
EMBEDDED
SYSTEM:
LABORATORY EXERCISES

Založba
FE JANEZ PUHAN

University of Ljubljana
Faculty of electrical engineering

Embedded systems:
Laboratory exercises

Janez Puhan

Ljubljana, 2019

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani

COBISS.SI-ID=299479040

ISBN 978-961-243-380-2 (pdf)

Založnik: Založba FE, Ljubljana
Izdajatelj: Fakuleta za elektrotehniko, Ljubljana
Urednik: prof. dr. Sašo Tomažič
1. elektronska izdaja

URL: http://fides.fe.uni-lj.si/~janezp/embedded_systems_laboratory_exercises.pdf

Contents

Preface v

1 Installing IDE 1

2 Simple electronic lock 13

3 Watchdog timer 19

4 UART 23

5 µC initialization 29

6 Timer 37

7 LCD driver 47

8 ADC and DACC 51

9 Ramp application 59

Bibliography 65

Preface

The laboratory exercises described in this script are part of the Embedded systems
course. The course is held in the fifth semester of the 1st Cycle Professional Study
Programme in Applied Electrical Engineering, study programme option Electron-
ics, at the Faculty of electrical engineering of the University of Ljubljana, Slovenia.
The students are introduced into embedded system programming through nine
laboratory exercises. A µC1 system with ARM2 Cortex based processor core is
used. The Arduino Due board with Olimex ARM-USB-OCD-H4 JTAG5 interface
serves as a hardware platform. The Eclipse IDE6 for C/C++ Developers is used
as a graphical interface to the GNU7 tools (i.e., compiler, linker, debugger, etc.).
The environment is installed on a PC8 with installed Linux operating system. A
solid knowledge of the C programming language is a required prerequisite.

1µC ... Micro-Controller
2ARM ... Advanced RISC3 Machines
3RISC ... Reduced Instruction Set Computer
4ARM-USB-OCD-H... ARM - USB5 - On-Chip Debugger - High speed
5USB... Universal Serial Bus
6JTAG ... Joint Test Action Group
7IDE ... Integrated Development Environment
8GNU ... GNU’s Not Unix
9PC ... Personal computer

Exercise 1

Installing IDE

Prepare a working environment to program the Arduino Due board through the
Olimex ARM-USB-OCD-H interface on a Linux pre-installed PC1. Use Eclipse
IDE for C/C++ Developers as a graphical interface, GCC2 as ARM cross-
compiler, and OpenOCD for communication with the ARM-USB-OCD-H inter-
face. Find the required software on the Internet. Create and cross-compile a
template project with an empty main() function. Use ASF3 code for µC initial-
ization from reset to the start of the main() function. Upload the cross-compiled
project to the Arduino Due board.

Explanation

Installing the environment

The Eclipse is a platform consisting of several components used to develop ap-
plications in various programming languages. Since our code will be in the C
programming language the component Eclipse IDE for C/C++ Developers needs
to be installed. The Eclipse IDE for C/C++ Developers tarball can be down-
loaded from the Eclipse website [1]. Open a terminal window and extract the files
in tarball. To open the terminal window, go to the Applications in the menu bar,
select Accessories, and run the Terminal program. A terminal window with the
user home directory as the current working directory is opened. To extract the
tarball (i.e., the eclipse-cpp-kepler-SR2-linux-gtk-x86_64.tar.gz file), use
tar command.

user@host:~$
tar xvfz eclipse-cpp-kepler-SR2-linux-gtk-x86_64.tar.gz

The Eclipse requires a Java VM4 to run. Installing the Java SE5 Development
Kit solves that. The JDK6 tarball can be downloaded from the Oracle website
[2]. Change into the eclipse directory created at the previous tarball extraction
and extract the JDK tarball there.

user@host:~$ cd eclipse
user@host:~/eclipse$ tar xvfz jdk-8u45-linux-x64.tar.gz

1The Wheezy release of the Debian Linux distribution
2GCC ... GNU Compiler Collection
3ASF ... Atmel Software Framework
4VM ... Virtual Machine
5SE ... Standard Edition
6JDK ... Java Development Kit

2 EXERCISE 1. INSTALLING IDE

To ensure that the Eclipse will run on the installed JVM7, it has to be specified
in eclipse.ini file. The file can be edited with an arbitrary text editor (i.e., vi,
nano, gedit, etc.). Add the following lines before the VM arguments line (i.e.,
before the -vmargs line) in eclipse.ini.

-vm
/home/user/eclipse/jdk1.8.0_45/bin/java

The Eclipse will serve as a graphical interface to the GNU tools (i.e., compiler,
linker, debugger, etc.). The GNU tools (i.e., GCC) for ARM embedded pro-
cessors will be used. GCC [3] is a collection of compilers supporting various
programming languages and targeting various platforms (i.e., µCs or µPs8). In
our case, the GCC ARM cross-compiler is required. The source code will be
cross-compiled on a PC building an executable for an ARM Cortex processor.
The GCC for ARM embedded processors tarball can be downloaded from the
GCC ARM Embedded project on the Launchpad website [4]. Extract the tarball
(i.e., the gcc-arm-none-eabi-4_9-2015q1-20150306-linux.tar.bz2 file) into
the eclipse directory.

user@host:~/eclipse$
tar xvjf gcc-arm-none-eabi-4_9-2015q1-20150306-linux.tar.bz2

To communicate with the Olimex ARM-USB-OCD-H interface [5], the OCD soft-
ware is required. The OCD (i.e., OpenOCD) provides programming and debug-
ging of the target embedded system (i.e., µC on the Arduino Due board). To
do so, a debug interface (i.e., the Olimex ARM-USB-OCD-H) is needed to pro-
duce the required electric signals (i.e., JTAG). In our case, the Eclipse will com-
municate with the ARM-USB-OCD-H interface. Thus the GNU ARM Eclipse
OpenOCD distribution of the OpenOCD project [6] will be installed. The tar-
ball can be downloaded from the GNU ARM Eclipse Plug-ins project on the
Sourceforge website [7]. Extract the tarball (i.e., the gnuarmeclipse-openocd-de
bian64-0.8.0-201503201909.tgz file) into the eclipse directory.

user@host:~/eclipse$
tar xvfz gnuarmeclipse-openocd-debian64-0.8.0-201503201909.tgz

The OpenOCD software needs to be properly configured to use the selected
debug interface (i.e., the Olimex ARM-USB-OCD-H) talking to the selected
target embedded system (i.e., the Atmel AT91SAM3X8E µC [8] on the Ar-
duino Due board [9]). Create the following openocd.cfg configuration file in
openocd/0.8.0-201503201909/scripts subdirectory of the eclipse directory.

source [find interface/ftdi/olimex-arm-usb-ocd-h.cfg]
source [find target/at91sam3ax_8x.cfg]
$_TARGETNAME configure -event gdb-attach {

echo "Halting target"
halt

}

The Olimex ARM-USB-OCD-H interface and the AT91SAM3X8E Arduino Due
µC are specified in openocd.cfg. Also halting of the target processor is performed

7JVM ... Java Virtual Machine
8µP ... MicroProcessor

3

on the GDB9 attach event10. Use chmod command to set openocd.cfg permissions
to read/write for the owner and read for everyone else.

user@host:~/eclipse$
chmod 644 openocd/0.8.0-201503201909/scripts/openocd.cfg

OpenOCD software needs the lib32ncurses5 package to be installed. Also the
libcanberra-gtk-module is required by Eclipse. To install both packages, root
user permissions are required.

root@host:~# apt-get update
root@host:~# apt-get install lib32ncurses5
root@host:~# apt-get install libcanberra-gtk-module

The Olimex ARM-USB-OCD-H interface is identified by the udev daemon when
plugged in. The udev identifies a new device and creates its name according to
the rules in /etc/udev/rules.d directory. The 99-openocd.rules file contains
rules for various interfaces (including the ARM-USB-OCD-H) the OpenOCD can
work with. It has to be copied into the /etc/udev/rules.d directory. The rules
has to be reloaded to take effect. The root user permissions are required.

root@host:~# cp /home/user/eclipse/openocd/0.8.0-201503201909/con
trib/99-openocd.rules /etc/udev/rules.d

root@host:~# udevadm control --reload-rules

To use the Olimex ARM-USB-OCD-H interface, the user has to be a member of
the plugdev group.

root@host:~# usermod -a -G plugdev user

It is time to run the freshly installed Eclipse for the first time.

user@host:~/eclipse$./eclipse

To make the Eclipse environment work with the Olimex ARM-USB-OCD-H
OpenOCD interface and AT91SAM3X8E µC, the Eclipse extensions for GNU
tools for ARM embedded processors have to be installed. These extensions are
provided by the GNU ARM plug-ins. Since debugging sessions are powered by
the GDB, the C/C++ GDB Hardware Debugging plug-in is a prerequisite. It is
a part of the CDT11 plug-ins. The CDT zip file (i.e., the cdt-master-8.3.0.zip
file) can be downloaded from the Eclipse website [1]. To install the C/C++ GDB
Hardware Debugging plug-in into the Eclipse, select the Install New Software...
menu item from the Help menu in menu bar. The Install dialog box opens. Press
the Add... button to add a new software repository. In Add Repository dialog box
shown in Fig. 1.1 specify the CDT repository, i.e., Name: CDT, Location: absolute
path to the cdt-master-8.3.0.zip file.

After the repository is specified, the Install dialog box regains the focus. Select
the C/C++ GDB Hardware Debugging plug-in from the CDT Optional Features
list as shown in Fig. 1.2. Press the Next > button and follow the installation
procedure.

9GDB ... GNU debugger
10Occurs when the GDB connects to the target (i.e., at the beginning of the debug session).
11CDT ... C/C++ Development Tooling

4 EXERCISE 1. INSTALLING IDE

Figure 1.1: The Add Repository dialog box

Figure 1.2: Select C/C++ GDB Hardware Debugging plug-in in the Install dialog
box

Install the GNU ARM plug-ins in the same manner. The zip file (i.e., the
ilg.gnuarmeclipse.repository-2.8.1-201504061754.zip file) can be down-
loaded from the GNU ARM Eclipse Plug-ins project on the Sourceforge website [7].
This time specify the repository as Name: GNU ARM Eclipse Plug-ins, and Loca-
tion: absolute path to the ilg.gnuarmeclipse.repository-2.8.1-20150406175
4.zip file. In the Install dialog box select the entire package of the GNU ARM
C/C++ Cross Development Tools plug-ins.

Finally, a path to the OpenOCD binary directory has to be configured in
the Eclipse environment. To do so, select the Preferences menu item from the
Window menu in menu bar. The Preferences dialog box opens. Select the String
Substitution item from Run/Debug as shown in Fig. 1.3. Select the openocd_path
variable and press the Edit... button. In the Edit Variable: openocd_path dialog
box specify the absolute path to the OpenOCD binary directory, i.e., absolute
path to the openocd/0.8.0-201503201909/bin directory.

Figure 1.3: Specifying absolute path to the OpenOCD binary directory

At this point, a working environment consisting of the Eclipse with the required

5

plug-ins, the GNU tools and the OpenOCD software is installed as shown in Fig.
1.4.

Eclipse

C/C++ GDB
Hardware
Debugging

GNU ARM

Java

GNU tools

GDB client

GDB server

OpenOCD

USB

ARM-USB-OCD-H

JTAG

AT91SAM3X8E

Figure 1.4: Working environment

A few handy settings of the Eclipse environment follow to ease the usage of
the created working environment. The settings are optional.

Window | Preferences → Preferences dialog box → General | Editors | Text Ed-
itors → enable Show print margin and Show line numbers → press the Apply
button

Window | Preferences → Preferences dialog box→ General |Workspace → disable
Build automatically and enable Save automatically before build → press the Apply
button

Window | Preferences → Preferences dialog box → C/C++ | Build | Console
→ enable Bring console to top when building (if present) and Wrap lines on the
console, set Limit console output (number of lines) to 5000 → press the Apply
button

Window | Preferences → Preferences dialog box → C/C++ | Code Analysis →
disable all problems → press the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Code Style | For-
matter → set Active profile to GNU [built-in] → press the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Editor → in the
Documentation tool comments section, set Workspace default to Doxygen → press
the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Editor | Folding →
in the Initially fold this region types section, disable Header Comments → press
the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Indexer → in the
Build configuration for the indexer section, select Use active build configuration
→ press the Apply button

Window | Preferences → Preferences dialog box → Run/Debug | Launching →
in the Launch Operation section, enable Always launch the previously launched
application → press the Apply button

6 EXERCISE 1. INSTALLING IDE

Selecting an appropriate µC boot mode

The Atmel AT91SAM3X8E µC on the Arduino Due board has three non-volatile
memory blocks that can retain their contents when not powered. Those are
ROM12 (16kB) starting at the 0x00000000 address, the first Flash memory bank
(256kB) starting at 0x00080000, and the second Flash memory bank (256kB)
starting at 0x000c0000. The reset vector13 of the µC can reside in any of them.
The location of the reset vector is selected by the GPNVM14 bits (see Tab. 1.1)
[8].

GPNVM bit if bit value = 0 if bit value = 1
0 (security bit) Flash access enabled Flash access disabled
1 (boot mode selection) reset vector in ROM reset vector in Flash
2 (flash selection)* reset vector in Flash0 reset vector in Flash1

*used only when GPNVM bit1 = 1

Table 1.1: GPNVM bits

Any kind of outside access to Flash is disabled when the GPNVM bit0 is set.
Therefore, the code in the Flash is protected and cannot be read by the third
party. The protected code can only be deleted by tying the Erase pin to high
voltage level for at least 220ms (i.e., pressing the ERASE button on the Arduino
Due board for 220ms [9]). The GPNVM bits are also erased by this procedure.
Thus, the access to fresh empty Flash is enabled. Of course, the GPNVM bit0
must not be set during the code development.

The GPNVM bit1 selects the location of the reset vector. When ROM is
selected, the SAM-BA15 program hard-coded there is started. It programs16 the
on-chip Flash memory via the UART17 or USB. On the other hand, when the
Flash is selected, the reset vector is read from the first or the second Flash bank
regarding the GPNVM bit2. Since the GDB will be used for uploading the code
into the on-chip Flash, the GPNVM bit1 must be set. SAM-BA will not be used.

The code can be compiled for either the first, or the second Flash bank. The
bank is selected in the linker script provided by the ASF. Since the ASF uses the
first Flash bank (i.e., Flash0), the GPNVM bit2 must not be set.

The default value of the GPNVM bits is zero (i.e., when the ERASE button
is pressed). To get the desired values (i.e., GPNVM bits = 0b010), the GPNVM
bits have to be set with the OpenOCD. Plug in the Olimex USB-ARM-OCD-H
debug interface with the Arduino Due board connected over the JTAG. Open two
terminal windows (Applications → Accessories → Terminal). In the first terminal
start the OpenOCD debugger.

user@host:~/eclipse/openocd/0.8.0-201503201909/bin$./openocd

12ROM ... Read-Only Memory
13Reset vector is loaded into the program counter register at power-up. It defines the µC

starting address.
14GPNVM ... General Purpose Non-Volatile Memory
15SAM-BA ... Smart ARM MCU18 - Boot Assistant
16SAM-BA starts the FFPI19 to program the on-chip Flash.
17UART ... Universal Asynchronous Receiver/Transmitter
18MCU ... µC Unit
19FFPI ... Fast Flash Programming Interface

7

GNU ARM Eclipse 64-bit Open On-Chip Debugger 0.8.0-00063-gbda7f5c
(2015-01-01-00:00)

Licensed under GNU GPL v2
For bug reports, read
http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect ’jtag’
adapter speed: 500 kHz
adapter_nsrst_delay: 100
jtag_ntrst_delay: 100
cortex_m reset_config sysresetreq
adapter speed: 500 kHz
Info : clock speed 500 kHz
Info : JTAG tap: sam3.cpu tap/device found: 0x4ba00477

(mfg: 0x23b, part: 0xba00, ver: 0x4)
Info : sam3.cpu: hardware has 6 breakpoints, 4 watchpoints

Connect to the OpenOCD debugger via telnet in the second terminal. Use local-
host 4444 port. The GPNVM bits can be set and viewed with the at91sam3
OpenOCD command [6].

user@host:~$ telnet localhost 4444
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
Open On-Chip Debugger
> reset init
JTAG tap: sam3.cpu tap/device found: 0x4ba00477

(mfg: 0x23b, part: 0xba00, ver: 0x4)
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x0010004c msp: 0x20001000
> at91sam3 gpnvm clr 0
> at91sam3 gpnvm set 1
> at91sam3 gpnvm clr 2
> at91sam3 gpnvm
sam3-gpnvm0: 0
sam3-gpnvm1: 1
sam3-gpnvm2: 0
> exit
Connection closed by foreign host.

Creating a template project

To create an empty template project in the Eclipse environment, select the
Project... submenu item from the File | New menu. In the New Project dia-
log box shown in Fig. 1.5 select the C/C++ | C Project. In the next, C Project
dialog box shown in Fig. 1.6 set the Project name and select Makefile project |
Empty Project for the Project type, and Cross ARM GCC for the Toolchains.

An empty makefile project is created. A path to the GNU tools directory (i.e.,
/home/user/eclipse/gcc-arm-none-eabi-4_9-2015q1/bin) has to be set.

8 EXERCISE 1. INSTALLING IDE

Figure 1.5: The New Project dialog box

Figure 1.6: The C Project dialog box

9

Highlight the project in the Project Explorer view of the C/C++ perspective20.
Select the Properties menu item from the Project menu. In the Properties for
<projectname>21 dialog box set the following:

C/C++ Build | Settings → Toolchains tab → press the Apply button22

C/C++ Build | Environment → press the Add... button → New variable dialog
box→ set variable Name to PATH and Value to /home/user/eclipse/gcc-arm-no
ne-eabi-4_9-2015q1/bin → press the OK button → back in the Properties for
<projectname> dialog box press the Apply button (see Fig. 1.7)

Figure 1.7: Path to the GNU tools directory

Atmel provides the ASF software library for its µCs. It contains source code
for µC initialization, APIs23 to peripheral units, etc. For Cortex based processors,
the CMSIS24 provided by ARM [10] is included. The ASF software library can
be downloaded from the Atmel website [11]. It comes as a standalone archive
file (i.e., as a asf-standalone-archive-3.21.0.6.zip file). Makefiles and linker
scripts are added, so the code can be compiled and linked using the GCC [3] and
GNU Make utility [12]. The AT91SAM3X8E µC source code files accompanied by
makefiles and linker script (all extracted from the ASF library) can be downloaded
from [13]. Note that only the files needed in this laboratory exercises are included.

There is a branched directory structure with a lot of various files in [13], which
can be a bit confusing. Thus, the three key files are pointed out here:

• The sam/utils/cmsis/sam3x/source/templates/gcc/startup_sam3x.c
file contains the exception table. The second entry in the table is the reset

20For explanation of the Eclipse environment views and perspectives, consult the documenta-
tion pages on the Eclipse website [1].

21The name template is used as <projectname> in figures.
22The toolchain settings have to be applied although no changes are made. Otherwise the

build command (i.e., make) is not set. This is a bug.
23API ... Application Programming Interface
24CMSIS ... Cortex Microcontroller Software Interface Standard

10 EXERCISE 1. INSTALLING IDE

vector loaded into the program counter register at power-up. The reset vec-
tor refers to the Reset_Handler() function also defined in this file. Thus,
the µC starts in Reset_Handler() which after some basic initialization25

calls the main() function. The main() function is considered as the begin-
ning of the program in the C programming language.

• The config.mk contains the build settings used by the GNU Make utility.
The compiler and linker flags, linker script filename, output (elf) filename,
list of C and assembly source files, include paths, library paths, etc., are
defined here.

• The sam/utils/linker_scripts/sam3x/sam3x8/gcc/flash.ld file is the
linker script. Among others, the address of the selected Flash memory bank
is defined here (see page 6).

Extract and copy the files from [13] into the project directory, e.g., /home/user/
workspace/<projectname>.

To run and debug the freshly created template project, a debug configuration
has to be defined. Highlight the project in the Project Explorer view of the C/C++
perspective. Select the Debug Configurations... menu item from the Run menu.
In the Debug Configurations dialog box select the GDB OpenOCD Debugging
item and click the New () button. Select the newly created <projectname>
Default debug configuration under the GDB OpenOCD Debugging item. Define
the configuration settings in tabs on the right side of the Debug Configurations
dialog box as shown in Fig. 1.8.

Figure 1.8: Debug configuration settings

25Copy the relocate segments to RAM26, clear the bss segment, set the exception table
address (e.g., to 0x0008000 = the first Flash memory bank), all according to the linker script,
and initialize the libc standard C library. Note that the first entry in the exception table is the
initial stack top address loaded into the r13 SP27 register at power-up.

26RAM ... Random Access Memory
27SP ... Stack Pointer

11

In the Main tab, define the C/C++ Application executable file as it is defined
in the config.mk file. The TARGET_FLASH =elf line defines the name of the
elf file.
In the Debugger tab, define the OpenOCD Config options. The options reside in
the openocd.cfg file (see page 2) which has to be passed as an argument to the
OpenOCD executable.
In the Startup tab, the debug starting-point can be defined with Set breakpoint
at option. After the upload, the program on the target µC board starts with
execution. It stops at the first breakpoint set to the main() function by default.
By changing the Set breakpoint at option, the initial breakpoint can be placed
elsewhere (e.g., to the Reset_Handler() function right “after” the reset vector
and even before the basic initializations).
In the Common tab, the directory containing the *.launch file, where setting are
saved, is specified.

There is an inconsistency in the standard cdefs.h28 and the ASF compi
ler.h29 header file. Both define the __always_inline30 macro. Therefore one
of the definitions is redundant. Since the definitions are not exactly identic, the
ASF definifion is used and the definition in the cdefs.h header file is commented
out. With this minor hack, the project can be compiled by selecting the Build
Project menu item from the Project menu.

To upload the compiled elf file to the target µC board (i.e., the Arduino Due
board) and start a debug session, select the Debug Configurations... menu item
from the Run menu. Select the project under the GDB OpenOCD Debugging item
and press the Debug button.

Enabling serial communication over the USB

When the Programming USB port on the Arduino Due board is connected to a
Linux PC, it is identified as a new serial device (e.g., /dev/ttyACM0). The user
can access such a device if it is a member of the dialout group. The super user
can add the user into the group with the following command:

root@host:~# usermod -a -G dialout user

The change takes effect at the next login.
An arbitrary serial terminal program is also required for serial communication.

The PuTTY serial console can be used. It can be installed to a Linux PC with
the commands:

root@host:~# apt-get update
root@host:~# apt-get install putty

carried out as the super user. To start PuTTY, select the PuTTY SSH Client
submenu item from the Applications | Internet menu. Note that the serial terminal
settings must match the UART configuration (see Exercise 4). An example of the
PuTTY serial settings is shown in Fig. 1.9.

28Located in the include/sys subdirectory, e.g., /home/user/eclipse/gcc-arm-none-eabi-4_
9-2015q1/arm-none-eabi/include/sys/cdefs.h.

29Located in the sam/utils subdirectory, e.g., /home/user/workspace/<projectname>/sam/
utils/compiler.h.

30In line 359 of cdefs.h and in line 162 of compiler.h.

12 EXERCISE 1. INSTALLING IDE

Figure 1.9: An example of the PuTTY serial settings

Exercise 2

Simple electronic lock

Write a software for the Arduino Due board simulating a simple electronic lock.
Use button keys and LEDs1 available on the external board to enter the opening
combination and to signal the lock status, respectively. On typing the right com-
bination the lock should open for a limited amount of time. The external boards
are available in the faculty laboratory.

Explanation

First, a user interface should be decided. One possible arrangement is to use the
external board LED1 to signal key pushes, and LED4 to signal the lock status.
The LED1 is on when any of the external board keys is pressed, and the LED4
is on when the lock is locked. The external board keys T1, T2 and T3 are used
to enter the opening combination, and key T4 is an Enter key. The user enters
the opening combination with T1, T2 and T3, then presses the Enter key. If the
combination is right, the lock will open for a few seconds. The LED4 is turned
off and, when the time is up, back on. If the combination is wrong, the keys will
freeze for the same amount of time to prevent fast combination guessing.

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the external board button keys and LEDs,
as shown in Fig. 2.1.

P
C USB

U
S
B
-A

R
M
-O

C
D
-H

JTAG

Arduino Due

A
T
91
S
A
M
3X

8E

PC28

PC26

PC25

PC24

PC23

PC29

GND2

3

4

5

6

7

10

GND

T1

T2

T3

T4

D1

D4

GND

External board

Figure 2.1: PC / Olimex ARM-USB-OCD-H / Arduino Due / External board
connection for Exercise 2

1LED ... Light Emitting Diode
2GND ... Ground

14 EXERCISE 2. SIMPLE ELECTRONIC LOCK

Initialization of the µC and the Arduino Due board

The default main() function of the freshly created empty project can be found
in the src/main.c file. The first function called is prvSetupHardware()
where the hardware initialization is performed. Inside the prvSetupHardware()
function, the functions sysclk_reinit(), NVIC_SetPriorityGrouping() and
board_init() perform the basic initialization of the AT91SAM3X8E µC and the
Arduino Due board.

Initialization of the I/O3 pins

The key and LED controlling pins have to be configured as GPIO4 pins managed
by the PIO5 controllers. There are four PIO controllers (i.e., PIOA, PIOB, PIOC
and PIOD) in the AT91SAM3X8E µC, each controlling up to 32 I/O pins. All
four PIO controllers are enabled in the board_init() function call.

To configure one or more I/O pins, the pio_configure() function can be used.
The declaration of the function is:

uint32_t pio_configure(Pio *p_pio, pio_type_t ul_type,
uint32_t ul_mask, uint32_t ul_attribute);6

The function returns zero if the pin type ul_type is unknown, and one otherwise.
The arguments are:
p_pio ... PIOx registers base address

(e.g., PIOC for PIOC peripheral device)
ul_type ... pin(s) type

(e.g., PIO_INPUT for input pin(s))
ul_mask ... mask of the pin(s) to be configured

(e.g., PIO_PC28 for pin PC28 of the PIOC device)
ul_attribute ... pin(s) attributes

(e.g., PIO_PULLUP to enable the pull-up resistor(s))
E.g., Six pins of the PIOC peripheral device are used in this exercise (see Fig.
2.1). Pins PC23 and PC29 control the LEDs and are therefore output pins. On
the other hand, the pins PC24, PC25, PC26 and PC28 are input pins connected
to the keys. A pull-up resistor is required at each input pin or else an input pin
is floating when the corresponding key is not pressed. To configure the six pins
as required, the pio_configure() function with the appropriate argument values
must be called for the output and input pins:

pio_configure(PIOC, PIO_OUTPUT_0, PIO_PC23 | PIO_PC29, 0);7

pio_configure(PIOC, PIO_INPUT, PIO_PC24 | PIO_PC25 | PIO_PC26 |
PIO_PC28, PIO_PULLUP | PIO_DEBOUNCE);8

To avoid key debouncing, the hardware debounce filters are enabled at the
input pins. To configure one or more debounce filters, the pio_set_debounce_
filter() function can be used. The declaration of the function is:

3I/O ... Input / Output
4GPIO ... General Purpose I/O
5PIO ... Parallel I/O
6uint32_t is a 32-bit unsigned integer type.
Pio is a structure of 32-bit integers representing the AT91SAM3X8E PIO hardware register

addresses. If the pointer to such a structure refers to the top of the PIO device address space,
the structure elements directly represent the registers.

pio_type_t is an enumerated type with PIO pin types.
7Type PIO_OUTPUT_0 defines an output pin with initial value set to zero.
8Attribute PIO_DEBOUNCE enables a debounce filter at the input pin.

15

void pio_set_debounce_filter(Pio *p_pio, uint32_t ul_mask,
uint32_t ul_cut_off));

The function arguments are:
p_pio ... PIOx registers base address

(e.g., PIOC for PIOC peripheral device)
ul_mask ... mask of the pin(s) to be configured

(e.g., PIO_PC28 for pin PC28 of the PIOC device)
ul_cut_off ... debounce filter cutoff frequency in Hz

E.g., To set the debounce cutoff frequencies of all four key input pins to 20Hz,
the pio_set_debounce_filter() function with the appropriate argument values
must be called:

pio_set_debounce_filter(PIOC, PIO_PC24 | PIO_PC25 | PIO_PC26 |
PIO_PC28, 20);

The declarations of the pio_configure() and pio_set_debounce_filter()
functions reside in the pio.h header file, which has to be included.

#include <pio.h>

I/O9 pin usage

One or more output pins can be set, i.e., set their output voltage level to high
(3.3V), with the pio_set() function. The declaration of the function is:

void pio_set(Pio *p_pio, uint32_t ul_mask);

The function arguments are:
p_pio ... PIOx registers base address

(e.g., PIOC for PIOC peripheral device)
ul_mask ... mask of the pin(s) to be configured

(e.g., PIO_PC23 for pin PC23 of the PIOC device)
E.g., To set the output pin PC23 of the PIOC peripheral device to a high voltage
level, i.e., to switch LED1 on the external board on, the pio_set() function with
the appropriate argument values must be called:

pio_set(PIOC, PIO_PC23);

Similarly, the pio_clear() function can be used to clear one or more output
pins, i.e., set their output voltage level to low (0V). The declaration of the function
is:

void pio_clear(Pio *p_pio, uint32_t ul_mask);

The function arguments are:
p_pio ... PIOx registers base address

(e.g., PIOC for PIOC peripheral device)
ul_mask ... mask of the pin(s) to be configured

(e.g., PIO_PC23 for pin PC23 of the PIOC device)
E.g., To clear the output pin PC23 of the PIOC peripheral device to a low voltage
level, i.e., to switch LED1 on the external board off, the pio_clear() function
with the appropriate argument values must be called:

16 EXERCISE 2. SIMPLE ELECTRONIC LOCK

pio_clear(PIOC, PIO_PC23);

A voltage level on one or more input or output pins can be obtained by the
pio_get() function. The declaration of the function is:

uint32_t pio_get(Pio *p_pio, pio_type_t ul_type, uint32_t ul_mask);

The function obtains the actual voltage level at the specified pin(s). It returns
one if at least one of the specified pins is high. Otherwise, when all the specified
pins are low, zero is returned. It can be used to read the input pin(s), or to verify
the output pin(s) that was(were) previously set or cleared by the pio_set() or
pio_clear() function. The arguments of the pio_get() function are:
p_pio ... PIOx registers base address

(e.g., PIOC for PIOC peripheral device)
ul_type ... pin(s) type

(e.g., PIO_INPUT for input pin(s))
ul_mask ... mask of the pin(s) to be read

(e.g., PIO_PC28 for pin PC28 of the PIOC device)
E.g., To read the input pin PC28 of the PIOC peripheral device, i.e., to obtain
T1 key state, the pio_get() function with the appropriate argument values must
be called:

pio_get(PIOC, PIO_INPUT, PIO_PC28);

The program

First, the hardware has to be initialized. Besides the µC and the board, the input
and output pins have to be initialized. The lock is initially locked. Then enter
into an endless loop. In each iteration, check all the keys and react accordingly. If
any of the keys is pressed, set the key down signal and add the key to the entered
combination. If the enter key is pressed, check the combination and unlock the
lock in case the combination is right. After a delay, lock the lock. The pseudo
code of the described algorithm is as follows:

17

initialize hardware (PIO pins)
lock the lock
while forever

set down and enter variables to false
for each key

if the key is pressed
set down to true
if the key was not pressed in the previous iteration

if this is the enter key
set enter to true

else
add the key to the combination

if enter is true
if the combination is right

unlock the lock
delay
lock the lock

else if down is true
set key down signal

else
clear key down signal

Exercise 3

Watchdog timer

Configure the WDT1 of the AT91SAM3X8E µC. Write a testing program that
drives two flashing LEDs on the external board simulating the railway crossing
traffic lights. The program should regularly restart the WDT. Simulate a deadlock
situation by pressing an external board key. The WDT should reset the system.
The external boards are available in the faculty laboratory.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the external board button key and LEDs, as
shown in Fig. 3.1. Initialize the key and LED I/O pins as explained in Exercise
2. Since the T1 key will be used only once to indicate a deadlock, the debouncing
filter at the key input pin PC28 is not required.

P
C USB

U
S
B
-A

R
M
-O

C
D
-H

JTAG

Arduino Due

A
T
91
S
A
M
3
X
8
E PC28

PC23

PC22

GND

3

7

8

GND

T1

D1

D2

GND

External board

Figure 3.1: PC / Olimex ARM-USB-OCD-H / Arduino Due / External board
connection for Exercise 3

Initialization of the WDT device

The WDT is disabled during the Arduino Due board initialization in the
board_init() function call. Since the WDT cannot be reconfigured, the dis-
abling in the board_init() must be avoided. This can be achieved by defining
the CONF_BOARD_KEEP_WATCHDOG_AT_INIT macro in the src/conf_board.h file:

#define CONF_BOARD_KEEP_WATCHDOG_AT_INIT

1WDT ... WatchDog Timer

20 EXERCISE 3. WATCHDOG TIMER

When the WDT is enabled, it has to be properly configured. The wdt_init()
function can be used. The declaration of the function is:

void wdt_init(Wdt *p_wdt, uint32_t ul_mode, uint16_t us_counter,
uint16_t us_delta);2

Note, that WDT cannot be reconfigured. The wdt_init() function can be called
only once. The function arguments are:
p_wdt ... WDT registers base address

(e.g., WDT for WDT peripheral device)
ul_mode ... WDT configuration bitmask

(e.g., WDT_MR_WDRSTEN to enable µC reset by WDT)
us_counter ... WDV3

us_delta ... WDD4

The restart value of the WDT counter is WDV. The counter is constantly de-
creased. A WDT fault occurs when the counter reaches zero. To avoid the fault,
e.g., the µC reset, the WDT must be restarted before the counter reaches zero.
However, the WDT cannot be restarted at any moment, but only when the counter
is below the WDD. By setting WDD < WDV, a time window when WDT restart
is possible can be specified.

To configure the WDT, the integer values WDV and WDD are required. To
convert a time interval into the corresponding integer value, the wdt_get_timeout
_value() function can be used. The declaration of the function is:

uint32_t wdt_get_timeout_value(uint32_t ul_us, uint32_t ul_sclk);

The function returns the corresponding integer value. The arguments are:
ul_us ... time interval in µs
ul_sclk ... the SCLK5 frequency in Hz

(e.g., BOARD_FREQ_SLCK_XTAL for on board 32kHz XTAL6)
E.g., Consider the following WDT configuration: 2s available for WDT restart7,
WDT restart always possible, reset µC on fault, stop when the µC is in de-
bug mode or idle. The configuration can be set by appropriate use of the
wdt_get_timeout_value() and wdt_init() functions:

ulTimeoutValue = wdt_get_timeout_value(2e6, BOARD_FREQ_SLCK_XTAL);
wdt_init(WDT, WDT_MR_WDDBGHLT | WDT_MR_WDIDLEHLT | WDT_MR_WDRSTEN,

ulTimeoutValue, ulTimeoutValue);8

The declarations of the wdt_get_timeout_value() and wdt_init() functions
reside in the wdt.h header file, which has to be included.

#include <wdt.h>

2Wdt is a structure of 32-bit integers representing the AT91SAM3X8E WDT hardware register
addresses. If the pointer to such a structure refers to the top of the WDT device address space,
the structure elements directly represent the registers.

uint16_t is a 16-bit unsigned integer type.
3WDV ... WatchDog Value
4WDD ... WatchDog Delta
5SCLK ... Slow Clock (see Exercise 5)
6XTAL ... Crystal
7Maximal WDT restart period Tmax =

128(2n−1)
fSCLK

, where n is the number of WDV bits.
Tmax < 16s at fSCLK = 32768Hz and n = 12.

8WDT_MR_WDDBGHLT mode stops the WDT when the µC is in debug mode.
WDT_MR_WDIDLEHLT mode stops the WDT when the µC is idle.

21

Restarting the WDT

To avoid the fault, the WDT counter must be restarted, i.e., set to WDV, before
it reaches zero. The WDT can be restarted by the wdt_restart() function. The
declaration of the function is:

void wdt_restart(Wdt *p_wdt);

The function argument is:
p_wdt ... WDT registers base address

(e.g., WDT for WDT peripheral device)
Therefore, the WDT can be restarted by a simple wdt_restart() call:

wdt_restart(WDT);

The program

After hardware initialization, the algorithm drives the LEDs in a railway crossing
traffic lights simulation mode. Both LEDs are alternatively turned on and off.
Between the turns, a delay takes place. In each iteration of the simulation, the
WDT is restarted to avoid µC reset. The delay can be implemented in a for loop.
During the delay, the external board button key is checked. If, or when the key is
pressed, the algorithm enters into a deadlock, i.e., an endless loop. The program
freezes, traffic lights stop blinking. However, after a certain amount of time, the
WDT resets the µC. The railway traffic lights recover. The pseudo code of the
described algorithm is as follows:

initialize hardware (PIO pins, WDT)
turn one LED on and the other off
while forever

toggle both LEDs
for (during) the delay time

if the key is pressed
deadlock

restart WDT

Toggling of the LEDs can be done by the pio_set() and pio_clear() func-
tions introduced in Exercise 2. However, using a function pio_toggle_pin() is
more convenient in this case. The declaration of the function is:

void pio_toggle_pin(uint32_t ul_pin);

The function argument is:
ul_pin ... pin index

(e.g., PIO_PC23_IDX for pin PC23 of the PIOC device)
Note that pin index (e.g., PIO_PC23_IDX) is not the same as pin mask (e.g.,
PIO_PC23). To toggle the output pin PC23 of the PIOC peripheral device, the
pio_toggle_pin() function with a corresponding pin index has to be called:

pio_toggle_pin(PIO_PC23_IDX);

Exercise 4

UART

Write a program for the Arduino Due board implementing echo functionality
on the UART peripheral device. A received character should be immediately
transmitted back. This functionality should be maintained until an Esc character
arrives. It switches the transmission off, while the reception normally continues.
The next Esc character should switch the transmission back on, thus returning
the program into the initial state. Implement the required task with and without
using interrupts. Test the program with an arbitrary serial terminal program
running on a PC. Note that the terminal program settings must be the same as
the UART device settings.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Programming USB port on the Arduino Due board to
the PC as shown in Fig. 4.1. The additional on-board ATMEGA16U2 µC acts as
an UART to USB converter.

PC

USB

USBUSB-ARM-OCD-H

JTAG Programming port

Arduino
Due

ATMEGA16U2

UART

AT91SAM3X8E

Figure 4.1: PC / Olimex ARM-USB-OCD-H / Arduino Due connection for Exer-
cise 4

Initialization of the UART device

The AT91SAM3X8E µC has four PIOs (i.e., PIOA, PIOB, PIOC and PIOD) each
controlling up to 32 I/O pins. An I/O pin can be configured as a GPIO pin like in
Exercises 2 and 3, or as a pin hardwired to a peripheral device. However, any pin
cannot be hardwired to any peripheral device. Each pin has up to two predefined
peripheral devices that can be hardwired to it. The UART peripheral device has

24 EXERCISE 4. UART

URXD1 and UTXD2 lines hardwired to the PA8 and PA9 I/O pins of the PIOA.

The configuration of the PA8 and PA9 I/O pins as UART pins is performed on
demand during the Arduino Due board initialization in the board_init() func-
tion. To request the UART configuration, define the CONF_BOARD_UART_CONSOLE
macro in the src/conf_board.h file:

#define CONF_BOARD_UART_CONSOLE

The PA8 and PA9 I/O pins are connected to the additional ATMEGA16U2 µC on
the Arduino Due board. The additional µC acts as an UART to USB converter to
the on-board Programming USB port. Such a solution needs a pull-up resistor at
the PA8 I/O pin of the PIOA (i.e., the URXD line). However, all pull-up resistors
are disabled in the board_init() call. The PA8 I/O pin needs to be reconfigured.
The pull-up resistor reconfiguration is performed by the pio_pull_up() function
declared as:

void pio_pull_up(Pio *p_pio, uint32_t ul_mask,
uint32_t ul_pull_up_enable);

The function arguments are:
p_pio ... PIOx registers base address

(e.g., PIOA for PIOA peripheral device)
ul_mask ... mask of pin(s) to be configured

(e.g., PIO_PA8 for pin PA8 of the PIOA device)
ul_pull_up_enable ... pull-up resistor enable/disable flag

(e.g., PIO_PULLUP to enable the pull-up resistor)
To reconfigure the PA8 I/O pin pull-up resistor, the pio_pull_up() function with
the appropriate argument values must be called:

pio_pull_up(PIOA, PIO_PA8, PIO_PULLUP);

The declaration of the pio_pull_up() function resides in the pio.h header file,
which has to be included.

#include <pio.h>

The stdio3 and UART peripheral device configuration is performed by the
stdio_serial_init() function declared as:

void stdio_serial_init(void *usart, usart_serial_options_t *opt);4

The function arguments are:

1URXD ... UART Receive Data
2UTXD ... UART Transmit Data
3stdio ... Standard I/O
4The usart_serial_options_t type is a structure defining UART properties:

typedef struct {
uint32_t baudrate; /* baud rate */
uint32_t paritytype; /* parity type */

...
} usart_serial_options_t;

25

usart ... UART or USART5 registers base address
(e.g., UART for UART peripheral device)

opt ... pointer to a structure with UART or USART serial option
values

To configure the stdio in serial mode and initialize the UART device, the
stdio_serial_init() function with the appropriate argument values must be
called:

usart_serial_options_t xUARTconf = {.baudrate = 38400,
.paritytype = UART_MR_PAR_NO};6

stdio_serial_init(UART, &xUARTconf);7

The declaration of the stdio_serial_init() function resides in the stdio_seri
al.h header file, which has to be included.

#include <stdio_serial.h>

At this point, the UART peripheral device is initialized and ready. With stdio
configured, the stdio functions (e.g., getchar(), putchar(), etc.) can be used.
The URXD line is used as stdin, and UTXD as stdout.

The program

As usual, hardware initialization comes first. The characters are read from the
UART device in an endless loop. Regarding the transmission mode, they are im-
mediately written back or discarded. The pseudo code of the described algorithm
is as follows:

initialize hardware (UART)
set transmission to true
while forever

read a character from UART
if character is Esc

toggle transmission
else if transmission is true

write the character to UART

Interrupt configuration

The interrupt requests are handled by the NVIC9. In order to execute the interrupt
handler code when requested, the NVIC has to be appropriately configured. The
NVIC configuration is carried out after the UART peripheral device configuration
performed in the stdio_serial_init() function.

The UART peripheral device should be disabled during the NVIC configura-
tion. It is disabled by the uart_disable() function declared as:

5USART ... Universal Synchronous Asynchronous Receiver Transmitter
6Value UART_MR_PAR_NO defines no parity check mode.
7Note that the speed of the UART peripheral device is calculated regarding the MCK8 settings

in the src/conf_clock.h file. If the sysclk_reinit() function initializes MCK differently, UART
reinitialization with the uart_init() function is required (see Exercise 5).

8MCK ... Master Clock
9NVIC ... Nested Vectored Interrupt Controller

26 EXERCISE 4. UART

void uart_disable(Uart *p_uart);10

The function argument is:
p_uart ... UART registers base address

(e.g., UART for UART peripheral device)
To disable the UART device, the uart_disable() function with the UART base
address must be called:

uart_disable(UART);

Further, all the UART interrupt request sources (e.g., request an interrupt
when data is received, etc.) should be disabled. They are disabled by the
uart_disable_interrupt() function declared as:

void uart_disable_interrupt(Uart *p_uart, uint32_t ul_sources);

The function arguments are:
p_uart ... UART registers base address

(e.g., UART for UART peripheral device)
ul_sources ... mask of the interrupt sources to be disabled

To disable all the UART interrupt sources, the uart_disable_interrupt() func-
tion with the appropriate argument values must be called:

uart_disable_interrupt(UART, 0xffff);

Now, the interrupt request issued by the UART peripheral device can be en-
abled in the NVIC. This is performed by the CMSIS NVIC_EnableIRQ() function
declared as:

void NVIC_EnableIRQ(IRQn_Type IRQn);11

The function argument is:
IRQn ... peripheral device identifier

(e.g., ID_UART for UART peripheral device)
To enable the UART peripheral device interrupt request, the NVIC_EnableIRQ()
function with the UART identifier must be called:

NVIC_EnableIRQ(ID_UART);

The UART interrupt sources that cause the interrupt request are enabled by
the uart_enable_interrupt() function declared as:

void uart_enable_interrupt(Uart *p_uart, uint32_t ul_sources);

The function arguments are:

10Uart is a structure of 32-bit integers representing the AT91SAM3X8E UART hardware
register addresses. If the pointer to such a structure refers to the top of the UART device
address space, then the structure elements directly represent the registers.

11IRQn_Type is an enumerated type with peripheral device identifiers [8].

27

p_uart ... UART registers base address
(e.g., UART for UART peripheral device)

ul_sources ... mask of the interrupt sources to be enabled
(e.g., UART_IER_RXRDY for requesting an interrupt when
data is received)

To enable UART interrupt request on the data received event, the uart_enable_
interrupt() function with the appropriate argument values must be called:

uart_enable_interrupt(UART, UART_IER_RXRDY);

Finally, the UART device is enabled by the uart_enable() function declared
as:

void uart_enable(Uart *p_uart);

The function argument is:
p_uart ... UART registers base address

(e.g., UART for UART peripheral device)
To enable the UART device, the uart_enable() function with the UART base
address must be called:

uart_enable(UART);

The ISR12

As configured, the UART device requests an interrupt when it receives a
character. The NVIC gets the UART request and starts the correspond-
ing ISR code starting at the address given in the vector table defined in the
sam/utils/cmsis/sam3x/source/templates/gcc/startup_sam3x.c file of the
ASF. As defined in the vector table, the UART ISR is the UART_Handler() func-
tion. It is declared as a weak symbol13 and as such can be overridden. Therefore
a new definition of the UART_Handler() function is required in the user code:

void UART_Handler(void) {
...

}

The UART_Handler() function is called every time the UART requests an inter-
rupt, i.e., on each received character. Therefore, the algorithm of the function is
reduced to the body of the endless loop from page 25 where the transmission is
a global or static variable:

read a character from UART
if character is Esc

toggle transmission
else if transmission is true

write the character to UART

12ISR ... Interrupt Service Routine
13The UART_Handler symbol is declared as a weak alias of the Dummy_Handler symbol:

void Dummy_Handler(void) {
while(1);

}
void UART_Handler(void) __attribute__((weak, alias("Dummy_Handler")));

28 EXERCISE 4. UART

After the received character is handled, the ISR must return. It must not wait for
another character.

Exercise 5

µC initialization

Write a program printing the information about the current AT91SAM3X8E µC
settings (i.e., PMC1 clock generator related settings) to the console. Use UART
peripheral device as the stdio, and an arbitrary serial terminal program as a
console. Beside printing the information, the program should also implement a
user interface allowing µC settings modification.

Explanation

Connect the Arduino Due board to the host PC as shown in Fig. 4.1. Create a
new empty project in the Eclipse working environment as explained in Exercise
1. Initialize the UART peripheral device and configure the stdio in serial mode as
explained in Exercise 4.

µC settings at startup

As already mentioned in Exercise 1, at power-up, the µC loads the reset vector
into the program counter register, and starts with program execution. The reset
vector is the second entry in the vector table in the sam/utils/cmsis/sam3x/
source/templates/gcc/startup_sam3x.c file, refering to the Reset_Handler()
function. The Reset_Handler() function performs some basic preparations (see
footnote25 in Exercise 1) before the main() function is called.

The main() function does the µC initialization by calling the sysclk_re
init()2 function. It initializes the PMC clock generator settings to be printed
and reconfigured in this exercise. Besides the clock generator configuration, the
sysclk_reinit() function also sets the SystemCoreClock global variable con-
taining the processor MCK frequency (fMCK), and, according to the fMCK, the
number of FWSs3 in the EEFC4. Since the embedded flash memory access time is
approximately constant, the FWS value increases with the fMCK (see Tab. 5.1).

Clock generation

The PMC clock generator is configured by bit values in several registers. The
MCK generation is best explained in Fig. 5.1 showing the registers and bit values

1PMC ... Power Management Controller
2The main() function actually calls the prvSetupHardware() function which performs

µC and other hardware initializations. The sysclk_reinit() function is called from the
prvSetupHardware() function. The sysclk_reinit() function is not a part of the ASF, al-
though it is added into the ASF in [13]. It is a rewrite of the original sysclk_init() function
which initializes the PMC clock generator according to the macros in the conf_clock.h file.

3FWS ... Flash Wait State
4EEFC ... Enhanced Embedded Flash Controller

30 EXERCISE 5. µC INITIALIZATION

FWS fMCKmax [MHz]
0 19
1 50
2 64
3 80
4 90

Table 5.1: Maximum MCK frequency (fMCKmax) regarding to the FWS value at
VDDCORE = 1.8V (core chip power supply)

causing a particular configuration (e.g., the MOSCXTBY, MOSCSEL and MOSCRCF bits
in the CKGR_MOR register select the MAINCK5 source). There are some restraints
when PLLA6 or UPLL7 is selected as MCK source. The PLLA circuitry demands
an input from 8MHz to 16MHz, and the output range is from 84MHz to 192MHz.
Thus the embedded 4MHz RC oscillator cannot be selected as MAINCK source,
and the MULA must be set according to the output range. The UPLL on the other
hand requires a 12MHz input generated by the external crystal oscillator. Note
that the Arduino Due board is equipped with the 32768Hz and 12MHz external
crystal oscillators [9]. The lowest MCK is around 500Hz (512Hz at SLCK =
32768Hz), the highest is 84MHz which can be generated only by PLLA.

The default JTAG clock frequency defined in the AT91SAM3X8E configura-
tion file included from the openocd.cfg is 500kHz. The fastest JTAG clock the
processor allows is one sixth of the MCK [6] (5.1).

fJTAG <
fMCK

6
(5.1)

Since the MCK is generated by the embedded 4MHz RC oscillator at the reset,
the fastest JTAG clock could be 666.66kHz. Choosing 500kHz is safely below
the limit. Although the processor can operate at very low MCK, the frequencies
below 4MHz cannot be used when debugging over the 500kHz JTAG connection.
The JTAG frequency can be lowered by adding the adapter_khz command in the
openocd.cfg file (see Exercise 1). The command

adapter_khz 1509

sets the fJTAG to 150kHz, thus allowing fMCK > 900kHz (or ≥ 1MHz to be safe).

Get current settings

Information about the current clock generation configuration can be extracted
from the SUPC_CR, SUPC_MR, CKGR_MOR, CKGR_PLLAR and PMC_MCKR registers [8]
(see Fig. 5.1). Since only frequencies above 1MHz are to be considered, the SLCK
should not be used as the MCK source in this exercise. Thus, the SUPC_CR and
SUPC_MR registers become irrelevant. Bypassing the external crystal oscillator by
providing an external clock signal on the XIN pin is also not available since there
is no additional oscillator on the Arduino Due board. Therefore, the three

5MAINCK ... Main Clock
6PLLA ... Phase-Locked Loop A
7UPLL ... UTMI8 Phase Lock Loop
8UTMI ... USB 2.0 Transceiver Macrocell Interface
9It turns out that the GDB cannot connect to the target at fJTAG below 3kHz.

10PLLACK ... PLLA Clock
11UPLLCK ... UPLL Clock

31

XIN32

XOUT32

embedded
32kHz RC

32768Hz
XTAL

SUPC CR

XTALSEL
SUPC MR

OSCBYPASS

0

1

0

1

SLCK

XIN

XOUT

embedded
4MHz RC

embedded
8MHz RC

embedded
12MHz RC

3-20MHz
XTAL

CKGR MOR

MOSCRCF CKGR MOR

MOSCSEL

CKGR MOR

MOSCXTBY
00

01

10

0

1

0

1

MAINCK

CKGR PLLAR

MULA

PMC MCKR

PLLADIV2

8-16MHz
×MULA /1 /2

84-192MHz

PLLACK10

12MHz
UPLL

480MHz
/2

240MHz

UPLLCK11/2

PMC MCKR

CSS

PMC MCKR

PRES

SLCK

MAINCK

PLLACK

UPLLCK/2

00

01

10

11

/1 /2 /3 /4 /8
/16 /32 /64 ≤84MHz

MCK

Figure 5.1: MCK generation mechanism

32 EXERCISE 5. µC INITIALIZATION

embedded fast RC oscillators, external crystal oscillator and both PLLs can be
used as possible MCK sources in this exercise.

With SLCK never used, the current configuration can be retrieved from the
three PMC registers CKGR_MOR, CKGR_PLLAR and PMC_MCKR (see Fig. 5.1). The
registers can be easily accessed through the PMC12 global pointer provided by the
ASF. The bit mask and value macros are also defined. The registers, masks and
values needed in this exercise are in Tab. 5.2.

if (PMC->CKGR_MOR & CKGR_MOR_MOSCSEL)
is then
(un)set external XTAL oscillator is (not) selected

if (PMC->CKGR_MOR & CKGR_MOR_MOSCRCF_Msk)
is then
CKGR_MOR_MOSCRCF_4_MHz embedded 4MHz RC oscillator is selected
CKGR_MOR_MOSCRCF_8_MHz embedded 8MHz RC oscillator is selected
CKGR_MOR_MOSCRCF_12_MHz embedded 12MHz RC oscillator is selected

if (PMC->PMC_MCKR & PMC_MCKR_PRES_Msk)
is then
PMC_MCKR_PRES_CLK_1 division by 1 is selected
PMC_MCKR_PRES_CLK_2 division by 2 is selected
PMC_MCKR_PRES_CLK_3 division by 3 is selected
PMC_MCKR_PRES_CLK_4 division by 4 is selected
PMC_MCKR_PRES_CLK_8 division by 8 is selected
PMC_MCKR_PRES_CLK_16 division by 16 is selected
PMC_MCKR_PRES_CLK_32 division by 32 is selected
PMC_MCKR_PRES_CLK_64 division by 64 is selected

if (PMC->PMC_MCKR & PMC_MCKR_CSS_Msk)
is then
PMC_MCKR_CSS_MAIN_CLK MAINCK is selected
PMC_MCKR_CSS_PLLA_CLK PLLACK is selected
PMC_MCKR_CSS_UPLL_CLK UPLLCK/2 is selected

if (PMC->PMC_MCKR & PMC_MCKR_PLLADIV2)
is then
unset / set division by one / two is selected

MULA − 1 = (PMC->CKGR_PLLAR & CKGR_PLLAR_MULA_Msk) >> 16

Table 5.2: ASF provided registers, masks and belonging values

Set new settings

The µC clock reconfiguration to a new settings is performed by the sysclk_re
init() function in the same way as at the reset. The function declaration is:

uint32_t sysclk_reinit(uint32_t osc, uint32_t pres, uint32_t mck,
uint32_t mula, uint32_t plladiv2);

12The PMC global pointer refers to a structure with PMC registers. Since it is pointed to the
beginning of the PMC address space, the PMC registers can be easily accessed, e.g., the registers
mentioned above can be accessed by PMC->CKGR_MOR, PMC->CKGR_PLLAR and PMC->PMC_MCKR.

33

The function returns zero on success, and one in case the clock reconfiguration to
the specified settings fails. The arguments are:
osc ... oscillator selection (has to be one of the following self-

explaining enumerated type values13: OSC_SLCK_32K_RC,
OSC_SLCK_32K_XTAL, OSC_SLCK_32K_BYPASS,
OSC_MAINCK_4M_RC, OSC_MAINCK_8M_RC,
OSC_MAINCK_12M_RC, OSC_MAINCK_XTAL and
OSC_MAINCK_BYPASS)

pres ... prescaler value (has to be one of the following self-explaining
bit values: PMC_MCKR_PRES_CLK_1, PMC_MCKR_PRES_CLK_2,
PMC_MCKR_PRES_CLK_3, PMC_MCKR_PRES_CLK_4,
PMC_MCKR_PRES_CLK_8, PMC_MCKR_PRES_CLK_16,
PMC_MCKR_PRES_CLK_32, and PMC_MCKR_PRES_CLK_64)

mck ... MCK selection (has to be one of the following self-explaining
bit values14: PMC_MCKR_CSS_SLOW_CLK,
PMC_MCKR_CSS_MAIN_CLK, PMC_MCKR_CSS_PLLA_CLK,
and PMC_MCKR_CSS_UPLL_CLK)

mula ... PLLA multiplier value15 (considered only when the mck
argument is set to PMC_MCKR_CSS_PLLA_CLK)

plladiv2 ... additional PLLA divisor (possible values are 1 and 2;
considered only when the mck argument is
PMC_MCKR_CSS_PLLA_CLK)

For instance, the sysclk_reinit() function is called with the following argument
values at the reset:

sysclk_reinit(OSC_MAINCK_XTAL, PMC_MCKR_PRES_CLK_16,
PMC_MCKR_CSS_PLLA_CLK, 14, 1);

The 12MHz external crystal oscillator is selected as the MAINCK source. It
is the input of the PLLA providing the MCK. The MCK frequency is fMCK =
12MHz × 14 / 1 / 16 = 10.5MHz which can be confirmed by the SystemCoreClock
global variable.

UART reinitialization

Every time the MCK changes, the UART baud rate is modified as well. It is
defined by the UART_BRGR register (5.2).

baud rate =
fMCK

16× UART_BRGR
(5.2)

With every MCK change, the serial terminal program on the PC should be
restarted to utilize the new baud rate. To avoid the baud rate modifications,
and consequently the serial terminal program restarts, the UART device can be
reinitialized to the previous baud rate after every MCK change. The UART reini-
tialization is performed by the uart_init() function declared as:

13Since the SLCK cannot be used because the MCK should be above 1MHz, and the external
crystal oscillator cannot be not bypassed because the Arduino Due board does not have an
additional external oscillator, the OSC_SLCK_32K_RC, OSC_SLCK_32K_XTAL, OSC_SLCK_32K_BYPASS
and OSC_MAINCK_BYPASS values will not be used in this exercise.

14Selection PMC_MCKR_CSS_SLOW_CLK will not be used in this exercise.
15The relation 84MHz ≤ mula ×fPLLAinput

≤ 192MHz must hold.

34 EXERCISE 5. µC INITIALIZATION

uint32_t uart_init(Uart *p_uart, sam_uart_opt_t *p_uart_opt);16

The function returns zero on success, and one in case the baud rate cannot be
realized. The function arguments are:
p_uart ... UART registers base address

(e.g., UART for UART peripheral device)
p_uart_opt ... pointer to a structure with UART initialization options

To reinitialize the UART device to the same baud rate and parity type, the
uart_init() function with the appropriate argument values must be called. The
UART device options were already defined by the usart_serial_options_t type
structure passed to the stdio_serial_init() function during the initialization of
the stdio in serial mode (see page 25 in Exercise 4). Thus, the element values of the
usart_serial_options_t structure has to be copied into the sam_uart_opt_t
structure:

sam_uart_opt_t xUARTsettings;
xUARTsettings.ul_baudrate = xUARTconf.baudrate;
xUARTsettings.ul_mode = xUARTconf.paritytype;

...
xUARTsettings.ul_mck = SystemCoreClock;
uart_init(UART, &xUARTsettings);

Because of (5.2), an arbitrary baud rate cannot be obtained with an arbitrary
MCK. For instance, the speed of 38400 bauds cannot be realized with fMCK =
1MHz with sufficient accuracy. The UART_BRGR should be 1.63, which is not
possible. For UART_BRGR = 1, 62500 bauds are obtained, and 31250 bauds for
UART_BRGR = 2, both to far away from the 38400 baud target. Thus, a UART
speed that can be realized with sufficient accuracy for a range of MCK frequencies
from 1MHz to 84MHz has to be picked. It turns out that the 2400 bauds is one
of such speeds.

Yet another UART speed effect can emerge. A stdio function (e.g., printf() or
similar) can be used to send a string of characters to the UART to be transmitted.
The function delivers the characters to the UART device and returns before the
characters actually get transmitted. If the MCK is changed immediately after the
function call, the baud rate can be changed during the ongoing transmission. The
effect becomes more probable with a low baud rate (i.e., slow transmission) and
a high MCK (i.e., fast execution). To avoid it, the transmission must complete
before the MCK change. The function uart_is_tx_empty() checking whether
the transmission is completed can be used. Its declaration is:

uint32_t uart_is_tx_empty(Uart *p_uart);

The function returns one if the transmitter is empty (i.e., transmission is com-
pleted), and zero otherwise. The function argument is:
p_uart ... UART registers base address

(e.g., UART for UART peripheral device)
To wait for UART transmission to complete, a while loop can be used:

16The sam_uart_opt_t type is a structure defining UART initialization options:
typedef struct {

uint32_t ul_mck; /* MCK */
uint32_t ul_baudrate; /* baud rate */
uint32_t ul_mode; /* UART mode register value */

} sam_uart_opt_t;

35

while(!uart_is_tx_empty(UART));

The program

The realization of the exercise takes some C programming. To program the console
user interface, the stdio functions (e.g., printf(), getchar(), etc.) can be used.
Use sysclk_reinit() function to reinitialize the MCK, and the uart_init()
and uart_is_tx_empty() functions to address the UART speed issue.

After hardware initialization, the algorithm enters into an endless loop. The
current MCK settings are printed, new ones obtained, and µC reinitialized in each
iteration. Note that the MCK must never be initialized below 1MHz in order to
keep the JTAG connection alive. The pseudo code of the described algorithm is
as follows:

initialize hardware (UART)
while forever

print current configuration according to PMC register values
obtain new settings (code some user interface)
wait for transmission to complete
reinitialize MCK
reinitialize UART

Exercise 6

Timer

Write a program for the Arduino Due board implementing a pulse dialing gen-
erator. The program should read a number from the stdin and generate the
corresponding dialing signal at a pin connected to the on-board LED. Use UART
peripheral device as stdio. Implement the required task with and without using
interrupts.

Explanation

Connect the Arduino Due board to the host PC as shown in Fig. 4.1. Create a
new empty project in the Eclipse working environment as explained in Exercise
1. Initialize the UART peripheral device and configure the stdio in serial mode as
explained in Exercise 4.

Pulse dialing

A device used to produce pulse trains encoding a telephone number is the rotary
dial. There are several versions of digit encoding. In the most common version,
the non-zero digits are encoded by the equivalent number of pulses, and the zero
digit is encoded as ten pulses. The pulse frequency, duty cycle and pause between
the two trains are not strictly set. Ten pulses per second, 39% duty cycle, and cca.
one second pause are generally used (Fig. 6.1). However, pulse dialing is obsolete
and only rarely used today.

3 2

39 61 ˜1000 t [ms]

Figure 6.1: Numbers as trains of pulses in pulse dialing

Initialization of the TC1 device

There are three TC modules available in the AT91SAM3X8E µC. Each module
has three channels. Thus, there are nine independent TC channels available. The
channels 0, 1 and 2 belong to the TC0 module, 3, 4, and 5 to the TC1 module, 6,
7, and 8 to the TC2 module.

1TC ... Timer Counter

38 EXERCISE 6. TIMER

A TC module has to be clocked first. The clock is provided through the PMC.
To enable a peripheral device clock, the pmc_enable_periph_clk() function can
be used. Its declaration is:

uint32_t pmc_enable_periph_clk(uint32_t ul_id);

The function returns zero on success, and one in case of invalid peripheral identi-
fier. The argument is:
ul_id ... peripheral device identifier

(e.g., ID_TC0 for TC0 module)
To enable the peripheral clock for the TC0 module, the module’s identifier must
be passed to the pmc_enable_periph_clk() function:

pmc_enable_periph_clk(ID_TC0);

Similarly, the pmc_enable_periph_clk() function is used in the board_init()
and stdio_serial_init() calls to enable the PIO and UART peripheral devices,
respectively.

With TC module clocked, its three independent channels become available.
Configuration of a TC channel is performed by the tc_init() function declared
as:

void tc_init(Tc *p_tc, uint32_t ul_channel, uint32_t ul_mode);2

The function arguments are:
p_tc ... TC module registers base address

(e.g. TC0 for the first TC module)
ul_channel ... channel number
ul_mode ... TC_CMRx3 value

The TC_CMRx defines the operating mode of the specified TC channel (see [8]
for detailed information). Each channel can operate independently in two differ-
ent modes: capture mode provides measurement on signals, and waveform mode
provides wave generation. Fig. 6.2 shows a free up-running TC channel in a wave-
form mode generating an output signal. The counter increases with the maximum
counting frequency fMCK

2 , and is automatically reset on RCx4 compare event. The
channel 0 of the TC0 module can be configured as shown in Fig. 6.2 with the fol-
lowing tc_init() call:

tc_init(TC0, 0, TC_CMR_EEVT_XC0 | TC_CMR_WAVSEL_UP_RC | TC_CMR_WAVE
| TC_CMR_BCPB_SET | TC_CMR_BCPC_CLEAR);5

2Tc is a structure of 32-bit integers representing the AT91SAM3X8E TC hardware register
addresses. If the pointer to such a structure refers to the top of the TC device address space,
then the structure elements directly represent the registers.

3TC_CMRx ... TC Channel x Mode Register
4RCx ... channel x Register C
5TC_CMR_EEVT_XC0 mask selects the signal XC0 as an external event.

TC_CMR_WAVSEL_UP_RC mask selects up counting mode with reset on RCx compare event.
TC_CMR_WAVE mask selects waveform mode.
TC_CMR_BCPB_SET mask selects setting of the TIOBx6 output on RBx7 compare event.
TC_CMR_BCPC_CLEAR mask selects clearing of the TIOBx output on RCx compare event.
Numerous of other TC_CMRx masks can be found in the sam/utils/cmsis/sam3x/include/
component/component_tc.h file.

6TIOBx ... TC channel x I/O line B
7RBx ... channel x Register B

39

Each channel controls two I/O lines, TIOAx8 and TIOBx9. Since the tc_init()
call above initializes the channel 0 of the TC0 module in a waveform mode gener-
ating the output signal at TIOB0, the TIOB0 line must not be configured as an
external event input, which is the default. Although not used, the external event
input is shifted to the XC0 line by the TC_CMR_EEVT_XC0 mask.

counter value

RCx

RBx

0

2 × RCx / fMCK

t

TIOBx

Figure 6.2: Timer configuration

The signal at TIOBx output is controlled by the RBx an RCx register values.
The registers can be set with the tc_write_rb() and tc_write_rc() functions
declared as:

void tc_write_rb(Tc *p_tc, uint32_t ul_channel, uint32_t ul_value);
void tc_write_rc(Tc *p_tc, uint32_t ul_channel, uint32_t ul_value);

The arguments are:
p_tc ... TC module registers base address

(e.g., TC0 for the first TC module)
ul_channel ... channel number
ul_value ... value to be written to the register

For the purpose of this exercise, a signal with 100ms period and 39% duty cycle
is required. Such a signal can be generated with the following RB0 and RC0
settings:

tc_write_rb(TC0, 0, (uint32_t)(0.061 * SystemCoreClock / 2));
tc_write_rc(TC0, 0, (uint32_t)(0.1 * SystemCoreClock / 2));

Note that the SystemCoreClock global variable contains the fMCK value (see
Exercise 5). For the described TC configuration (i.e., set TIOBx on RBx, clear
TIOBx on RCx), the combination RBx > RCx causes TIOBx to be always low.

With TC channel configuration completed, the channel is ready to be started.
To start the TC clock on the specified channel, the tc_start() function can be
used. Its declaration is:

void tc_start(Tc *p_tc, uint32_t ul_channel);

The function arguments are:
p_tc ... TC module registers base address

(e.g., TC0 for the first TC module)
ul_channel ... channel number

To start the channel 0 of the TC0 module, use:

8TIOAx ... TC channel x I/O line A
9TIOBx ... TC channel x I/O line B

40 EXERCISE 6. TIMER

tc_start(TC0, 0);

The declarations of the tc_init(), tc_write_rc(), tc_write_rc() and tc_
start() functions reside in the tc.h header file, which has to be included.

#include <tc.h>

There are four PIOs in the AT91SAM3X8E µC, each controlling up to 32 I/O
pins. An I/O pin can be configured as a GPIO pin, or as a pin hardwired to a par-
ticular peripheral device. However, any pin cannot be hardwired to any peripheral
device. Each pin has up to two predefined peripheral devices, A and B, that can
be hardwired to it. The TIOB0 output line is available to be hardwired to pin
PB27 of the PIOB controller as a peripheral device B. Use pio_set_peripheral()
function to hardwire the PB27 pin to its B device (i.e., hardwire the PB27 pin to
the TIOB0 output). The declaration of the function is:

void pio_set_peripheral(Pio *p_pio, pio_type_t ul_type,
uint32_t ul_mask);

The function arguments are:
p_pio ... PIOx registers base address

(e.g., PIOB for PIOB peripheral device)
ul_type ... pin(s) type

(e.g., PIO_PERIPH_B for B device controlled pin)
ul_mask ... mask of the pin(s) to be configured

(e.g., PIO_PB27 for pin PB27 of the PIOB device)
To make the PB27 I/O pin controlled by its B device, i.e., the TIOB0 output line
of the channel 0 of the TC0 module, the pio_set_peripheral() function with
appropriate argument values must be called:

pio_set_peripheral(PIOB, PIO_PERIPH_B, PIO_PB27);

The TIOB0 output of the TC0 module is not selected by chance. The on-board
LED is connected to the PB27 I/O pin of the PIOB. Thus, the generated pulses
can be visualized by the blinking LED.

Similarly, the pio_set_peripheral() function is used in the board_init()
call when the CONF_BOARD_UART_CONSOLE macro is defined to configure the PA8
and PA9 pins of the PIOA controller as UART pins (see Exercise 4).

The program

The pseudo code of the algorithm implementing this exercise without interrupts
is as follows:

41

initialize hardware (UART, TC0)
set 0% duty cycle (i.e, set RB0 beyond 100% of timer period)
set slice to zero
while forever

read number from UART
echo it back (optional)
do

wait for TC0 counter reset (i.e., RC0 compare event)
if slice is zero

slice = number + number of slices in 1s pause
set 39% duty cycle (i.e., set RB0 to 61% of timer period)

if only pause left in slice
set 0% duty cycle (i.e, set RB0 beyond 100% of timer period)

decrement slice
while slice is not zero

The algorithm requires some additional explanation. UART and TC0 peripheral
devices are configured in hardware initialization. The channel 0 of the TC0 module
is configured as described in previous section, and can therefore generate a train
of pulses at the TIOB0 output line. The duty cycle of the pulse train is set by
the RB0 register value (see Fig. 6.2). The stdio is configured in serial mode at
the UART peripheral device. It will serve as a console. The usual endless loop
follows.

One number is dialed in each iteration of the endless loop. The number is
obtained from the console using the stdio functions (e.g., getchar()). The dialing
is then performed in the internal do/while loop. In each iteration, it waits for
a reset of the channel 0 counter, i.e., RC0 compare event (see Fig. 6.2), which
occurs every 100ms. The do/while loop is therefore carried out exactly ten times
per second. The slice variable is used to count the 100ms intervals or slices. To
dial a number with one second pause included, a number + 10 slices are required;
number slices for the pulses and 10 slices for the one second pause between the
two pulse trains. Note that number zero is represented by ten pulses. The pulses
are generated at the TIOB0 output of the TC0 module by setting the appropriate
RB0 value. During the pause, the RB0 is set above the RC0, thus holding the
TIOB0 low (see Fig. 6.2). After the slice countdown, the do/while loop ends,
a new iteration of the endless loop starts.

To detect an RC0 compare event, an information about occurred events is
needed. It is contained in the TC_SRx TC channel status register. The register
can be read by the tc_get_status() function declared as:

uint32_t tc_get_status(Tc *p_tc, uint32_t ul_channel);

The function returns the selected TC_SRx status register value. The arguments
are:
p_tc ... TC module registers base address

(e.g., TC0 for the first TC0 module)
ul_channel ... channel number

The TC_SRx register is cleared on every read. Waiting for the RC0 compare event
can be realized with the following while loop:

while(!(tc_get_status(TC0, 0) & TC_SR_CPCS));10

10To mask out the RCx compare event status from the TC_SRx status register, the TC_SR_CPCS
bit mask is used.

42 EXERCISE 6. TIMER

Circular FIFO11 buffer

A circular FIFO buffer (see Fig. 6.3) is represented by an array of n elements.
Each element can hold one data item, e.g., one number. The indexes ucBegin
and ucEnd define the current state. The ucBegin index refers to the data item to
be first read from the buffer, and the ucEnd index refers to the vacant element for
the next incoming data to be written to. In other words, the ucEnd is an entry
point, and the ucBegin is a getting out point. Both indexes are incremented in
a circular manner. If the ucBegin and ucEnd are the same, the buffer is empty.
That implicates that the buffer is full when the ucBegin equals to ucEnd + 1 in
circular manner, and that at most n - 1 pieces of data can be stored.

index

0

ucBegin = ucEnd

n − 1

ucBegin

ucEnd

empty full

Figure 6.3: Circular FIFO buffer

A circular FIFO buffer buf with n data items of a particular type is defined by:

uint8_t ucBegin = 0, ucEnd = 0;12

type buf[n];

Writing one data item into the circular FIFO buffer buf is performed by the code
below. Before write, the buffer is checked if it is full:

uint8_t ucTmp = ucEnd + 1;
if(ucTmp == n) ucTmp = 0;
if(ucTmp != ucBegin) {

buf[ucEnd] = item ;
ucEnd = ucTmp;

}

Reading one data item from the circular FIFO buffer buf is performed by the
code below. Before read, the buffer is checked if it is empty:

if(ucBegin != ucEnd) {
item = buf[ucBegin];
ucBegin = ucBegin + 1;
if(ucBegin == n) ucBegin = 0;

}
11FIFO ... First In First Out
12uint8_t is an 8-bit unsigned integer type.

43

Interrupt configuration

The procedure of configuring the UART interrupt is described in Exercise 4. Con-
figuring the TC interrupt is similar. The interrupt request issued by the TC
module is enabled by the CMSIS NVIC_EnableIRQ() function:

NVIC_EnableIRQ(ID_TC0);

Channel events that trig the TC module interrupt request are enabled by the
tc_enable_interrupt() function declared as:

void tc_enable_interrupt(Tc *p_tc, uint32_t ul_channel,
uint32_t ul_sources);

The function arguments are:
p_tc ... TC module registers base address

(e.g. TC0 for the first TC module)
ul_channel ... channel number
ul_sources ... bitmask of interrupt sources

(e.g. TC_IER_CPCS for interrupt request on RCx compare
event)

To enable an interrupt request on RC0 compare event, the tc_enable_inter
rupt() function with appropriate argument values must be called:

tc_enable_interrupt(TC0, 0, TC_IER_CPCS);

To avoid executing pending interrupt requests issued before the TC interrupt
configuration, perform the configuration before starting the counter with the
tc_start() function.

The ISRs

The NVIC receives the interrupt requests from the UART and TC0 devices. On
each request, the NVIC starts the corresponding ISR code located at the ad-
dress defined in the vector table defined in the sam/utils/cmsis/sam3x/source/
templates/gcc/startup_sam3x.c file of the ASF. As defined in the vector ta-
ble, the UART ISR is the UART_Handler() function, and the TC0 ISR is the
TC0_Handler() function. Both are declared as weak symbols (see Exercise 4) and
can be overridden. New definitions are required in the user code:

void UART_Handler(void) {
...

}
void TC0_Handler(void) {

...
}

The TC0 interrupt must be acknowledged in the TC0_Handler() function. The
event causing the interrupt request has to be cleared from the TC_SR0 status
register. Otherwise the NVIC receives another interrupt request immediately
after the TC0_Handler() function finishes. Since the status register is cleared on
read, a dummy call of the tc_get_status() function does the task.

The UART_Handler() function is called every time the UART requests an
interrupt, i.e., on each received character. The received number is written into

44 EXERCISE 6. TIMER

a circular buffer for TC0 ISR to pick it up. If the buffer is full, the UART ISR
waits. Sooner or later the TC0 ISR will read from the buffer and make space for
the number just received. The pseudo code of the UART_Handler() function is as
follows:

read a number from UART
echo it back (optional)
while buffer is full

do nothing
write the number into the buffer

The TC0 ISR is executed on every RC0 compare event, i.e., every 100ms. It
reads the number from the buffer and starts to generate the pulses. To keep track
of the 100ms slices, a zero initialized global variable slice is required. The pseudo
code of the TC0_Handler() function is as follows:

clear RC0 event status
if slice is zero

if buffer is empty
return

read number from buffer
slice = number + number of slices in 1s pause
set 39% duty cycle (i.e., set RB0 to 61% of timer period)

if only pause left in slice
set 0% duty cycle (i.e, set RB0 beyond 100% of timer period)

decrement slice

The UART and TC0 ISRs operate as two independent tasks executed on re-
quest. The UART ISR is executed on data received event, the TC0 ISR is executed
on every RC0 compare event, i.e., every 100ms. The communication between the
two ISRs is one-way, form the UART to the TC0 handler. The circular FIFO
buffer is used to transfer data from one ISR to the other.

Both ISRs have the highest priority by default, one cannot interrupt or preempt
the other. An interrupt request remains pending until the ongoing ISR of the same
or higher priority finishes. In case the buffer is full, the UART ISR waits for the
TC0 ISR to read from the buffer. Therefore, the UART ISR must have a lower
priority than the TC0 ISR, otherwise the latest cannot interrupt the first, and a
deadlock13 could occur. The priority of an interrupt request issued by a specified
device is set with the CMSIS NVIC_SetPriority() function declared as:

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);

The function arguments are:
IRQn ... peripheral device identifier

(e.g., ID_UART for UART peripheral device)
priority ... priority number from 0 (the highest) to 15 (the lowest

priority)
To set the UART interrupt request priority to the lowest, the NVIC_SetPriori
ty() function with appropriate argument values must be called:

NVIC_SetPriority(ID_UART, 15);

13A deadlock occurs when two or more processes indefinitely wait for one another to perform
a required action. In our case, the UART ISR is waiting the TC0 ISR to read from buffer, while
TC0 ISR is waiting for UART ISR to finish.

45

Since the TC0 ISR now solely has the highest priority, it will never wait for
the UART ISR to finish. The TC0 ISR is guaranteed to execute in 100ms time
intervals, thus assuring accurate pulse trains and pauses. With one ISR enabled
to preempt the other, a race condition14 on a shared resource (i.e., circular FIFO
buffer) becomes possible. Therefore, the critical code, i.e., writing into the FIFO
buffer in UART ISR, must be atomic15. The TC0 ISR must be temporary disabled.

To disable an interrupt request issued by a specified device, the CMSIS
NVIC_DisableIRQ() function can be used. Its declaration is:

void NVIC_DisableIRQ(IRQn_Type IRQn);

The function arguments is:
IRQn ... peripheral device identifier

(e.g., ID_TC0 for TC0 module)
To disable the TC0 interrupt request at the beginning of the critical code, the
NVIC_DisableIRQ() function with the TC0 module identifier must be called:

NVIC_DisableIRQ(ID_TC0);

At the end of the critical code, the TC0 interrupt request is reenabled by the
NVIC_EnableIRQ() function:

NVIC_EnableIRQ(ID_TC0);

To ensure atomic writing into the circular buffer, the UART ISR pseudo code
from page 44 should be supplemented by:

read a number from UART
echo it back (optional)
while buffer is full

do nothing
disable TC0 ISR
write the number into the buffer
enable TC0 ISR

14A race condition occurs when the outcome depends on a sequence or timing of outside events.
E.g., A process is preempted by another one in the middle of using a resource. If the interrupting
process uses the same resource, the resource can become corrupted.

15Atomic code is a part of code that is guaranteed to be executed without interruption.

Exercise 7

LCD driver

Write a driver for the HD44780U dot matrix LCD1 controller [14]. The driver
should consist of a display memory and refresh function. The content to be dis-
played should be written into the display memory. The refresh function call should
synchronize the LCD RAM with the display memory. The function should also
receive one argument representing an optional LCD command. If the command is
specified (the argument is not zero), the refresh function should, besides synchro-
nizing, execute it. To test the driver, write a test application writing your name
and surname in the first row, and the time elapsed from the application start in
the second row of the LCD. The information should repeatedly travel from the
right to left side of the LCD with the speed of three characters per second. The
external boards with mounted LCDs are available at the faculty laboratory.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the LCD on the external board, as shown in
Fig. 7.1.

LCD and driver display memory initialization

The LCD used in this exercise is driven by the long-established HD44780U display
controller. The initialization steps of the controller are described in [14], and are
already programed in the vLCDInit() function. The declaration of the function
is:

void vLCDInit(void);

Therefore, the LCD is initialized in a single line:

vLCDInit();

The declaration of the vLCDInit() function resides in the lcd.h header file,
which has to be included.

#include <lcd.h>

The LCD used in this exercise has 2 × 40 bytes of display RAM. It contains the
characters in two forty character long lines. Since the display driver synchronizes

1LCD ... Liquid-Crystal Display

48 EXERCISE 7. LCD DRIVER

P
C USB

U
S
B
-A

R
M
-O

C
D
-H

JTAG

Arduino Due

A
T
9
1
S
A
M
3X

8E

PA2

PA3

PA4

PA6

PA22

PA23

PA24

GND

A7

A6

A5

A4

A3

A2

A1

GND

5V

D7

D6

D5

D4

E2

RW3

RS4

GND

+5

External board

L
C
D

Figure 7.1: PC / Olimex ARM-USB-OCD-H / Arduino Due / External board
connection for Exercise 7

the LCD RAM with its display memory, the display memory of the same size
is required. Most conveniently the display memory is represented by two global
character arrays:

uint8_t pucLine1[40];
uint8_t pucLine2[40];

To initialize the characters to spaces, i.e., blank LCD, a for loop can be used.

LCD commands

The commands can be sent to the HD44780U display controller with the
vLCDWrite() function. The declaration of the function is:

void vLCDWrite(uint8_t ucRS, uint8_t ucByte);

The function arguments are:
ucRS ... register select, i.e., command/data, flag

(e.g., COMM for command)
ucByte ... data or command

(e.g., DDRAM|address to set the address in LCD RAM)
Available commands can be found in the src/lcd.h file. For the purpose of this
exercise, a few useful examples of vLCDWrite() function calls follow:

Set LCD RAM address to the third position in the first line5:
vLCDWrite(COMM, DDRAM | 0x02);

Set LCD RAM address to the third position in the second line6:
vLCDWrite(COMM, DDRAM | (0x40 + 0x02));

2 E ... Enable
3 RW ... Read Write
4 RS ... Register Select
5The first line has addresses from 0x00 to 0x27.
6The second line has addresses from 0x40 to 0x67.

49

Write character A at the current LCD RAM address:
vLCDWrite(DATA, ’A’);

Shift display window one character left7:
vLCDWrite(COMM, SHIFT | DISPLAY | LEFT);

Display driver

The display driver is consisted of two parts: the display memory and the refresh
function. As already mentioned, the display memory is represented by two global
character arrays. The refresh function synchronizes LCD RAM with the display
memory. To achieve that, the refresh function could just copy the entire display
memory into the LCD RAM. However, copying the entire display memory is in
most cases not necessary. Cases, in which all the characters have been changed
since last refresh function call, are rare. Therefore, the refresh function could
read the LCD RAM, compare it to the display memory, and write back only the
characters that have been changed. Such a solution seems advanced, but it is even
slower than copying since reading LCD RAM takes the same amount of time as
writing to it.

Instead of reading from the LCD RAM, a copy of it can be maintained in two
additional global arrays. Thus, the refresh function can quickly find the differences
without the LCD RAM reading, and write only the characters that have been
changed. Of course, the two additional global arrays have to be updated also.
The pseudo code of the refresh function of the display driver is as follows:

for each character in display memory
if the character differs from its counterpart in the additional array

set appropriate LCD RAM address
write the character to the current LCD RAM address
copy the character to the counterpart in the additional array

if command argument is not zero
execute the command

The refresh function also receives one argument, i.e., an arbitrary display com-
mand. Besides refreshing, the refresh function should execute the command when
one is given. This is implemented in the last if statement of the pseudo code.

Test application

To show your name and number of seconds elapsed from the application start on
the LCD, the characters have to be copied into the display memory and the refresh
function has to be called. Since the number of seconds is constantly changing, the
display memory has to be updated every second. The refresh function has to
be called after each update. Such a functionality can be achieved by using the
TC module interrupt (see Exercise 6). The display memory update and refresh
function call is performed from the TC module ISR.

So far, a regularly updated text is shown on the LCD at a fixed position.
The text can be moved by issuing the shift display window command. Therefore,
the TC module ISR has to call the refresh function with the shift command. To
obtain the speed of three characters per second, the TC module should request an
interrupt three times per second. However, the display memory update is needed
only on every third request, i.e., once per second. Hence, a zero initialized global

7There are 2 × 40 characters space in LCD RAM, which means two lines with forty characters.
However, only two lines with 16 characters are actually displayed. The displayed characters are
specified by the position of the display window that can be moved left and right in cyclic manner.

50 EXERCISE 7. LCD DRIVER

counter is required to count the interrupts. The pseudo code of the TC module
ISR is as follows:

increment counter
if counter is greater than two

reset counter
if counter is zero

update display memory (increase number of seconds)
call refresh function with shift display window command

See Exercise 6 for appropriate TC module configuration.
Since everything is done in the TC module ISR, only an endless loop is left in

the main() function.

Exercise 8

ADC and DACC

Write a program for the Arduino Due board implementing a low frequency signal
generator at DACC1 output pin. The generator should be able to generate rectan-
gular, triangular and sine shaped signals in frequency range from 50Hz to 100Hz.
Use button keys on the external board to switch among the signal shapes. Con-
nect analog potentiometer on the external board to the ADC2 input pin and use
it to set the signal frequency. Observe the generated signal with an oscilloscope.
Implement the required task with and without using the TC module interrupt.
The external boards are available in the faculty laboratory.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex ARM-
USB-OCD-H interface, and to the button keys and analog potentiometer on the
external board, as shown in Fig. 8.1. Initialize the key I/O pins as explained in
Exercise 2. Since the keys will be used only to switch among signal shapes, the
debouncing filters at their input pins PC28, PC26 and PC25 are not required.

P
C USB

U
S
B
-A

R
M
-O

C
D
-H

JTAG

Arduino Due

A
T
91
S
A
M
3X

8E

PC28

PC26

PC25

AD7

GND

DAC0

3

4

5

3.3V

A0

GND

DAC0

Analog output

T1

T2

T3

+3.3

POT

GND

External board

Figure 8.1: PC / Olimex ARM-USB-OCD-H / Arduino Due / External board
connection for Exercise 8

1DACC ... Digital to Analog Converter Controller
2ADC ... Analog to Digital Converter

52 EXERCISE 8. ADC AND DACC

Initialization of the ADC device

The AT91SAM3X8E µC has one eight channel 12-bit ADC. Only one channel,
e.g., channel AD7, will be used in this exercise. The ADC peripheral device has
to be clocked first. The pmc_enable_periph_clk() function can be used (see
Exercise 6). To enable the ADC device, its identifier ID_ADC must be passed to
the pmc_enable_periph_clk() function:

pmc_enable_periph_clk(ID_ADC);

The configuration of the ADC begins with ADC clock and startup time ini-
tialization. The adc_init() function can be used. Its declaration is:

uint32_t adc_init(Adc *p_adc, uint32_t ul_mck,
uint32_t ul_adc_clock, adc_startup_time startup);3

The function always returns zero. Its arguments are:
p_adc ... ADC registers base address

(e.g., ADC for ADC peripheral device)
ul_mck ... MCK frequency fMCK (see Exercise 5)

(e.g., SystemCoreClock global variable)
ul_adc_clock ... ADC conversion clock frequency fADC

4

startup ... mask defining ADC startup time5
(e.g., ADC_STARTUP_TIME_3 for 24 fADC periods)

For fMCK = 10.5MHz, the ADC clock can be initialized to fADC = fMCK

2 =
5.25MHz, and startup time to tSTART = 24

fADC
= 4.6µs with the following

adc_init() function call:

adc_init(ADC, SystemCoreClock, SystemCoreClock / 2,
ADC_STARTUP_TIME_3);

ADC tracking time, settling time and transfer period [8] have to be configured
next. The adc_configure_timing() function can be used. Its declaration is:

void adc_configure_timing(Adc *p_adc, uint8_t uc_tracking,
adc_settling_time_t settling, uint8_t uc_transfer);6

The function arguments are:
p_adc ... ADC registers base address

(e.g., ADC for ADC peripheral device)
tracking ... TRACKTIM constant defining ADC tracking time
settling ... mask defining ADC settling time7

(e.g., ADC_SETTLING_TIME_0 for 3 fADC periods)
transfer ... TRANSFER constant defining ADC transfer period

3Adc is a structure of 32-bit integers representing the AT91SAM3X8E ADC hardware register
addresses. If the pointer to such a structure refers to the top of the ADC device address space,
then the structure elements directly represent the registers.
adc_startup_time is an enumerated type with ADC startup time masks used in the ADC_MR

mode register.
4fADC must be picked inside an interval 1MHz ≤ fADC ≤ 22MHz, and the expression

fMCK
2fADC

− 1 must yield an integer value from 0 to 255 [8].
5tSTART must be picked inside an interval 4µs ≤ tSTART ≤ 12µs [8].
6adc_settling_time_t is an enumerated type with ADC settling time masks used in the

ADC_MR mode register.
7Settling time must be tS ≥ 200ns [8].

53

For further details about tracking time, settling time and transfer period, see [8]8.
At fADC = 5.25MHz, the ADC timings can be appropriately set with the following
adc_configure_timing() function call:

adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_0, 1);

The ADC device in the AT91SAM3X8E µC has eight channels. To enable a
channel, the adc_enable_channel() function can be used. Its declaration is:

void adc_enable_channel(Adc *p_adc, adc_channel_num_t adc_ch);9

The function arguments are:
p_adc ... ADC registers base address

(e.g., ADC for ADC peripheral device)
adc_ch ... ADC channel number

(e.g., ADC_CHANNEL_7 for AD7)
The ADC channel AD7 is enabled with the following adc_enable_channel()
function call:

adc_enable_channel(ADC, ADC_CHANNEL_7);

Finally, the conversion trigger has to be specified and free run mode has to
be switched on or off. The adc_configure_trigger() function can be used. Its
declaration is:

void adc_configure_trigger(Adc *p_adc, adc_trigger_t trigger,
uint8_t uc_freerun);10

The function arguments are:
p_adc ... ADC registers base address

(e.g., ADC for ADC peripheral device)
trigger ... conversion trigger

(e.g., ADC_TRIG_SW to disable hardware triggers)
uc_freerun ... free running mode flag

(e.g., set the flag to 1 to never wait for any trigger)
When free running mode is specified, the conversion trigger selection is void. To
set the free running mode, the following adc_configure_trigger() function call
is required:

adc_configure_trigger(ADC, ADC_TRIG_SW, 1);

The declarations of the ADC initialization functions adc_init(), adc_config
ure_timing(), adc_enable_channel(), and adc_configure_trigger() reside
in the adc.h header file, which has to be included.

#include <adc.h>

8The ADC timings section is confusing in [8]. Set TRACKTIM = 0 for tTRACK = 15
fADC

, or

TRACKTIM = 15 for tTRACK = 16
fADC

, and set TRANSFER = 1 for tTRANSFER = 5
fADC

(recom-
mended).

9adc_channel_num_t is an enumerated type with ADC channel numbers.
10adc_trigger_t is an enumerated type with ADC channel numbers.

54 EXERCISE 8. ADC AND DACC

Initialization of the DACC device

A similar procedure as with ADC is required for DACC initialization. The
AT91SAM3X8E µC has one 12-bit DACC with two independent analog output
lines. One output line, e.g., DAC0, will be used in this exercise. Again, the DACC
peripheral device has to be clocked first. The pmc_enable_periph_clk() function
does the trick. Of course, the DACC device identifier ID_DACC has to be passed
as the argument:

pmc_enable_periph_clk(ID_DACC);

DACC needs to be reset before further configuration. The dacc_reset()
function can be used. Its declaration is:

void dacc_reset(Dacc *p_dacc);11

The function argument is:
p_dacc ... DACC registers base address

(e.g., DACC for DACC peripheral device)
The following dacc_reset() function call resets the DACC peripheral device:

dacc_reset(DACC);

DACC refresh period, speed mode and startup time [8] have to be configured
next. The dacc_set_timing() function can be used. Its declaration is:

uint32_t dacc_set_timing(Dacc *p_dacc, uint32_t ul_refresh,
uint32_t ul_maxs, uint32_t ul_startup);

The function always returns zero. Its arguments are:
p_dacc ... DACC registers base address

(e.g., DACC for DACC peripheral device)
ul_refresh ... REFRESH constant defining DACC refresh period12

(e.g., set REFRESH = 0 for no refreshing)
ul_maxs ... maximum speed mode switch13

(e.g., set the switch to 0 to disable maximum speed mode)
ul_startup ... constant defining DACC startup time14

(e.g., set the constant to 3 for 24 fDACC periods)
The DACC clock frequency fDACC is halved MCK, fDACC = fMCK

2 . For further
details about refresh period, speed mode and startup time, see [8]. To disable
refreshing, switch maximum speed mode off, and to set the startup time to 4.6µs
at fDACC = 5.25MHz, the dacc_set_timing() function with the following argu-
ments has to be called:

dacc_set_timing(DACC, 0, 0, 3);

11Dacc is a structure of 32-bit integers representing the AT91SAM3X8E DACC hardware
register addresses. If the pointer to such a structure refers to the top of the DACC device
address space, then the structure elements directly represent the registers.

12Automatic output voltage refresh period to avoid voltage decreasing over time due to leakage.
It must be below 20µs and is calculated as: tREFRESH = 1024 REFRESH

fDACC
≤ 20µs, where fDACC =

fMCK
2

[8]. Refresh has no effect in free running mode, and can be disabled by setting REFRESH
to zero. The free running mode is the default DACC trigger mode.

13In maximum speed mode, the DACC does not wait for the end of conversion cycle signal
before starting the next conversion [8].

14tSTART must be picked inside an interval 2.5µs ≤ tSTART ≤ 5µs [8].

55

The DACC device in the AT91SAM3X8E µC has two analog output lines. To
enable a line, the dacc_enable_channel() function can be used. Its declaration
is:

uint32_t dacc_enable_channel(Dacc *p_dacc, uint32_t ul_channel));

The function returns zero on success. Its arguments are:
p_dacc ... DACC registers base address

(e.g., DACC for DACC peripheral device)
ul_channel ... DACC line number

(e.g., zero for DAC0)
The DACC line DAC0 is enabled with the following dacc_enable_channel()
function call:

dacc_enable_channel(DACC, 0);

Finally, the analog current settings influencing the DACC current consumption
has to be specified. The dacc_set_analog_control() function can be used. Its
declaration is:

uint32_t dacc_set_analog_control(Dacc *p_dacc,
uint32_t ul_analog_control);

The function always returns zero. Its arguments are:
p_dacc ... DACC registers base address

(e.g., DACC for DACC peripheral device)
ul_analog_control ... analog control settings [8]

Appropriate analog current settings can be achieved with the following dacc_set_
analog_control() function call:

dacc_set_analog_control(DACC, DACC_ACR_IBCTLCH0(2) |
DACC_ACR_IBCTLDACCORE(1));15

The declarations of the DACC initialization functions dacc_reset(), dacc_
set_timing(), dacc_enable_channel(), and dacc_set_analog_control() re-
side in the dacc.h header file, which has to be included.

#include <dacc.h>

ADC and DACC usage

The ADC converted value can be obtained by the adc_get_channel_value()
function. Its declaration is:

uint32_t adc_get_channel_value(Adc *p_adc,
adc_channel_num_t adc_ch);

The function returns current converted value at the specified channel. Its argu-

15For additional information on analog current settings and DACC current consumption, see
[8].

56 EXERCISE 8. ADC AND DACC

ments are:
p_adc ... ADC registers base address

(e.g., ADC for ADC peripheral device)
adc_ch ... ADC channel number

(e.g., ADC_CHANNEL_7 for AD7)
To read the ADC converted value of the channel AD7, the following adc_enable_
channel() function has to be called:

value = adc_get_channel_value(ADC, ADC_CHANNEL_7);

In the opposite direction, the value to be converted by the DACC can be
specified by the dacc_write_conversion_data() function. Its declaration is:

void dacc_write_conversion_data(Dacc *p_dacc, uint32_t ul_data);

The function arguments are:
p_dacc ... DACC registers base address

(e.g., DACC for DACC peripheral device)
ul_data ... value to be converted

To write a value into the DACC conversion register, the following dacc_write_
conversion_data() function has to be called:

dacc_write_conversion_data(DACC, value);

Sample tables

To generate a signal with DACC, 12-bit sample values over one period of the
signal are needed. The generated signal is of course a stepwise approximation.
The sample values can be calculated once and saved into a sample table. Since
three waveforms, rectangular, triangular, and sine, are to be generated in this
exercise, three sample tables are required. If there are N samples per period, the
ith sample can be calculated by (8.1). The calculation for all three required signal
shapes is given.

recti =

{
0 i < N/2
max i ≥ N/2

triangi = i
max

N− 1

sinei =
max

2

(
sin

2πi

N
+ 1

) (8.1)

Constant max is the maximum 12-bit sample value, max = 212 − 1 = 4095, and
index i ∈ {0, 1, 2, . . . ,N− 1}. Do not exaggerate in picking the number of samples
N. Larger N causes larger sample tables and shorter intervals between digital to
analog conversions. N ≤ 100 will do. To calculate the required samples, a for loop
can be used.

The program

In version without interrupts, the TC module has to be initialized as a free running
counter (see Exercise 6). To read the current TC module counter value, the
tc_read_cv() function can be used. Its declaration is:

uint32_t tc_read_cv(Tc *p_tc, uint32_t ul_channel);

57

The function returns current specified channel counter value. The arguments of
the function are:
p_tc ... TC module registers base address

(e.g. TC0 for the first TC module)
ul_channel ... channel number

To obtain the current counter value of channel 0 of the TC0 module, issue the
following tc_read_cv() function call :

value = tc_read_cv(TC0, 0);

With ADC, DACC and TC module initialized, and sample tables ready, the
main algorithm can be coded. If there are N samples, and the frequency of the
generated signal is fSIGNAL, a new sample has to be converted on every 1

NfSIGNAL

seconds. If the TC module counts with fMCK

2 , the interval elapses in fMCK

2NfSIGNAL

pulses, which is the basis to obtain equidistant time points. The algorithm runs
in an endless loop. When a time point is detected, a new sample for conversion is
provided to the DACC, and the ADC and key buttons are checked for any fSIGNAL

or signal shape modification. The pseudo code of the algorithm implementing this
exercise without interrupts is as follows:

set point to zero
set i to zero
set table pointer to one of the sample tables
while forever

obtain current TC module counter value
if point - current value is less than zero

write i-th sample from the table into DACC conversion register
increment i in cyclic manner regarding N
check keys and set the table pointer appropriately
read ADC and obtain new fSIGNAL

increase point for fMCK

2NfSIGNAL

Using TC module interrupt

Instead of detecting the equidistant time points in an endless loop, the TC module
interrupt can be used. See Exercise 6 to configure the TC module to request an
interrupt on every fMCK

2NfSIGNAL
pulses. Use RCx compare event. The pseudo code

of the TC module ISR is as follows:

write i-th sample from the table into DACC conversion register
increment i in cyclic manner regarding N
check keys and set the table pointer appropriately
read ADC and obtain new fSIGNAL

set RCx to fMCK

2NfSIGNAL

clear RCx event status

A zero initialized global index i is required to count samples. The table pointer
selecting current sample table also has to be global. Since everything is done in
the TC module ISR, only an endless loop is left in the main() function.

Exercise 9

Ramp application

Write a software for the Arduino Due board that drives a ramp model. The
software should read the password from the stdin. On right password, the ramp
should open, stay opened for a predefined time interval, and close. In case an
obstacle is detected while the ramp is closing, the ramp should reopen. Ramp
models are available in the faculty laboratory.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC as shown in Fig. 4.1.
Initialize the UART peripheral device and configure the stdio in serial mode as
explained in Exercise 4.

USB

JTAG

A
T
M
E
G
A
16
U
2

UART

Arduino Due

A
T
91
S
A
M
3X

8E

PC7

PA20

PC18

PC16

PC14

PC12

PB14

GND

39

43

45

47

49

51

53

GND

STEP

OBST RX

UP

DOWN

DIR

ON/OFF

OBST TX

GND

ramp
connector

Figure 9.1: Ramp model to Arduino Due board connection

The ramp model has seven controlling pins, four driving the ramp, and another
three reporting back the ramp status (Tab. 9.1). Connect the ramp model to the
Arduino Due board as shown in Fig. 9.1. The software required in this exercise
has to appropriately drive the pins to achieve the desired behavior.

60 EXERCISE 9. RAMP APPLICATION

ramp pin direction* description
STEP in motor step (< 300Hz, 50% duty cycle)
OBST_RX out obstacle sensor (0 ... no obstacle / 1 ... obstacle)
UP out ramp open sensor

(0 ... fully open / 1 ... not fully open)
DOWN out ramp closed sensor

(0 ... fully closed / 1 ... not fully closed)
DIR in ramp direction (0 ... up / 1 ... down)
ON/OFF in motor switch (0 ... off / 1 ... on)
OBST_TX in IR sensor (38kHz, 50% duty cycle)
GND ground

*from the ramp perspective

Table 9.1: Ramp pins

Initialization of the PWM1 device

A PWM peripheral device in the AT91SAM3X8E µC has eight channels, each
generating an independent waveform. The OBST_TX ramp input needs a 38kHz
50% duty cycle signal, which can be generated by one of the PWM channels.

A PWM peripheral device has to be clocked first. To enable the peripheral
clock of the PWM device, the device’s identifier ID_PWM must be passed to the
pmc_enable_periph_clk() function (see Exercise 6):

pmc_enable_periph_clk(ID_PWM);

The PWM peripheral device provides thirteen clock sources that can be used by
any of its eight channels. Besides the eleven fMCK based clocks (providing frequen-
cies fMCK

2i , where i = {0, 1, . . . 10}), two additional dividers are available (providing
special frequencies fMCK

2jk , where j = {0, 1, . . . 10}, and k = {1, 2, . . . 255}). The
frequencies of the two additional dividers has to be defined first. The pwm_init()
can be used. Its declaration is:

uint32_t pwm_init(Pwm *p_pwm, pwm_clock_t *clock_config);2

The function returns zero on success, and non-zero value in case the j and k pa-
rameters cannot be determined. The arguments are:
p_pwm ... PWM device registers base address

(e.g. PWM for PWM peripheral device)
clock_config ... pointer to a structure with frequencies

To turn the two additional dividers off, the pwm_init() function with appropri-
ately set clock stucture must be called:

1PWM ... Pulse Width Modulation
2Pwm is a structure of 32-bit integers representing the AT91SAM3X8E PWM device hardware

register addresses. If the pointer to such a structure refers to the top of the PWM device address
space, the structure elements directly represent the registers.
The pwm_clock_t type is a structure containing the two special frequencies and the fMCK

value:
typedef struct {

uint32_t ul_clka; /* clock A frequency (set to 0 to turn it off) */
uint32_t ul_clkb; /* clock B frequency (set to 0 to turn it off) */
uint32_t ul_mck; /* MCK */

} pwm_clock_t;

61

pwm_clock_t pwm_clk = {0};
...

pwm_clk.ul_mck = SystemCoreClock;
pwm_init(PWM, &pwm_clk);

Note, that the SystemCoreClock global variable is set in the sysclk_reinit()
function call (see Exercise 5), and therefore should not be used before the call.

With a PWM peripheral device clocked and initialized, its eight independent
channels become available. To initialize or reconfigure a PWM channel, it has
to be disabled. The PWM channel is disabled by the pwm_channel_disable()
function declared as:

void pwm_channel_disable(Pwm *p_pwm, uint32_t ul_channel);

The function arguments are:
p_pwm ... PWM device registers base address

(e.g. PWM for PWM peripheral device)
ul_channel ... channel number

(e.g. PWM_CHANNEL_2 for PWM channel two)
To disable the PWM channel two, the following pwm_channel_disable() function
has to be called:

pwm_channel_disable(PWM, PWM_CHANNEL_2);

When disabled, the PWM channel can be initialized. The initialization of a
PWM channel is performed by the pwm_channel_init() function. It is declared
as:

uint32_t pwm_channel_init(Pwm *p_pwm, pwm_channel_t *p_channel);3

The function returns zero on success. The arguments are:
p_pwm ... PWM device registers base address

(e.g. PWM for PWM peripheral device)
clock_config ... pointer to a structure with channel configuration

To generate a 38kHz 50% duty cycle signal, the fMCK can be used as a PWM
channel clock source (see Fig. 9.2). To obtain the 38kHz signal at the PWM
channel two, the pwm_channel_init() function with the following arguments has
to be called:

3The pwm_channel_t type is a structure containing channel configuration:
typedef struct {

uint32_t channel; /* channel number */
uint32_t ul_prescaler; /* clock selector */

...
uint32_t ul_duty; /* duty cycle value */
uint32_t ul_period; /* period cycle value */

...
} pwm_channel_t;

62 EXERCISE 9. RAMP APPLICATION

pwm_channel_t pwm_channel = {0};
...

pwm_channel.channel = PWM_CHANNEL_2;
pwm_channel.ul_prescaler = PWM_CMR_CPRE_MCK;4

pwm_channel.ul_duty = SystemCoreClock / (38000 * 2);
pwm_channel.ul_period = SystemCoreClock / 38000;
pwm_channel_init(PWM, &pwm_channel);

PWM counter value

ul period

ul duty

0
ul period

fMCK

t

38kHz

Figure 9.2: Obtaining 38kHz 50% duty cycle signal with PWM peripheral device
(PWM clock source = MCK, ul_period = fMCK

38kHz , ul_duty = ul_period
2)

Note, that the SystemCoreClock global variable is set in the sysclk_reinit()
function call (see Exercise 5), and therefore should not be used before the call.

After initialization, the PWM channel can be enabled. To enable the channel,
the pwm_channel_enable() function can be used. Its declaration is:

void pwm_channel_enable(Pwm *p_pwm, uint32_t ul_channel);

The function arguments are:
p_pwm ... PWM device registers base address

(e.g. PWM for the PWM peripheral device)
ul_channel ... channel number

(e.g. PWM_CHANNEL_2 for PWM channel two)
To enable the PWM channel two, the following pwm_channel_enable() function
has to be called:

pwm_channel_enable(PWM, PWM_CHANNEL_2);

The declarations of the pwm_init(), pwm_channel_disable(), pwm_channel_
init() and pwm_channel_enable() functions reside in the pwm.h header file
which has to be included.

#include <pwm.h>

The 38kHz 50% duty cycle signal is required at OBST_TX ramp input, or,
according to Fig. 9.1, at pin PB14. Most PIO pins can be hardwired to one of two
predefined devices available for the pin (see Exercise 6). Conveniently, the PWM
channel two is available to be hardwired to pin PB14 of the PIOB controller as a
peripheral device B. To hardwire the PB14 to its B device, i.e., the PWM channel
two, the following pio_set_peripheral() function call (see Exercise 6) can be
used:

4Mask PWM_CMR_CPRE_MCK sets PWM channel clock frequency to fMCK.

63

pio_set_peripheral(PIOB, PIO_PERIPH_B, PIO_PB14);

GPIO pins

The ramp controlling pins beside the PB14 have to be configured as GPIO pins
managed by the PIO controllers. To initialize the pins from Fig. 9.1, a few
pio_configure() function calls (see Exercise 2) are required:

pio_configure(PIOA, PIO_INPUT, PIO_PA20, 0);
pio_configure(PIOC, PIO_INPUT, PIO_PC16 | PIO_PC18, 0);
pio_configure(PIOC, PIO_OUTPUT_1, PIO_PC7 | PIO_PC12 | PIO_PC14,

0);5

No pull-up resistors or debounce filters are needed at input pins. Use the
pio_get() function to read an input pin, and the pio_set(), pio_clear() and
pio_toggle_pin() functions to drive an output pin (see Exercises 2 and 3).

TC module

The TC module interrupt will be used to generate the 100Hz6 signal at the STEP
input when the ramp is moving. To generate a 100Hz signal at PC7 pin, the pin has
to be toggled on every five milliseconds. An interrupt on RCx compare event is the
most suitable for that purpose. See Exercise 6 for the TC module configuration.
Conveniently, the TC module interrupt can also be used for counting the ‘time’
in the delay when the ramp is fully open. The pseudo code of the TC module ISR
is as follows:

if moving
toggle STEP ramp pin

increment time

The ISR communicates with the rest of the code through two global variables,
moving and time. The moving variable contains the information wheather the
ramp is currently moving or not. The time variable counts the TC module inter-
rupts, i.e., five millisecond intervals, and can therefore be used for time measuring.

The program

The ramp input signals OBST_TX and STEP are handled by the PWM device
and the TC module. The remaining ramp pins will be driven in the main endless
loop. First, the password is obtained from the UART device. The password
string can be assembled character by character using the getchar() function. The
strcmp() string compare function declared in the string.h header file comes in
handy for password verification. When the correct password is typed in, the ramp
open/close procedure is started. Since the obstacle can cause the procedure to be
repeated for the unknown number of times, it is wrapped in an internal endless
loop. The pseudo code of the described algorithm is as follows:

5Type PIO_OUTPUT_1 defines an output pin with initial value set to one.
6According to table 9.1, any frequency below 300Hz is suitable.

64 EXERCISE 9. RAMP APPLICATION

while forever
obtain password from UART
if the password is correct

while forever
set DIR pin to up
set moving
while ramp is not fully open (use UP pin)

do nothing
clear moving
wait for delay time (use time)
set DIR pin to down
set moving
while ramp is not fully closed (use DOWN pin) and

there is no obstacle (use OBST_RX pin)
do nothing

clear moving
if ramp is fully closed (use DOWN pin)

break

Bibliography

[1] The Eclipse Foundation open source community website, https://eclipse.org ,
Apr. 2015

[2] Oracle website, http://www.oracle.com/index.html , Apr. 2015

[3] R.M. Stallman and the GCC Developer Community, Using the GNU Com-
piler Collection, GNU Press, 2014, Free Software Foundation, https://gcc.gnu
.org/onlinedocs/gcc-4.9.2/gcc.pdf , Apr. 2015

[4] Launchpad website, https://launchpad.net , Apr. 2015

[5] ARM-USB-OCD-H, ARM-USB-OCD User’s Manual, Olimex, 2015, Olimex,
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-
OCD_and_OCD_H_manual.pdf , Apr. 2015

[6] Open On-Chip Debugger: OpenOCD User’s Guide, 2014, The OpenOCD
Project, http://sourceforge.net/projects/openocd/files/openocd/0.8.0/open
ocd.pdf/download , Apr. 2015

[7] Sourceforge website, http://sourceforge.net , Apr. 2015

[8] ATMEL SAM3X / SAM3A Series Datasheet, Atmel, 2015, Atmel, http:
//www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-
SAM3X-SAM3A_Datasheet.pdf , Apr. 2015

[9] Arduino Due board website, http://www.arduino.cc/en/Main/ArduinoBoard
Due, Apr. 2015

[10] The ARM Ltd. website, http://www.arm.com, Apr. 2015

[11] The Atmel Corporation website, http://www.atmel.com, Apr. 2015

[12] R.M. Stallman, R. McGrath, P.D. Smithand, GNU Make, Free Software
Foundation, 2014, Free Software Foundation, http://www.gnu.org/software/
make/manual/make.pdf , Apr. 2015

[13] AT91SAM3X8E source files, makefiles and linker script from ASF for labo-
ratory exercises, http://fides.fe.uni-lj.si/~janezp/embedded_systems/asf.zip,
Oct. 2017

[14] HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver),
Hitachi, 1998, Alldatasheet, http://pdf1.alldatasheet.com/datasheet-pdf/view
/63663/HITACHI/HD44780U.html , Apr. 2017

The script contains instructions and detailed explanation of laboratory
exercises covered in the Embedded Systems course that is held in the
fth semester of the 1st Cycle Professional Study Programme in Applied
Electrical Engineering, study programme option Electronics, at the
Faculty of electrical engineering of the University of Ljubljana,
Slovenia. The laboratory exercises focus on usage of modern 32-bit
microcontroller features such as: General Purpose In-put/Output pins
(GPIO), WatchDog Timer (WDT), Universal Asynchronous Receiver/
Transmitter (UART), Timers, Analog to Digital and Digital to Analog
Conversion (ADC and DAC), etc., in embedded applications.

Embedded programming, C language, Microcontroller peripherals,
ARM Cortex-M3, AT91SAM3X8E

EMBEDDED
SYSTEM:
LABORATORY
EXERCISES

KEYWORDS

ISBN 978-961-243-380-2 ZALOŽBA
FAKULTETE ZA
ELEKTROTEHNIKO

