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Abstract

An induced matching in graph G is a matching which is an induced
subgraph of G. Clearly, among two vertices with the same neighborhood
(called twins) at most one is matched in any induced matching, and if one
of them is matched then there is another matching of the same size that
matches the other vertex. Motivated by this, Kanj, Pelsmajer, Schaefer
and Xia [10] studied induced matchings in twinless graphs. They showed
that any twinless planar graph contains an induced matching of size at
least n

40 and that there are twinless planar graphs that do not contain an
induced matching of size greater than n

27 + O(1). We improve both these
bounds to n

28 +O(1), which is tight up to an additive constant. This implies
that the problem of deciding an whether a planar graph has an induced
matching of size k has a kernel of size at most 28k. We also show for the
first time that this problem is FPT for graphs of bounded arboricity.

Kanj et al. presented also an algorithm which decides in O(2159
√

k +n)-
time whether an n-vertex planar graph contains an induced matching of
size k. Our results improve the time complexity analysis of their algorithm.
However, we show also a more efficient, O(226

√
k +n)-time algorithm based

on the branch-width decomposition.

1 Introduction

An induced matching in graph G is a matching which is an induced subgraph
of G. In this paper we study induced matchings in planar, or more generally
bounded genus graphs, both from combinatorial and computational perspective.

1.1 Combinatorial perspective

It is a natural and heavily researched area in extremal graph theory to lower-
bound the size of various structures in selected graph classes. For example,
Nishizeki and Baybars [14] and later Biedl et al. [3] showed tight lower bounds
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on the size of matching in subclasses of planar graphs, Alon, Mubayi and
Thomas [1] lowerbound the size of induced forest in sparse graphs etc.

Kanj, Pelsmajer, Schaefer and Xia [10] were first to consider the size of
induced matchings in planar graphs. Graphs like K1,n, K2,n show that general
planar graphs have no nontrivial lowerbound on the induced matching size.
Kanj et al. observed that among two vertices with the same neighborhood
(called twins) at most one is matched in any induced matching, and if one of
them is matched then there is another matching of the same size that matches
the other vertex. In particular, after removing one of two twins from a graph,
the size of maximum induced matching does not change. Motivated by this,
Kanj et al. studied induced matchings in twinless graphs. They showed that
any twinless planar graph contains an induced matching of size at least n

40 and
that there are twinless planar graphs that do not contain an induced matching
of size greater than n

27 + O(1).
In this paper we improve both these bounds to n

28 + O(1), which is tight up
to an additive constant. The lower bound is also generalized to bounded genus
graphs, i.e. we show that any twinless graph of genus g contains an induced
matching of size at least (2n + 20(1− g)− 2)/(49 + 7

√
1 + 48g).

Kanj et al. showed also that any planar graph of minimum degree 3 contains
an induced matching of size (n + 8)/20. We note that results of Nishizeki and
Baybars [14] imply a better bound of (n + 2)/12 for these graphs, as well as
some better bounds for planar graphs of minimum degree 4 and 5.

1.2 Computational perspective

It was shown by Yannakakis [16] that deciding whether a planar graph contains
an induced matching is NP-complete. Although the optimization problem is
APX-complete in general [8], for planar graphs, and more generally for graphs
that do not contain K5 or K3,3 as a minor, there is a PTAS working in 2O(1/ε)n
time due to Baker [2] and Chen [4]. The PTAS (though with a worse running-
time bound) can be generalized to H-minor-free graphs due to Demaine et
al. [7].

In the area of parameterized complexity, one asks whether there is an al-
gorithm for the induced matching problem which verifies whether an n-vertex
graph contains an induced matching of size k in time nO(1)f(k). If so, then
the problem is fixed parameter tractable (FPT in short). It is known that the
problem is W [1]-hard in general [13], which means that most likely the induced
matching problem is not FPT. However, there is a 2O(

√
k)nO(1)-time parameter-

ized algorithm for H-minor-free graphs [6] due to Demaine, Fomin, Hajiaghayi
and Thilikos. For the (smaller) class of planar graphs, Moser and Sikdar [12]
showed that the problem has a linear kernel, which means that one can reduce
the problem in polynomial time to the same problem but on instance of size
O(k). The result of Kanj et al. mentioned in Section 1.1 implies that the size
of the kernel is bounded by 40k. Our results improve the bound further to 28k.

Next, we focus on graphs of bounded arboricity, i.e. graphs whose edges set
can be partitioned into O(1) forests. For example, planar graphs have arboricity
3. Intuitively, graphs of bounded arboricity are uniformly sparse, since this class
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is equal to the class of graphs of bounded maximum density, where maximum
density of a graph G is defined as d∗ = max∅6=J⊆V

|E(G[J ])|
|J | (see e.g. [11] for some

realtions between classes of sparse graphs). In particular this wide class contains
H-minor-free graphs. We show, using the concept of eliminating twins, that
the induced matching problem has a polynomial kernel for graphs of bounded
arboricity. This implies that for such graphs there is an FPT algorithm with
time complexity of the form O(n+f(k)). This generalizes the result of Demaine
et al. [6] for the special case of the induced matching problem (the results in [6]
are stated for all so-called bidimensional problems). This is also particularly
interesting because there are classes of bounded arboricity graphs (like 4-regular
graphs) for which the problem is APX-hard.

By using the linear kernel and planar separator technique, Kanj et al. showed
an O(2159

√
k + n)-time parameterized algorithm. Our lower bound of the size

of induced matching in twinless planar graphs improves the time complexity
analysis of their algorithm to O(2133

√
k + n). However, we show also a more

efficient, O(226
√

k+n)-time algorithm based on the branch-width decomposition.
We also note that the proof of the lower bound gives a very practical and

easy-to-implement algorithm for finding large induced forests in planar graphs
(see Section 2.4).

2 Lower Bounds

In this section we present some lower bounds on the size of induced matching
in subclasses of planar graphs and some classes of twinless sparse graphs. Our
general approach is the same as that of Kanj et al., who used the following
lemma. (We give a simple proof for completeness).

Lemma 2.1 (Kanj et al. [10]). Let G be a minor-closed family of graphs and
let c be a constant such that any graph in G is c-colorable. Moreover, let G be
a graph from G and let M be a matching in G. Then G contains an induced
matching of size at least |M |/c.

Proof. Let M be a matching in G. We obtain graph G′ by removing all un-
matched vertices and contracting all edges of matching M . Then G′ ∈ G. Color
the vertices of G′ in c colors. The largest color class in V (G′) is an independent
set of size at least |M |/c. It corresponds to an induced matching in G of size
at least |M |/c.

It follows that a lower bound on the size of a matching in a subclass H of a
minor-closed graph family implies a bound on the size of an induced matching
in H.

2.1 Planar graphs of large minimum degree

Kanj et al. showed that a planar graph of minimum degree 3 contains a matching
of size at least (n + 8)/5. Using this with Lemma 2.1 and the Four Color
Theorem they obtained that any planar graph of minimum degree 3 contains
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an induced matching of size at least (n + 8)/20. However, this bound can be
easily improved by using the following tight bounds for the size of matchings
due to Nishizeki and Baybars.

Theorem 2.2 (Nishizeki and Baybars [14]). Let G be an n-vertex planar graph
of minimum degree δ and let M be a maximum cardinality matching in G.
Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
3 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
5 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
11 .

Corollary 2.3. Let G be an n-vertex planar graph of minimum degree δ and
let M be a maximum cardinality induced matching in G. Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
12 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
20 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
44 .

Let us note that the above bound |M | ≥ n+2
12 is tight (up to an additive

constant), as we show in Section 3. Let us also note that the paper of Nishizeki
and Baybars contains also tight lower bounds on the matching size in graphs
of minimum degree 3, 4 and 5 and vertex connectivity 1, 2, 3 and 4 and the
corresponding bounds for induced matchings can be obtained.

2.2 Twinless graphs of bounded genus

In this section we present an improved lower bound for the size of induced
matchings in twinless graph of bounded genus. To this end, we are going to
lowerbound the size of a maximum cardinality matching in such graphs, and
apply Lemma 2.1.

We begin with two simple observations.

Lemma 2.4. Let uv be an edge in a maximum cardinality matching M in graph
G and let I the set of unmatched vertices. If N(u) ∩ I 6= ∅ and N(v) ∩ I 6= ∅,
then there is a vertex x ∈ I such that N(u)∩ I = N(v)∩ I = {x}. In particular
u, v and x form a triangle.

Proof. Follows from the maximality of M .

Lemma 2.5. For any twinless graph G there exists a maximum cardinality
matching such that all 1-vertices of G are matched.

Proof. Let M be a maximum cardinality matching in G and let I be the set of
unmatched vertices. Suppose I contains a 1-vertex v. Let y be the sole neighbor
of v. Then y is matched for otherwise M is not maximal. Let x be the vertex
matched with y by M . Since G is twinless, x has degree at least two. We can
now replace the edge xy with the edge vy in matching M and hereby decrease
the number of vertices of degree 1 in I, without changing the size of M . After
applying the above procedure to all 1-vertices we get the desired matching.
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Now we are ready to show a lower bound on the size of a matching in
twinless graphs of bouded genus.

Theorem 2.6. Every n-vertex twinless graph G of genus g contains a matching
of size n+10(1−g)−1

7 .

Proof. We will show that if G has no isoltaed vertices then if contains a matching
of size n+10(1−g)

7 . Since a twinless graph contains at most one isolated vertex
then claimed bound will follow. In what follows, M denotes the matching
described in Lemma 2.5 and I = V \V (M). Note that I is an independent set,
by the maximality of M . In what follows, we show a lower bound on |M |.

Let M4 ⊂ M be the set of edges in matching M that form triangles with
vertices in I. Similarly, let I4 ⊂ I be the set of vertices in I that form triangles
with edges of M . Let I2 ⊂ I denote the vertices of degree two in I and I3+ the
vertices with degree three or more.

First note that Lemma 2.4 implies that

|M4| ≥ |I4|. (1)

Hence it suffices to lowerbound |M \M4|. Let R be the set of vertices in
M \M4 that are adjacent to I. Note that by Lemma 2.4 each edge of M \M4

has at most one endpoint in R, so

|M \M4| ≥ |R|. (2)

Now we lowerbound R in terms of |I2\I4|. Let G2 be a graph on the vertices R
such that G2 contains an edge uv when there is a vertex x ∈ I2 \ I4 adjacent to
both u and v. Observe that G2 has genus at most g, because after subdividing its
edges we get a subgraph of G. Hence, by Euler Formula, |E(G2)| ≤ 3|V (G2)|−
6 + 6g. Since |E(G2)| = |I2 \ I4| and V (G2) = R, we get |R| ≥ |I2\I4|+6−6g

3 .
By (2),

|M \M4| ≥ |I2 \ I4|+ 6− 6g

3
. (3)

Now we lowerbound |R| in terms of |I3+ \ I4|.
Let G3 be the bipartite subgraph of G, on the vertices R ∪ (I3+ \ I4) and

with edges incident with I3+ \ I4. Since G3 is bipartite its embedding on an
orientable surface of genus g has no triangles and we get the following bound
on the number of its edges by the Euler’s Formula :

|E(G3)| ≤ 2|V (G3)| − 4 + 4g.

By combining it with the fact that vertices in I3+ have degree at least 3, we
can bound |E(G3)| as follows.

3 · |I3+ \ I4| ≤ |E(G3)| ≤ 2 · (|R|+ |I3+ \ I4|)− 4 + 4g.

It gives us |R| ≥ |I3+\I4|+4−4g
2 so with (2) we get

|M \M4| ≥ |I3+ \ I4|+ 4− 4g

2
. (4)
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Now we are going to merge the bounds (3) and (4) into the following bound:

|M \M4| ≥ |I \ I4|
5

+ 2(1− g). (5)

When |I2 \ I4| ≥ 3
5 |I \ I4|, we get (5) from (3). Similarly, when |I2 \ I4| ≤

3
5 |I \ I4| we get (5) from (4) by replacing |I3+ \ I4| by |I \ I4| − |I2 \ I4|.

By combining (1) and (5) we get

|M | = |M \M4|+ |M4| ≥ |I \ I4|
5

+ 2(1− g) + |I4| =

=
|I|
5

+ 2(1− g) +
4
5
|I ∩ I4| ≥ |I|

5
+ 2(1− g).

Since I = n− 2|M |, we get |M | ≥ n+10(1−g)
7 , as desired.

By using Lemma 2.1, Four Color Theorem, and the Heawood’s Theorem,
we get the following corollaries.

Corollary 2.7. Every n-vertex twinless graph of genus g contains an induced
matching of size (2n + 20(1− g)− 2)/(49 + 7

√
1 + 48g).

Corollary 2.8. Every n-vertex twinless planar graph contains an induced match-
ing of size n+9

28 .

2.3 Twinless sparse graphs

In this section we focus on graphs of bounded arboricity. Let arb(G) and d∗(G)
denote arboricity and the maximum density of graph G, respectively. Recall
the following folklore fact.

Lemma 2.9. For any graph G with at least one edge, d∗(G) < arb(G).

This means that graphs of bounded arboricity do not contain dense sub-
graphs. We will use this fact in the following lemma.

Theorem 2.10. Any n-vertex twinless graph of arboricity c = O(1) contains a
matching of size Ω(n1/(c+1)).

Proof. Let G be an n-vertex twinless graph of arboricity c and let M be a
maximum cardinality matching in G. Let I denote the independent set V (G) \
V (M). Let us partition I into vertices of degree at least c and vertices of degree
smaller than c, denoted by Ic+ and Ic− respectively.

Let E(V (M), Ic+) denote set the edges between V (M) and Ic+. Then

(c + 1)|Ic+| ≤ |E(V (M), Ic+)| < c(2|M |+ |Ic+|),

where the second inequality follows from Lemma 2.9 and the fact that E(V (M), Ic+)
induces a graph of arboricity c. By rearranging we get

|M | = Ω(|Ic+|). (6)
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On the other hand, since G is twinless,

|Ic−| ≤
c∑

i=0

(
2|M |

i

)
= O(|M |c+1).

Hence, |M | = Ω(|Ic−|1/(c+1)). Together with (6) we get the claimed bound.

Theorem 2.11. Any n-vertex twinless graph G of arboricity c = O(1) contains
an induced matching of size Ω(n1/(c+1)).

Proof. Let M be a maximum cardinality matching in G, |M | = Ω(n1/(c+1))
by Theorem 2.10. Similarly as in Lemma 2.1 we consider graph G′ which is
obtained from G by removing all unmatched vertices and contracting all edges
of matching M . Consider any set of vertices S′ ⊆ V (G′). Then S′ corresponds
to a set S ⊆ V (G), i.e. S′ is obtained from S by identifying endpoints of
edges of M . Then |E(G′[S′])| ≤ |E(G[S])| and |S′| ≥ |S|/2, hence |E(G′[S′])|

|S′| ≤
|E(G[S])|

|S| ≤ 2d∗(G). Hence by Lemma 2.9, |E(G′[S′])| ≤ 2c|S′|. It follows that
G′[S′] contains a vertex of degree at most 4c. Since S′ was chosen arbitrarily
we infer that G′ is 4c-degenerate and hence (4c + 1)-vertex-colorable (by a
simple algorithm which chooses a vertex v with the smallest degree, removes
it from the graph, colors the resulting graph recursively and assigns to v the
smallest color which is unused by v’s neighbors). By choosing the subset of M
corresponding to the biggest color class in G′ we obtain an induced matching
of size |M |/(4c + 1) = Ω(|M |).

Now, if we want to decide whether an n-vertex graph of arboricity bounded
by a constant c contains an induced matching of size k, we begin by eliminat-
ing twins in linear time (see [10]). Let H be the resulting graph. From Theo-
rem 2.11 we know that H contains an induced matching of size α·|V (H)|1/(c+1),
for some constant α. Hence if k ≤ α · |V (H)|1/(c+1) we answer “yes”, and oth-
erwise we know that |V (H)| = O(kc+1). Since we can find a maximum induced
matching in H by the exhaustive search, the overall algorithm runs in time
O(n + exp(k2(c+1))). We note that one can also find induced matchings of size
k within this time bound (see Section 4). We summarize it with the following
corollary.

Corollary 2.12. The incuded matching problem for graphs of arboricity bounded
by c = O(1) has kernel of size O(kc+1). In particular, this problem is fixed pa-
rameter tractable for these graphs.

2.4 A practical algorithm for planar graphs

The discussion in Section 1.2 shows that if we want to find large induced match-
ing in a planar graph in practice, then most likely we should use PTAS of Baker
or Chen, since they are linear-time (for any fixed approximation ratio) and their
time complexity do not hide large constants. However, these algorithms are still
very complicated and hard to implement.
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Here we want to note that the proof technique of Corollary 2.8 (introduced
by Kanj et al. [10]) can be turned into the following algorithm. Given an input
graph G, remove twins, find a maximum matching M , remove the unmatched
vertices, contract the edges from M , color the resulting graph and choose the
subset of M which corresponds to the biggest color class.

Eliminating twins can be easily done in linear time (see [10]). Finding a
maximum matching using Hopcroft-Karp algorithm works in O(n3/2)-time for
planar graphs and is implemented in many libraries. Since so far there is no fast
and simple algorithm for 4-coloring planar graphs, we use 5 colors instead and
then the coloring can be found by a simple linear-time algorithm (see e.g. [5]).
Because of using 5 colors instead of 4 the constant 28 increases to 35. Then we
get a O(n3/2)-time algorithm which always finds an induced matching of size at
least n′/35, where n′ is the number of pairwise different vertex nieghborhoods
in G. If one insists on linear-time, a maximal matching can be used instead of
maximum matching M . (Then the constant 35 doubles because any maximal
matching has size at least |M |/2.)

3 An Upper Bound

In this section we show that the bound in Corollary 2.8 is tight, up to an
additive constant. Namely, we show the following.

Theorem 3.1. For any n0 ∈ N there is an n-vertex twinless planar graph G
such that n > n0 and any induced matching in G is of size at most n

28 + O(1).

v1 v2 v3 v4 v5 v6 v7 v8 v9
. . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

Figure 1: Construction of the graph Tk: arranging k copies of K4 in 4 layers of
triangles.

Proof. In what follows we describe an n-vertex planar graph with maximum
induced matching of size at most n

28+O(1). It will be clear from our construction
that the number of vertices can be made arbitratily large.

We begin with a graph Tk, which consists of k copies of K4 and some
additional edges. We obtain Tk from the graph drawn in Fig 1 by identifying

8



vertex v1 with w1, v2 with w2 and so on. It is easy to see that the resulting
graph is still planar, since the cylinder is homeomorphic to a subset of the plane.
Also, Tk is twinless.

Note that Tk has 4k vertices, 8k + O(1) triangular faces and 12k + O(1)
edges. Now, we build a new graph Gk by extending Tk, as follows:

(i) For each 3-face xyz of Tk add a 3-vertex v adjacent to x, y and z,

(ii) For each edge xy of Tk add a 2-vertex v adjacent to x and y.

(iii) For each vertex x of Tk add a 1-vertex v adjacent to x.

Note that by adding vertices like this we do not introduce twins and the
graph stays planar. It is clear that Gk has 4k+8k+12k+4k+O(1) = 28k+O(1)
vertices. Moreover, every edge of Gk is incident with a vertex of one of the k
copies of K4. On the other hand, if M is an induced matching in Gk, vertices
of each copy of K4 are incident with at most one edge of M . It follows that
|M | ≤ k, so |M | ≤ |V (Gk)|/28 + O(1).

In a very similar way, we get that Corollary 2.3 (i) is also tight.

Corollary 3.2. For any n0 ∈ N there is an n-vertex planar graph G of min-
imum degree 3 such that n > n0 and any induced matching in G is of size at
most n

12 + O(1).

Proof. Just remove the 1- and 2-vertices from the graphs constructed in the
proof of Theorem 3.1.

4 An algorithm based on branch-width

In this section we discuss an algorithm that, given a planar graph G on n
vertices and an integer k, either computes a induced matching of size ≥ k,
or concludes that there is no such induced matching. The algorithm requires
O(n + 226

√
k) time.

Definitions

A branch decomposition of a graph G is a pair (T, r), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from E(G) to the set of leaves of T .
The order function ω : E(T ) → 2V (G) of a branch decomposition maps every
edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists
of all vertices of V (G) such that for every vertex v ∈ ω(e) there exist two edges
f1, f2 ∈ E(G) that are incident with v and the leaves τ(f1), τ(f2) are in different
components of T −{e}. The width of (T, τ) is equal to maxe∈E(T ) |ω(e)| and the
branch-width of G, bw(G), is the minimum width over all branch decomposition
of G. A set D ⊆ V (G) is a dominating set in a graph G if every vertex in
V (G)−D is adjacent to a vertex in D.

Now we will introduce a few lemmas, that will connect induced matching
problem with branch-width decomposition.
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Lemma 4.1. In any graph without isolated vertices if D is a minimum domi-
nating set and M is a maximum cardinality matching, then |D| ≤ |M |.

Proof. Let V (M) be the set of the vertices of edges from M . We will describe a
dominating set of size |M |. Let us observe that every vertex is adjacent to some
vertex from the matching M , for otherwise the matching M is not maximal.
Hence V (M) is dominating. However, it is sufficient to choose just one endpoint
for each edge of M . Then clearly all vertices of V (M) are dominated, but we
need to be careful about which endpoint we choose to dominate the unmatched
vertices. Namely, for each edge of uv ∈ M we choose its endpoint which has
unmatched neighbors. It may happen that both endpoints have unmatched
neighbors but then by Lemma 2.4, N(u) − V (M) = N(v) − V (M) = {x} for
some x, so it does not matter whether we choose u or v.

Lemma 4.2 ([9]). For any planar graph G with dominating set D,

bw(G) ≤ 3
√

4.5 · |D|.

Lemma 4.3. For any planar graph G with maximum induced matching I,

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

Proof. From Lemma 2.1 we know that the maximum cardinality matching M
of G has size |M | ≤ 4|I|. Combining lemmas 4.1 and 4.2 we get

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

Algorithm outline

Let G be the input planar graph on n vertices and let k be the size of induced
matching we look for. As long as there is a pair of twins in G we remove one of
them. This can be implemented in O(n) time (see [10]). Let n′ be the number of
vertices of the resulting graph H. Now we describe an algorithm which decides
whether H has an induced matching of size k.

Step 1. If n′ > 28k we can answer True, since the induced matching of size at
least k exists as a consequence of a corollary 2.8. Otherwise we proceed
with the next step and we can assume our graph has O(k) vertices.

Step 2. Compute the optimal branch-decomposition of graph H. Using algo-
rithm of Seymour and Thomas [15] this step requires O(k4) time. If
bw(G) ≥ 12.7

√
k then as a consequence of lemma 4.3 we can return

answer True. Otherwise we proceed with the next step.

Step 3. Use dynamic programming approach for finding maximum cardinality
induced matching in graph G. In Appendix A we present an algorithm
that solves this problem on graphs with branch-composition of width
≤ l in O(m · 4l) time where m is the number of edges in a graph. This
step requires O(k · 412.7

√
k) = O(226

√
k) time, since l ≤ 12.7

√
k.
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If we want to find the matching, in Step 1., we check whether n′ > 70k
and if so we find an induced matching of size k by the linear-time algorithm
from Section 2.4. Otherwise, we know that our graph has O(k) vertices. Then
we find the matching using the self-reducibility approach. Let T (n′) denote
the time complexity of the decison algorithm described above. First, using the
decision problem we determine the size s of the maximum induced matching in
H. Then we can test in time O(k + T (n′)) whether a choosen edge e belongs
to some induced matching of size s: just remove e and the adjacent vertices
and test whether there is an induced matching of size s − 1. If that is the
case, find the induced matching of size s − 1 recursively, and otherwise we
put back the removed vertices (and their incident edges) and we test another
edge, which has not been excluded so far. Clearly this procedure takes overall
O(|E(H)|(k + T (n′))) time, which is O(k2 · 412.7

√
k) = O(226

√
k).

Theorem 4.4. For any planar graph G on n vertices and an integer k, there is
an O(n + 226

√
k)-time algorithm which finds in G an induced matching of size

k if and only if such a matching exists.
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A Dynamic programming on graphs of bounded branch-
width

Our approach here is based on the algorithm for dominating set proposed by
Fomin and Thilikos in [9]. We closely follow the notation and presentation from
their paper.

Let (T ′, τ) be a branch decomposition of a graph G with m edges, let ω′ :
E(T ′) → 2V (G) be the order function of (T ′, τ). The tree T ′ is unrooted, so we
build its rooted version T , by choosing an edge {x, y} in T ′, putting new vertex
v of degree 2 on this edge and making v adjacent to new vertex r, which is the
new root of tree T . For every edge f ∈ E(T ) ∩ E(T ′) we define ω(f) = ω′(f),
and for edges ω({x, v}) = ω({v, y}) = ω′({x, y}) and ω({r, v}) = ∅.

For an edge f of T we define Ef (Vf ) as the set of edges (vertices) that are
“below” f , i.e. the set of all edges (vertices) g such that every path containing
g and v, r in T contains f . Every edge f of T that is not incident to a leaf has
two children that are edges of Ef incident to f .
For every edge f of T we color the vertices of ω(f) in three colors {0, 1, 2}.
We say that an induced matching M is valid for a coloring c : ω(f) → {0, 1, 2}
when for every x ∈ ω(f):

• if c(x) = 2, then x ∈ V (M),

• if c(x) = 1, then x 6∈ V (M), but it can be adjacent to some vertex of the
matching,

• if c(x) = 0, then x 6∈ V (M), and x is not adjacent to a vertex of the
matching (for all y ∈ N(x), y 6∈ V (M)).

For every edge f of T we use a mapping:

Af : {0, 1, 2}ω(f) → N ∪ {−∞}

For a coloring c ∈ {0, 1, 2}ω(f), the value Af (c) denotes the largest cardinal-
ity of an induced matching in the subgraph Gf of G that is defined by inducing
the edge set:

{τ−1(x) : x ∈ Vf ∧ (x is a leaf of T ′)}

subject to the condition that the matching is valid with coloring c.
We define Af (c) = −∞ if the coloring is invalid (there is no valid induced

matching in Gf with coloring c).
Let f be a non-leaf edge of T and let f1, f2 be the children of f . Define

X1 = ω(f) − ω(f2), X2 = ω(f) − ω(f1), X3 = ω(f) ∩ (ω(f1) ∩ ω(f2)), X4 =
(ω(f1) ∩ ω(f2))− ω(f).

Let us note that Xi∩Xj = ∅ (for 1 ≤ i 6= j ≤ 4), and ω(f) = X1∪X2∪X3,
ω(f1) = X1 ∪X3 ∪X4, ω(f2) = X2 ∪X3 ∪X4.

We say that a coloring c of ω(f) is formed from coloring c1 of ω(f1) and
coloring c2 of ω(f2) if

(F1) For every x ∈ X1, c(x) = max(c1(x), {c2(y) : y ∈ ω(f2) ∩N(x)}),
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(F2) For every x ∈ X2, c(x) = max(c2(x), {c1(y) : y ∈ ω(f1) ∩N(x)}),

(F3) For every x ∈ X3, c(x) = max(c1(x), c2(x)),

(F4) For every x ∈ X3 ∪X4, c1(x) + c2(x) ≤ 2.

If coloring c of ω(f) is formed from colorings c1 of ω(f1) and coloring c2 of
ω(f2), then Af (c) ≥ Af1(c1) + Af2(c2).
We compute functions Af from leaves of T by bottom-up fashion.

For a leaf edge f ∈ E(T ), and its leaf node v ∈ V (T ) corresponding to an
edge xy ∈ E(G) we define function Af as follows:

• if c(x) ≤ 1 and c(y) ≤ 1, then Af (c) = 0,

• if c(x) = c(y) = 2 then Af (c) = 1,

• otherwise Af (c) = −∞.

For non-leaf edges f of T we can compute function Af as follows (f1, f2 denote
the children of f):

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 forms c}

If coloring c can not be formed from colorings c1, c2 of f1, f2, then we define
Af (c) = −∞.

Let xi denote |Xi|. The number of pairs (c1, c2) of colorings that can form
a coloring c, can be bounded by

3x1+x2 · 6x3+x4

since there are three possible colorings of vertices u ∈ X1 ∪X2, and six pairs of
colorings of vertices u ∈ X3 ∪X4, that is:

(c1(u), c2(u)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}.

We can observe that if for some coloring c, Af (c) 6= −∞, we change coloring c
into c′ by replacing the color of vertex x with c(x) = 0, to a new color c′(x) = 1,
then Af (c′) 6= −∞, and Af (c′) ≥ Af (c). This leads us to an observation, that
during computation of function Af , instead of investigating pairs of colorings
(from sets X3, X4) {(0, 1), (1, 0), (1, 1)}, it is sufficient to check only one pair,
namly (1, 1).
We can compute function Af using a slightly modified formula:

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 satisfies (F1), (F2), (F3) and (F4’)}

where condition (F4’) is defined as follows:

(F4’) For every x ∈ X3 ∪X4, (c1(x), c2(x)) ∈ {(0, 0), (1, 1), (2, 0), (0, 2)}.
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The complexity of computing Af , with this optimization, can be bounded by:

3x1+x2 · 4x3+x4

Let l = bw(G), and xi = |Xi|, the values xi are bounded by following inequali-
ties:

x1 + x2 + x3 = |ω(f)| ≤ l
x1 + x3 + x4 = |ω(f1)| ≤ l
x2 + x3 + x4 = |ω(f2)| ≤ l

The maximum value of linear functions log4 3(x1 + x2) + x3 + x4 subject to
constraints on xi is l (which is achieved for x1 = x2 = 0, x3 = x4 = 0.5l). So
the cost of computing function Af can be bounded by O(4l).

Since we have to compute function Af for each edge of tree T , we can
summarize with following theorem.

Theorem A.1. For a graph G on m edges and with given a branch-decomposition
of width ≤ l, the maximum induced matching of G can be computed in O(m ·4l)
time.

We finish this section by noting that there is also an O∗(4t)-time algorithm
by Moser and Sikdar [12], where t denotes the tree-width of the input graph.
It follows that our algorithm improves on this result, since for any graph G of
at least 3 edges, bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) and the existing algorithms
for finding optimal branch-decomposition are regarded as more practical than
those for finding optimal tree-decomposition
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