905(2)	Te(1)-CI(1)#1	2.925(2)	
Te(2)-Cl(6)	2.317(2)	Te(2)-CI(7)	2.320(2)	
Te(2)-Cl(8)	2.328(2)	Te(2	-CI(1)	2.910(2)	
Te(2)-Cl(2)#1	2.928(2)	Te(2)-CI(2)	2.954(2)	
CI(1)-Te(1)#1	2.925(2)	CI(2))-Te(2)#1	2.928(2)	
Cl(4)-Te(1)-Cl(3)	95.95(6)	Cl(4)	-Te(1)-Cl(5)	94.55(6)	
Cl(3)-Te(1)-Cl(5)	94.22(6)	Cl(4)	-Te(1)-Cl(1)	89.55(5)	
Cl(3)- $Te(1)$ - $Cl(1)$	173.28(6)	Cl(5)	-Te(1)-Cl(1)	89.19(5)	
Cl(4)-Te(1)-Cl(2)	88.46(5)	Cl(3)	-Te(1)-Cl(2)	90.18(5)	
Cl(5)-Te(1)-Cl(2)	174.38(5)	Cl(1)	-Te(1)-Cl(2)	86.08(4)	
Cl(4)-Te(1)-Cl(1)#1	171.87(5)	Cl(3)	-Te(1)-Cl(1)#1	89.59(5)	
Cl(5)-Te(1)-Cl(1)#1	90.96(5)	Cl(1)	-Te(1)-Cl(1)#1	84.55(5)	
Cl(2)-Te(1)-Cl(1)#1	85.56(4)	Cl(6)	-Te(2)-Cl(7)	95.01(6)	
Cl(6)-Te(2)-Cl(8)	95.39(5)	Cl(7)	-Te(2)-Cl(8)	95.28(5)	
Cl(6)-Te(2)-Cl(1)	90.95(5)	Cl(7)	-Te(2)-Cl(1)	89.75(4)	
Cl(8)-Te(2)-Cl(1)	171.53(5)	Cl(6)	-Te(2)-Cl(2)#1	87.99(5)	
Cl(7)-Te(2)-Cl(2)#1	174.37(5)	Cl(8)	-Te(2)-Cl(2)#1	89.17(5)	
Cl(1)-Te(2)-Cl(2)#1	85.43(4)	Cl(6)	-Te(2)-Cl(2)	174.08(5)	
Cl(7)-Te(2)-Cl(2)	89.15(5)	Cl(8)	-Te(2)-Cl(2)	88.40(5)	
Cl(1)-Te(2)-Cl(2)	84.85(4)	Cl(2)	#1-Te(2)-Cl(2)	87.52(5)	
Te(1)-Cl(1)-Te(2)	95.03(4)	Te(1))-Cl(1)-Te(1)#1	95.23(5)	
Te(2)-Cl(1)-Te(1)#1	94.35(4)	Te(1)-Cl(1)-Cl(1)#2	131.75(7)	
Te(2)-Cl(1)-Cl(1)#2	82.71(5)	Te(1)#1-Cl(1)-Cl(1)#2	133.02(5)	
Te(1)-Cl(2)-Te(2)#1	94.39(4)	Te(1))-Cl(2)-Te(2)	93.78(4)	
Te(2)#1-Cl(2)-Te(2)	92.25(5)				

Table 2. Atomic coordinates [$x \ 10^4$] and equivalent isotropic displacement parameters [Å² $x \ 10^3$] for TeCl₄. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Symmetry transformations used to generate equivalent atoms: #1 -X +1, Y, -Z +1/2#2 -X +1, -Y +1, -Z +1

Atom	U ₁₁	U 22	U 33	U 23	U ₁₃	U 12
Ге(1)	13(1)	6(1)	23(1)	1(1)	6(1)	2(1)
ſe(2)	13(1)	4(1)	22(1)	1(1)	6(1)	0(1)
Cl(1)	18(1)	8(1)	25(1)	-2(1)	8(1)	0(1)
Cl(2)	17(1)	9(1)	27(1)	0(1)	7(1)	-1(1)
Cl(3)	18(1)	20(1)	23(1)	3(1)	4(1)	2(1)
Cl(4)	19(1)	20(1)	33(1)	3(1)	14(1)	4(1)
Cl(5)	30(1)	6(1)	36(1)	2(1)	13(1)	3(1)
Cl(6)	17(1)	16(1)	24(1)	-1(1)	5(1)	2(1)
Cl(7)	17(1)	13(1)	31(1)	-3(1)	12(1)	-3(1)
Cl(8)	27(1)	5(1)	30(1)	0(1)	13(1)	0(1)

Table 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for TeCl₄. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^* U_{12}]$.

Results and Discussion

Synthesis of TeCl₄

In the attempt for preparation adduct Cl_2 Te-ICl from the reaction of Te and ICl₃, yellow-green crystals of TeCl₄ were obtained. The reaction path way can be as following:

1)
$$ICl_3 \longrightarrow ICl + Cl_2$$

2) Te + 2 Cl₂
$$\longrightarrow$$
 TeCl₄

It is clear that at 250 $^{\circ}$ C, first some ICl₃ dissociate to chlorine and iodine chloride. Then tellurium reacts with fresh chlorine and forms yellow-green crystalline compound TeCl₄, which are separated from the vapour phase in the cold side of the ampoule.

Crystal Structure of TeCl₄

The structure consists of isolated tetramers Te_4Cl_{16} which have only Cl Cl van der Waals contacts to neighboring Te_4Cl_{16} molecular units. These tetramers have a cubane-like structure with Te and Cl atoms occupying alternatively the corners of Te_4Cl_4 cubane skeleton. Figure 1 shows the unit cell, Figure 2 shows a detailed view of structure and the connection of atoms, and Table 3 shows bond length and bond angles.

Figure 1. Representation of the unit cell of Te₄Cl₁₆.

Figure 2. Perspective view of the structure of Te₄Cl₁₆ group.

In fact is built of TeCl_3^+ and of Cl^- ions with strong cation-anion interaction (average 2.90 Å). Every Te atom has three terminal atoms at an average bond distance of 2.325 Å. Together with these it forms an equilateral trigonal pyramid with mean bond angles Cl-Te-Cl of 95.06 °. Comparable values are found in TeCl₃MoOCl₄ [27] (Te-Cl 2.302 Å, Cl-Te-Cl 95.4 °), (TeCl₃)₂MoCl₆ (Te-Cl 2.311 Å, Cl-Te-Cl 95.13°), and (TeCl₃)₂ReCl₆ [28] (Te-Cl 2.303 Å, Cl-Te-Cl 95.13°).

Like in nearly all compounds containing TeX_3^+ (X = F, Cl, Br, I) strong cationanion interaction were observed in [(TeCl₃⁺) Cl⁻]. The coordination of Te is completed to a strongly distorted octahedron by three bridging Cl atoms of Te₄Cl₄ cube with much longer bond distances (average 2.915 Å) and mean bond angles (Cl-Te-Cl) of 85.50°. Comparable Te-Cl bond length values are found 2.938 Å, 2.929 Å and 2.941 Å in the TeCl₃MoOCl₄ [27], (TeCl₃)₂MoCl₆, and (TeCl₃)₂ReCl₆ [28] respectively. This distortion of TeCl₆ octahedron active lone pair electron on the tellurium atom sticking out forward the longer distant face of the octahedron.

The low-temperature structure of TeCl_4 was similar in all essential details with earlier studied [29] at room temperature. However, our low-temperature experiment allowed improving substantially the accuracy of the final geometrical parameters.

Since, TeCl₄ have a partially ionic character, which enables it to react with strong Lewis acid to form ionic adducts. The role of the halide ion acceptor can be filled not only by halides of main group elements like AlCl₃, BiCl₃, AsF₆ or SbF₆, but by metal halides of subgroup element as well, such as TiCl₄, NbCl₅, FeCl₃, UCl₅, MoOCl₄, ReCl₄, or AuCl₃, MoOCl₃, VOCl₃ also proved to be a suitable Lewis acid. So far compounds TeCl₃MoOCl₄ [27] (TeCl₃)₂MoCl₆ [28], TeCl₃MCl₆ [30] (M = Sb, Nb, Ta) were prepared by acid-base Lewis adducts.

References

- [1] N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Chem. Commun. 1992, 355-356.
- [2] N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard, J. M. Morenao, *J. Chem. Soc., Dalton Trans.* **1995**, 3873-3879.
- [3] N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Dalton Trans. 1994, 1759-1763.
- [4] G. Allegra, G. E. Wilson, Jr. E. Benedetti, C. Pedone, R. Albert, J. Amer. Chem. Soc. 1970, 92, 4002-4006.
- [5] F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, G. Saba, G. Verani, J. Chem. Soc., Dalton Trans. 1992, 3553-3560.
- [6] S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. Sarwar, J. Chem. Soc., Dalton Trans. 1997, 1031-1036.
- [7] J. M. Aizpurua, C. Palsmo, Synthesis, 1982, 684-687.
- [8] N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Dalton Trans. 1996, 157-160.
- [9] S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, J. M. Sheffield, J. Chem. Soc., Dalton Trans.

A. Alemi, E. Soleimani, Z. A. Starikova: The Novel Route for Synthesis of Tellurium Tetrachloride...

1996, 3309-3311.

- [10] S. M. Godfrey, Nicholas Ho, C. A. McAuliffe, R. G. Pritchard, Angew. Chem., Int. Ed. Engl. 1996, 35, 2344-2346.
- [11] S. M. Godfrey, K. J. Kelly, P. Kramkowski, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Chem. Commun. 1997, 1001-1002.
- [12] F. Ruthe, W. W. du Mont, P. G. Jones, J. Chem. Soc., Chem. Commun. 1997,1947-1948.
- [13] S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Dalton Trans. 1997, 4499-4502.
- [14] M. Arca, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani, Z. Anorg. Allg. Chem. 1998, 624, 745-749.
- [15] D. C. Apperley, N. Bricklebank, S. L. Burns, D. E. Hibbs, M. B. Hursthouse, K. M. Abdul Malik, J. Chem. Soc., Dalton Trans. 1998, 1289-1292.
- [16] N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard, J. M. Morenao, J. Chem. Soc., Dalton Trans. 1995, 2421-2424.
- [17] N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, P. Deplano, M. L. Mercuri, J. M. Sheffield, J. Chem. Soc., Dalton Trans. 1998, 2379-2382.
- [18] S. M. Godfrey, C. A. McAuliffe, I. Mushtaq, R. G. Pritchard, J. M. Sheffield, J. Chem. Soc., Dalton Trans. 1998, 3815-3818.
- [19] W. I. Cross, S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Dalton Trans. 1999, 2225-2230.
- [20] S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, R. G. Pritchard, J. Chem. Soc., Dalton Trans. 1998, 4201-4204.
- [21] S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. Sarwar, J. Chem. Soc., Dalton Trans. 1997, 3501-3504.
- [22] F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, V. Lippolis, G. Verani, *Inorg. Chem.* 1994, 33, 6315-6324.
- [23] P. D. Boyle, W. I. Cross, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. J. Teat, J. Chem. Soc., Dalton Trans. 1999, 2845-2852.
- [24] P. D. Boyle, W. I. Cross, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. J. Teat, J. Chem. Soc., Dalton Trans. 1999, 2219-2224.
- [25] B. Regelmann, K. W. Klinkhammer, A. Schmidt, Z. Anorg. Allg. Chem. 1997, 623, 1633-1638.
- [26] A. Alemi, J. Beck, E. Soleimani, publication in preparation.
- [27] J. Beck, Z. Naturforsch. 1991, 46 B, 183-186.
- [28] J. Beck, P. Biedenkopf, K. Mueller-Buschbaum, Z. Naturforsch. 1996, 51 B, 727-732.
- [29] B. Buss, B. Krebs, Inorg. Chem. 1971, 10, 2795-2800.
- [30] F. W. Poulsen, R. W. Berg, J. Inorg. Nucl. Chem. 1987, 40, 471-476.

Povzetek

Navedena je nova metoda sinteze telurjevega tetraklorida iz jodovega triklorida in telurja v evakuirani stekleni ampuli pri 250 °C. Nastanejo za rentgensko strukturno anal izo primerni kristal i. Ponovno je dol očena struktura pri 100 K. Strukturo sestavljajo tetrameri Te_4Cl_{16} , ki imajo kubanu podobno zgradbo. Telurjev atom je obdan s tremi klorovimi atomi s poprečno razdaljo 2.325 Å, oktaedrično koordinacijo pa dopoljnjujejo še trije mostovni klorovi atomi na poprečni razdalji 2.915 Å.