f YU ISSN 0016-7789 RAZPRAVE GEOLOGIIA POROČILA 1979 UREDNIŠKA OBVESTILA EDITORIAL NOTICES Sodelavcem GEOLOGIJE GEOLOGIJA objavlja originalne razprave s področja geoloških in sorodnih ved ter poročila o geoloških raziskovanjih, kongresih, posvetovanjih in publikacijah. Rokopis naj ne bo daljši od 35 tipkanih strani ali 60 000 znakov. V to Število se štejejo tudi slike. Osnova za preračunavanje slik v znake je 3500 znakov za celostransko sliko. Prosimo vse sodelavce GEOLOGIJE, da skrbno izbirajo vsebino svojih člankov, posvete ustrezno pozornost kratkemu in jasnemu načinu izražanja, uporabi posameznih besednih vrst in strokovnih geoloških izrazov ter izdelavi ilustracij. Na ta način bo reviji zagotovljena primerna znanstvena raven in oblika. Prispevki morajo biti pisani s strojem z dvojnim presledkom in s 4 cm širokim levim robom. Pri pregledu svojih rokopisov naj avtorji zlasti pazijo na pravilno pisanje znanstvenih in lastnih imen, znakov, številk, formul in podobno. Osebna imena pri navajanju literature naj bodo podčrtana črtkano, imena fosilov (rod in vrsta) pa valovito. Tekst naj ne vsebuje neobičajnih okrajšav, nejasnih popravkov in opomb. Tabele naj bodo napisane na pisalni stroj IBM tako, da jih bo možno kliširati. Članki morejo bati pisani ali v domačih ali v tujih svetovnih jezikih. Članek v domačem jeziku mora imeti povzetek v tujem svetovnem jeziku v obsegu ene petine članka, prispevek v tujem jeziku pa naj ima kratek slovenski povzetek. Na začetku vsakega članka mora biti kratka vsebina v obsegu 700 do 1000 tiskovnih znakov v enem od svetovnih jezikov. Ce želi avtor drugačne pogoje glede obsega in povzetka svojega Članka, je to možno v sporazumu z uredništvom. Literaturo navajajte po abecednem redu avtorjev in kronološko na naslednji način: priimek avtorja, začetna črka avtorjevega imena, letnica, naslov dela (pri periodičnih izdajah tudi naslov revije in zaporedna številka zvezka), založba in kraj, kjer je delo izšlo. V literaturo vključujte samo uporabljena dela, bibliografijo pa le v izjemnih primerih glede na vsebino in pomen razprave. V citatih med tekstom navedite začetno črko imena in priimek avtorja ter letnico, ko je delo izšlo, po potrebi tudi stran. Karte, profili, skice, diagrami in druge podobne slike morajo biti narisani na prosojnem matričnem papirju. Za fotografske, mikrografske in rentgenske slike je treba predložiti visokokontrastne originale na gladkem, svetlem papirju. Izjemoma imajo avtorji možnost objaviti tudi barvne slike. Na vsaki sliki mora biti ime avtorja in zaporedna številka slike. V glavnem naj bo slika pojasnilo teksta, zato mora biti med tekstom na ustreznem mestu navedena zaporedna številka slike. Napisi in legende k slikam naj bodo kratki, posebno še, ker morajo biti dvojezični. Pri dosedanjih izdajah naše revije se je pokazalo, da avtorji pri slikah ne upoštevajo formata knjige, kar povzroča mnogo dodatnega dela pri urejevanju in tisku. Pri vseh slikah med tekstom upoštevajte, da je zrcalo revije 12,6 X 18 cm V primeru, da je potrebna večja slika, naj njena širina po možnosti ne preseže 40 cm, višina pa naj ne bo večja kot 18 cm. Risba naj bo večja kot slika, ki bo po njej izdelana; razmerje naj bo 2 :1. Pri tem je treba paziti na debelino črt ter na velikost številk, črk in drugih znakov na risbi, da bosta njihova debelina in velikost tudi po zmanjšanju ustrezala; črke in številke na tiskani sliki morajo biti visoke najmanj 1 mm. Celoten rokopis, vključno risbe, fotografije, kratko vsebino in povzetek v tujem jeziku, mora pripraviti vsak avtor sam. V 2. delu 22. knjige GEOLOGIJE, letnik 1979, bodo objavljena dela, prispela v uredništvo do konca junija 1979, v 1. delu 23. knjige, leto 1980, pa dela, ki jih bo uredništvo prejelo do konca leta 1979. Uredništvo bo pošiljalo krtačne odtise stavkov v korekturo avtorjem po njihovi želji. Pri korekturah popravljajte samo tiskovne napake. Dopolnila so možna le na stroške avtorjev. Sodelavcem, ki živijo zunaj Ljubljane, bomo krtačne odtise pošiljali po dogovoru; njihove popravke bomo upoštevali le v primeru, da korekture vrnejo v dogovorjenem roku. Avtorji prejmejo brezplačno po 50 izvodov separatov vsakega članka. Nadaljnje izvode pa lahko dobe po ceni, ki ustreza dejanskim stroškom. YU ISSN 0016-7789 GEOLOGIJA RAZPRAVE IN POROČILA 22. KNJIGA 1. del GEOLOGIJA LETO 1979 22. KNJIGA 1. del Str. 1 do 188 LJUBLJANA GEOLOGIJA RAZPRAVE IN POROČILA Od leta 1978 dalje (21. knjiga) izhaja GEOLOGIJA dvakrat na leto, v juniju (1. del) in decembru (2. del), da bi imeli avtorji možnost hitreje objaviti svoja dela Izdajatelji: Geološki zavod, Inštitut za geologijo FNT in Slovensko geološko društvo, Ljubljana Glavni in odgovorni urednik: Stefan Kolenko, Yu 61000 Ljubljana, Parmova 33 Uredniški odbor: M. Drovenik, M. Iskra, S. Kolenko, D. KuŠčer, A. Nosan, M. Pleničar in L. Zlebnik Tiskovni svet: S. Papler — predsednik, F. Cimerman, J. Duhovnik, S. Kolenko, I. Mlakar, A. Nosan, V. Osterc, G. Simčič in D. TurnSek Naklada: 1000 izvodov Letna naročnina: 250 din Tisk in vezava: LJUDSKA PRAVICA, Ljubljana, Kopitarjeva 2 V letu 1979 financirata: Raziskovalna skupnost Slovenije in Geološki zavod, Ljubljana From 1978 (Volume 21), GEOLOGIJA appears biannually, in June (Part 1) and December (Part 2), to advance our publishing activity by a more rapid printing of the submitted papers Published in Ljubljana by the Geological Survey, FNT Institute of Geology, and the Slovene Geological Society Editor in Chief: Stefan Kolenko, Yu 61000 Ljubljana, Parmova 33 Editorial Board: M. Drovenik, M. Iskra, S. Kolenko, D. Kuščer, A. Nosan, M. Pleničar and L. Zlebnik Subscription price: $ 14 per year Printed by LJUDSKA PRAVICA, Ljubljana, Kopitarjeva 2 VSEBINA — CONTENTS Paleontologija — Paleontology Holzer, H.-L. & Ramovš, A. Neue rugose Korallen aus dem Unterperm der Karawanken....... 1 New rugose corals from the Lower Permian beds of the Karavanke Alps . . 1 Nove spodnjepermske rugozne korale v Karavankah.......... 1 Stratigrafija — Stratigraphy RamovS, A. & Kochansky-Devidi, V. Karbonske in permske plasti v severnih Julijskih Alpah........21 Karbon- und Perm-Schichten in den nördlichen Julischen Alpen.....21 Carboniferous and Permian beds from the northern Julian Alps.....21 Dozet, S. Karnijske plasti južno in zahodno od Ljubljanskega barja........55 Carnian beds south and west of the Ljubljana Moor..........55 Gaždzicki, A., Kozur, H. & Mock, R. The Norian-Rhaetian boundary in the light of micropaleontological data . . 71 Sribar, L. Biostratigrafija mejnih plasti med juro in kredo v južni Sloveniji.....113 Biostratigraphy of the Jurassic-Cretaceous boundary layers from South Slovenia ..........................113 Industrijski minerali in kamenine — Industrial minerals and rocks Vesel, J. Repen............................117 Repen stone..........................117 Geofizika — Geophysical Survey Lapajne, J. Indirect geophysical model of Istrian bauxite deposits.........127 Izmenjava mnenj — Discussion Berce, B., Strucl, I. & Faninger, E. Plutonic emplacement in the Eastern Karavanke Alps — Comments and Replay.......................... i Nove knjige — Book Reviews Paul Ramdohr und Hugo Strunz: Klockmanns Lehrbuch der Mineralogie ... iii G. H. A. Cole: The Structure of Planets................................iv Jörg Barner: Rekultivierung zerstörter Landschaften......................vi Leopold Müller — Salzburg: Der Felsbau. Dritter Band: Tunnelbau......vii GEOLOGIJA GEOLOGICAL RAZPRAVE IN POROČILA TRANSACTIONS AND REPORTS Ljubljana • 1979 • 22. knjiga. 1. del «Volume 22, Part 1 GEOLOGIJA 22/1, 1—20 (1979), Ljubljana UDK 563.61:551.736.1(234.323.61)=30 Neue rugose Korallen aus dem Unterperm der Karawanken New rugose corals from the Lower Permian beds of the Karavanke Alps Nove spodnjepermske rugozne korale v Karavankah Hans-Ludwig Holzer Institut für Geologie und Paläontologie, A-8010 Graz, Heinrichstraße 26 Anton Ramovš Katedra za geologijo in paleontologijo, Univerza Edvarda Kardelja v Ljubljani, 61000 Ljubljana, Aškerčeva 12 Zusammenfassung Aus den Südkarawanken werden bisher nicht bekannt gewordene Bugosa (Carinthiaphyllum kdhleri Heritsch, 1936 und Yokoyamaella (Yo-koyamaella) stillei (Heritsch, 1936)) beschrieben (H.—L. H.), die vom Zweitautor im Bereich der Ortschaft Potarje und in der Dolžanova soteska (Teufelsschlucht) aus gelblichen und grauen Trogkofelkaiken aufgesammelt wurden. Abstract A description of rugose corals Carinthiaphyllum kahleri Heritsch, 1936 and Yokoyamaella (Yokoyamaella) stillei (Heritsch, 1936) from yellowish and greyish Trogkofel-limestone (Lower Permian) from the slovenic Ka-rawanke Alps (village Potarje, Dolžanova soteska — Dolžan gorge is given. Kratka vsebina V sivem in rumenkastem grebenskem apnencu so bile najdene v Po-tarjih nad Lomom pri Tržiču in na eni od skalnih piramid v Dolžanovi soteski korale, ki v Sloveniji doslej Se niso bile znane. Pripadajo vrstama Carinthiaphyllum kahleri Heritsch, 1936 in Yokoyamaella (Yokoyamaella) stillei (Heritsch ,1936), ki sta tu opisani. Vsebina - Inhaltsübersicht — Contents Zgodovinska zapisek o koralah v Dolžanovi soteski............2 Paläontologischer Teil.......................3 Yokoyamaella (Yokoyamaella) stillei (Heritsch, 1936)...........3 Carinthiaphyllum kahleri Heritsch, 1936 ...............6 Literaturverzeichnis........................20 Project 5 Zgodovinski zapisek o koralah v Dolžanovi soteski A. Ramovš V trogkofelskem apnencu Dolžanove soteske nad Tržičem je prvi našel korale Schellwien leta 1898 (Caninia aff. kokscharowi Stuckenberg, Diphyphyllum nov. sp. in Cyathaxonella nov. sp.). Sistematično pa jih je prvi obdelal He-ritsch leta 1933. Določil je vrste Amplexocarinia geyeri n. sp., Tachylasma aster Grabau, Sinophyllum pendulum Grabau in Lopholasma ilitschense Soshki-na. Ko je preučeval stratigrafski položaj trogkofelskega apnenca, je F. H e -r i t s c h (1938) opisal iz Dolžanove soteske še naslednje korale: Tachylasma aster var. cylindroconica Soshkina, Tachylasma exceptatum Soshkina in Sinophyllum pendulum var. simplex Huang. Vse te solitarne korale so iz rdečega trogkofel- Abb. 1. Korallenfundorte in den Trogkofelkalken in der Dolžanova soteska und in Potarje Fig. 1. Coral localities in village Potarje and Dolžanova Soteska (Dolžan Gorge) skega apnenca; te koralne favne je imel F. Heritsch (1933 in 1938) za permske kljub različnim najdiščem. Leta 1961 je našel A. Ramovš v vasi Potarje pri Lomu nad Tržičem dva kosa apnenca z grebenskimi koralami, po površju preperelimi. Leta 1978 so bili najdeni nad Potarji v enakem apnencu še nadaljnji kosi, ki še niso obdelani. Grebenski apnenec je delno rdeč delno rožnat, svetlo siv in bel. Grebenske korale vsebuje samo bel apnenec. Postavlja se vprašanje, ali je na življenje grebenskih koral negativno vplivala večja primes glinastega materiala, ki je kamenino obarvala rdečkasto (primerjaj E. Flügel & G. Agior-g i t i s, 1970). Rdeči apnenec pa vsebuje drugod posamične korale. Različno obarvani apnenec predstavlja nadaljevanje grebenskega pasu iz Dolžanove soteske proti vzhodu in pripada spodnjepermski epohi. Korala iz potarskega najdišča, določena kot Yokoyamaella (Yokoyamaella) stillei (Heritsch 1936), je znana doslej samo iz spodnjepermskih plasti. Drugo najdišče koral v Dolžanovi soteski leži na vrhu druge strme skalne piramide nad velikim cestnim ovinkom (si. 1, 2). Svetlo sivi masivni apnenec vsebuje na enem kraju številne, večidel posamično stoječe in le redko dotikajoče se korale, v preseku okrogle ali ovalne. Kamenina vsebuje tudi krinoidne ostanke, niso pa bili najdeni brahiopodi in školjke. Zelo redke so fuzulinidne foraminifere. Čer sestoji v celoti iz masivnega sivega apnenca in je zaradi navpičnih sten težko dostopna. Zato ni bilo mogoče najti več koralnih najdišč, ki bi potrdila, da je vsa čer iz koralnega apnenca. V sosednjih čereh niso bile najdene korale. Določena je bila vrsta Carinthiaphyllum kahleri Heritsch 1936, znana doslej le iz nižjega dela spodnjega perma. Z južnokaravanškim trogkofelskim apnencem so se ukvarjali še S. B u s e r, 1974; W. Buggisch, E. Flügel, F. Lei t z & G. F. Tietz (1976) in A. Ramovš (1968, 1969, 1972, 1974). PALÄONTOLOGISCHER TEIL H.—L. Holzer Rugosa Milne-Edwards & Haime, 1850 Waagenophyllidae Wang, 1950 Waagenophyllinae Wang, 1950 (vgl. Minato & Kato, 1965) Yokoyamaella (Yokoyamaella) Minato & Kato, 1965 Yokoyamaella (Yokoyamaella) stillei (Heritsch, 1936) Taf. 1. Fig. 1—3, Taf. 5, Fig. 2—5 v. 1936 Wentzelella stillei n. sp. — Heritsch, F., S. 127, Taf. 18, Fig. 1, 2, Abb. 29—31. 1965 Yokoyamaella (Y.) stillei — Minato & Kato, S. 138. Holotypus: Der bei Heritsch 1936 beschriebene und abgebildete Stock 2468. Locus typicus: Rattendorfer Alpe. Stratum typicum: Unterer Schwagerinenkalk, Unterperm. Material: 1 Stockbruchstück (mit 3 Querschliffen, 4 Folien, 1 Längsschnitt) aus Trogkofelkalken, Potarje, oberhalb Tržič (Yu). Beschreibung : Bruchstück eines cerioiden, massiven Stockes mit einer stark angewitterten Stockoberfläche und ca. 10 cm Durchmesser. Die unregelmäßig polygonalen Koralliten, die 4- bis 6-eckig sind, werden durch eine Abb. 2. Der Fundort von Carinthiaphyllum kahleri auf dem zweiten schroffen Felsklippe innerhalb der Dolžanova soteska. Foto A. Ramovš Fig. 2. Finding place of Carinthiaphyllum kahleri in Dolžanova Soteska (Dolžan Gorge) relativ dicke Außenwand umhüllt. Diese Epithek wird aus Septalanteilen, Dissepimentanteilen und eigenen Epithekalanteilen zusammengesetzt. Die bis zu 10 mm großen Koralliten zeigen in Querschnitten 2 Ordnungen von Septen, die meist von der Epithek ausgehen und deren Septen 1. Ordnung knapp vor der Columella enden. Mit den 12—21 (meist um 18—19) Septen erster Ordnung alternieren Septen 2. Ordnung, deren Länge die Hälfte bis 2/3 der Septen 1. Ordnung erreichen. Außer einer manchmal im Epithekbereich deutlichen Verdickung handelt es sich um± gerade, gegen die Columella hin ausdünnende Septen (mittlere Dicke um 0,20 mm), deren axiales Ende häufig verbogen sein kann. In Verbindung mit der Medianlamelle der Columella kann ein Septum (in der Literatur als Gegenseptum bezeichnet) mit dieser in Verbindung stehen. Die Septen 2. Ordnung sind etwas dünner. Der Durchmesser der Columella schwankt zwischen 1 und 2 mm und zeigt einen runden bis ovalen Umriß. Der Aufbau zeigt sich v. a, in Querschnitten variabel. Es bestehen alle Übergänge von Columellen mit überwiegend und relativ flach hochgewölbten Tabellarelementen, Tabellarelementen und gleichrangigen Radialelementen, Tabellar-elementen mit einer Medianplatte oder Tabellarelementen, Medianplatte und untergeordneten Radialelementen (Taf. 5, Fig. 2—5). Das aus verschieden großen Blasen aufgebaute und zum größten Teil interseptale Dissepimentarium besteht aus 3—5 Reihen. Untergeordnet und bei adulten Schnitten finden sich lons-daleoide Wandblasen, die sich v, a. in den Zwickeln benachbarter Koralliten konzentrieren. Die Grenze Dissepimentarium — Tabellarium ist in Querschnitten undeutlich, eine innere »Mauerbildung« durch engstehende »elongate dissepiments« bzw. Clinotabellae (sensu Minato & Kato 1965) ist kaum zu beobachten. In Längsschnitten erkennt man gegen das Zentrum steil abfallende 3—5 Blasenreihen, die in einer Reihe »elongate dissepiments« enden. Darauf folgen sporadisch entwickelte Clinotabellae und ein schmaler Bereich von »transverse tabellae«, deren Dichte gegen den Kelch zu abzunehmen scheint. Abmessungen (vgl. Tab. 1): Korallitendurchmesser: 5,5—10 mm. Abstand benachbarter Columellen: 5—12 mm. Columella-Durchmesser: 1—2 mm. Septenzahl: Septen 1. Ordnung: 12—21. Gesamtzahl (S.l.O. + S.2.0): 22—38. Anteil am Radius von Columella / Tabellarium / Dissepimentarium (incl. elongate Diss.) in mm: 0,8/0,5—0,7/2,5. Transverse Tabellae/5 mm: 14—9. Bemerkung en: Lediglich die Dicke der Wandbildung ermöglicht eine Zuordnung zum Subgenus Yokoyamaella (Y.) Minato & Kato, 1965, wobei beim vorliegenden Stock die Vielfältigkeit der Wandausbildung auffällt. Die Durchsicht der Schliffe des Holotypus von Y. (Y.) stillei (Heritsch, 1936) zeigt ähnliche Abmessungen, Septenzahlen und eine geringere Variabilität des Columella-Aufbaues. Ebenso ist der Wandbau etwas einheitlicher (»beading type« und Typus »septal wall« bei M i n a t o & Kato 1965: Abb. 5). Mit Ausnahme der Epithekalbildungen könnte der vorliegende Stock Ipci-phyllum laosense (Patte, 1926) zugeordnet werden. Eine Neubearbeitung der jungpaläozoischen Stockkorallen der Familie Waagenophyllidae unter Berück- Tabelle 1. Meßdaten aus Querschnitten (in mm) bei Yoko- yamaella (Y.) stillet (Heritsch, 1936) Table 1. Data from transverse sections (in mm) of Yoko-yamaella (Y.) stillei (Heritsch, 1936) s . e * Ii 5.S O -o il _a i "SO ® I v i JS -H .5 < v -O j O o h// Prehodne plasti Transitional beds Tretja klastična enota Third clastic unit Dolomit,dolomitni lapor, skrilavec Dolomite,dolomitic marl, shale Druga kiastična enota Second clastic unit Dolomit, dolomitni lapor, skrilavec Dolomite,dolomitic marl, shale ^ ^ " Prva klastična enota First clastic unit Zgornji julijski apnenec Upper Julian limestone Skrilavec z vložki dolomita Shale inter bedded with dolomite Spodnji julijski apnenec Lower Julian limestone Mejne plasti Boundary beds M i t M ^ VJ j ( Maty Mlynsky vrch / jA v r-—'' f Wienjpp ^ra Bratislava ____f \Salzburg , - ¡E3 > ---------' , r^,\ _ Fischerwiese .. ' I V r—. J----• • f / '*— Kendelbachgraben ^ J V, A o L V^. .-------, S T * ? S ^--------v—0 200 km r Fig. 1. Locality map of the investigated Upper Triassic sections in Czechoslovakia and Austria Stratigraphical analysis of representative sections Hybe (Low Tatra, Kossen Beds) Hybe is the best known locality of Kossen Beds in the Slovak Carpathians, a classical locality on account of its rich fauna. It is situated south of the village of Hybe in the valley of the Biely V£h river, on the northern slopes of the Low Tatra (Koutek, 1927, fig. 1; Bystricky & Biely, 1966, fig. 8; Michalik, 1973, figs. 1,2; Michalik in: Bystricky, 1973, figs. 13,14), Its surroundings are built up of Upper Triassic of the Chofc nappe ("Biely Vah Facies"), transgressively overlain by Paleogene sediments. The Upper Triassic is represented here by monotonous dolomites ('Hauptdolomit") of Carnian and Norian age, bedded light-grey "Dachstein Limestones", in places very variegated ones (Norian), and Kossen beds with rich Early Rhaetian fauna (fig. 2). The tectonical structure of the surroundings of the locality is highly complicated (cf. Michalik, 1973). The highly fossiliferous beds were discovered by S t a c h e (1867). G o e t e 1 (1917) described the rich assemblage of brachiopods, lamellibranchiates, corals, and echinoderms from this locality (about 40 species). This Rhaetian fauna is the typical Kossen fauna with Rhaetina gr eg aria (Suess), R. pyriformis (Suess) Zeil-leria norica (Suess), Oxycolpella oocycolpos (Emmrich), Riiaetauicula contorta (Portlock), Oxytoma inaequivalvis intermedia (Emmrich), Casstanella inaequi-radiata (Schafhautl), Modiolus schajhaeutli (Stiir), Retiophyllia clathrata (Emmrich) etc. Andrusov (1934) found here the ammonite Rhaetites rhaeticus (Clark). Recently, the fauna of Kossen Beds from Hybe was studied by K o -chanovd (1967) and Michalik (1973, 1975). Budurov & Pevny (1970) have reported from Hybe 4 fragments of the conodont Gondolella navicula Huckriede. This species ranges highest into the Sevatian, but not into the uppermost Sevatian. Unfortunately, it is not known from which place this sample was taken and thus this finding is open to discussion. It possibly originates from the "Dachstein Limestones". In the Kossen Beds in the layer XXXII in the profile by Michalik (1973, fig. 2) M a - s KOSSEN BEDS DACHSTEIN LIMESTONE HAUPTDOLOMIT Fig. 2. Section of the Upper Triassic deposits near Hybe, Slovakia (cf. Koutek, 1927, fig. 1; Bystricky & Biely, 1966, fig. 8; Michalik, 1973, figs. 1, 2; Michalik in: Bystricky, 1973, figs. 13, 14); numbered are the sampling sites jerska (1973) found conodonts originally determined as Spathognathodus kernsteini Mostler. These conodonts have later been described by Kozur & Mock (1974 b) as Misikella posthernsteini Kozur & Mock, the index species of the posthernsteini assemblage zone of the Rhaetian. Foraminifers of this sequence were studied by Salaj & Jendrejäkovä (1967) and S a 1 a j ; Biely & Bystricky (1967), and their stratigraphic importance was emphasized by Salaj (1969 a, b) and Gazdzicki & Zawidzka (1973). In the years 1972—1975 the section was sampled by Gazdzicki. About 40 thin sections made of these samples yielded numerous determinable foraminifers that made possible to discriminate faunal successions. The following foraminifers were found (location of samples see fig. 2): Samples 1—3: Semiinvoluta. clari Kristan, 1957, Involutina gaschei (Koehn-Zaninetti & Brönnimann, 1968), Involutina sp., and Trocholina acuta Oberhäuser, 1964. Age: Norian (Alaunian — Sevatian), clari & oberhauseri ass. zone. Samples 4—7: Trochammina alpina Kristan-Tollmann, 1964, Alpinophrag-mium ? sp., Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964, Nodosaria ordinata Trifonova, 1965, Nodosaria sp., Miliolipora cuvillieri Brönnimann & Zaninetti, 1972, Semiinvoluta clari Kristan, 1957, Involutina communis (Kristan, 1957), Involutina tenuis (Kristan, 1957), Involutina gaschei (Koehn-Zaninetti & Brönnimann, 1968), Involutina sp., Trocholina permodiscoides Oberhäuser, 1964, and Triasina oberhauseri Koehn-Zaninetti & Brönnimann, 1968. Age: Upper Norian (Sevatian), clari & oberhauseri ass. zone. Samples 8—12: Glomospira sp., Glomospirella friedli Kristan-Tollmann, 1962, Glomospirella pokornyi (Salaj, 1967), Glomospirella parallela Kristan-Tollmann, 1964, Glomospirella sp., Tolypammina sp., Trochammina alpina Kristan-Tollmann, 1964, Tetrataxis inflata Kristan, 1957, Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964, Ophthalmidium sp., Miliolipora cuvillieri Brönnimann & Zaninetti, 3972. Planiinvoluta deflexa Leischner, 1961, Nodosaria ordinata Trifonova, 1965, Nodosaria sp., Lingulina aff. placklesensis Kristan-Tollmann, 1970, Diplotremina sp., Involutina communis (Kristan, 1957), Involutina tumida (Kristan-Tollmann, 1964), Involutina sinuosa sinuosa Weynschenk, 1956, Involutina gaschei (Koehn-Zaninetti & Brönnimann, 1968), Involutina sp., Trocholina permodiscoides Oberhauser, 1964, and Triasina oberhauseri Koehn-Zaninetti & Brönnimann, 1968 — pi. 1, fig. 9. Age: Lower Rhaetian, pokornyi & friedli ass. zone. Bleskovy pramen (Drnava, Slovak Karst) This locality is about 1.5 km southeast of the village Drnava (Dernö), 12 km east of RozAava (Slovak Karst) on the southern spur of the Drienovec Hill (formerly Drienkova hora, Somhegy) near the karst spring "Bleskovy pramen" (Szörnyüküt, cf. Mello in: Bystricky, 1973, fig. 9). Rich thanatocoenosis, composed mainly of brachiopods, lamellibranchiates and cephalopods, can be found in some lenses of grey and blue-grey crinoidal to coquinoid limestones. The fauna is less frequent in the surrounding dark massive limestones that form the highest parts of the thick light "Furmanec Limestones" (Dachsteinriffkalk). Sturzenbaum, 1879 (discoverer of the locality) considered these limestones rich in fossils to be Salzburg development of the Kossen Beds. He mentioned the species Choristoceras marshi Hauer and "Terebratula" gregaria Suess. The brachiopods from this locality were studied by Bittner, 1890, who considered most of the species to be typical of the Kossen Beds of the Alps. The cephalopods from Bleskovy pramen were investigated by Mojsisovics, 1896. He put them to the Sevatian zone of Pinacoceras metternichi (the index species itself was not found here). Goetel, 1917 considered the limestones of this locality to be Dachstein Limestones and he regarded the fauna as Upper Rhaetian. S u f, 1939 has demonstrated that cephalopods, brachiopods and other fossils occur together and not in a Norian and a Rhaetian horizon. Matej-ka & Andrusov, 1931, ascribing the higher stratigraphic value to the "Norian" cephalopods, considered the beds of Bleskovy pramen to belong to the Sevatian. As to age, this locality was classified in the same manner also by Bystricky, 1964, who supplemented the fossil list by the Dasycladacean algae Diplopora cf. phanerospora Pia, This species is known from the Kossen Beds of the Alps (O 11, 1974, F1 ii g e 1, 1975). Recently, brachiopods found here were restudied by S i b 1 i k, 1967. He described 21 species. On the whole this fauna is of Rhaetian character. The presence of the Norian Halorella amphitoma (Bronn) and the absence of Rhaetina gregaria (Suess) in this rich association are interesting. The cephalopods (15 species), lamellibranchiates (56 species) and gastropods (19 species) from Bleskovy pramefi were studied monographically by Koll6rova-Andrusovova & Kochanova (1973). Complete lists of fossils and many informations about the locality are given in this monography. Budurov & Pevny (1970) mentioned 4 conodont species from the limestones of Bleskovy pramen, among others "Polygnathus" tethydis Huckriede and "Hindeodella" petraeviridis Huckriede. These conodonts are illustrated on a photographic table. An erroneous determination can be therefore excluded. This conodont association cannot be younger than Middle Carnian, because such species as Gladigondolella tethydis (Huckriede) and Metaprioniodus petraeviridis (Huckriede) have never been found higher than Middle Carnian; most probably this association has a Ladinian age. Therefore these conodonts cannot originate from the limestones of Bleskovy pramen as already pointed out by M o c k (1971,1975). For this reasons it is surprising that in the above mentioned monography on molluscan fauna of Bleskovy pramen the authors ascribed primordial significance to the cephalopods and to the conodonts in their stratigraphic interpretation of the Bleskovy pramen fauna as Sevatian and not as Rhaetian (p, 206: »die wichtigste Rolle spielten dabei die Cephalopoden und Conodonten«). Up to present no conodonts were found by the present authors from this locality inspite of the fact that relatively large rock samples were dissolved by acetic acid. Holothurian sclerites are scarce here, being mainly represented by Theelia rosetta Kristan-Tollmann. It should be also pointed out that some "decisive Norian" ammonoid species described by Mojsisovics (1896) — e. g. Choristoceras (Peripleurites) boeckhi, Choristoceras (Peripleurites) stuerzenbaumi and Eopsiioceras clio — have the following locus typicus and stratum typicum: Bleskovy pramen, Drnava (Demo), "Upper Norian" (in reality Rhaetian). The question of the age of the Bleskovy pramefi beds was repeatedly studied by Kozur & Mock. In their first publication (Kozur & Mock, 1972, 1974a) they determined the age of these beds as highest Sevatian (uppermost Sevatian sensu Tozer = uppermost Rhabdoceras suessi zone; Kozur, 1973b has divided this Rhabdoceras suessi zone in the Sevatian «Sagenites giebeli and Cochloceras suessi zones and the Lower Rhaetian Choristoceras haueri zone). Kozur (1973b, pp. 17—18) put Bleskovy pramefi to the higher part of the zone with Choristoceras haueri ( = uppermost Rhabdoceras suessi zone sensu Tozer, formerly uppermost Sevatian, now Lower Rhaetian) and he drew a parallel between this fauna and the middle Kossen Beds of its type locality in Austria. Such an age is also indicated by the brachiopods: Zugmayerella koessenensis (Zugmayer), Rhaetina pyriformis (Suess), and Triadithyris gre-gariaeformis (Zugmayer). These species occur at the type locality of the Kossen Beds in the upper part of the zone of Choristoceras haueri, immediately below the strata with Choristoceras marshi Hauer.* Kozur & Mock (1974c) pointed out that the fauna of Bleskovy prameA is still Lower Rhaetian, but younger than the Lower Rhaetian (Lower Rhaetian sensu Kozur, 1973b, see above) of Hybe with Rhaetites cf. rhaeticus (Clare), Rhaetavicula contort a (Portlock) and Misikella posthernsteini Kozur & Mock. Foraminifers were previously reported from the Bleskovy pramefi area by Jendrejakova (1970). During the present studies foraminifers were found in the following samples: Sample 166/1: »Vidalina« martana Farinacci, 1959, »Vidalina« carinata (Lei-schner, 1961), Diplotremina cf. subangulata Kristan-Tollmann, 1960, Involutina cf. communis (Kristan, 1957), and Involutina tenuis (Kristan, 1957). Sample 166/2: Glomospirella sp., Trochammina alpina Kristan-Tollmann, 1964, Tetrataxis cf. inflata Kristan, 1957, »Vidalina« martana Farinacci, 1959 — pi. 1, figs. 2, 3, Ophthalmidium sp. — pi. 1, fig. 4, Galeanella cf. tollmanni (Kristan, 1957) — pi. 1, fig. 6, Miliolipora cf. cuvillieri Bronnimann & Zaninetti, 1972, Diplotremina ? sp., — pi. 1, fig. 7, Variostoma ? sp., Involutina communis (Kristan, 1957), and Involutina cf. turgid a Kristan, 1957. Sample 166/3-Di: Tolypammina sp., Ammobaculites sp. — pi. 1, fig. 5, Variostoma ? sp., and Involutina gaschei (Koehn-Zaninetti & Bronnimann, 1968). Sample I66/3-D2: Tolypammina sp. Sample 166/5-D4: Tolypammina sp., Trochammina sp., »Vidalina« cf. carinata (Leischner, 1961) — pi. 1, fig. 1. Sample Dr.: Tolypammina sp., Trochammina alpina Kristan-Tollmann, 1964, Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964, Planiinvoluta deflexa Leischner, 1961, Involutina communis (Kristan, 1957), Trocholina per-modiscoides Oberhauser, 1964, and Triasina hantkeni Majzon, 1954 — pi. 1, fig. 8. The majority of the listed taxa are known from the Upper Norian to the Rhaetian. Attention should be paid to the foraminifer fauna of the sample Footnote 1) * Some of these brachiopods may occur also in the Choristoceras marshi zone. Choristoceras marshi seems to be rather a bad index species for the uppermost ammo-noid zone of the Triassic, because this species should be expected to occur also in the Choristoceras haueri zone. Therefore the haueri and marshi zones should be rather separated by the disappearence of Rhabdoceras suessi and not by the first appearence of Choristoceras marshi. For this reason some correlations of brachiopod faunas with the ammonoid zonation of the Rhaetian are rather unclear. no. 166/2 with Galeanella cf. tollmanni and Involutina cf. turgida, known from strata not older than Rhaetian or even Liassic of the Tethys (K r is t a n, 1957; Kristan-Tollmann, 1962, 1964; Bronnimann et al., 1973). Moreover, the sample Dr. yielded somewhat recrystallized specimens of Triasina hantkeni Majzon, indicative of the Rhaetian. The occurrence of these forms in the Bleskovy pramefi succession indicates that these strata are younger than the Kossen Beds from Hybe, as it was previously suggested by Kozur (1973b) and Kozur&Mock (1973, 1974c). Maly Mlynsky vrch (Slovak Karst, Zlambach Beds) The Maly Mlynsky vrch hill (456,8 m) is the best locality of Zlambach Beds in the Slovak Karst (cf. Mock, 1973). This hill is situated appr. 1 km east of the village Silicka Brezova, near to the Slovak-Hungarian boundary. Its surroundings are built up of Upper Triassic limestones of the Silica nappe. In the structure of the Maly Mlynsky vrch hill we can find light massive limestones (so-called Tisovec Limestone), overlain by the typical pink and red Norian Hall-statt Limestones. The topmost beds of this locality consist of Upper Sevatian and Rhaetian Zlambach Beds. These Zlambach Beds have developed from the underlying Hallstatt Limestones quite gradually by accession of the clay component and by change in colour from pink through yellowbrown to grey. In its lower parts the Zlambach Beds are grey micritic limestones, followed by marls or marly slates, and finally by sandy shales. The thickness of the Zlambach Beds is here up to 10 m. The conodonts, holothurian sclerites, and fora-minifers from this locality are listed by Mock (1973) and Kozur&Mock (1974a, b). The residues of the samples of Zlambach Beds with the Lower Rhaetian conodont fauna with Misikella posthernsteini Kozur & Mock and Grodella delicatula (Mosher) have yielded the following foraminifers (determined by Dr. A. Oravecz-Scheffer, Budapest): Ammobaculites rhaeticus Kristan-Tollmann, A. alaskensis Tappan, Ammovertella polygyra Kristan-Tollmann, Glomospira gordialis (Jones & Parker), Haplophragmoides subglobosus (Sars), Hyperamminoides expansus elongatus Kristan-Tollmann, and Trochammina al-pina Kristan-Tollmann. The cephalopods that occur in relative abundance, have not yet been studied in detail. The genus Choristoceras is present. During the present studies foraminifers were found in the following samples: Sample MMV-1 — grey, slightly marly micrite from the lower part of the Zlambach Beds: Trochammina alpina Kristan-Tollmann, 1964 — pi. 4, fig. 10, Agathammina ? iranica Zaninetti et al., 1972 — pi. 4, figs. 8, 9, Ophthalmidium sp., and Nodosaria sp. — pi. 4, fig. 7. Associated are the following conodonts and holothurian sclerites: Misikella hernsteini (Mostler), Oncodella paucidentata (Mostler), and Theelia immisorbi-cula Mostler, T. kristanae Mostler, T. petasiformis Kristan-Tollmann, T. simoni Kozur & Mock. The conodonts and holothurian sclerites indicate the upper part of the Upper Sevatian (hernsteini assemblage zone). Sample MMV-2 — Hallstatt Limestone from a small quarry on the northern slope of the Maly Mlynsky vrch: Glomospira sp. — pi. 4, fig. 15, Glomospirella ? sp. — pi. 4, fig. 14, Tolypammina sp., Trochammina alpina Kristan-Tollmann, 1964 — pi. 4, figs. 12, 13, Agathammina austroalpina Kristan-Tollmann & Toll- 6 — Geologija 22/1 mann, 1964, »Vidalina« sp., Nodosaria ordinata Trifonova, 1965, and Nodosaria sp. Associated are the following conodonts and holothurian sclerites: Metapoly-gnathus spatulatus (Hayashi) 4- ramiform conodonts and Biacumina acanthica (Mostler), Canisia symmetrica (Mostler), Frangerites complexus (Kozur & Mock), Praeeuphronides multiperjoratus Mostler, Theelia immisorbicttla Mostler, T. planorbicula Mostler, T. zawidzkae Kozur and Mock. The conodonts and holothurian sclerites indicate a Lower to Middle Norian age (spatulatus zone). Sample MMV-3 — grey marly limestone, directly overlying the beds with Misikella hernsteini (Mostler): Glomospirella sp., Trochammina ? sp., Tetrataxis sp., Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964, Ophthal-midium cf. triadicum (Kristan, 1957) — pi. 4, fig. 6, Op/ithalmidium sp., and Nodosaria sp. This sample yielded also the conodont Metapolygnathus slovakensis Kozur (cf. Kozur, 1972a, p. 10) and the holothurian sclerites Theelia rosetta Kri-stan-Tollmann, T. variabilis Zankl, T. heptalampra (Bartenstein), and Calclamna germanica Frizzell & Exline. Age: Lowermost Rhaetian or uppermost Sevatian. Sample MMV-4 — grey marly limestone and marl: Glomospira cf. perplexra Franke, 1936, Glomospira sp., Trochammina alpina Kristan-Tollmann, 1964 — pi. 4, fig. 11, »Vidalina« martana Farinacci, 1959, »Vidalina« carinata (Leischner, 1961) — pi. 4, fig. 2, »Vidalina« carpathica Gazdzicki, n. sp. — pi. 4, figs. 3—5, Ophthalmidium sp., Planiinvoluta carinata Leischner, 1961, Nodosaria sp., Austrocolomia sp., Lenticulina sp., Diplotremina sp., and Turrispirillina cf. minima Pantic, 1967. No conodonts and holothurian sclerites occur in this sample. The foramini-fers indicate an Upper Norian or Rhaetian age. Sample MMV-6 — grey limy marl: Glomospirella cf. pokornyi (Salaj, 1967) — pi. 4, fig. 1, Glomospirella sp., Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964, Ophthalmidium sp., Nodosaria sp., Austrocolomia cf. rhaetica Oberhauser, 1967, and Austrocolomia sp. No conodonts and holothurian sclerites occur in this sample. The foramini-fers indicate the Lower Rhaetian pokornyi & friedli zone. Ftscherwiese (Salzkammergut, Zlambach Beds) The Fischerwiese section is situated north of the village Ob. Lupitsch, appr. 6 km northwest of Bad Aussee, Salzkammergut (cf. Kristan-Tollmann, 1964, fig. 1). It is the type locality of the »coral facies« of the Zlambach Beds. These beds are denuded in the brook Korallenbach for a distance of more than 100 m. In its lower part there absolutely dominate soft, dark, clayey and marly schists, higher up there join in dm-thick beds of limestones that are calcarenites to rudites. These limestones are mainly built up of resedimented biogenetic detritus. They are massive, grey to greyviolet rocks resembling limestones from Bleskovy pramen in the Slovak Karst. Still higher there are several beds filled up by corals and other fossil detritus. A great part of the fauna from this locality, mainly corals, derives from these places of the section. Other macro-fossils — e.g. cephalopods, brachiopods, lamellibranchiates, bryozoans are less frequent (cf. Haas, 1909; Zapfe, 1967). Stratigraphic important faunal elements are Choristoceras marshi Hauer, Stenarcestes polysphinctus (Mojsiso-vics), Racophyllites neojurensis (Quenstedt), Fissirhynchia fissicostata (Suess), Zugmayerella koessensis (Zugmayer), Trigonia zlambachiensis Haas, Oxytoma inaequivalve (Sowerby), Amblysiphonella steinmanni (Haas), »Thecosmilia« no-rica Frech, Montlivaltia norica Freeh, etc. Apart from the macrofossils there also rich microfaunas occur, see Kristan-Tollmann (1964) for foramini-fers and Kollmann (1963), Bolz (1971, 1974) for ostracodes. The newest list of the fauna was completed by Wiedmann (1972). By the finding of Choristoceras marshi Hauer (cf. Zapfe, 1967) the Rhae-tian age of the Zlambach Beds from the Fischerwiese section was confirmed. Bolz (1971) has dated these rocks on the basis of the ostracode fauna as Upper Norian or Rhaetian. The sample Ü-18 comes from the higher part of this locality, from a bed of solid grey rudite. Conodonts or holothurian sclerites have not been found in this sample. The following foraminifers could be determined in the sample Ö-18: Glomospirella friedli Kristan-Tollmann, 1962 — pi. 3, fig. 1, Tolypammina sp. — pi. 3, fig. 2, Trochammina alpina Kristan-Tollmann, 1964 — pi. 3, fig. 11, Alpino-phragmium perforatum Flügel, 1967 — pi. 3, fig. 12, Endothyra sp. — pi. 3, figs. 5, 6, Planiinvoluta deflexa Leischner, 1961, Ophthalmidium sp. — pi. 3, fig. 3, Galeanella ? sp. — pi. 3, fig. 4, Miliolipora sp,, »Sigmoüina« sp. — pi. 3, figs. 9, 10, Diplotremina cf. subangulata Kristan-Tollmann, 1960 — pi. 3, fig. 7, Diplotremina sp. — pi. 3, fig. 8, Involutina communis (Kristan, 1957), Involutina sp., and Trocholina permodiscoides Oberhauser, 1964. Age: Lower Rhaetian pokornyi & friedli zone. Kendelbachgraben (Osterhörn Group, Kossen Beds) It is the famous, historical profile of Suess & Mojsisovics (1869). There arises here a thick sequence of Upper Triassic and Lower Jurassic outcropped along a distance of more than 600 m. This locality is situated southwest of Wolfgangsee in the side valley of Zinkenbachtal (cf. Mosher, fig. 10 and Morbey, 1975, figs. 1—3). The profile starts with a sequence of grey, accentuatedly bedded Plattenkalk with megalodonts (cf, Morbey, 1975, fig. 2). The highest part of the Plattenkalk yielded the sample Ö-41 with the following foraminifers: Glomospirella friedli Kristan-Tollmann, 1962, Glomospirella sp. — pi. 2, fig. 8, Trochammina alpina Kristan-Tollmann, 1964, Alpinophragmium perforatum Flügel, 1967 — pi. 2, fig. 3, Agathammina austroalpina Kristan-Tollmann & Tollmann, 1964 — pi. 2, fig. 4, Nodosaria ordinata Trifonova — pi. 2, fig. 6, Frondicularia woodwardi Hochwin, 1895, Involutina communis (Kristan, 1957) — pi. 2, figs. 10—12, Involutina cf. tumida (Kristan-Tollmann, 1964), Involutina minuta Koehn-Zaninetti, 1969, Involutina sinuosa oberhauseri (Salaj, 1967), Involutina gaschei (Koehn-Zaninetti & Brönnimann, 1968), Involutina sp., and Trocholina permodiscoides Oberhauser, 1964 — pi. 2, fig. 13. Age: Lower Rhaetian pokornyi & friedli zone. Immediately above the beds with the sample Ö-41 the "classical Rhaetian" starts with thick Kossen Beds in the "Swabian development'': thick and thin-bedded limestones, coquinoid limestones, calcareous shales, marls and clayey shales. There is a rich Lower Rhaetian fauna with Rhaetavicula contorta (Port-lock) and other bivalves, higher up also with the brachiopod Rhaetina gregaria (Suess). Above these beds the "Hauptlithodendronkalk" with Thecosmilia follows interbedded with layers of grey limestones with megalodonts. Still higher up are grey limestones with Rhaetina pyrijormis (Suess), Oxycolpella oxycolpox (Emmrich), Zeilleria norica (Suess), etc. The highest part of the Rhaetian — the so-called Salzburg facies of Suess — itself distinguishes by the predominance of dark clayey and marly shales over the limestones. Many pyritized specimens of Choristoceras marshi Hauer occur in the black soft shales. Then there follows another short section (covered by detritus) with several beds of dark limestone separated from one another by intercalations of shales. Without a sharp litho-logical break there follow dark limestones of the Liassic with Psiloceras. From the higher part of the Rhaetian with Choristoceras marshi Hauer, M o s h e r (1968) described the conodonts Cypridodella delicatula Mosher and Neospatho-dus lanceolatus Mosher. Foraminifers, conodonts, and holothurian sclerites were found at the present studies in samples collected in the uppermost part of the section, developed in the Salzburg facies. These microfaunas were found in limestones that occur directly below and above the soft shales with Choristoceras marshi. Directly below the soft shales with Choristoceras marshi is a horizon of dark limestones, about 80 cm thick, that is divided into 5 layers ranging from 10—20 cm in thickness. The samples of these limestones have yielded the following faunas: Sample 0-34 — Basal dark limestone layer from the left bank of the brook, 15 cm thick, with Clamys cf. bavarica: Trochammina alpina Kristan-Tollmann, 1964 — pi. 2, fig. 1, Trochammina ? sp. — pi. 2, fig. 2, Cornuspira sp., Nodosaria sp. — pi. 2, fig. 7, Austrocolomia cf. rhaetica Oberhauser, 1967, Austrocolomia sp., and Diplotremzna sp. No conodont and holothurian sclerites. Sample 0-35 — Third limestone layer, 10 cm thick: Nodosaria sp. and Lenti-culina sp. Beside of these stratigraphical unimportant foraminifers this sample have yielded stratigraphically significant fauna of conodonts and holothurian sclerites: Grodella delicatula (Mosher), Misikella posthernsteini Kozur & Mock, Neohindeodella dropla (Spasov & Ganev), Parvigondolella n. sp.* and Calclam-na germanica Frizzell & Exline, Fissobractites subsymmetricus Kristan-Tollmann, Theelia heptalampra (Bartenstein), T. rosetta Kristan-Tollmann, T. variabilis Zankl. Footnote 2) * This species has developed from Parvigondolella lata Kozur & Mock. It shows very strong homeomophy to the genus Misikella, but Misikella has never denticles behind the main denticle. Moreover, the new species is in all cases accompanied by the same ramiform elements as Parvigondolella, whereas Misikella is apparently a single element species. This new species of Parvigondolella and a new species of Misikella can be served as local guide forms in subzonal rank for the Rhaetian of the Alps to define subzones within the posthernsteini assemblage zone. But unfortunately these species are very rare and until now only present in the Alps, whereas Misikella posthernsteini has a great distribution from New Guinea through the Himalayas to Poland, Slowakia and the Alps. Therefore only Misikella posthernsteini is a suitable guide form for the Rhaetian in an useful conodont zonation. The conodonts and holothurian sclerites indicate a (Lower) Rhaetian age (posthernsteini assemblage zone). Sample 0-36 — Uppermost dark limestone layer, 22 cm thick, directly below the soft shales with Choristoceras marshi: Trochammina alpina Kristan-Tol-lmann, 1964, Ophthalmidium sp. — pi. 2, fig. 9, Nodosaria sp., and Frondicuiaria iooodwardi Howchin, 1895. No conodonts and holothurian sclerites. From the dark limestones immediately above the soft shales with Choristo-ceras marshi only one sample (0-38) was investigated. This upper Rhaetian sample has only yielded foraminifers. Sample 0-38 — lowermost dark limestone bed, 20—30 cm thick, directly resting on the soft shales with Choristoceras marshi: Glomospira sp., Glomo-spirella cf. friedli Kristan-Tollmann, 1962, Trochammina alpina Kristan-Tol-lmann, 1964, Nodosaria sp., Lingulina cf. placklesensis Kristan-Tollmann, 1970 — pi. 2, fig. 5, and Diplotremina sp. Age: According to the underlying soft shales with Choristoceras marshi the age must be Upper Rhaetian. The problem of the Norian-Rhaetian boundary The Rhaetian stage was introduced by Guembel (1859, 1861). In the German Basin (Franconia) he has put all beds between the top of the red and variegated marls of the Middle Keuper and the basis of the Schlotheimia angu-lata zone of the Liassic to his Rhaetian stage (for the first time already 1856, see Kozur, 1973b). In the Alpine region he has defined the Rhaetian stage with the Kossen Beds and the zone of Rhaetavicula contorta (Guembel, 1859, 1361). Whereas the upper boundary of Guembel's Rhaetian stage lies in the German Basin within the Liassic (at the basis or in some cases within the Schlotheimia angulata zone) the Lower boundary of the Rhaetian was exactly and universally defined both in the German Basin and in the Alpine region with the basis of the Rhaetavicula contorta zone* Therefor a clear priority exists for the lower boundary of the Rhaetian stage. Mojsisovics (in: Mojsisovics, Waagen & Diener, 1895) accepted this priority as he introduced the Sevatian substage of his Juvavian (now Norian) stage. According to Mojsisovics, the Sevatian substage includes the (lower) Pinaco-ceras metternichi and the (upper) "Sirenites" argonautae zones. The age of the Argosirenites argonautae zone was misinterpreted by Mojsisovics. This zone is an equivalent of the middle and upper Himavatites columbianus zone sensu Tozer (= Himavatites columbianus zone in a more restricted scope by Kozur, 1973 a) and belongs according to Kozur (1973 a) to the Lower Seva- Footnote 3) * The forerunner of Rhaetavicula contorta is unknown (the same is true at many zonal index forms of the Triassic ammonoid zonation, e. g. Rhabdoceras suessi). Therefore, Rhaetavicula contorta may begin at some places considerably earlier than the beginning of the Rhaetian. But the Rhaetavicula contorta zone is defined in the Rhaetian Kossen Beds and in beds of roughly the same age in the German Basin and in the typical Kossen Beds (e. g. in their type locality) the Rhaetavicula contorta zone is at least a Rhaetian assemblage zone that is younger than the Sevatian Pinacoceras metternichi and Argosirenites argonautae zone 'Sevatian in its original definition). tian. Therefore the upper boundary of the Sevatian substage must be defined by the upper boundary of the Pinacoceras metternichi zone according to the priority. Kozur (1973 b) could prove that the uppermost range of Pinacoceras metternichi (horizon with P. metternichi and Cochloceras suessi — Cochloceras suessi zone according to Kozur, 1973 b) is older than the first appearence of Choristoceras within the Zlambach facies and the contemporaneous first appearence of Rhaetavicula contorta in the Swabian facies of the Kossen Beds. Therefore, according to the priority, the lower boundary of the Rhaetian stage lies immediately above the uppermost Sevatian substage of the Norian stage and there is no overlap between the Norian and Rhaetian stages as originally defined by Guembel and Mojsisovics. Only the Lower Rhaetian Zlambach Beds with Choristoceras haueri (together with true Upper Sevatian Zlambach Beds with Cochloceras and without Choristoceras) were erroneously regarded as the lower subzone of the Sevatian Pinacoceras metternichi zone by Mojsisovics. The index species Pinacoceras metternichi was never found in the Choristoceras haueri subzone and Kozur (1973 b) pointed out that the Choristoceras haueri (sub)zone is younger than the highest occurrence of Pinacoceras metternichi. Tozer (1967) has rejected the Pinacoceras metternichi zone and replaced it by the Rhabdoceras suessi zone. He has supposed that both zones are contemporaneous. K r y s t y n (1973, 1974) and some other European geologists have followed him. Recently Rhabdoceras suessi was found in the Middle part of the Rhaetian Kossen Beds and in those parts of Zlambach marls that were conventionally assigned to the Rhaetian. For this reason U r 1 i c h s (1972), Fabricius (1974), Krystyn (1974), and Tozer (1974) included this part of the typical Rhaetian Kossen Beds (about 80 °/o of these beds) in the Sevatian substage or they rejected the whole Rhaetian stage as a facies type of the Upper Norian. This is against the priority and disagrees with the faunal succession. Wiedmann (1972, 1974) has also supposed that the Rhaetian and Upper Norian are time-equivalents, but because the Rhaetian stage has clearly the priority he included the Upper Norian in the Rhaetian stage. Because Rhabdoceras suessi is absent in the lower half and in the highest parts of the Kossen Beds he has divided his Rhaetian in the Phyllytoceras zlambachense, the Rhabdoceras suessi, and the Choristoceras marshi zones. Tozer (1974) and Krystyn (1974) have rejected the Phyllytoceras zlambachense zone and supposed that this zone and the Rhabdoceras suessi zone are contemporaneous. Krystyn (1974), Tozer (1974) and Wiedmann (1972, 1974) agree that the Kossen Beds (the typical Rhaetian according to the intentions of Guembel) include the entire Sevatian. Krystyn (1974) even believes that the lowermost Kossen Beds belong probably to the Middle Norian! Regarding not only the ammonoid faunas from scattered incomplete and often tectonically disturbed sections in the Alps but also the successions and the evolution of the conodonts, holothurian sclerites and other microfossils in continuous profiles Kozur (1973b) has arrived to a quite different opinion. Within the continuous sections of Canada (published by Tozer, 1967) 3 horizons with different ammonoid faunas can be noticed within the Rhabdoceras suessi zone (see Tozer, 1967; Kozur, 1973 b) that can be recognized also in the Alpin-Mediterranean Triassic. The lowermost horizon was regarded by Tozer (1967) as lower subzone of the Rhabdoceras suessi zone. From this horizon To- ( z e r (1967) listed Rhabdoceras suessi together with Halorites, Sagenites, "Arce-stes", Placites, and Rhacophyllites. This fauna can be correlated with the fauna of the Sagenites giebeli zone that contains beside of Rhabdoceras suessi the stratigraphically important genera Halorites, Sagenites, Helictites, and Stein-mannites, but not Cochloceras and Metasibirites. Mojsisovics placed erroneously his Sagenites giebeli zone in the Lower Juvavian (= Lower Norian) stage, because this fauna was collected from a fissure filling in older sediments. By the aid of ammonoids, but also according to the conodont association (most of the Metapolygnathus bidentatus zone) the Sagenites giebeli zone can be worldwide recognized. Therefore this zone is a useful standard zone within the Sevatian stage. The second ammonoid horizon within the Rhabdoceras suessi zone is characterized by the appearence of the ammonoid genera Cochloceras (including Paracochloceras as subgenus) and Metasibirites. These genera are associated with Rhabdoceras suessi. Most characteristic is the worldwide occurrence of Cochloceras (Paracochloceras) suessi in this horizone (Cochloceras suessi zone* by K o z u r, 1973 b that replaces the Cladiscites ruber zone by Mojsisovics, see Kozur, 1973b). The Cochloceras suessi zone corresponds to the greatest part of Tozer's upper subzone of the Rhabdoceras suessi zone. This upper subzone is characterized according to Tozer (1967) by the following ammonoids: Choristoceras suttonensis, Rhabdoceras suessi, Cochloceras (Paracochloceras) suessi, Cycloceltites cf. C. arduini, Metasibirites sp., "Ar-cestes" sp., "Cladiscites" sp., Megaphyllites cf. M. insectus, Placites sp., and Rhacophyllites sp. This fauna of the upper subzone of the Rhabdoceras suessi zone is a mixed fauna that derives from different places. Choristoceras suttonensis occurs only in one section in the uppermost Rhabdoceras suessi zone and Tozer (1967, p. 78) has written: "The Sutton Formation.., contains an unusual fauna of the suessi zone which includes the genus Choristoceras as well as Rhabdoceras " Beside of Rhabdoceras suessi and Choristoceras suttonensis this fauna includes Megaphyllites cf. insectus and Cycloceltites cf. arduini unknown in deeper parts of the upper Rhabdoceras suessi zone of Canada, but not the typical association with Cochloceras (Paracochloceras) and Metasibirites. Only this uppermost Rhabdoceras suessi zone sensu Tozer, 1967 (= Choristoceras haueri zone according to Kozur, 1973b) can be recognized in the Lower Rhaetian part of the Zlambach marls and of the Kossen Beds. For this fauna the concurrent occurrence of Rhabdoceras and Choristoceras (Choristoceras) as well as the species Megaphyllites insectus Mojsisovics, M. robustus Wied-mann, Cycloceltites arduini (Mojsisovics), Rhaetites rhaeticus (Clark), and Phi/llytoceras zlambachense Wiedmann are most characteristic. This "unusual fauna of the Rhabdoceras suessi zone" (Tozer, 1967) is the "usual" ammonoid fauna of the lower and middle part of the type Rhaetian and it belongs according to the priority to the Rhaetian stage. According to Wiedmann (1974) there Footnote 4) * Unfortunately also from Cochloceras suessi the forerunner is unknown and the rather restricted occurrence of Cochloceras suessi may be facies-controlled. Therefore in the present stage of our knowledge no clear separation between the Sagenites giebeli and the Cochloceras suessi zones is possible. But the conodonts and other mi-crofossils (e. g. holothurian sclerites) indicate a clearly higher position of the Cochloceras suessi horizon than at least most of the Sagenites giebeli zone. is moreover also an overlap in the stratigraphic range of Rhdbdoceras suessi and Choristoceras marshi. The lower boundary of the Rhaetian lies above the uppermost Norian Pinacoceras metternichi zone, but within the upper Rhabdo-ceras suessi zone that is not contemporaneous with the Pinacoceras metternichi zone. By the aid of conodonts (see chapter: Stratigraphic value of microfossiis at the Norian-Rhaetian boundary) it could be proved that the first appearence of Choristoceras and the disappearence of Cochloceras, Metasibirites, Pinacoceras and other important fossils of the uppermost Rhaetian coincide with the first appearence of Rhaetavicula contorta in the Kossen Beds in its type locality and therefore with the lower boundary of the Rhaetian stage according to the priority (G u e m b e 1, 1859, 1861). At this basis of the Rhaetian stage many changes both in the macro- and in the microfaunas occur (see Kozur, 1973b). At the ammonoids such very frequent and worldwide distributed genera as Cochloceras and Metasibirites and a lot of species of other genera disappear and Choristoceras (Choristoceras) appears. At the pelecypods a distinct change can be observed characterized e.g. by the disappearence of the worldwide distributed and very frequent Upper Norian genus Monotisf by the appearence of the genus Rhaetomegalodon and the dissappearence of many species of Neomegalodon, by the appearence of Rhaetavicula contorta* and some other forms. At the gastropods many Paleozoic elements disappear before the appearence of many new forms at the base of the Jurassic system. A great change can be also observed at this level in the echinoderms (echinoids, holo-thurian sclerites). At the brachiopods many Norian elements disappear and many Rhaetian elements appear at the lower boundary of the Rhaetian stage or somewhat higher. In the terrestrial, fresh water, and brackish water deposits many amphibians and reptiles as well as many ostracodes and charo-phytes disappear and some important new groups appear (see Kozur, 1974). Very interesting is also the first appearence of mammals at this level. The changes in the microfaunas at the Norian-Rhaetian boundary will be discussed in the chapter: Stratigraphic value of microfossiis at the Norian-Rhaetian boundary. Some remarks are necessary to the problem of mixed Norian-Rhaetian faunas with Norian ammonoids and Rhaetian brachiopods and other Rhaetian fossils. This is only a virtual problem. From the plenty of Upper Norian ammonoid species lesser than 10fl/o (e.g. Rhabdoceras suessi) straddles the No-rian-Rhaetian boundary, fewer than at most other stage boundaries. Some ammonoids traditionally regarded as Upper Norian elements have moreover their stratum typicum in Rhaetian beds, e.g. Choristoceras (Peripleurites) boeckhi, Choristoceras (Peripleurites) stuerzenbaumi, Choristoceras (Choristoceras) haueru All these species were hitherto unknown from the type Rhaetian Kossen Beds. Therefore all these species were erroneously interpreted as Upper Norian guide forms with an uppermost stratigraphical range up to the uppermost Norian, but not higher. On the other hand, in the type Rhaetian Kossen Beds many typical Rhaetian brachiopods and pelecypods occur, but ammonoids Footnote 5) * The first appearence of Rhaetavicula contorta may be facies controlled (see footnote 3). are rare or lacking. If we find the above mentioned ammonoids and the contemporaneous brachiopods and pelecypods in suitable facies together in the same layer, than seemingly Norian guide forms (in reality Norian holdovers of Lower Rhaetian age or Lower Rhaetian guide forms erroneously interpreted as Upper Norian ones) and Rhaetian brachiopods or pelecypods occur together. As mentioned above the Rhaetian ammonoid fauna does not consist almost exclusively of Upper Norian holdovers. Many seeming Norian holdovers or even Upper Norian guide forms are in reality Lower Rhaetian guide forms. For instance, the "Late Norian" species of Choristoceras (Choristoceras) have their type locality in Lower Rhaetian Zlambach marls. These species do not occur together with Cochloceras as it could seem from the faunal list for the Zlambach marls given by Mojsisovics (1893). This faunal list contains the ammonoids of Zlambach marls from different localities and of 'different ages (uppermost Norian and Rhaetian). Stratigraphic value of microfossils at the Norian-Rhaetian boundary The studies on conodonts, holothurian sclerites, ostracodes, and foraminifers were carried out on over 2000 samples of Upper Norian and Rhaetian rocks from sections in the West Carpathians, Hungary, Austria, and the German Basin as well as on some scattered samples from various localities in Europe and Asia. These microfaunal groups comprise several important short-living guide fossils of the Upper Norian and Rhaetian that belong to well-known evolutionary lines. The results of these studies were published by S a 1 a j, Biely & Bystricky (1967), Salaj (1969a,b, 1974, 1977), Bunza & Kozur (1971), Kozur (1971, 1972a. b, c, 1973a, b, c, d, 1974a, b, 1975), Kozur & Mock (1972,1973, 1974a, b, c), Kozur & Mostler (1972a, b, c), Kozur & Oravecz (1972), Gazdzicki & Zawidzka (1973), G a z d -z i c k i (1974a, b, 1975), Gazdzicki & Iwanow (1976). The most important results of all these studies are briefly summarized below. Conodonts (see Plate 5) The major part of Sevatian substage (Upper Norian) belongs to the Metapolygnathus bidentatus zone that may be subdivided in some subzones. The Himavatites columbionus zone (in the restricted scope sensu Kozur, 1973a) and the Sagrenites giebeli zone belong to this conodont zone. The Cochloceras suessi horizon or zone comprises the uppermost part of the Metapolygnathus bidentatus zone as well as the Parvigondolella andrusovi and Misikella hern-steini zones. The guide forms of the Rhaetian stage are Misikella posthernsteini and new, but unfortunately very rare and geographically restricted species of Parvigondolella and Misikella that are undescribed until now. Misikella posthernsteini has its first appearence in the uppermost Sevatian, where a complete transitional series to the strongly predominant Misikella hernsteini can be observed. The latter species died out at the Norian-Rhaetian boundary. The evolutionary transition between Metapolygnathus bidentatus and Parvigondolella andrusovi can be also observed in many sections (e.g. Steinbergkogel, Hernstein — both Austria — and Bohiinovo — Slovakian Karst). The existence of evolutionary transition lines both from Metapolygnathus bidentatus to Parvi- gondolella andrusovi and from Misikella hernsteini to Misikella posthemsteini prove that the entire Rhaetian proper (with highly developed species of Parvi-gondolella, more advanced than P. andrusovi, and with Misikella posthemsteini and a further highly developed species of Misikella) is younger than the Se-vatian. The absence of Metapolygnathus bidentatus, Parvigondolella andrusovi, and Misikella hernsteini in the whole Rhaetian is therefore not caused by unsuitable facies, but by the fact that the type Rhaetian Kossen Beds* and other Rhaetian beds are younger than the Metapolygnathus bidentatus zone (that comprise the major part of the Sevatian) and even younger than the Parvigondolella andrusovi and Misikella hernsteini zones of the uppermost Sevatian. Important for the definition of the Norian-Rhaetian boundary is the Stein-bergkogel section (Austria). The uppermost parts of this section displays the evolutionary transition from Misikella hernsteini to Misikella posthemsteini. Here it may be clearly proved that Misikella hernsteini is the forerunner of Misikella posthemsteini and that the distribution of these two species is not controlled by the facies. In a kind letter to one of us (K o z u r) Prof. Mostler, Innsbruck, has given very interesting new data on the distribution of conodonts in the uppermost Norian and Rhaetian stages. He has also found the evolutionary transition from Misikella hernsteini to Misikella posthemsteini in several sections. Moreover he has sent a table showing the distribution of conodonts in the type section of the Kossen Beds (Weissloferbach, Austria). From this profil we had only two samples with Misikella posthemsteini from the middle Kossen Beds. Mostler could prove that in Weissloferbach Rhaetavicula contorta and Misikella posthemsteini appear almost contemporaneously in the higher part of the lower Swabian facies and that the range of Misikella posthemsteini extends up to the top of the Choristoceras marshi zone. The conodont datings show that the Kossen Beds from their type locality are younger than the uppermost Sevatian Misikella hernsteini zone. Therefore the view of Krystyn (1974), Tozer (1974), and Wiedmann (1974) that the lower and middle Kossen Beds are contemporaneous with the entire Sevatian (Tozer, 1974, Wiedmann, 1974) or even with the Sevatian and parts of the Middle Norian (Krystyn, 1974) must be rejected. A new species of Misikella described by Mostler (in press) is locally important for the conodont zonation within the Rhaetian Kossen Beds. This species occurs in the Choristoceras marshi zone (except of the upper third of this zone) and in the uppermost part of the Choristoceras haueri zone and it is a very distinctive guide form for this time interval. The range of this species seems to be roughly the same as of Triasina hantkeni and of Choristoceras marshi (cf. Gazdzicki, 1974, 1975, Wiedmann, 1974, and table 1—2). The conodonts are also very important for dating the Zlambach Beds. The Roßmoos section (Austria) is the most important here. Footnote 6) * In the Adnet region the Kossen Beds contain according to Mostler Metapolygnathus bidentatus and Misikella hernsteini in its lower parts. Therefore the Kossen Beds of this region begins earlier (in the same level as the Upper Sevatian part of the Zlambach Beds) than in the type region of the Kossen Beds. The occurrence of Metapolygnathus bidentatus and Misikella hernsteini (= uppermost part of the M. bidentatus zone = Upper Sevatian) in the lower Kossen Beds of the Adnet region proves that the absence of these species in the Kossen Beds of the type locality cannot be facies controlled. Table 1. Distribution of conodont guide-species in the Upper Norian and Rhaetian of the Alpine-Mediterranean Triassic STAGE NORIAN rhaetian Subsiage Alaunian Sevotían Lower Upper Amtionoid zone Cyrtopleuritee bierenatua Himavatitee eolumbianuB Sagenites giebeli\ Cochloceras auessi Choriatocera8 haueri Chorietocerae mar8hi Rhabdocerae sues ai Ccmodont zone Me tapolygnathus abneptia apatulatua Me tapolygnathua bidentatua Parvigondoletla andruaovi Mieikella hernateini Mieikella poathernateini Subzone 1 Subzone 11 Subzone 111 1 Gondolella navícula navícula 2 Gondolella navícula steinbergeneÍB 3 Prioniodina eweeti eweeti 4 Mieikella longidentata 5 Mieikella hemateini $ Misikella poathernateíni ? Misikella n.ep. 8 Oncodella paucidentata 9 fietapolygnathua abneptia abneptia 10 Metapolygnathue abneptia apatulatua 17 Metapolygnathue poaterua 12 Metapolygnathue zapfei Metapolygnathue multidentatue 14 Metapolygnathue bidentatua 15 Metapolygnathue moaheri 16 Parvigondol a lia andruaoví 1? Par vigondolella lata 18 Parvigondolalla n.ep. j 2 5 --7 ----------/8 ----- 3 4 10 9 11 12 13 H 15 --8 16 17 -frequent occurrence----rare occurrence The distances in the table 1 are not time-related! For instance, the Sagenites giebeli zone comprises a considerably greater part of the Sevatian than the Cochloceras suessi zone. This section displays the uppermost Sevatian (grey limestone bank) and the lowermost Rhaetian (in the facies of the Zlambach marls). Bolz (1974) listed the following ammonoids from the grey limestone bank: Arcestes giganto-galeatus, A. intuslabiatus, CZadiscites tornatus, Cochloceras sp., Megaphyllites insectus, Metasibirites sp., Paracladiscites multilobatus, Pinacoceras metternichi, Placites oxyphyllus, Rhacophyllites neojurensis, and Stenarcestes cf. subumbilicatus. This fauna is typical of the Cochloceras suessi zone. The samples of the lower part of the section have yielded many conodonts indicative of the upper bidentatus zone. The occurrence of the hernsteini zone seems to be indicated by the concurrent occurrence of Misikella hernsteini and M. posthernsteini (transitional forms to M. hernsteini) in the uppermost grey limestone bank. Because only very few conodonts are known from this level, a somewhat older age is also possible, but the hernsteini zone is certainly present in the grey limestone bank. The overlying Zlambach marls yielded single individuals of Misikella posthernsteini only. Unfortunately conodonts are absent in the samples immediately above the top of the grey limestone bank. Bolz (1974) has listed the following ammonoids from the Zlambach Beds above the grey limestone bank: Arcestes ? sp., Megaphyllites robustus, Phyllytoceras zlam-bachense. This fauna is typical for the Phyllytoceras zlambachense zone according to Wiedmann (1974) that was correlated by Wiedmann (1972) with the Swabian facies of the lower Kossen Beds. The conodont datings probably confirm this correlation. Bolz (1974) assigned the grey limestone bank and the Zlambach marls of Roßmoos to the Upper Norian. According to the ammonoid and probably also the conodont datings at least a part of the Zlambach marls of Roßmoos, occurring above the grey limestone bank, belong to the Lower Rhaetian. This section is important as it shows that also very high levels within the Pinacoceras metternichi zone as well as within the more restricted Cochloceras suessi zone (such level is represented by the grey limestone bank) are older than the Rhaetian Misikella posthernsteini zone. The upper range of Pinacoceras metternichi and the genera Cochloceras and Metasibirites coincide with the upper range of Misikella hernsteini, whereas the upper range of Rhabdoceras suessi is very much higher within the Lower Rhaetian Misifcella posthernsteini zone. By the aid of conodonts it can be proved therefore that the upper ranges of the Pinacoceras metternichi and Rhabdoceras suessi zones do not coincide. Sometimes the Zlambach Beds also represent the uppermost Norian. We had only one sample of a transition facies between grey Hallstatt Limestone and Zlambach marls with Cochloceras (material form old collections, designated as "Zlambach marl", from unknown locality). This sample has yielded conodonts from the Misikella hernsteini assemblage zone (Misikella hernsteini and Misikella posthernsteini) and thus it represents the uppermost Sevatian. So the stratigraphic range of the Zlambach Beds seems to be the same as that of the Kossen Beds. Kozur & Mock (1973) have demonstrated that the onset of more clastic sedimentation widely spread in the Rhaetian has followed short-lasting tectonical movements in the latest Sevatian and Rhaetian time (contemporaneous in the Alps, Slovakia, and in the German Basin). According to this view it may be expected that the sedimentation of both the Zlambach Beds and the Kossen Beds begins in many cases at the basis of the Rhaetian, but in some places already earlier, in the uppermost Sevatian, or later, within the lowermost Rhaetian. Unfortunately, up to present, no conodonts were found in the lowermost Kossen Beds. Holothurian sclerites As pointed out by Kozur&Mock (1974a) the Sevatian and Rhaetian can be divided into several holothurian assemblage zones: (1) Association with Theelia zawidzkae, Theelia praeseniradiata, primitive Theelia stellifera, and Fissobractites subsymmetricus. Age: Lower Sevatian; Ilimavatites columbianus zone; lower Metapolygnathus bidentatus zone. (2) Association with Theelia stellifera and Fissobractites subsymetricus without Theelia zawidzkae. Age: Lower Sevatian; Sagenites giebeli zone; middle Metapolygnathus bidentatus zone. (3) Association with highly developed Theelia stellifera, Theelia norica, Theelia seniradiata, Theelia stellifera bistellata, Praeeuphronides robustus, Acanthotheelia kuepperi, Fissobractites subsymmetricus, and first primitive Theelia heptalampra. Age: Upper Sevatian; lower Cochloceras suessi zone: upper Metapolygnathus bidentatus zone. (4) Association with Theelia kristanae together with the same species as in association (3). Age: Upper Sevatian; Cochloceras suessi zone; Parvigondolella andrusovi assemblage zone. (5) Association with Theelia kristanae and Acanthocaudina exlinae. Age: Uppermost Sevatian; upper Cochloceras suessi zone; Misikella hernsteini assemblage zone. (6) Association with Theelia rosetta, Theelia variabilis, Theelia heptalampra, and Fissobractites subsymmetricus. Age: Rhaetian; Misikella posthernsteini assemblage zone. At the Norian-Rhaetian boundary there is found one of the greatest breaks in the development of the holothurian sclerites. From over 150 species of holothurian sclerites occurring in the Upper Norian only Fissobractites subsymmetricus, Calclamna germanica, Staurocumites bartensteini, Theelia heptalampra, Priscopedatus triassicus, Theelia rosetta, Theelia variabilis, Uncinulinoides spicata, and probably Achistrum triassicum passed into the Rhaetian. The first 4 species enter also the Liassic. Except for these long-ranging species there are known up to now only 4 other species of typical Rhaetian aspect. The holothurian sclerites that occur in fairly different marine facies are one of the best markers for the Norian-Rhaetian boundary. Ostracodes In the German Basin at the Norian-Rhaetian boundary there is a sharp break in the ostracode fauna (Ko zur, 1975). The same is true in Hungary, where in the Rhaetian many ostracodes of Jurassic aspect have appeared and coexisted with some ostracodes of Triassic aspect (Kozur & Oravecz, 1972). According to Bolz (1974) in the Alps the Upper Norian and the Lower Rhaetian ostracode fauna is quite equal. But as pointed out above, the "Upper Norian" Zlambach marls of Roßmoos with Phyllytoceras zlambachense and Megaphyllites robustus are Lower Rhaetian and overlie the grey limestone bank of uppermost Norian. Also all other localities discussed by Bolz (1974) — Fischerwiese, Grünbachgraben, Höllgraben and at least parts of the Mühlgraben section that was not sampled by us — are of Lower Rhaetian age. As it can be expected from this fact, the ostracode faunas of all these localities are very similar and differ only slightly because of facial reasons. A new (still undescribed) Upper Norian ostracode fauna gathered by Kozur differs from the Rhaetian ones also after the elimination of facial differences. In the Rhaetian ostracode fauna primitive members of typical Meso-Cenozoic families appear for the first time (e.g. first Trachyleberididae: Boogaardella, first Cy-theruridae: Parariscus). Many genera that appear for the first time in the Rhaetian have clearly Jurassic aspects, e.g. Klieana, Boogaardella, Stykella, Aparchitocythere, Parariscus (Kozur, 1973c). Many species and genera, above all holdovers from the Paleozoic or near related forms, disappear near the Norian-Rhaetian boundary and within the Rhaetian. Foraminifers In some sediments where conodonts and holothurian sclerites are rare or absent and the ostracodes cannot be separated from the rocks the foraminifers have yielded most important guide forms. Among the foraminifers the representatives of the family Involutidae Bütschli, 1880 have special stratigraphic and paleogeographic importance (Gazdzicki, 1974a, Fig. 11; 1974b, tab. 1; see also Salaj, 1969a, b; 1974; 1977). Three foraminifer zones can be recognized from the Middle Norian up to the uppermost Rhaetian (tab. 2; see also Gazdzicki, 1974a, 1974b; Salaj, 1974, 1977). These 3 zones are the Semiinvoluta clari & Triasina oberhauseri assemblage zone (Alaunian-Sevati-an), the Glomospirella pokornyi & Glomospirella friedli assemblage zone (Lower Rhaetian) and the Triasina hantkeni range zone (? higher Lower Rhaetian, Upper Rhaetian). The Glomospirella pokornyi & Glomospirella friedli assemblage zone could be proved in the samples MMV-6 (Zlambach Beds of Maly Mlynsky vrch), 166/2 (fossiliferous limestone of Bleskovy prameü), Ö-18 (Zlambach Beds of Fischerwiese), Ö-41 (uppermost "Plattenkalk" immediately below the Kossen Beds, Kendelbachgraben), Ö-38 (upper Kossen Beds, Kendelbachgraben), and in the samples 8—12 from the Kossen Beds of Hybe. Most interesting is the comparison between the faunas of the samples 166/2 (Bleskovy pramen) and the samples 8—12 from Hybe. Both faunas belong to the Lower Rhaetian Glomospirella pokornyi & Glomospirella friedli zone, but the occurrence of Galeanella cf. tollmanni and Involutina cf. turgida indicates that the sample 166/2 from Bleskoy pramen (until now regarded as Upper Norian) is younger than the lower Rhaetian of Hybe as earlier pointed out by Kozur (1973b) and Kozur & Mock (1973, 1974c). Interesting is also the age from the sample Ö-18 from the Fischerwiese. The foraminifer fauna indicates an Early Rhaetian age as it do the ostracode fauna from this locality. Because the Late Rhaetian Choristoceras marshi was also described from this locality, the beds with Choristoceras marshi either represent only the uppermost part of the section or Choristoceras marshi occurs also in the Lower Rhaetian (as it was inferred by Wiedmann, 1974). The same age as for the Bleskovy pramefi limestone Table 2. Upper Norian-Rhaetian foraminifer zonation in the Alpine-Mediterranean Triassic stage NORIAN RHAETIAN Subs toge Se va tlon lower Upper Zone olari & oberhauseri pokornyi friedli hantkeni iA Glomospirella pokornyi Glomospirella friedli Semiinvoluta clari E o u- V •J3 Triaeina oberhauseri O Triasina hantkeni 9 Glomospirella parallela Trochammina alpina AIpinophragmium perforatum Tetrataxis inflata Agathammina? iranioa "Vidalina" martana "Vidalina" oarinata "Vidalina" oarpathioa Galeanella tollmanni Miliolipora ouvillieri Planiinvoluta deflexa "Sigmoilina" sp. Nodos aria ordinata Turrispirillina minima Involutina communis V - E i_ c o E g k v X u o 0 IJ- Involutina tenuis Involutina túmida Involutina sinuosa sinuosa Involutina sinuosa oberhauseri Involutina gasahei Involutina minuta Trocholina acuta Trocholina permodiscoides For stratigraphie ranges of taxa, definition of the zones and additional comments see S a 1 a j, 1969a, b, 1974 and Gazdzicki, 1974a, b ? questionable occurrence is indicated, but an Upper Rhaetian age cannot be ruled out (see remarks to sample 0-38). The fauna of the sample 0-38 is somewhat puzzling. This sample derives from the rocks directly overlying the marls with Choristo-ceras marshi. Therefore the fauna of the Upper Rhaetian Triasina hantkeni zone rather than the Lower Rhaetian fauna of the Glomospirella pokornyi & Glomospirella friedli assemblage zone should be expected in this sample. Because Glomospirella friedli markedly enters the Triasina hantkeni range zone, it is possible that the sample 0-38 represents the Triasina hantkeni range zone (Upper Rhaetian), but the index form is absent because of facial reasons. The fauna of the sample 0-41 from the uppermost part of the "Plattenkalk" immediately below the Kossen Beds of Kendelbachgraben is also very important. The sample 0-41 taken just below the base of the Kossen Beds should be of Middle Norian age, if the correlations of the lower and middle Kossen Beds with the entire Sevatian (T o z e r, 1974; W i e d m a n n , 1974) or even with the entire Sevatian and a part of the Middle Norian (Krystyn, 1974) are correct. The rich fauna of the Glomospirella pokornyi & Glomospirella friedli assemblage zone in the sample 0-41 demonstrates that the uppermost "Plattenkalk" of Kendelbachgraben is most probably of Early Rhaetian age or at least not older than latest Sevatian. This dating confirms the view of Kozur (1973b) that most of the Kossen Beds are of Rhaetian age and younger than the uppermost Sevatian as it can be proved also by conodonts and holothurian sclerites (see above). The Triasina hantkeni range zone was only indicated in the sample Dr. from the Bleskovy pramen locality. This is very interesting, because the ammonoid fauna of this locality was hitherto erroneously assigned to the Sevatian (Upper Norian) substage. It may be that Triasina hantkeni already occurs in the upper part of Lower Rhaetian, so that perhaps the range of this species comprises both the upper part of the Lower Rhaetian and the Upper Rhaetian. But on the other hand parts of the Bleskovy prameri limestone may be already Upper Rhaetian and the never confirmed record of Choristoceras marshi (Sturzen-b a u m , 1879) may be correct. Also the fauna from the sample Dr. proves that the strata from the Bleskovy prameft locality are of Rhaetian age and younger than the Lower Rhaetian of Hybe. Some remarks to the papers of Hohenegger & Filler (1975) and Bystricky (1975) Ho h enegger & Piller (1975) have assigned Glomospirella friedli Kristan-Tollmann, 1962, G. parallela Kristan-Tollmann, 1964, and G. expansa Kristan-Tollmann, 1964 to the genus Involutina. This may be correct, but it is beyond the matter of this paper to discuss this problem. Involutina gaschei (Koehn-Zaninetti & Bronnimann, 1968) is certainly not an younger synonym of Glomospirella friedli Kristan-Tollmann, 1962, because the stratigraphic range of these two species is quite different, so that the differences between these two species are not facies-controlled as supposed by Hohenegger & Piller (1975), but true species differences. The stratigraphic importance of Late Triassic foraminifers was recently questioned by Bystricky (1975), which is in contradiction with the data available. It should be noted that the marked stratigraphic value of the fora- minifers and especially of the representatives of the families Ammodiscidae and Involutinidae from the uppermost Triassic is connected with their rapid evolution. A fairly good knowledge of internal structure, phylogenetic relations, ecology, and paleogeography of the foraminifers is highly advantageous here (see Gazdzicki, 1974a, b; S a 1 a j , 1974, 1977; Z a nine 11 i, 1976). Moreover, the succession of foraminifer faunas was reconstructed on the basis of highly complete sections of the Upper Triassic from the Alpine region. Therefore, foraminifer datings are fairly reliable. Bystricky (1975) has questioned the stratigraphie value of foraminifers for the zonation of the Upper Triassic with the reference to the foraminifer succession in the Hybe profil. However, this section is technically disturbed and the succession of layers is still the matter of controversy (see G o e t e 1, 1917; M i c h a 1 i k , 1973; Bystricky, 1975). According to Bystricky (1975) also the conodonts have no value for stratigraphie subdivisions in the uppermost Norian and Rhaetian. In this connection Bystricky (1975) reconstructed "contradictions" in conodont datings comparing older and newer papers and views of conodont workers. In this respect the remarks of Bystricky (1975) are pure polemic and therefore not worthy to discuss. Bystricky (1975) has not noticed that not the conodont datings, but the stratigraphie schemes were changed and that the former Spathognathodus hernsteini Mostler was revised and subdivided by Kozur & Mock (1974a, b) into Misikella hernsteini (Mostler) and M. posthernsteini Kozur & Mock. Thus, the "contradictions" in the conodont datings reconstructed by Bystricky (1975) are in reality the result of the scientific progress in the Upper Triassic stratigraphy and conodont taxonomy. The same is true for the great number of such "contradictions" in the papers of Bystricky (compare e.g. the papers of Bystricky 1972, 1973 and appendix to the latter paper with regard to the stratigraphy of the Upper Triassic of Silickâ Brezovâ). Some remarks are necessary to special views in the paper of Bystricky (1975) that contradict the above mentioned stratigraphie results from our micropaleontological studies at the Norian-Rhaetian boundary. (1) The so-called "conodontenfreier Bereich" (cf. Huckriede, 1958; Kozur, 1971 ; Kozur & Mock, 1972) was not considered as an equivalent of a biozone by these authors as assumed by Bystricky (1975). Meanwhile Misikella posthernsteini and some other conodonts were found in this stratigraphie level and the posthernsteini assemblage zone was established for this stratigraphie level and the post-hernsteini fauna by Kozur & Mock (1974c). (2) According to Bystricky (1975) there are no considerable changes in the conodont, ostracode, holothurian, brachiopod, and ammonoid faunas at the Norian-Rhaetian boundary (with references to Urlichs, 1972; Mo-sher, 1968; Sweet u.a., 1971; Pearson, 1970, Dagis, 1974, and Kozur, 1972c). Urlichs (1972) has investigated only Rhaetian ostracode faunas of the Kôssen Beds at Weifiloferbach, the type locality of the Rhaetian Kôssen Beds. He assigned the lower and middle part of this section to the Upper Norian (because of the occurrence of RJiabdoceras suessi). In our view, discussed above, the whole section of the Kôssen Beds at WeiBloferbach is Rhaetian 7 — Geologija 22/1 (perhaps with exception of the lowermost beds, where no conodonts and ostra-codes were found and Rhaetavicula contorta is still absent). The "Norian" part (sensu U r 1 i c h s) of the Kossen Beds from Weifiloferbach contains Misikella posthernsteini, and new highly developed species of Misikella and Parvigondo-lellat the typical Rhaetian conodont fauna. The conodont association of the Misikella posthernsteini assemblage zone together with Rhabdoceras suessi, Choristoceras ammonitiforme, typical Rhaetian brachiopods, and pelecypods (e.g. Rhaetavicula contorta) indicate a Lower Rhaetian age (Choristoceras haueri zone) for this part of the section. Therefore U r 1 i c h s (1972) has not compared Upper Norian and Rhaetian ostracodes, but Lower Rhaetian ostracodes with Upper Rhaetian ones. The Lower and Upper Rhaetian ostracode faunas are, of course, very similar, but clearly different from the true Upper Norian ostracode faunas. Kozur (1972c) has also still assigned the uppermost Rhabdo-ceras suessi zone to the Upper Norian sensu T o z e r (1967). The "Upper Norian" ostracodes by Kozur (1972c) were found in the uppermost Rhabdo-ceras suessi zone. According to Kozur (1973b) this part of the Rhabdoceras suessi zone is contemporaneous with the Lower Rhaetian Choristoceras haueri zone. Therefore the "Upper Norian" ostracodes by Kozur (1972c) have the same Lower Rhaetian age as the "Upper Norian" ostracodes described by U r 1 i c h s (1972). It is clear that these ostracode faunas are very similar to other Rhaetian ostracode fauna, but there are great differences to the true Upper Norian ostracode faunas (see chapter: Stratigraphic value of microfossils at the Norian-Rhaetian boundary). The view of Bystricky (1975) that the very rich Upper Norian holo-thurian fauna had passed into the Rhaetian is nowhere confirmed (neither in published nor in unpublished material — in the contrary in all published papers the great differences between the Norian and Rhaetian holothurian faunas were emphasized) and unsubstantiated. The differences between the Upper Norian and Rhaetian ammonoid faunas are considerable (see chapter: The problem of the Norian-Rhaetian boundary), in spite of the fact that some species straddles the Norian-Rhaetian boundary (e.g. Rhabdoceras suessi). In contrary to the references by Bystricky (1975) already the papers of Mosher (1968) and Sweet et al. (1971) show very clearly the great break in the conodont faunas between the Norian and Rhaetian. Mosher (1968, fig. 12) listed 22 conodont species in the Sevatian (not all range up to the Norian-Rhaetian boundary), but only 4 in the Lower Rhaetian. This break is in reality still greater, because "Neospathodus lanceolatus" comprises two species, the Upper Norian Misikella hernsteini and the uppermost Norian to Rhaetian Misikella posthernsteini Moreover, there are some highly developed hitherto undescribed species of Misikella and Parvigondolella in the Rhaetian that are unknown in the Norian. Dag is (1974, tab. 3) showed that at the Norian-Rhaetian boundary 32 brachiopod genera died out and 3 genera have their first appearence at the base of the Rhaetian (the latter number may by considerably higher, if the Norian--Rhaetian boundary will be revised in all areas). Moreover, Dag is (1974, p. 272) pointed out that in all sections of northwestern Caucasus a sharp, not iacies-controlled change in the brachiopod fauna occurs above the beds with Monotis caucasica and Norian brachiopods. Above these Upper Norian beds a rich brachiopod fauna occurs that is very similar to the brachiopod fauna of the Kossen Beds and to the fauna of Drnava (Bleskovy pramen). The am-monoid fauna of this region was regarded as Upper Norian, but it consists of Norian holdovers that are frequent in the Lower Rhaetian (e.g. Megaphyllites insectus, Rhacophyllites debilis, Placites polydactylus). Thus, in contrary to the view of Bystricky (1975), Dag is (1974) has shown considerable changes in the brachiopod fauna at the Norian-Rhaetian boundary. Pearson (1970) accepted the "PIattenkalk"-Kossen Beds boundary as Norian-Rhaetian boundary, but he assumed that Rhab doc eras suessi has the same upper range as the genus Cochloceras and that Rhabdoceras suessi is older than the Kossen Beds or it ranges only up to the lowermost brachiopod horizon of the Kossen Beds (below the first appearence of Rhaetavicula contorta). The newest results (U1 r i c h s , 1972) have shown however that Rhabdoceras suessi occurs together with Rhaetavicula contorta and it is absent only in the upper third of the Kossen Beds. Therefore Pearson (1970) assigned the uppermost Rhabdoceras suessi zone to the Norian, but the lower and middle Kossen Beds with Rhaetavicula contorta and Rhaetian brachiopods (contemporaneous to the uppermost Rhabdoceras suessi zone) to the Rhaetian. For this reason many Rhaetian guide forms of the brachiopods were regarded as Upper Norian by Pearson (1970), if the beds were placed in the uppermost Rhabdoceras suessi zone by ammonoids (e.g. Bleskovy pramen, post-Monotis beds of northwestern Caucasus). (3) Bystricky (1975, p. 183) has erroneously equated the post-hernsteini fauna of Kozur & Mock (1972) with the posthernsteini assemblage zone (Kozur & Mock (1974c). The post-hernsteini fauna is the conodont fauna immediately above the Misikella hernsteini assemblage zone. The Misikella posthernsteini assemblage zone comprises both the post-hernsteini fauna and the formerly recognized "conodontenfreien Bereich" of the uppermost Triassic, in which now conodonts were found (above all Misikella posthernsteini). Therefore it is not correct, if Bystricky (1975) pointed out that the "conodonten-freier Bereich" of the uppermost Triassic follows above the Misikella posthernsteini assemblage zone. In reality Jurassic beds follow above the Misikella posthernsteini assemblage zone. (4) Bystricky (1975, p. 184) pointed out that in the posthernsteini assemblage zone of Maly Mlynsky vrch Gondolella navicula, Metapolygnathus bidentatus, Misikella hernsteini, and Oncodella paucidentata occur together with Misikella posthernsteini in the same beds at the same locality. This is quite incorrect. In Maly Mlynsky vrch are some outcrops with conodonts of the spatulatus assemblage zone, the upper bidentatus range zone, the hernsteini assemblage zone, and the posthernsteini assemblage zone. Metapolygnathus bidentatus, Misikella hernsteini, Oncodella paucidentata, and Gondolella navicula were not reported from the Misikella posthernsteini assemblage zone, but from the underlying zones. In the Misikella posthernsteini zone only the index species was found. In one sample taken from the beds between the Misikella hernsteini and Misikella posthernsteini assemblage zones Metapolygnathus slova-kensis, Grodella delicatula, and Prioniodina (Cypridodella) muelleri were found, but never the species mentioned by Bystricky. (5) Bystricky (1975, p. 187) pointed out that the relation of the horizon with Misikella hernsteini and the horizon with Misikella posthernsteini at the locality Hybe, "so important for the stratigraphy", is unclear. He has not noticed that the former AT. hernsteini of Hybe is in reality M. posthernsteini as pointed out by Kozur & Mock (1974c). Therefore in Hybe do not exist a fauna with "Spathognathodus" hernsteini and Misikella posthernsteini as Bystricky assumed, but only a fauna with Misikella posthernsteini. In this respect it is very interesting that Bystricky has repeatedly pointed out that the position of "Spathognathodus" hernsteini in the Hybe section is clear, but the stratigraphic position of M. posthernsteini is unclear. This seems to be only polemic, because it should be quite clear that the known stratigraphic level of "Spathognathodus" hernsteini from Hybe does not change with taxonomic revision of this species. Therefore it is surprising, if Bystricky (1975, p. 190) wrote: "Without precise data on the occurrence of the fauna, which are unconditionally necessary in stratigraphy, consequently also the indication of the occurrence of Misikella posthernsteini Kozur & Mock is not more valuable than the rejected presence of the species ? Gondolella navícula Huckriede". Description of the new species ? Family Fischerinidae Millett. 1898 ? Subfamily Cyclogyrinae Loeblich & Tappan, 1961 ? Genus Vidatina Schlumberger, 1900 "Vidalina" carpathica Gazdzicki, sp. n. PI. 4, figs. 3—5 Holotype: The specimen presented in pi. 4, fig. 4. Type horizon: Zlambach Beds (Upper Norian-Rhaetian). Type locality: Maly Mlynsky vrch (Slovak Karst), Czechoslovakia. Derivation of the name : carpathica — after the Carpathians. Diagnosis : Test discoidal, somewhat flattened, with distinct central swell and always with keel. Wall calcareous, imperforate. Coiling planispiral, involute, probably nonseptate; 3—4 whorls in the spire. The last whorl separated from central part by deep constrictons. Material: 10 well-preserved individuals. Association : With Glomospira cf. perplexa, Glomospirella sp., Tro-chammina alpina, Agathammina austroalpina, "Vidalina" carinata, Nodosaria ordinata, Austrocolomia sp., and Diplotremina sp. Description : Test calcareous, imperforate, elongate, consisting of relatively large, spherical proloculus and tubular second chamber with well-marked keel. Whorls 3—4 in number; coiling planispiral, involute, bilaterally symmetrical. Axial section displaying the central part (proloculus and first 2—3 whorls) with characteristic central swell, separated from the last whorl by marked constrictions (pi. 4, fig. 4—5). Deuteroloculus circular in outline (pi. 4, fig 5). Sharp keel especially well-developed along the last whorl (pi. 4, fig. 3—5). Dimensions of the test: diameter: 280—320 /¿m, thickness: 60 pmt diameter of the proloculus: about 30 ¿¿m. Remarks : The new species "Vidalina" carpathica Gazdzicki, sp. n. differs from all other Late Triassic and Liassic "Vidalina" in the last whorl separated from the central part with deep constrictions, especially well-displayed by axial sections (pi. 4, figs. 4—5). The small number of individuals precluded an accurate identification of the forms "A" and "B". The size of the proloculus and the number of the whorls appear almost identical in all the forms available; it is assumed that they all represent the form It is highly probable that these individuals could loose their last whorl at the deep constrictions. The remaining central part appears to be very similar to the form "A" of the species "Vidalina" carinata (Leischner) = Neoangulodiscus carinatus (Leischner) — Involutina carinata Leischner (cf. pi. 1, fig. 1 herein, and Leischner, 1961, pi. 2, figs. 15 a—d) recorded from the Norian-Rhaetian and primarily from the Lower Liassic of the Tethyan areas (Leischner, 1961; Kristan-Tol-lmann, 1962; Bronnimann, Poisson & Zaninetti, 1970). Occurrence : Known from the type locality only. Conclusions The entire Kossen Beds of their type locality (perhaps with exception of the lowermost part where Rhaetavicula contorta and conodonts are absent) are Rhaetian in age and younger than the Sevatian substage of the Upper-Norian stage. The Zlambach Beds are contemporaneous with the Kossen Beds and begin at some places within the uppermost Sevatian (? upper Metapolygnathus biden-tatus zone, Misikella hernsteini assemblage zone in the conodont zonation; Co-chloceras suessi zone in the ammonoid zonation by Kozur, 1973 b). The major part of the Rhabdoceras suessi zone is older than the Kossen Beds. Rhabdoceras suessi straddles the Norian-Rhaetian boundary and occurs also in the lower and middle parts of the Rhaetian, here together with the genus Chori-stoceras. The Rhabdoceras suessi zone is inconvenient as standard zone. The upper range of the index species R. suessi exceeds the upper range of Pinacoceras met-ternichi, the index species of the metternichi zone, and therefore it straddles the Norian-Rhaetian boundary. Therefore the Rhabdoceras suessi zone should be rejected and replaced by the Sagenites giebeli zone (corresponding to the lower subzone of the Rhabdoceras suessi zone by Tozer, 1967), the Cochlo-ceras suessi zone (Upper Sevatian corresponding to great parts of Tozer's upper subzone of Rhabdoceras suessi zone), and the Choristoceras haueri zone (Lower Rhaetian corresponding to the uppermost part of the Rhabdoceras suessi zone by Tozer, 1967). The Norian-Rhaetian boundary between the Cochloceras suessi and Choristoceras haueri zones agrees with the priority and is characterized by an important faunal change both in the macro- and micro-faunas. The dating of the Glomospirella pokornyi & Glomospirella friedli assemblage zone as Lower Rhaetian (Gazdzicki, 1974) is confirmed. Also by the aid of foraminifers could be proved that the »Sevatian« of Bleskovy pramen is younger than the Lower Rhaetian of Hybe as it was previously suggested by Kozur & Mock (1973, 1974c). The uppermost "Plattenkalk" of Kendelgraben belongs to the Glomospirella. pokornyi & Glomospirella friedly assemblage zone and therefore it probably represents the basal Rhaetian, being certainly not older than uppermost Seva-tian. This disagrees with the views of Krystyn (1974), Tozer (1974), and W i e d m a n n (1974) that the Kossen Beds include the entire Sevatian or even parts of the Middle Norian (Krystyn, 1974) and confirms the view of Kozur (1973 b) that the typical Kossen Beds (not the lower Kossen Beds of the Adnet region) are younger than the uppermost Sevatian. Only the lowermost parts of the typical Kossen Beds (without Rhaetavicula contorta and conodonts) may locally represent the uppermost Sevatian. Plate 1 Samples from Bleskovy pramefi (fig. 1—8) and Hybe (fig. 9), Czechoslovakia 1 »Vidalina« cf, carinata (Leischner); sample 166/5-D4, X 300. 2—3 h-Vidalinamartana Farinacci; 166/2, X 150. 4 Ophthalmidium sp.; 166/2, X 70. 5 Ammobaculites sp.; 166/3-Di, X 60. 6 Galeanella cf. tollmanni (Kristan); 166/2, X 100. 7 Diplotremina ? sp.; 166/2, X 100. 8 Triasina hantkeni Majzon; Dr., X 60. 9 Triasina oberhauseri Koehn-Zaninetti & Bronnimann; sample Hybe 12, X 130. All photos taken by Dr. A. Gaždzicki Plate 2 Samples from Kendelbachgraben, Austria 1 Trochammina alpina Kristan-Tollmann; Ö-34, X 250. 2 Trochammina ? sp.; Ö-34, X 250. 3 Alpinophragmium perforatum Flügel; Ö-41, x 40. 4 Agathammina austroalpina Kristan-Tollmann & Tollmann; Ö-41, X 100. 5 Lingulina cf. placklesensis Kristan-Tollmann; Ö-38, X 150. 6 Nodosaria ordinata Trifonova; Ö-41, X 150. 7 Nodosaria sp.; Ö-34, X 250. 8 Glomospirella sp.; Ö-41, X 150. 9 Ophthalmidium sp.; Ö-36, X 250. 10—12 Involutina communis Kristan; Ö-41, 10, 12 — X 90, 11 — X 70. 33 Trocholina permodiscoides Oberhauser; Ö-41, X 90. Plate 3 All specimens from sample Ö-18 (Fischerwiese, Austria) 1 Glomospirella friedli Kristan-Tollmann, X 130. 2 Tolypammina sp., X 60. 3 Ophthalmidium sp., X 150. 4 Galeanella ? sp.} x 150. 5—6 Endothyra sp., X 60. 7 Diplotremina cf. subangulata Kristan-Tollmann, X 8 Diplotremina sp., X 60. 9—10 »Sigmoilina« sp., X 150. 11 Trochammina alpina Kristan-Tollmann, X 150. 12 Alpinophragmium perforatum Flugel, X 40. Plate 4 All samples from Maly Mlynsky vrch (Slovakian Karst) 1 Glomospirella cf. polcornyi (Salaj), MMV-6, X 200. 2 wVidalina« carinata (Leischner); MMV-4, X 150. 3—5 »Vidalina« carpathica Gazdzicki sp. n. (fig. 4: holotype); MMV-4, x 150. 6 Ophthalmidium cf. triadicum (Kristan); MMV-3, X 200. 7 Nodosaria sp.; MMV-1, X 200. 8—9 Agathammina ? iranica Zaninetti, Bronnimann, Bozorgnia & Huber; MMV-1, X 300. 10—13 Trochammina alpina Kristan-Tollmann: 10 — MMV-1, X 250, 11 — MMV-4, X 250; 12, 13 — MMV-2, X 200. 14 Glomospirella ? sp.; MMV-2, X 300. 15 Glomospira sp.; MMV-2, X 200. Plate 5 1, 2 Misikella posthernsteini Kozur & Mock, fig. 1: posterior view; fig. 2: lateral view; Lower Rhaetian (pokornyi & friedli foraminifer zone, Misikella posthernsteini conodont zone), Chof nappe, Chocholowska Valley at the foot of Siwiafi-skie Turnie (western part of the Tatra Mts., Poland). 200 X- 3—7 Misikella hernsteini (Mostler), figs. 3 a, 4—6: lateral view; figs. 3 b, 7: upper view; all from the uppermost Sevatian of Hernstein, Austria (Bed C 1 according to Mostler, Oberhauser & Plochinger, 1987), Misikella hernsteini conodont assemblage zone. 83 X. 8, 9 Parvigondolella andrusovi Kozur & Mock, lateral view, Upper Sevatian, Parvi-gondolella andrusovi conodont assemblage zone; fig. 8: Bohuriovo (Silica nappe, Slovakian Karst), 100 X; fig. 9: Silicka Brezova (Silica nappe, Slovakian Karst), 60 X. 10—12 Metapolygnathus bidentatus (Mosher); figs. 10 a, 11: lateral view; figs. 10 b, 12: upper view; all from the upper Metapolygnathus bidentatus conodont zone (Middle Sevatian) of Silicka Brezov£ (Silica nappe, Slovakian Karst); fig. 10: platform quite reduced, only lateral denticles are present, sample S 1, 60 X; figs. 11, 12: platform still well developed, sample S 19, 100 X. 13 Metapolygnathus mosheri (Kozur & Mostler), a) lateral view, b) upper view; upper Metapolygnathus bidentatus conodont zone (Middle Sevatian), Silicka Brezova (Silica nappe, Slovakian Karst), sample S 17, 60 X. 14 Metapolygnathus posterus (Kozur & Mostler), a) lateral view, b) upper view, middle Metapolygnathus bidentatus zone (Lower Sevatian), Silick& Brezova (Silica nappe, Slovakian nappe, Slovakian Karst), sample S 30, 60 X. 15 Metapolygnathus zapfei Kozur. a) lateral view, b) upper view, Sommeraukogel (Austria), »Hangen'drotkalk«, lower Metapolygnathus bidentatus conodont zone (Lower Sevatian), 30 X. 16 Metapolygnathus abneptis spatulatus (Hayashi), upper view of an aberrant specimen, near to the holotype of this subspecies, lower Metapolygnathus bidentatus conodont zone (Lower Sevatian), SilickA BrezovA (Silica nappe, Slovakian Karst), sample S 16, 60 X. References Andrusov, D. 1934, Sur la trouvaille d' un ammon4en dans le Rhetien carpa-thique. VSst. Serv. Geol. Republ. Tchecoslov. 20 (1—2), 9—12, Praha. B i 11 n e r, A. 1890, Brachiopoden der alpinen Trias. Abh. Geol. Reichsanst. 14, 1—325. Wien. Bolz, H. 1971, Die Zlambach-Schichten (alpine Obertrias) unter besonderer Berücksichtigung der Ostracoden. Teil 1: Ostracoden der Zlambach-Schichten, besonders Bairdiidae. Senckenbergiana lethaea 52 (2/3), 129—283. Frankfurt am Main. Bolz, H. 1974, Die Zlambach-Schichten (alpine Obertrias) unter besonderer Berücksichtigung der Ostracoden. Teil 2. Senckenbergiana lethaea 55 (1/5), 325—361. Frankfurt am Main. B r ö n n i m a n n, P., Cadet, J. F. et al. 1973, Revision morphologique et emendation du genre triasique Galeanella Kristan-Tollmann (foraminifere) et description de Galeanella panticae, n. sp. (Dinarides yougoslaves et Zagros, Iran). Verh. Geol. B.—A., 1973 (3), 411—435. Wien. Budurov, K. & Pevny. J. 1970> Über die Anwesenheit von Trias-Cono-donten in den Westkarpaten. Geol. Prace, Sprävy 52, 165—172. Bratislava. Bunza, G. & Kozur, H. 1971, Beiträge zur Ostracodenfauna der tethyalen Trias. Geol, Paläont. Mitt. Innsbruck 1 (2), 1—76. Innsbruck. Bystrick^, J. 1964, Slovensk^ kras. Stratigrafia a Dasycladaceae mesozoika Slovensk^ho krasu. Üstr. Üst. Geol. 204 pp. Bratislava. Bystricky, J. 1972, Faziesverteilung der mittleren und oberen Trias in den Westkarpaten. Mitt. Ges. Geol. Bergbaustud. 21, 289—310. Innsbruck. Bystricky, J. (ed.) 1973, Triassic of the West Carpathians Mts. Guide to Excursion D, 10. Congr. CBGA, 137 pp. Bratislava. Bystrick£, J. 1975, The Kossen Beds in the West Carpathians and the problem of their stratigraphie division. Geol. zborn., geol. Carpathica 26 (2), 177—197. Bratislava. Bystricky, J. & Biely, A. 1966, Koloquium über die Stratigraphie der Trias, Bratislava, September 1966. Exkursionsführer (Trias der Westkarpaten). Geol. Inst. Slowak. Akad. Wiss., 1—64. Bratislava. D a g y s, A. S. 1974, Triasovye brachiopody. 387 pp. Novosibirsk 1974. Fabricius, F. 1974, Die stratigraphische Stellung der Rät-Fazies. In: Zapfe, H. (ed.): Die Stratigraphie der alpin-mediterranen Trias. Schriftenr. Erdwiss. Komm. Österreich. Akad. Wiss. 2, 87—32. Wien-New York. Flügel, E. 1975. Kalkalgen aus Riffkomplexen der alpin-mediterranen Obertrias. Verh. Geol. B.—A. 1975 (2/3), 297—346. Wien. Gazdzicki, A. 1974a, Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geol. Pol. 24 (1), 17—96. Warszawa. Gazdzicki, A. 1974b, Rhaetian-Lower Hettangian foraminifer zonation and the problem Triassic/Jurassic boundary in the Tatra Mts. (West Carpathians). Les Actes du VIe Colloque Africain de Micropaleontologie. Tunis, 89—102. Tunis. Gazdzicki, A. & Iwanow, A. 1976, The diachronism of the Rhaetic and '•Gresten" Beds in the Tatra Mts. (West Carpathians). Bull. Acad. Polon. Sei., Ser. Sei. Terre, 24 (2), 117—122. Varsovie. Gazdzicki, A. & Zawidz.ka, K. 1973, Triassic foraminifer assemblages in the Cho6 nappe of the Tatra Mts. Acta Geol. Pol., 23 (3), 483—490. Warszawa. Go et el, W. 1917, Die rhätische Stufe und der unterste Lias der subtatrischen Zone in der Tatra. Bull. Acd. Sei. Cracovie. Cl. Sei. Math.-Nat., S6r. A, 1—222, Krakow. Guembel, C. W. 1859, Uber die Gleichsetzung der Gesteinsmassen in den nord-östlichen Alpen mit außeralpinischen Flötzschichten. Verh. Ges. Deutsch. Naturforsch. u. Ärzte. 54, 80—88. Karlsruhe (1858). Guembel, C. W. 1861, Geognostische Beschreibung des Bayerischen Alpengebirges und seines Vorlandes. 950 pp. Gotha (Perthes). H a s s, O. 1909, Bericht über neue Aufsammlungen in den Zlambachmergeln der Fischerwiese bei Alt-Aussee. Beitr. Paläont. Geol. österr. Ungar. Orients 22, 143—167, Wien. Hohenegger, J. & W. Piller 1975, Diagenetische Veränderungen bei ober-triadischen Involutinidae (Foraminifera). N. Jb. Geol. Paläont. Mh. 1975 (1), 26—39. Stuttgart. Jendrejäkovä, O. 1970, Foraminiferen der oberen Trias des Slowakischen Karstes und des Muräö-Plateaus. Geol. zborn., geol. Carpathica 21 (2), 343—350. Bratislava. Kochanovä, M. 1967, Zur Rhaet-Hettang-Grenze in den Westkarpaten. Zborn. Geol. Vied., Zäp. Karpaty 7, 7—102. Bratislava. Kollärovä-Andrusovovä, V. & Kochanovä, M. 1973, Molluskenfauna des Bleskovy pramefi bei Drnava (Nor, Westkarpaten). Slov. Akad. Vied. Bratislava, 235 pp. Bratislava. Kollmann, K. 1963, Ostracoden aus der alpinen Trias II, Weitere Bairdiidae. Jb. Geol. Bundesanst. 106, 121—203. Wien. K o u t e k, J. 1927, PrispSvek k poznäni hybskeho rhaetu v hornim Povaii. Roz-pravy II. Tfidy Cesk6 Akad. 36 (3), 1—7, Praha. Kozur, H. 1971, Zur Verwertbarkeit von Conodonten, Ostracoden und ökolo-gisch-fazielle Untersuchungen in der Trias. Geol. zborn., geol. Carpathica 22 (1), 105—130. Bratislava. Kozur, H. 1972a, Die Conodontengattung Metapolygnathus Hayashi 1968 und ihr stratigraphischer Wert. Geol. Paläont. Mitt. Innsbruck 2. (11), 1—37. Innsbruck. Kozur, H. 1972 b, Vorläufige Mitteilung zur Parallelisierung der germanischen und tethyalen Trias sowie einige Bemerkungen zur Stufen- und Unterstufengliederung der Trias. Mitt. Ges. Geol. Bergbaustud. 21, 361—412. Innsbruck. Kozur, H. 1972 c, Die Bedeutung tri assischer Ostracoden für stratigraphische und paläoökologische Untersuchungen, Mitt. Ges. Geol. Bergbaustud. 21, 623—660. Innsbruck. Kozur, H. 1973 a, Beiträge zur Stratigraphie und Paläontologie der Trias. Geol. Paläont. Mitt. Innsbruck 3 (1), 1—30. Innsbruck. Kozur, H. 1973 b, Beiträge zur Stratigraphie von Perm und Trias. Geol. Paläont. Mitt. Innsbruck, 3 (3), 1—31. Innsbruck. Kozur, H. 1973c, Beiträge zur Ostracodenfauna der Trias. Geol. Paläont. Mitt. Innsbruck 3 (5), 1—41. Innsbruck. Kozur, H. 1973 d, Beiträge zur Stratigraphie der Trias II. Geol. Paläont. Mitt. Innsbruck 3 (4), 1—20. Innsbruck, Kozur, H. 1974a, Probleme der Triasgliederung und Parallelisierung der germanischen und tethyalen Trias. Teil I: Abgrenzung und Gliederung der Trias. Frei-berger Forsch.-H. C 298, 139—197. Leipzig, Kozur, H. 1974b, Die Conodontengattung Metapolygnathus Hayashi 1968 und ihr stratigraphischer Wert II. Geol. Paläont, Mitt. Innsbruck 4 (1), 1—35. Innsbruck. Kozur, H. 1975, Probleme der Triasgliederung und Parallelisierung der germanischen und tethyalen Trias. Teil II: Anschluß der germanischen Trias an die internationale Triasgliederung. Freiberger Forsch.-H. C 304, 51—77. Leipzig. Kozur, H. & Mock, R. 1972, Neue Conodonten aus der Trias der Slowakei und ihre stratigraphische Bedeutung. Geol. Paläont. Mitt. Innsbruck 2 (4), 1—20. Innsbruck. Kozur, H. & Mock, R. 1973, Das Alter der Hauptspaltengeneration in den Hallstätter Kalken des Salzkammergutes (Österreich) und der Slowakei. Geol. Paläont. Mitt. Innsbruck 3 (10), 1—20. Innsbruck. Kozur, H. & Mock, R. 1974a, Holothurien-Sklerite aus der Trias der Slowakei und ihre stratigraphische Bedeutung. Geol. zborn., geol. Carpathica 25 (1). 113—143. Bratislava. Kozur, H. & Mock, R. 1974b, Zwei neue Conodonten-Arten aus der Trias des Slowakischen Karstes. Casopis Min. Geol. 19 (2), 135—139. Praha. Kozur, H. & Mock, R. 1974 c, Misikella posthernsteini n. sp., die jüngste Conodontenart der tethyalen Trias. Casopis Min. Geol. 19 (3), 245—250. Praha. Kozur, H. & Mostler, H. 1972a, Die Conodonten der Trias und ihr stratigraphischer Wert. Teil I. Die ^Zahnreihen-Conodonten* der Mittel und Obertrias. Abh. Geol. B.-A. Wien 28 (1), 1—36, Wien. Kozur, H. & Mostler, H. 1972 b, Die Bedeutung der Mikrofossilien für stratigraphische, paläoökologische und paläogeographische Untersuchungen in der Trias. Mitt. Ges. Geol. Bergbaustud. 21, 341—360. Innsbruck. 8 — Geologija 22/1 Kozur, H. & Mostler, H. 1972 c, Die Bedeutung der Conodonten für strati-graphische und paläogeographische Untersuchungen in der Trias. Mitt. Ges. Geol. Bergbaustud. 21, 777—810. Innsbruck. Kozur, H. & Oravecz, A. 1972, Neue Ostracoden-Arten aus dem Rhät Ungarns. Geol. Paläont. Mitt. Innsbruck 2 (3), 1—14. Innsbruck. Kr is tan, E. 1957, Ophthalmidiidae und Tetrataxinae (Foraminifera) aus dem Rhät der Hohen Wand in Nieder-Österreich. Jb. Geol. B.-A. 100 (2), 269—298. Wien, Kristan-Tollmann, E. 1962, Stratigraphisch wertvolle Foraminiferen aus Obertrias- und Liaskalken der voralpinen Fazies bei Wien. Erdöl-Zeitschr. 78 (4), 228—233. Wien—Hamburg. Kristan-Tollmann, E. 1964, Die Foraminiferen aus den rhätischen Zlam-bachmergeln der Fischerwiese bei Aussee im Salzkammergut. Jb. Geol. B.-A., Son-derbd. 10, 1—189. Wien. Krystyn, L. 1973, Zur Ammoniten- und Conodonten-Stratigraphie der Hal-lstätter Obertrias (Salzkammergut, Österreich). Verh. Geol. B. A. 1973 (1), 113—153, Wien. Krystyn, L. 1974, Probleme der biostratigraphischen Gliederung der alpinmediterranen Obertrias. In: Zapfe, H. (ed.): Die Stratigraphie der alpin-mediterra-nen Trias. Schriftenr. Erdwiss. Komm, österr. Akad. Wiss. 2, 137—144. Wien—New York. Majerskâ, D. 1973, Mikrofosilie z nerozpustnych zvyäkov rétickych vâpencov. Unpublished report, Geofond Bratislava, Matëjka, A. & Andrusov, D. 1931, Aperçu de la géologie des Carpathes occidentales de la Slovaquie centrale et des régions avoisinantes, Knih, Stat. Geol. Ûst. 13 A, 19—163. Praha. M e 11 o, J. 1973, Drnava — The Bleskovy prameû spring, Norian in the Furmanec limestone faciès. In: By strick^, J. : Triassic of the West Carpathian Mts.-Guide to Excursion D, 10. Congr. CBGA, 52—59. Bratislava. Michalik, J. 1973 a, New information on the character of the Rhaetian at the locality near Hybe (northern slope of the Tatra Mts., Slovakia). Geol. Prâce, Sprävy 60, 197—212. Bratislava. Michalik, J. 1973 b, Hybe — The Kossen Beds, In: By s tricky, J.: Triassic of the West Carpathian Mts. — Guide to Excursion D, 10. Congr. CBGA, 89—92. Bratislava. Michalik, J. 1975, Genus Rhaetina Waagen, 1882 (Brachiopoda) in the uppermost Triassic of the West Carpathians. Geol. zborn., geol. Carpathica 26 (1), 47—76. Bratislava. Mock, R. 1971, Conodonten aus der Trias der Slowakei und ihre Verwendung in der Stratigraphie. Geol. zborn., geol. Carpathica 22 (2), 241—260. Bratislava. Mock, R. 1973, Über einen Fund von Zlambach-Schichten (Nor) im Slowakischen Karst. Geol. Prâce, Sprâvy 60, 221—224. Bratislava. Mock, R. 1975, Über Trias-Conodonten und einige Probleme der Trias- Stratigraphie in den Westkarpaten. Mineralia slovaca 7 (1—2), 27—34. Bratislava. Mojsisovics, E. v. 1893, Die Cephalopoden der Hallstätter Kalke. Abh. Geol. Reichsanst. 6 (2), 835 pp. Wien. Mojsisovics, E. v. 1896, Über den chronologischen Umfang des Dachsteinkalkes. Sitzungsber. Akad. Wiss. Wien, Math.-Nat. Cl. 105 (1), 5—40. Wien. Mojsisovics, E. v., Waagen, W. & C. Diener 1895, Entwurf einer Gliederung der pelagischen Sedimente des Trias-Systems. Sitzungsber. Akad. Wiss. Wien, Math.-Nat. Cl. 104 (1), 1271—1302. Wien. M o r b e y, S. J. 1975, The palynostratigraphy of the Rhaetian stage, Upper Triassic in the Kendelbachgraben, Austria. Palaeontographica, Abt. B 152 (1—3), 1—75. Stuttgart. Mosher, L. C. 1988, Triassic conodonts from western North America and Europe and their correlation. J. Paleont. 42 (4), 895—946. Tulsa. Mostler, H., Oberhauser, R. & Plöchinger, B. 1967, Die Hallstätter Kalk-Scholle des Burgfelsens Hernstein (N.-O.). Verh. geol. B.-A., 1967 (1/2), 27—36. Wien. Ott, E. 1974, Algae (Dasycladaceae). Catalogus fossilium Austriae 17b, 1—64. Wien. Pearson, D. A. M. 1970, Problems of Rhaetian stratigraphy with special reference to the lower boundary of the stage. Quart. J. Geol, Soc. London 126, 125—150. Belfast. S a 1 a j, J. 1969 a, Essai de zonations dans le Trias des Carpathes Occidentales d'après les Foraminitères. Geol. Prâce, Spràvy 48, 123—128. Bratislava. S a 1 a j, J. 1969 b, Quelques remarques sur les problèmes microbiostratigraphi-ques du Trias. Notes Serv. Géol. Tunisie 31, 5—23. Tunis. S a 1 a j, J. 1974, Contribution à la microbiostratigraphie du Trias des Carpathes Occidentales tchécoslovaques. Les Actes du VIe Colloque Africain de Micropaléontologie. Tunis. S a 1 a j, J. in press, On the ph.ylogeny of Ammodiscidae Rhumbler 1895, Fischeri-nidae Millet 1898 and Involutinidae Bütschli 1880, emend. S a 1 a j, B i e 1 y and B y -s t r i c k y 1967 from the Central-Carpathian Triassic of Slovakia. 1st Intern. Symp. on Continental Margin Benthonic Foraminifera, Halifax. S a 1 a j, J., Biely, A. & Bystricky, J. 1967, Trias-Foraminiferen in den Westkarpaten. Geol. Prâce, Spravy 42, 119—136. Bratislava. Salaj, J. & Jendrejâkova, O. 1967, Die Foraminiferen aus der oberen Trias der Westkarpaten. Geol. zborn., geol Carpathica 18 (2), 311—313. Bratislava. S i b 1 i k, M. 1967, The brachiopods of the Norian locality Drnava (Southern Slovakia). Geol. Prâce, Zprâvy 43, 81—98. Bratislava. Stäche, G. 1867, Das Gebiet der Schwarzen und Weißen Waag. Verh. Geol. Reichsanst. 4, 283—289. Wien. Stürzenbaum, J, 1879, Kössener Schichten bei Dernö im Tornaer Comitate. Földt. Közl. 4. Budapest. Suess, E. & Mojsisovics, E. v. 1869, Studien über die Gliederung der Trias- und Jurabildungen in den östlichen Alpen. II. Die Gebirgsgruppe des Osterhörns. Jb. Geol. Reichsanst. 19, 167—200. Wien. S u f, J. 1939, Prëdbezna zprava o geologickém mapovâni provedeném v r. 1938 v okolici obci Gemerské KovâCové, Lu&ky a Borky na Slovensku. Horn. Vèst. 2. Praha. Sweet, W. C. et al. 1971, Conodont biostratigraphy of the Triassic. In: Symposium on conodont biostratigraphy. Geol. Soc. Amer., Mem. 127, 441—465. T o z e r, E. T. 1967, A standard for Triassic time. Bull. Geol. Surv. Canada 156, 1—103. Ottawa. Tozer, E. T. 1974, Definitions and limits of Triassic stages and substages: suggestions prompted by comparisons between North America and the alpine-mediterra-nean region. In: Zapfe, H. (ed.): Die Stratigraphie der alpin-mediterranen Trias. Schriftenr. Erdwiss. Komm, österr. Akad. Wiss. 2, 195—206. Wien—New York. U r 1 i c h s, M. 1972, Ostracoden aus den Kössener Schichten und ihre Abhängigkeit von der Ökologie. Mitt. Ges. Geol. Bergbaustud. 21, 661—710. Innsbruck. Wiedmann, J. 1972, Ammoniten-Nuklei aus Schlämmproben der nordalpinen Obertrias — ihre stammesgeschichtliche und stratigraphische Bedeutung. Mitt. Ges, Geol. Bergbaustud. 21, 561—622. Innsbruck. Wiedmann, J. 1974, Zum Problem der Definition und Abgrenzung von Obernor (Sevat) und Rhst. In: Zapfe, H. (ed.): Die Stratigraphie der alpin-mediterranen Trias. Schriftenr. Erdwiss. Komm. Österreich. Akad. Wiss. 2, 229—235. Wien—New York. Zaninetti, L. 1976, Les Foraminifères du Trias. Essai de synthèse et correlation entre les domaines mésogéens européen et asiatique. Riv. Ital. Paleont. 82 (1), 1—258. Milano. Zapfe, H. 1967, Beiträge zur Paläontologie der nordalpinen Riffe. Die Fauna der Zlambach-Mergel der Fischerwiese bei Aussee, Steiermark. Ann. Naturhist. Mus. Wien 71, 413—480. Wien. UDK 551.762/763:56.016.3<497.12)=863 Biostratigrafija mejnih plasti med juro in kredo v južni Sloveniji Biostratigraphy of the Jurassic-Cretaceous boundary layers from South Slovenia Ljudmila Sribar Geološki zavod, 61000 Ljubljana, Parmova 33 Kratka vsebina Primerjalne biostratigrafske raziskave in literatura o plasteh z abe-rantnimi tintininami kažejo, da pripada apnenec na območju zunanjih Dinaridov v južni Sloveniji, ki vsebuje združbo klipein in tintinin, zgornjemu malmu. Enako velja za plasti s samimi aberantnimi tintininami. Više v zaporedju se apnenec z neznačilnimi mikrofosili, ki lahko pomenijo tako zgornji malm kot spodnjo kredo, menjava z dolomitom. Ta del zaporedja kaže na prehod med juro in kredo in po položaju ustreza berriasijski stopnji. Nato šele nastopi združba alg in foraminifer, značilna za valan-ginijsko stopnjo: Clypeina? solkani Conrad & Radoičič ter rodovi Cu-neolina, Debarina, Pseudotextularia in drugi. Abstract Aberrant tintinnids from the Dinarides of South Slovenia do not indicate the Valanginian stage as was recorded for many years. The author arrived at this decision after studying all the aspects of the occurrences of aberrant tintinnids. Along the old Vrhnika—Logatec road, for example, they occur in association with Clypeina jurassica indicating Upper Mal-mian series. Clypeina alone persists into the top Malmian layer. Elsewhere, however, tintinnids extend higher than Clypeina. The overlying limestone/dolomite alternation is of transitional character and is considered to be of Berriasian age. Only thereupon follows Valanginian stage characterized by the true Cretaceous index fossils of alga Clypeina? solkani Conrad & Racioičič and furaminiferal genera Cuneolina, Debarina, Pseudotextularia. Mejne plasti med juro in kredo V južni Sloveniji prehajajo jurske plasti postopno v kredne, torej enako kot drugod v zunanjih Dinaridih. Sedimentacijsko okolje se na prehodu ene dobe v drugo ni veliko spremenilo; na to kažejo mikrofosili ter razvoj sedi-mentov v vrhnjem delu jure in na pričetku spodnje krede. Sedimentacijski prostor je bila plitva obkontinentalna polica z obrežnimi lagunami in zatišnimi zalivi z občasno nadplimskim okoljem, kjer je prihajalo do izsušitev in ponekod tudi do krajših prekinitev sedimentacije. Mikrofosili so v teh prehodnih plasteh neznačilni in jih dobimo tako v zgornjem delu malma kot v spodnji kredi. Med nje štejemo zlasti vrsti Favreina salevensis (Parejas) in Salpingoporella annulata Carozzi. Spremljajo ju nekatere male foraminifere, predvsem iz družin Textulariidae in Ophthalmidiidae. Na vsem območju nekdanje Tetide je za zgornji malm vodilna alga Clypeina jurassica Favre. Njena življenjska doba sega od zgornjega kimmeridgija do titona, to je do meje s spodnjo kredo. V biostratigrafski razdelitvi je po njej imenovana cenocona, ki obsega zgornji del malma. Malo pozneje, vendar ponekod skoraj istočasno s klipeino, so se v zgornjem kimmeridgiju pojavile aberantne tintinine. Pogostne pa so tintinine šele v ti-tonu v asociaciji s klipeino. Po tej fosilni združbi je dobila ime podcona. Le ponekod so znane aberantne tintinine same nad plastmi z združbo klipeine s tintininami. Aberantnim tintininam smo pripisali pri nas velik pomen za biostratigrafijo. Plasti s tintininami brez klipeine, ki so v normalnem stratigrafskem zaporedju sledile plastem s klipeino in tintininami, smo šteli v valanginijsko stopnjo spodnje krede po delih R. Radoičičeve (1960, 1964, 1966 in 1969). A. F a -rinacci & Radoičič (1964) sta razdelili zgornji malm zunanjih Dinaridov na tri cone: Clypeina jurassica, Clypeina jurassica + aberantne tintinine in aberantne tintinine. Zadnja cona obsega že valanginij. V centralnih Apeninih pa je cona Clgpeina jurassica + Bankia striata (— tintinine) omejena na zgornji malm, torej ne sega v spodnjo kredo. Plasti s tintininami sta uvrstila v valanginij S. Buser (1965) na obrobju Ljubljanskega barja in D. Turnšek (1965) na severozahodnem Dolenjskem. Enako so označene ustrezne plasti na osnovni geološki karti SFRJ list Gorica in list Ribnica (S. B u s e r, 1973 in 1974), list Ilirska Bistrica (D. Š i k i č & M. Pleničar, 1975) in Novo mesto (M. Pleničar & U. Premru, 1977). Na Trnovskem gozdu sta D. Turnšek in S. B u s e r (1966) na ta način obravnavala mejo jura-kreda. Na drugi strani pa so aberantne tintinine po več avtorjih omejene na zgornji del malma. De Castro (1962) je postavil v zgornjem malmu dve coni, in sicer Clypeina jurassica in nad njo Vaginella striata (— tintinine). L. Sribar (1966) je v dolini Krke uvrstila v vrhnji del malma plasti s klipeino in tintininami. L. Nikler & B. Sokač (1968) in I. G u š i č (1969) so označili najvišji del malma kot cenocono Clypeina jurassica. I. G u š i č, L. Nikler & B. Sokač (1971) pa so v tej zgornjemalmski cenoconi razlikovali še podcono Campbelliella milesi (= tintinine). I. Velič (1973 in 1977) je prištel plasti z aberantnimi tintininami na območju V. in Male Kapele v titon. Enako velja za zahodno Istro (B. S o k a Č & I. Velič, 1978) in okolico Ogulina (I. V e 1 i č & B. S o k a č , 1978) ter za Biokovo (B. S o k a č , I. V e 1 i č & J. Tišljar, 1978). Po literaturnih podatkih so našli aberantne tintinine v raznih krajih. Imajo različen položaj v biostratigrafskem zaporedju in tudi njihova pogostnost je različna. Enako velja za naše geološke profile. Na listih Delnice in Črnomelj, kjer so plasti zgornje jure in spodnje krede zelo razširjene, so tintinine redke; pojavijo se šele v najvišjem delu plasti skupaj s klipeino, debelem največ 40 cm. Klipeina številčno prevladuje in se pojavlja sama še više kot tintinine. V profilu na Mirni gori (Podražj e-Klošter-Otovec) kaže nekaj metrov debela apnena breča na to, da je prihajalo tod v zgornjem malmu do krajših prekinitev v sedimentaciji. To potrjuje tudi odsotnost tintinin v tem profilu. Lep primer postopnega prehoda jurskih plasti v kredne imamo ob stari cesti Vrhnika—Logatec. Tu se velike tintinine pojavijo že v spodnjem delu cenocone Clppeina jurassica, torej so razširjene skoraj v celotnem zgornjem delu malma. Pri Snežnem griču leži na plasteh svetlo sivega apnenca s klipeino in redkimi tintininami tri metre debela plast zelo svetlo sivega apnenca s številnimi tintininami. Nad njo se apnenec menjava z zrnatim sparitnim dolomitom. V apnencu dobimo redke klipeine še 20 m nad plastmi s tintininami. Sledijo prehodne jursko-kredne plasti; menjavata se svetlo sivi apnenec in sparitni dolomit, apnenec je večidel laminirani stromatolitni mikrit s številnimi izsu-šitvenimi porami — dismikritni apnenec. Značilen je tudi nadplimski konglomerat, ki pomeni sedimentacijo v litoralnem pasu. V prehodnih plasteh ni več vrste Clypeina jurassica, pač pa le vrsta Favreina salevensis (Parejas) in zelo rekristalizirane dazikladaceje vrste Salpingoporella annulata Carozzi. Favreine se pojavljajo množično. Po njih smo imenovali cenocono, ki obsega barriasij. Redki primerki foraminifer so iz družine Oph-thalmidiidae, Textulariidae in Miliolidae. Vrsta Psetidocyclammtna iituus (Yo-koyama), ki smo jo našli v zgornjem delu barremijskih plasti, nastopa prav tako v malmu in spodnji kredi do albija. Vrsta pa je pomembna kot indikator okolja. Živela je v zelo plitvem tropskem morju, globokem največ nekaj metrov, in bogatem s kisikom. Alge so zelo rekristalizirane; poleg vrste Salpingoporella annulata dobimo le še vrsto Thaumatoporella parvovesiculifera (Raineri) ter ostrakode in odlomke lupin mehkužcev. Vodilni kredni mikrofosili se pojavijo šele v valanginijski stopnji. Najpomembnejša je vrsta Clypeina ? solkani Conrad & Radoičič, pa Salpingoporella annulata Carozzi in Actinoporella podolica (Alth). Poleg alg se pojavijo tudi kredne vrste in rodovi foraminifer, in sicer Cuneolina ex gr. camposaurii — laurentii, Debarina hahounerensis Fourcade, Raoult & Vila, Pseudotextulariella ? scarsellai (De Castro), Nezzazata sp., Glomospira sp. ter družine Miliolidae, Textulariidae in Ophthalmidiidae. Sklep Preučevanje jurskih in krednih profilov v južni Sloveniji nas je privedlo do sklepa, da plasti z aberantnimi tintininami ne morejo biti valanginijske starosti. V asociaciji s tintininami nismo nikjer dobili značilnih krednih mikro-fosilov. Položaj aberantnih tintinin pa je v stratigrafskem zaporedju na raznih krajih različen. Nad njimi se ponekod dobi klipeina, ki je značilna zgornje-malmska vrsta. Prehodne plasti med juro in kredo uvrščamo v berriasij. Ta del zaporedja doseže debelino največ 100 m; mikrofosili so v njem siromašni in neznačilni. Prične se tam, kjer izgine vodilna vrsta Clypeina jurassica, konča pa se z nastopom vodilnih krednih mikrofosilov valanginijske stopnje. Meja med berria-sijem in valanginijem je tudi litološka. Literatura Buser, S. 1973, Tolmač lista Gorica, Osnovna geološka karta 1:100 000, Zvezni geološki zavod, Beograd. Buser, S. 1974, Tolmač lista Ribnica. Osnovna geološka karta 1:100 000, Zvezni geološki zavod, Beograd. Buser, S. 1965, Geološka zgradba južnega dela Ljubljanskega barja in njegovega obrobja. Geologija 8, Ljubljana. De Castro, P. 1962, II Giura — Lias dei Monti Lattari e dei rilievi ad ovest della Valle delPIrno e della Piana di Montoro. Boll. Soc. Nat. Napoli 71, 3—34, Napoli. Farinacci, A. & Radoičič, R. 1964, Correlazione fra serie giuresi e cre-tacee deirAppennino Centrale e delle Dinaridi esterne. Ric. sci. 34, serie 2, parte II A, vol. 7, n. 2, p. 269—300. Roma. G u š i č, I. 1969, Biostratigrafske i mikropaleontološke karakteristike nekih jurskih profila iz područja centralne Hrvatske. Geol. vjesnik 22, 89—97, Zagreb. Gušič, I., Nikler, L. & Sokač, B. 1971, The Jurassic in the Dinaric mountains of Croatia and the problems of its subdivision. Ann. Inst. Geol. Publ. Hung. 54/2, 165—183, Budapest. Nikler, L. & Sokač, B. 1968, Biostratigraphy of the Jurassic of Velebit (Croatia). Geol. vjesnik 21, 161—176, Zagreb. Pleničar, M. et al 1970, Tolmač za list Postojna, Osnovna geološka karta SFRJ 1:100 000, Zvezni geološki zavod, Beograd. Pleničar, M. & Premru, U. 1977, Tolmač za list Novo mesto, Osnovna geološka karta SFRJ 1:100 000. Zvezni geološki zavod, Beograd. Radoičic, R. 1960, Mikrofacije krede i starijeg tercijara Spoljnih Dinarida Jugoslavije. Zavod za geol. istr. Črne Gore, Paleont. jugosl. Dinarida, A, 4/1, 35 str., Titograd. Radoičič, R. 1964, Mikropaleontološke odlike i stratigrafska korelacija nekih jurskih stubova spoljašnih Dinarida. Referat na Simpoziju za naftu, maja 1963 u Her-cegnovom. Nafta, br. 10., Zagreb. Radoičič, R. 1966, Microfaciès du Jurassique des Dinarides externes de la Yougoslavie, Geologija 9, Ljubljana. Radoičič, R. 1969, Aberantna grana fosilnih tintinina (podred Tintinnina). Palaeontologia Jugoslavica (Jugosl. akad. znan. umjet.) 9, Zagreb. Sartoni, S. & Crescenti, U. 1962, Ricerche biostratigrafiche nel meso-zoico dell' Appennino méridionale. Giorn. Geol., 2 a, 29, 161—304, Bologna. Sokač, B. & Velič, I. 1978, Biostratigrafska istraživanja donje krede vanj-skih Dinarida (I). Neokom zapadne Istre. Geol. vjesnik 30, 243—250, Zagreb. SokaČ, B., Velič, I. & Tišljar, J. 1978, Model biostratigrafskog raščla-njivanja i analiza sredine taloženja u karbonatnim sedimentima donje krede Biokova. Zbornik radova, Org. odb. 9 kongresa geologa Jugoslavije. Sarajevo. S i kič, D. & Pleničar, M. 1975, Tumač za list Ilirska Bistrica, Osnovna geološka karta SFRJ 1:100 000. Zvezni geološki zavod, Beograd. Sribar, L. 1966, Jurski sedimenti med Zagradcem in Randolom v dolini Krke. Geologija 9, Ljubljana. Turnšek, D. 1965, Velike tintinine v titonskih in valanginijskih skladih severozahodne Dolenjske. Geologija S, Ljubljana. Turnšek, D. in Buser, S. 1966, Razvoj spodnjekrednih skladov ter meja med juro in kredo v zahodnem delu Trnovskega gozda. Geologija 9, Ljubljana. Velič, I. 1973, Stratigrafija krednih naslaga u graničnom području Velike i Male Kapele. Geol. vjesnik 26, 93—109, Zagreb. Velič, I. 1977, Jurassic and lower Cretaceous assemblage-zones in Mt. Velika Kapela, central Croatia. Acta geol. IX/2, Prirod. istr. knj. 42, Zagreb. Velič, I. & SokaČ, B. 1978, Biostratigrafska analiza jure i donje krede Sire okolice Ogulina (središnja Hrvatska). Geol. vjesnik 30/1, 309—337, Zagreb. UDK 553.551.1:551.763.3(497.12)=863 Repen Repen stone Jože Vesel Geološki zavod, 61000 Ljubljana, Parmova 33 Kratka vsebina Opisan je geološki profil repenskih plasti s posebnim ozirom na razli-ček apnenca, ki se d£ lepo polirati in je znan kot okrasni kamen pod imenom repen. Apnenec je siv, delno prekristaljen, bogat s školjčnimi lupinami različnih oblik in velikosti ter z drugimi organskimi ostanki, ki se na polirani ploskvi odražajo v različnih odtenkih. Fosilni ostanki potrjujejo njegovo zgornjekredno starost. Kamnolomi repna so na obeh straneh jugoslovansko-italijanske meje, pri nas na Sežanskem krasu. Kamen je uporaben predvsem za notranje obloge stavb, za zunanjo uporabo pa je treba polirane ploskve zaščititi pred atmosferskimi vplivi. Obravnavani so tudi problemi nadaljnjega razvoja kamnolomov repna. Odsvetuje se napredovanje po vpadu, ker se v tem primeru kamnolom razvije v globoko jamo in postane prekrivka predebela, da bi bilo delo v kamnolomu gospodarno. Zato se priporoča napredovanje po smeri. Abstract Geological features of the Repen beds are given in regard to a limestone variety that can take a high polish. It qualifies for commercial limestone-marble well known under the trade name of "Repen". The Repen stone is an Upper Cretaceous light grey mottled limestone partly recrystallized and rich in shells of variable size and shape. It is quarried and prepared in dimension limestone in the Sežana karstland. Under interior environments of use the Repen stone is sound and durable, for exterior purposes the polished surfaces should be protected. Finally quarrying problems are discussed. No quarrying to the dip is advisable; as the quarry deepens, the depth soon becomes to great and the overburden to thick for profitable work. That is why development to the strike is proposed. Uvod Sežanski kras je eno najbolj perspektivnih območij v Sloveniji za naravni okrasni kamen. Tu pridobivajo več različkov školjkastega apnenca kredne starosti; nahajališča podobnega kamna so tudi onstran državne meje z Italijo. Poleg sivega apnenca tipa nabrežina, kakršnega lomijo v Lipici, je najbolj znan repenski apnenec ali krajše repen. Ime je dobil po kraju Repen, ki leži tik SI. 1. Položajna skica repenskih plasti Fig. l. Location map of the Repen beds ob meji na italijanski strani. Golice repenskega apnenca se vrste na našem ozemlju od državne meje prek opuščenih kamnolomov Lisično I in II, Vitez, Polževo I in II, Doline ter dalje proti vzhodu ob severnem vznožju hriba Mali Medvedjak, severno od Sežane, prek Plešivice proti Divači (si. 1). Po dosedanjih geoloških raziskavah je mogoče sklepati, da je pomemben le zahodni del repenskega horizonta med Dolinami in državno mejo, kjer je na površju konti-nuirna plast repna na severnem pobočju hriba Veliki Medvedjak. Vzhodno od Dolin se repenski horizont stanjša in večkrat prekine; zato so tam perspektivne le še posamezne večje golice, na primer Plešivica. Geološke razmere repna Repenske golice v celoti pripadajo jugozahodnemu delu Tržaško-komenske planote, ki sestoji v glavnem iz krednih karbonatnih kamenin. Geološke raziskave tega dela trajajo s prekinitvami že od 1. 1964. V začetku so bile omejene le na ožja območja kamnolomov; po 1. 1971 pa smo del nahajališča zahodno od Dolin obravnavali kompleksno kot eno nahajališče. Prejšnje regionalne geološke raziskave tega ozemlja so pripomogle k razumevanju paleontoloških tektonskih in stratigrafskih razmer (M. Pleničar, 1958, 1973; S. Buser in dr. 1973). Med Dolinami in Lisičnim II je na razdalji okrog 1,1 km razkrita neprekinjena plast repna, ki zajema okrog 7,5 ha, medtem ko obsega celotna re-penska serija na tem odseku približno 23 ha. Širina te plasti je zelo spremen- i r Sivi.plastoviti apnenec , zakrasel Grey bedded and karstified limestone 20 TZL 30 mt ■tOVi Svetleje sivi rnikritni apnenec, delno preperel Light grey micritic limestone partly weathered Temneje sivi grobo zrnati apnenec s temnimi drobci fosilov — » mušec « Dark grey coarse — grained limestone rich in dark organic remains Local name : mušec Sivi biomikritni apnenec Grey biomicritic bedded limestone Temneje siv, biosparitni apnenec —» mušec « Dark grey biosparitic limestone — mušec Zakrasel interval, zapolnjen z ilovico —»daska« Weathered loamy interval—Local name: daska hO 70 Svetleje sivi biosparitni apnenec, bogat s fosilnimi ostanki; delno rekristaliziran Light grey recrystallized biosparitic limestone highly fossiliferous Trade name:Repen 80- Sivi mikritni apnenec,prehod talnina — repen Grey micritic limestone of transitional character Vrzeli po plastovitosti,zapolnjene z ilovico in brečo Bedding-plane caves filled with loam and breccia Temne|e siv, gost, mestoma bituminozen dolomitiziran apnenec s sledovi rozenca - talnina Dark grev limestone partly bituminous ana dolomitized including some chert nodules and lenses, SI. 2. Geološki profil repenskih plasti Fig. 2. Geological section of the Repen beds SI. 3. Repen s temnimi deformiranimi preseki školjk Fig. 3. Repen stone showing almost black deformed shell's sections ljiva, in sicer od 24 m v osrednjem delu do 110 m pri kamnolomu Vitez. Podobno variira tudi debelina, ki je tudi najmanjša v osrednjem delu, kjer znaša 16 m, medtem ko je najdebelejša v Dolinah, kjer znaša po podatkih vrtin 32 m. V zahodnem delu repenskega horizonta imamo pri nas in v bližini meje na italijanski strani dokaj zanesljive podatke. Manj znano pa je njegovo nadaljevanje proti Sežani in Divači. Geološka zgradba je v splošnem naslednja. Talnina in krovnina repenske serije je temno sivi gosti skladoviti, ponekod školjkoviti apnenec. Na meji s produktivno plastjo repna je več facialnih različkov apnenca, ki prehajajo drug v drugega. Celotno serijo repenskega apnenca, kamor prištevamo tudi SI. 4. Repen s preseki kaprinidnih in hondrodontnih lupin Fig. 4. Repen stone showing abundant sections of the Caprina and Chondrodonta shells neposredno talnino in krovnino, smo razdelili na osem plasti, ki si sledijo od spodaj navzgor, oziroma na terenu od severovzhoda proti jugovzhodu, v naslednjem zaporedju (si. 2). Najnižja plast, to je neposredna talnina, je temneje sivi gosti, tu in tam bituminozni apnenec, ki vsebuje ponekod v zgornjem delu gomolje in manjše leče roženca. Razširjen je na večjem delu Krasa ter je ponekod dolomitiziran, na primer severno od Vrhovelj in severno od Lenivca. Ta apnenec je večidel homogen, ponekod pa vsebuje temnejše, deformirane lupine školjk. V teh delih ima sicer ugodne lastnosti za obdelavo in poliranje, vendar zaradi drugih neugodnih mehanskih lastnosti ni uporaben za naravni okrasni kamen. Nad talninsko plastjo je ponekod vidna diskordanca, zapolnjena z vložkom apnenčeve breče z boksitnim vezivom, debele nekaj decimetrov. Sledi nekaj metrov debela plast sivega mikritnega apnenca z redkimi deformiranimi fosilnimi ostanki rudistov, ki meji na pravi repenski apnenec in tvori pravzaprav prehod, ker je meja le malokje ostra. Ker se da polirati, bi bil lahko uporaben tudi kot naravni okrasni kamen, vendar je krhek, drobljiv in dokaj razpokan: zato ga imenujejo »glaževec«. V njem so, posebno v zgornjem delu, manjše SI. 5. Vzhodna stena kamnoloma Lisično I. Vidna je vrzel po plastovitosti, imenovana »daska« Fig. 5. Eastern face of the Lisično I quarry. Note the bedding-plane cave named "daska" nepravilne leče pravega repenskega apnenca, zaradi česar je težko določiti pravo zgornjo mejo te plasti in s tem tudi pravo debelino repna. Nato se prične osrednja plast repenske serije, ki se razteza s prekinitvami na razdalji 15 do 20 km. To je repen klasični v komercialnem pomenu besede. Osnova je svetleje sivi in sivi, delno rekristalizirani biosparitni apnenec z izrazitimi temnejšimi in v glavnem prekristaljenimi fosilnimi ostanki hondrodont in radiolitov (si. 3). Fosilni ostanki niso enakomerno razporejeni in se razlikujejo med seboj tudi po velikosti in ohranjenosti. Bolj pogostni so v pasovih po plastovitosti, debelih 0,5 m, kar pomeni občasne spremembe sedimentacij-skega okolja. Vmes, predvsem v zgornjem delu, so leče, tik pod zgornjo mejo pa ponekod cela plast repna z velikimi polnimi preseki kaprinid (si. 4). Od krovnine je repen ločen z nekaj decimetrov debelo plastjo ilovice, rdečega in belega kalcita v obliki inkrustacij ter ponekod z dolomitom. Domačini imenujejo to zapolnitev »daska«; predstavlja pa krajšo vrzel v sedimentaciji kamenin repenske serije, oziroma konec sedimentacije repna. »Daska« je najlepše vidna v vzhodni steni kamnoloma Lisično II (si. 5), sledili pa smo jo tudi v drugih kamnolomih in nekaterih vrtinah. Neposredno krovninsko plast predstavlja tik nad »dasko« temneje sivi, delno prepereli brečasti apnenec s temnimi fragmenti raznih organizmov, predvsem školjk, in z drobci antracita. Ponekod je ta apnenec enakomerno zrnat, trd in dokaj kompakten. Lokalno ga imenujejo »mušec«; uporaben je kot okrasni kamen. Nad »mušcem« je peta plast, ki jo predstavlja sivi gosti, mestoma mehkejši laporasti apnenec s posameznimi temnejšimi lepo ohranjenimi fosili ali brez njih. Javlja se v obliki nepravilnih leč, ki dosežejo debelino nekaj metrov, in se lateralno hitro izklinjajo. Stratigrafsko so v različnih nivojih, vendar je prikamenina povsod »mušec«, od katerega se peta plast jasno loči tudi na površju, predvsem pa v kamnolomih. Naslednja, šesta plast je tudi različek »mušca«, le da je bolj grobozrnat in preperel, še temnejši in vsebuje poleg fragmentov tudi cele lupine fosilov, ki so posebno v zahodnem delu tako številne, da so skoraj kamenotvorne. Debelina te plasti je različna, mestoma se združuje s četrto plastjo; skupaj dosežeta debelino prek deset metrov. Sedma plast je skoraj ponovitev pete plasti. To je sivi gosti mikritni apnenec, močneje preperel, ponekod tudi prašnat s posameznimi neenakomerno razporejenimi fosilnimi ostanki. Na površju je povečini zdrobljen, porozen in luknjičav. Površinsko mejo z ostalimi plastmi je težko določiti zaradi prepe-relosti in zakraselosti, medtem ko je v jedrih vrtin bolj jasna. S to plastjo se konča repenska serija. Nad sedmo plastjo sledi temno sivi povečini plastoviti apnenec s posameznimi ali v manjše leče zbranimi fosilnimi ostanki. Po svojih litoloških lastnostih in načinu nastopanja je ta apnenec podoben talnini, le da je manj bituminozen. Na površju je močno zakrasel do globine okrog 5 m, posamezne jame, razpoke in kaverne pa so znatno globlje in se zajedajo še globoko v re-pensko serijo. Kot je navedeno v dosedanjem opisu, je debelina posameznih plasti zelo različna, različna pa je tudi debelina celotne repenske serije med pravo krov-nino in talnino. Repen se odebeli zlasti na območju Viteza in Dolin. Sorazmerno z repnom pa se v teh delih poveča tudi debelina »mušca«. Druge plasti se povsem nepravilno odebeljujejo in tanjšajo. Značilno je; da se vse plasti stanjšajo med Polževim in Vitezom, kjer se krovnina približa talnini na okrog 35 m. Vzhodno od Dolin se pričnejo vse repenske plasti tanjšati in nekatere od njih izginjati. Med Lenivcem, Sežano in Divačo se ponekod pojavljata samo še repen in »mušec Vpad vseh plasti je enoten in znaša poprečno 5 do 25° proti SSW. Splošna značilnost, ki jo nakazujejo vrtine, pa je, da vpada talnina bolj strmo kot krovnina; zato se debelina repenskih plasti po vpadu nekoliko veča. Tudi usmerjenost fosilnih ostankov je identična s smerjo plastovitosti, kar se vidi le na žaganih stenah v kamnolomu. V samem repenskem apnencu nismo opazili prelomov z večjimi premiki. Ze po konfiguraciji terena in razporeditvi vrtač, kakor tudi po odkopnih delih smo pri detajlnem kartiranju našli več rušnih con, širokih do 35 m, ki so orientirane prečno na smer plasti. Med njimi so večji nepoškodovani bloki, ki so med seboj verjetno nekoliko premaknjeni, vendar pa je to težko oceniti zaradi zakraselosti in majhnih premikov. Večji del izrazitih razpok je posledica regionalne tektonike, nekaj pa gotovo tudi kontrakcije. Razpoke na območju Dolin lahko razdelimo na naslednja sistema: — sistem z elementi vpada poprečno 30/80° in medsebojno poprečno razdaljo razpok 0,84 m, — sistem s poprečnimi elementi vpada 285/82® in poprečno razdaljo med razpokami 0,94 m. Za ves osrednji del Krasa pa je značilen sistem vertikalnih, gostih, stisnjenih, v glavnem s kalcitom zapolnjenih razpok v smeri SSE-NNW, ki ga lokalno imenujejo »libro«. Ta sistem je bil zelo pomemben za pridobivanje predvsem v preteklosti, ko so kamen ročno pridobivali in obdelovali. Ekonomski pomen repna Od vseh plasti repenske serije ima ekonomski pomen le osrednja plast, oziroma repen klasični. To je sivi in svetlo olivno sivi, drobnozrnati in srednje-zrnati biosparitni apnenec. V svetlo sivi kalcitni osnovi so precej enakomerno veliki in dokaj dobro zaobljeni bioklasti lupin hondrodontnih in radiolitnih školjk ter ehinodermov. Bioklasti merijo nekaj sto mikronov do lmm; vmes so redki večji, do nekaj cm dolgi, in do nekaj mm debeli odlomki hondrodontnih školjk ter v zgornjem delu plasti tudi redke debele lupine kaprinidnih školjk. Lupine hondrodontnih Školjk so temne, kaprinidnih pa svetlejše in bolj ovalne z umazano belim rekristaliziranim kalcitnim jedrom. Školjčne lupine so več ali manj stisnjene, upognjene in orientirane z daljšo osjo vzporedno s plasto-vitostjo, kar daje vertikalnim presekom kamenine lisast videz. Ta apnenec bi lahko imenovali tudi rudistni kalkarenit, ker so ostanki rudistov od vseh fosilov najštevilnejši. Struktura lupin v bioklastih je še lepo vidna, na splošno pa velja, da je kamenina rekristalizirana. Prelom repna je raven, mestoma tudi školjkast ter normalno hrapav. Opaziti je kalcitne žilice in manjše leče, ob katerih so pogostne pore in luknjice. Številne tanke razpoke so orientirane v raznih smereh. So v glavnem stisnjene in zapolnjene z belim ali rdečim kalcitom, boksitno glino, ali pa so prazne. Struktura je zrnata, kristalasta, tekstura pa homogena psevdobrečasta. Repen ima homogeno teksturo, je rekristaliziran in čist; zato ima zelo dobre fizikalno-kemične lastnosti. Pri obdelavi se lepo kolje, večidel v ravni ploskvi, srednje hrapavi. Žagano ploskev je zaradi znatne rekristaliziranosti mogoče dobro polirati, kar daje kamnu privlačen lisast videz, mehko svetlo sivo barvo z nekoliko mastnim sijajem. Površje je za to vrsto kamna dokaj obstojno, zato je repen uporaben tudi za pohodne plošče za interiere. Le pod zunanjimi vplivi poliran kamen polagoma izgubi sijaj, kar se pa da preprečiti z ustrezno zaščito. Visoka tlačna in upogibna trdnost, nizek obrus, zadovoljiva odpornost proti mrazu in drugim atmosferskim vplivom ter izredno prilagodljiva barva in visok sijaj poliranih ploskev so vzrok, da je ta kamen že več desetletij eden od najbolj iskanih tovrstnih naravnih materialov v Sloveniji. Kemično je zelo čist in ne vsebuje mineralov, ki bi zaradi drugačne barve, trdote ali nagnjenosti k hitrim spremembam ovirali pridobivanje in predelavo ali pa kvarili videz ter trajnost. Slaba stran repna je močna razpokanost v raznih smereh in zakraselost, v glavnem do globine okrog 5 m, ponekod pa še globlje. Ob kalcitnih žilicah, fosilnih ostankih in nakazani plastovitosti je repen močneje porozen in luknji-čast. V raznih smereh, v glavnem pa vzporedno s plastovitostjo, so razviti stilo- litski šivi, zapolnjeni s temnim ali rdečkastim kalcitom, ki pa ne kvarijo videza poliranih ploskev, ampak ga celo popestrijo; po drugi strani pa ponekod le predstavljajo linije zmanjšane trdnosti plošč. Kako zelo iskan je bil že od nekdaj ta kamen, nam priča niz kamnolomov in manjših odkopov po vsej dolžini repenskega horizonta. Cenimo, da so pridobili samo na naši strani meje do sedaj nad pol milijona kubičnih metrov repna in prikamenine. Zgovoren je tudi podatek, da so v kamnolomu Vitez kljub nizkemu izkoristku blokov pod 10 °/o pridobivanje ustavili šele leta 1973, ko je z napredovanjem po vpadu debelina odkrivke že skoraj trikratno presegla debelino repna. Tudi drugi kamnolomi na naši strani so bili že pred desetletjem in več opuščeni. Vzrokov za to je več. Eden glavnih je gotovo zelo nizek izkoristek blokov standardnih komercialnih dimenzij, ki kljub visoki ceni na tržišču niso mogli več pokrivati čedalje dražjega pridobivanja. Na pridobivanje drugih uporabnih produktov, kot so veliki nepravilni bloki, imenovani »tomboloni«, ali manjši kosi za izdelavo ploščic in parketa, pa takrat še niso računali, čeprav je bilo že znano, da ti produkti omogočajo rentabilno poslovanje kamnolomov na italijanski strani. Drugi razlog je bila premajhna in zastarela proizvodnja nasploh. K opustitvi je znatno pripomoglo zmotno mnenje, da je treba vztrajati na starih lokacijah, češ da so stari kamnoseki že vedeli, kje je dober kamen. V resnici pa so zaradi ročnega dela in povpraševanja po manjših kosih včasih pravzaprav iskali rušne in razpokane cone, kjer so sploh lahko ali pa hitreje napredovali. Napaka nekdanjih kamnosekov, ki pa je bila razumljivo pogojena z nezadostnimi proizvodnimi sredstvi, je bila tudi ta, da so skoraj vsi kamnolomi zastavljeni previsoko. Zato je kmalu nastal problem odstranitve jalovine; kamnolomi pa so se razvili v globoke jame, kar jih je »zadušilo«. Nemalo je k vsemu temu pripomogla tudi nekdanja kratkoročna podjetniška miselnost. Ko se je pred dobrim desetletjem vodstvo obrata »Marmor« iz Sežane zavedlo pomanjkljivosti, po drugi strani pa sploh ni bilo dileme o oživitvi pridobivanja repna, je bila podprta ideja o kompleksnih geoloških raziskavah vsega repenskega horizonta. Tako smo v letu 1976 končali prvo fazo detajlnih raziskav med Dolinami in Lisičnim, sedaj pa se usmerjamo dalje proti vzhodu. 2e na podlagi prvih rezultatov je stekla poskusna proizvodnja v Dolinah, kjer so bila zaradi znižanja osnovne etaže potrebna najprej obsežna sanacijska dela. Tu se je pojavilo še vprašanje smeri pridobivanja; pri vseh sanacijah opuščenih kamnolomov, oziroma odpiranju novih, je treba namreč upoštevati geološko lego repna, ki vpada pod blagim kotom proti SSW v pobočje. Na površju je namreč repen močno zakrasel; dalje po vpadu ga krovninske plasti zakrivajo pred površinskimi vplivi in se njegova kompaktnost zboljša. Vendar z napredovanjem po vpadu raste tudi debelina odkrivke in v odvisnosti od vpada plasti in naklona pobočja praviloma že po nekaj 10 m preraste ekonomsko mejo. Zato je treba osnovno etažo zastaviti dovolj nizko, že nekaj metrov v talnini, kar pa v začetku pomeni slabši ekonomski učinek. Z napredovanjem po vpadu se učinek zboljšuje do razmerja repen : krovnina okrog 1:1, nato pa se zopet slabša, ker se veča odkrivka in končno postane kamnolom nerentabilen. Iz tega razloga bo treba pri organizaciji večjega kamnoloma razviti koncept kontinuiranega napredovanja po smeri plasti in ne po vpadu kot doslej. Detajlne geološke raziskave repna od državne meje do Dolin so dale zadostne rezerve za več 10-letno obratovanje enega velikega ali več srednje ve- 9 — Geologija 22/1 likih kamnolomov. Vendar bo tudi tu izkoristek blokov standardnih komercialnih dimenzij nizek; znašal bo le 5 do 10%. Ce pa k temu prištejemo še tombolone in druge uporabne produkte, bo skupne koristne substance med 20 in 30 «/o od predvidene odkopane skupne mase. Če k temu prištejemo še možno uporabo odpadkov v gradbeništvu, za polnila, kalcitno moko in dr,, potem obratovanje takega kamnoloma gotovo ne bo več ekonomsko vprašljivo. Seveda pomeni odpiranje takega kamnoloma z vsemi spremljajočimi objekti veliko investicijo, ki bo med drugim uresničljiva šele takrat, ko pod okrasnim kamnom ne bodo mišljeni samo bloki standardnih komercialnih dimenzij, ampak vse, kar se da pridobiti in prodati naravnega kamna s sodobno tehnologijo. Repen je ena izmed najbolj iskanih surovin za industrijo naravnega okrasnega kamna v Sloveniji, zato bi moral čimprej ponovno zavzeti ustrezno mesto med proizvodi te panoge. Literatura Buser, S. in dr. 1973, Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Gorica. Zvezni geološki zavod, Beograd. Pleničar, M. 1958, Divača—Škocjanske jame—Vremski Britof v: Geološki izleti po Sloveniji, Mladi geolog 2. Mladinska knjiga, Ljubljana. Pleničar, M. in dr. 1973, Osnovna geološka karta SFRJ 1:100 000. Tolmač za list Trst. Zvezni geološki zavod, Beograd. Herbeck. A. 1953, Der Marmor. Verlag Georg D. W. Callwey, München. Vesel, J. in dr. 1975, Nahajališča okrasnega kamna v Sloveniji. Geologija, 18, Ljubljana. "Winkler, E. M. 1973, Stone: Properties, Durability in Man's Environment. Springer-Verlag, Wien—New York. UDK 553.492:550.837.3:518.5=20 Indirect geophysical model of Istrian bauxite deposits The bauxite bodies in Istria lie rather deep and are too small to be directly identified. Bauxite is a common residual constituent found in pockets of Cretaceous limestone. During its formation and compaction, its volume is reduced. Therefore its hanging wall, consisting of Eocene limestone, settles in the Cretaceous pocket. The rents and fissures in the hanging wall are filled with clay. Due to favorable wet conditions this geological structure becomes a low resistivity body, corresponding to a hemispheroid or dike. Resistivity curves over these models fit the corresponding observed resistivity profiles very well, the difference being within a few percent on average. The paper contains a collection of resistivity type curves. With regard to the hemispheroid, there occurs in specific conditions a remarkable paradox; the thinner the hemispheroid, the more significant the anomaly. Boksitna telesa leže v Istri pregloboko in so premajhna, da bi jih mogli najti z direktnimi raziskovalnimi metodami. Geološke razmere v njihovih nahajališčih pa so ugodne za uporabo indirektnih metod. Kot preostanek preperevanja krednega apnenca se je boksit zbral v žepih krednih plasti, ki jih je prekril eocenski apnenec. Ker se je med nastajanjem boksita njegova prostornina zmanjševala, se je začela posedati njegova krovnina iz eocenskega apnenca. Med posedanjem so eocenske plasti razpokale in razpoke je zapolnila glina. Na ta način so nastale ugodne razmere za povečanje vlažnosti v krednem žepu, ki je postal nizkoupomo telo. Tej geološki strukturi ustreza model polsferoida, v določenem primeru pa model plošče. Teoretične krivulje modelov se razlikujejo od ustreznih izmerjenih vrednosti poprečno le za nekaj odstotkov. Poleg kvalitativnega in kvantitativnega vrednotenja upornostnih anomalij boksitnih žepov vsebuje članek večji izbor modelnih krivulj. Pri polsferoidu se je pokazal zanimiv paradoks: Cim tanjši je polsferoid, tem večjo anomalijo povzroča. Janez Lapajne Geološki zavod, 61000 Ljubljana, Parmova 33 Abstract Kratka vsebina Contents 1. The resistivity anomalies of bauxite deposits in Istria 1.1. Introduction............... 1.2. The direct and indirect approach...... 1.3. Test resistivity survey........... 1.4. Detailed resistivity profiling........ 1.5. Results of core drilling.......... 128 128 128 131 131 136 2. Mathematical modelling......................137 2.1. Basic equations.......................137 2.2. Resistivity type curves.....................142 2.3. Analysis of resistivity type curves................167 3. The quantitative processing of anomalies ...............170 3.1. Numerical proceedings....................170 3.2. Results of quantitative processing................173 3.3. Discussion.........................187 4. Conclusions..........................187 References...........................188 1. The resistivity anomalies of bauxite deposits in Istria 1.1. Introduction The subsurface conditions in bauxite deposits at Karojba in Istria were explored in 1966. Geological mapping was immediately followed by a geophysical survey and subsequently by core drilling. It was already known that bauxite occurs in Cretaceous limestone pockets. Its hanging wall is of Eocene limestone, which overlies the Cretaceous limestone to the North of the line Umag—Labin, whereas proceeding southwards of this geological boundary, Eocene erosion remnants are to be found (fig. 1). 1.2. The direct and indirect approach The differences in physical parameters between a buried body and its surrounding rock may cause geophysical anomalies, measurable on the surface. In this case, the buried body is discovered directly. With regard to the known physical parameters, it is relatively easy to estimate the depth and the dimension of the bodies of simple geometrical forms, by applying the iterative numerical method, provided the body and its country rock are homogenous units. However, results of laboratory and ma thematic model investigations clearly show that the direct approach is suitable for shallow geological conditions. The Wenner array, with electrodes separated at a suitable distance, registers a change of approximately only 10 per cent of apparent resistivity when a perfectly conducting sphere lies at a depth (distance from the surface to the center of the sphere) which equals the diameter of the body. Applicable variations of this measured parameter must conform to following equation; V = measured quantity, A V = change in the measured quantity, pr = relative error of measurement. In the case of resistivity surveys, the error of measurement is considered to be as much as 5 per cent. Due to the influence of topography and the inhomo-geneity of the field, the change in measured quantity for even 10 per cent can hardly be recognized. Fig. l. Location map of explored bauxite deposits at Karojba (After J. Lapajne, 1969) SI. 1. Situacija raziskanih boksitnih nahajališč pri Karojbi (Po J. Lapajne, 1969) Fortunately, geological and hydrogeological conditions may make it possible to prospect a buried body indirectly, resulting from the resistivity properties of its cover. This possibility must be studied on natural models in well known geological conditions resembling the potential investigation area. By means of indirect investigation and an appropriate interpretation process, it is possible to obtain the required geological information. ?aIohm m] 1 Fig. 2. Observed resistivity profiles on the erosion remnant of Eocene limestone (test location) SI. 2. Profili navidezne specifične upornosti na krpi eocenskega apnenca (poskusna lokacija) 1.3. Test resistivity survey Test measurements have been carried out in a selected area, the geological setting of which has been controlled by drilling. The Eocene beds overlying the bauxite body are somewhat thicker than elsewhere, a fact which by itself cannot serve as an explanation for existing anomalies, as no essential difference is to be found between the electrical resistivity of the Eocene and Cretaceous limestones. The resistivity values obtained are as follows: Cretaceous and Eocene limestone 1000—3000 ohm.m bauxite 100—300 ohm.m clay, humus, terra rossa, marl, water 10—100 ohm.m (Note: Some of the values were not within the limits given above.) The indirect relationship of the anomaly to the bauxite can be interpreted in terms of the origins of the bauxite. The formation of bauxite is related to a volumetric shrinkage, which causes a gradual sinking of the bauxite hanging wall. Consequently, moderate depressions in places clearly indicate distinctive superficial features marking the Cretaceous bauxite pockets. Cracks, rents and fissures filled with clay traverse the sunken Eocene calcareous hanging wall, thereby causing favourable wet ground conditions. That is why the bauxite pockets appear as low resistivity bodies. Hemispheroids and dikes may accordingly represent the models of such structures (figs. 2—7). Taking into consideration the geological features, the prolate hemispheroid seems to be the most appropriate for evaluation. The model curves already published for hemispheres (K. L. Cook and R. L. Gray, 1961) and vertical dikes, as well as one for oblate hemispheroids (K. L. Cook and R. G. Van Nostrand, 1954), together with field measurement, show that the anomalies may likewise be explained by these models. This means that the deviation in geophysical quantities observed at the Istrian bauxite deposits, originates mainly in the hanging wall of Eocene itself. Fig. 8 shows a geological profile of the test locality (b) and suggested geoelectrical models (a). 1.4. Detailed resistivity profiling On the basis of all the previous geological and geophysical information, an area has been prospected 1.5 sq km North of the Cretaceous/Eocene limestone boundary. Taking previous resistivity investigations into consideration, only one array dimension seemed to be appropriate for resistivity profiling, as in the case of a larger number of electrode separations, the work would be time consuming and would increase costs. At the beginning, measurements were carried out by the Wenner array, where electrode spacing equalled 10 m. 20 m, 30 m and 40 m. Experience had suggested that an array of 30 m would be the most appropriate both in the field survey and in interpretation. In certain sections additional data were gathered by varying the separation of electrodes. The survey was carried out in roughly parallel lines, the separation of electrodes being 30 m and the distance of adjacent observation points reaching 10 m. The length of all survey lines totalled 63 km. ?q| Ohm m] ¿50 ¿00 350 300 250 200 o = 10 m Y = 0 m X0s 30.9 m R = 7 5 m 0 = 21.S m = ¿30 otim.m ?2 = 0 ohm m 150 0 10 20 30 40 50 60 70 > H-1--1-1-1-1-1-1-1-1-1-1--1-1-1 Fig. 3. Test location. Observed resistivity profile over bauxite deposit and theoretical plot over direct model — buried conducting sphere. Wenner array, a = 10 m SI. 3. Poskusna lokacija. Teoretična krivulja neposrednega modela — prevodne krogle v homogenem polpro-storu in merske vrednosti Wennerjeva razvrstitev, a — 10 m a s 20m Y s Om X0 = 31 5 m R » 7.5n 0 = 21.5 cn 9, = 770 ohm.m = 0 ohm. Fig. 4. Test location. Observed resistivity profile over bauxite deposit and theoretical plot over direct model — buried conducting sphere. Wenner array, a = 20 m SI. 4. Poskusna lokacija. Teoretična krivulja neposrednega modela — prevodne krogle v homogenem polpro-storu in merske vrednosti. Wenner jeva razvrstitev, a = 20 m 90l ohm. ml 1200 1150 1100 1050 1000 950 900 850 eoo 750 700 650 600 a = 30 m V = Om X0 e 26.0 m R s 7.5 m D = 21.5 m = 1160 ohm.m V2 s 0 ohm m 10 Fig. 5. Test location. Observed resistivity profile over bauxite deposit and theoretical plot over direct model — buried conducting sphere. Wenner array, a = 30 m SI. 5. Poskusna lokacija. Teoretična krivulja neposrednega modela — prevodne krogle v homogenem pol-prostoru in merske vrednosti. Wennerjeva razvrstitev, a = 30 m 9aI Ohm m ] UOO -1350 1 300 1 250 1200 1150 + 1100 1050 1000 950 900 850 800 750 a = ¿0 m Y = 0m Xc = 27 2 m l?: 75m D : 21 5 m r 1370 ohm m t /S S -V> pc ✓ry+[fl(n+l )R+rcJ*+ Zrp[4(n+1 )R+rc]Cos «pc (3-1) V.. =l£lil±2il l {kjlkž3) 2lr I Jrp'+[4nR»r^]1- 2rp[4nR«rcJco$ ^ /rpJ+|4(n+1 JR+rj.]* ♦ 2rp[4(n+1)R+rclcos ipc Vj1 . W*»)M-k„) " [k,M 2it ni° / iy+[4nR+rcI*- 2rp[4nR*rcJcos *pc (3-2) (3-3) v., .JMhknl £ (kllktiJ 2* n=0 V sl£iJ-L+ e (k2lk„) 2it |rpc n=0 /rpi+[4r>R+rc]i- 2rp[4nR+rc]cos *pc /rp2+M(n+1 )R-rcj®- 2rp[4(n+l)R-rc]COS 4p (3-4) / y+[4rR+rc]l+ 2rp[4nR+rcl cos /rpI+[4(n+1 )R-rcJ - 2rp[4(n+1 )R-rc]cos 0p k„ + k2, k„ 11 (3-5) /i-p^l^n+IJR+rj.]1- 2rp[4(n+1)R+rc)cos«pc /rpi+I4[4nR-rcJcos#pC /p1 +[4nR+rc]*+ 2rp[4nR+rc] cos *pC (3-6) v - wi-fc2l)n+*») {kitk,,) /rp3+L4nR+rcJ - 2rp[4nR+rc]cos $p(. v23» TPl(,4k») Z (0)T Q>p)P>c)cos L>R)-P2K;>R) L J ^ 5.(np)l ,f J — < —=-*- - •■ "■ ■■■■ i i —-2n [Pirpc p, f n-1 m-0 (- Pi-Pa Pi y„ . Jpl . ? £ n-lLl1 1 k(0)l1 P™(nP1P>c)cos ♦ (-1) Un™)U PiLn(nR)-P!Kn(nR) L J ' f = /\o2 - R*| f 1 .....m=0 6 = LO .....mfO «■i I Kr>R> " TiS—" V^r) R " Y\T rPC = lxP " *c' p.f QB(HR) ... , P>R> <3 r^E? > 4 np "VlT +1 \=V\-r + r„. A ^ + rC ' ^C cos *PC = ?rprc- (4-1) (4-2) (4-3) (4-4) (4-a) V . JElJJL -Ê1IS1 £ g i (2n+1 ) (2-6) f(n-i»i)! *| ' O^rO^R* f, J» n , n>( „ [ V?1 .i&L Jj_.Jill8l t J i(2n+1)(2-i) Rn^ Ln^R> ["p>)]>(U p)({[H c)eos n,^)! (5-2) 21 2^rpc f n»1 m«0 ) Li™1)! j P^d^)- Pi O1^ J J /_£»_.. »^-»O S g <(2tul)(2-&) r^nHSllY -[O^Îv^p'O^C»^ + 12 2^P,rpc p, f n=l ni (-1)m L(n+n»!j Pll^ L " J " C + Pil£larc tg (J-)l (5-3) Pif ÇPj 2r^p,rpc P.f n-1-0 (-t)m Ltn^J ] P' » C PC £CEl arc tg (5-4) Pi^ 10 — Geologija 22/1 = ^ 4 * i1 ____m - 0 ----m t f = /D2 - R » _ 9! cp = a^T- I - uf) -1 .....o^p) * - i ..... «c ■ ^ - 1 -1 .....p;tuc) - p;(uc) - 1 ..........-i^^-^c) (5-a) »CP = i*P - *ci rP= V - ^ v -V 4 cos*p 2.2. Resistivity type curves For qualitative as well as for quantitative interpretation, there are rather useful theoretical resistivity curves of various models available. Theoretical anomalies have been treated by several authors (K. L. C o o k and R. L. G r a y , 1961; K. L. C o o k and R. G. Van Nostrand, 1954). Some years ago a good selection of resistivity type curves for vertical dikes was published (Kumar Rakesh, 1973 — survey line perpendicular to the strike of the dike and electrodes along this line; S h. C. Jain, 1974 — survey line perpendicular to the dike and electrode array perpendicular to this line). The published master curves were extremely useful in qualitative interpretation. However, in the first phase of quantitative evaluation, as well as for analysis and the examination of the characteristics of resistivity profiling, a more suitable collection of resistivity model curves was required. All calculations were carried out by the Hewlet Packard 9830 A desk calculator. The hemisphere and the vertical dike served as basic models. In one particular case only the prolate and oblate hemispheroids were treated in order to reduce the duration of mathematical operations and problems of convergence. The calculated model curves are given in figs. 13 to 50. Most of the diagrams relate to the hemisphere (the deposits exhibiting a roughly circular subsidence for the most part) and to the Wenner electrode array. A survey of theoretical curves is given in table 1. -M.B -3.S -3.0 **2.5 -2M -IE -1.0 -0.5 E.0 8.5 I.B 1.S 2.0 2.S 3.0 3.S 4.0 X/3 Fig. 13. Resistivity type curves over hemisphere SI. 13. Modelne krivulje polkrogle HM-HN = NB«a D ■ R Y ■ □ " 05 Fig. 15. Resistivity type curves over hemisphere SI. 15, Modelne krivulje polkrogle RMol-IN-NB-a D - R Y ■ R I ~ aD (Ja^(jS( RM • HN • NB = 3 0 * R Y-R = 02 Fig. 17. Resistivity type curves over hemisphere SI. 17. Modelne krivulje polkrogle RM « MN « NB = 2. D - H Y = R Ç2/ÇI " 0 S HM"MN»NB®a D = R Y - O R / a « O.25 Fig, 19. Resistivity type curves over hemisphere SI. 19. Modelne krivulje polkrogle Rh - MN » NB »= a & - R Y « □ R/a-O.SD -M.B -3 -S -3.0 -2.5 -2.B -IS 2.0 2.S 3.0 3.5 N E X/3. (S^! HM»MN-NB«a D = R Y « □ R / 2 « 0 75 Fig. 21. Resistivity type curves over hemisphere SI. 21. Modelne krivulje polkrogle RM - Î1N - NB - 2 D « H Y-R H / a - □ . 2S I AH < HN ■ NB ' a O « R R / 3 - D.SO Fig. 23. Resistivity type curves over hemisphere SI. 23. Modelne krivulje polkrogle flM=HN-NB-a, [> ■= R Y - R R ^ a = O.75 RM-MN-NB-2 0 - R R / a» D,2S " 0,0 Fig. 25. Resistivity type curves over hemisphere SI. 25. Modelne krivulje polkrogle RM «= MN = nb - a. o « r R / a « D.2K ■ ° 2 nn«MN«NB-a d«r r / a - d.25 " DS Fig. 27. Resistivity type curves over hemisphere SI. 27. Modelne krivulje polkrogle AM = MN • NB « 3. D « R R / a - D.SQ " °' ° RM ■ MN « NB - 2 R / a ■ □. SO - Fig. 29. Resistivity type curves over hemisphere SI. 29. Modelne krivulje polkrogle RM = MN « NB = 2. D « R B / a « D.SD " D -s Fig. 31. Resistivity type curves over hemisphere SI. 31, Modelne krivulje polkrogle [?a/f2J flM = MN = NB«a o « R R/a = 0. 7S = D 2 Wi R / 2. = 0.7S 3.S H.0 X/2 Fig. 33. Resistivity type curves over hemisphere SI. 33. Modelne krivulje polkrogle OB » 3 a ibK. a.B I 9 I B I . 7 t .E I E I .H I .3 I .2 f 0 9 -f-0 B 0 7 + B . E B B.4 + D.3 B.2 B. I B.B -H.B SB J / / I .75- □0 -3. S -3.0 -2.S -2.B -I.S —1.0 -0.S 0.0 0.5 1.0 I.S 2.0 2.5 3.0 3.5 RM « MN = NB = 2. t>«R X = O Y = O Fig. 35. Resistivity type curves over hemisphere SI. 35. Modelne krivulje polkrogle HB ■ 3 a MH - 2/3 D = R X « O Y = D Çnin/ a/3 B.B B.H —1 0.0 2.0 R/2 UN/W HM ■ MN ■ N8 • i 0 - R V - □ fc/f, Fig. 41. Resistivity type curves over hemisphere SI. 41. Modelne krivulje polkrogle 11 — Geo»ogija 22/1 9a/9, AM = MN s NB " o D = R X = 0 9,/?,« 0.2 R'0 Fig. 43. Resistivity type curves over hemisphere SI. 43. Modelne krivulje polkrogle 9o i AM = MN » NB = a O = R X = 0 / 1 II It 0 0.5 II 21 N N n n 0,75 M 22 1» II n R 0.25 0, 0,2, 0.5 23 ■ M ii « 0.5 0, 0.1, 0.2, 0.3, 0.5, 0.7 24 ■1 II It M 0.75 ■i 25 N II ii R/o « 0.25 P,/P2 - 0 y/K - 0, 0.6, 1, 1.6 26 II II n h 0.2 a 27 II II n R/o - 0.25 V'i - 0.5 y/R « 0, 1 28 II II ii 0.5 0 0, 0.4, 0.6, 0.8, 1, 1.2 1.6, 2 29 II II ii » 0.2 n 30 » II ■i n 0.5 0, 0.6, 1, 1.6 31 II II H 0,75 0 0, 0.4, 0.6, 0.8, 1, 1,2 1.6, 2 32 M 1« 11 n 0.2 n 33 B N II M 0.5 0, 0.6, 1, 1.6 34 H Schlumberger n y -0 0.2 R/a -0.1, 1/6, 0.25, 1/3, 0.5, 2/3, 0.75, 5/6, 1, 1,25, 1.50, 1.75, 2 nadaljevanj«_____continued SI. MODEL RA^RSTITEV FUNKCIJA izbrane VREDNOSTI PARAMETER DRUŽINE KRIVULJ Fig» MODEL ARRAY FUNCTION FIXED VALUES SET PARAMETER VALUES 35 Polkrogla Hemisphere Wenner [ Pj/P, " X = 0 y * 0 P^P, =0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 36 n Schlumberger M » ■i n 37 ■ Wenner P ./P "Ko/*) mm max ^ - II » 38 ii Schlum berger II » n " C °-0,) 39 ii Wenner Pg/P| - W«) X » 0 n n 40 •i Schlumberger P/P, " W/o) X = 0 y -0 Pj/P, -0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 41 ii Wenner PmîAax-F X » 0 P/PT » 0.2 R/a - 0.25, 0.4, 0.5, 0.6 0.75, 1, 1.25, 1.5, 1.75, 2 44 M II p/p] - W°) n II y/a -0, 0.5, 0.75, l, 1.25, 1.5, 2 45 M n Pc/P, -fcPa/P]) - (R/o, y/a) - 0, 0.25) ... 46 46a Plošča Dike ■i fJ/P, »fiV«) 06- op/p, -0.2 pyp, - 1 R/a - 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1, 1.25, 1.5, 1.75, 2 47 47o «t n » 0.6 48 48a n M » 60° 1 H 49 49b H Schlumberger n 0 n H M 50 PoUferoïdi Wenner H em ¡spheroids ii y -0 R/a*C.5 oc » 0 1 0 P/Pj-I D/R « 0.1, 0.5, 1, 2, 4 CO ¿,0 / j C (PLOŠČA oo (DIKE: Fig. 50. Resistivity type curves over hemisphere, oblate and prolate hemispheroid and vertical dike. Solid lines — computed, dashed sections — interpolated SI. 50. Modelne krivulje polkrogle, sploščenega in podaljšanega polsferoida in vertikalne plošče. Neprekinjeni odseki krivulj so izračunani, črtkani pa interpolirani 2.3. Analysis of resistivity type curves From a total of 38 diagrams there are 27 sets illustrating the theoretical horizontal resistivity profiles 9a/&t f (x/a). Resistivity profiles over the body are characterized by break points. They appear where one or two electrodes traverse the body and the country rock. In the symmetrical AMNB electrode array the turning points are at: hemispheriod MN xi = ± X2 = ± 2 MN l/R2-y2 + j/tf * _ y2 :ri = ± dike MN R 2 /MN + cos a | R cos -J X4 2 = ± + l/R^j 0:3 — Xi = \AB__R 2 ÀB COS a ! R V 2 cos a! The hemisphere model curves show how the amplitude and the shape of the anomaly are influenced by parameters yjR, R^a and Qi/Qu The anomalies decrease as the body resistivities advance towards that of the country rock, as well as with the growing distance of the traverse from the center of the body, i.e. with the increase of y/R or y/a. This relationship is self-evident. Nevertheless, the decrement of the anomaly, as well as the changing of its shape, are important, as can be observed in the diagrams. The anomaly at point (x = 0, y = 0) as a function of yla and 02/91 is shown in figs. 43 and 45. By increasing the distance of the traverse from the center of the body of radius R > MN/2, the change in the anomaly at point (0,0) is practically negligible up to y --■= (MN/2)2 (it increases slightly). At this point the potential electrodes leave the body and, further on, the anomaly decreases with considerable speed (fig. 43). With the increased ratio £2/01, the anomaly decreases rather rapidly (fig. 45). On the other hand, the relation of the anomaly to the radius of the hemisphere has proved to be somehow more complicated. Fig. 44 illustrates the relation of = / (R/a) at point x = 0 for different traverse positions. Where R/a is augmented the anomaly increases fast, thus reaching R = /(MN/2)2 + y* at this point the potential electrodes are at the very edge of the body. A further augmentation of R'a does not change considerably the anomaly much (it increases slightly as y is increased) until the point where R — — i {AB/2)2 -f- y- when the current electrodes enter the body. From this point on, the anomaly increases slightly again. Fig. 39 illustrates the anomaly at point {x = 0, y = 0) as a function of the radius of the hemisphere for different values of resistivity of the body. The evaluation of the anomaly at point (0,0) reveals but some of the characteristics relative to resistivity profiles; none of the remaining characteristics emerge before the entire anomaly is examined. Diagrams shown in figs, 13, 14 and 15 point to rather important characteristics: the ratio £>«/ei, reaches its maximum at a defined R/a value. However, at higher and lower values of R'a, the anomaly amplitude is lower. The maximum value of QaJei corresponds to the radius of the sphere R = AM/2 = NBf2; in the Wenner array this radius equals 0.5 a. When qJqi is at its maximum in the equation (3) then xt = ;rs. Accordingly, the highest sensitivity of resistivity profiling refers to the case where the body radius of R = AM/2 = NB/2 (except for high R/a values). The ratio of the minimum and maximum apparent resistivity values on the anomaly may be regarded as the measure of sensitivity. Fig. 41 presents this ratio as the function of R/a for different values ps/ei. At smaller R/a values, the minimum representation on the curves is at R/a = 0.5 The question of sensitivity may be viewed also from another point of view: Which electrode spacing in the Wenner array is most appropriate for resistivity profiling? Fig. 35 illustrates the dependence of the anomaly on the array dimension at point (0,0). The highest sensitivity point can be reached in closely spaced arrays which are not practicable because of the heterogeneity of the ground and rather low depth penetration. The most appropriate values are AB/2 = 3 a/2 > R. However, referring to fig. 35 there ought to be a/R < 2. The most appropriate array dimension may be determined precisely by means of Curves Qmin/@max — f{a/R) (see fig. 37). These curves demonstrate that the most useful value is a/R — 2 (or R/a = 0.5). An upward deviation of this value is more favorable than the opposite. This is valid especially for traverses running at a distance from the center of the body; the optimum array length is a/R = 2 [/I — (y/R)2 in this case. Accordingly, the Wenner array may be compared to the Schlumberger array, as presented in the diagrams (figs. 14 and 35); fig. 35 illustrates the model curves for an inexact Schlumberger array — AB/MN = 9. For easier comparison, the dimension a of the Wenner array has also been introduced in this diagram, although in the Schlumberger array the parameter AB or AB/2 (for AB = 3 a) is usually applied. As expected, the Schlumberger array proved to be more sensitive to the inhomogeneities than Wenner's. In addition, the Schlumberger anomalies display a useful characteristic: they are limited by rather steep lines (in an exact Schlumberger array these "limits" are vertical). In any arbitrary inexact Schlumberger array, the maximum Qa/9\ value pertains to the body, the radius of which varies between R = AB/6 = 0.5 a (in the Wenner array) and R — AB/4 = 0.75 a (in an exact Schlumberger array); in our case this is R = 2 AB/9 =-2 a 3. The characteristics of the Schlumberger array are evident also from firrs. 36, 38, 40 and 42. Also in the Schlumberger array the function QmdQmax — f (a/R) or omin/Qtmj = j (R'a) reaches its minimum at certain R/a; at this value the set of = j (x/a) shows maximum point. The sensitivity of the Schlumberger array increases with the growing ratio AB/MN, and has an advantage over the Wenner array. It has, however, a weak point since it is susceptible to small bodies and inhomogeneities, both features of limited interest. The anomalies they provoke burden the recorded resistivity profiles and inhibit the interpretation. Accordingly the Wenner array serves as a sort of "high-cut filter" suppressing the influence of smaller bodies and heterogeneities on the resistivity profile. Considering the entire anomaly, one could conclude that the equivalence is of no importance because of the various forms of the anomalies. However, its full significance at point x ~ 0 is evident, as is well illustrated in figs. 43 and 44, and particularly in fig. 45. For every curve qJqi = f (&2jei) at x = 0, there is an unlimited number of pairs (R a, y/a). The equivalence is above all conditioned by the low density of observation points on the profile; its domain increases correspondingly even if the entire anomaly is taken into consideration. Four characteristic sets of curves (figs. 46 to 49 and 46a to 49a) are given for the vertical dike. The set of curves as presented in fig. 46 may be compared to the set shown in fig. 14, and the curves of fig. 49 with the curves of fig. 34. An apparently strange characteristic immediately emmerges. The anomalies at certain R/a values pertaining to the hemisphere, are better expressed than the corresponding anomalies of the dike, because of the increase of the apparent resistivity at x = MN/2 + R in the case of the hemisphere. Fig. 47 presents a set of curves for different resistivities on both sides of the dike, whereas fig. 48 illustrates the anomalies of the traverse running obliquely across the dike. Where the dike is narrow, the anomalies are somewhat higher for oblique traverses compared to the corresponding anomalies of perpendicular traverses. It has been discovered that the anomalies of the hemisphere are at times better expressed if compared to the corresponding anomalies of the dike. This observation is better illustrated in fig. 50 which shows the anomalies of the prolate and oblate hemispheroids beside the anomalies of the hemisphere and dike. The diagram thus expresses an important paradox: the thinner the body, the higher the anomaly. This phenomenon is especially relevant where the body has very low resistivity and at appropriate geometric parameters. The explanation of the paradox might be found in the fact that in such cases, one current electrode and one potential electrode are connected by a good conductor, whereas the third and the fourth electrodes are isolated from the first two, as well as from each other. In practice, however, this phenomenon may cause inconvenience since the anomalies of unsignificant bodies could be interpreted as the reflection of larger geological features. In order to avoid the misinterpretation, it is necessary to examine the shape of the anomalies, as well as the values of the apparent resistivity, thoroughly. Referring to the geophysical investigation of bauxite deposits in Istria, some questions arose. An attempt is made here to answer two of them: the first concerns the choice of the array type, and the second, the elimination of the anomalies at the sites featuring a comparatively small thickness of low-resistivity surface layer. With reference to the Wenner array, the choice was correct because it was less sensitive to small inhomogeneities. The Schlumberger array on the other hand, would register greater number of anomalies and its results would be consequently more difficult to interpret. The paradox discussed, as illustrated in fig. 50, points to the apparently justified decision related to the second question, although insufficient attention has been given to the shape of the anomalies and to the values of apparent resistivity. In the first chapter it was supposed that the apparent resistivity anomalies arose either from the Eocene cover of the bauxite or from both, the hanging wall and bauxite together. This supposition led to the hemispheroid model and even to the dike. The comparison of field and model anomalies for the hemispheroid and for the dike confirms their suitability and justifies the quantitative verification. Seven locations of different depths and dimensions of the bauxite bodies were selected for quantitative processing. On the locations bauxite is present at a depth of between 11.5 m (locality 20) and 54 m (locality 18). The thickness of the penetrated bauxite layers varies between 2 m (locality 61) and 19.5 m (locality 109). All the anomalies are sharp, regardless of the depth and the size of the bauxite body, confirming thus the assumption that the bauxite body does not contribute much to the lowering of the apparent resistivity in geo-electrical profile. The numerical processing of the anomalies is based on the trial-and-error process, derived from the supposed model, the hemispheroid and the dike in our case. The corresponding equations have already been quoted in the previous chapter. The mathematical proceeding is given in the flow chart (fig. 51), where the root mean square error of fit RMS is expressed by the equation r and the meaning of symbols is as follows: RMS = root mean square error Qim = observed apparent resistivity at observation point "i" pit = theoretical apparent resistivity at observation point "i" N ~ number of observations in a selected section of the resistivity profile. In the case of the hemisphere, the iteration comprises the following parameters: resistivity ratio of the body and the country rock Wei), radius (R), the position of the hemispheroid center on axis x (x0) and the position of the center on the axis y (yo). In the case of the dike, the procedure involves the ratio of the body resistivity to both parts of the country rock (02/&u ea^i). the thickness of the dike (2R), the position of the dike axis on the traverse (ar0) and the direction of the traverse to the strike of the dike (fig. 51). 3. The quantitative processing of anomalies 3.1. Numerical proceedings C start ) INPUT / array type and dimensions, observed data 7 L estimated initiai model data 7 computation of theoretical apparent resistivities in observed data points for initial model PROCESSING i computation of error of fit*] first model parameter increment and computation of theoretical apparent resistivities in observed data points - i -;- computation OF ERROR of FIT | last model parameter increment and computation of theoretical apparent resistivities ln observed oata points --I - i computation of error of f|t| computation of difference of errors of fit for first and last model parameter THE "Difference" jf errors of fit is*1 /ithin the given limits computation of best-fit curve for the given __smaller sampling interval__ RESULT L best-fit curve, corresponding model parametres, error of fit - r - C end ) 7 Fig. 51. Flow chart of anomaly processing __*__ DF7MI TAT / podatki 0 modelu. 7 / modelna krivulja rms / - — - ckonec ) SI. 51. Diagram toka numerične obdelave anomalije 3.2 Results of quantitative processing The numerical procedure described was applied for the anomalies of locations Nos. 10. 18, 20, 26, 61, 105 and 109 as well as for the test location anomalies. The processing data are presented in figs. 52 to 70. It is evident from the diagrams that in the case of most of the profiles, the model curves fit the measured values quite satisfactorily. The resulting values of all model parameters are listed in tables 2 and 3, together with the corresponding RMS values and y being the coordinates of the body center relative to the traverse). At the test locality, various electrode arrays make the parameter values more or less different. The differences in coordinates of the body center are comparatively small (except the value of y in the array a = 10 m), which is a promising point regarding the location of the drilling sites. Somewhat less consistent are the values of body dimensions, particularly for different models — the hemisphere and the dike. It should be mentioned that a smaller diameter, in the case of the dike, is involved in the shape of an anomaly and most probably in an inclined profile direction to the strike of the dike. Parameters pertaining to the same model vary, due to the horizontal and vertical inhomogeneities of limestone, the fissuring and karstification and the variable thickness of the low-resistivity surface layer. The treated models must therefore be regarded as rough approximations of field conditions only. The horizontal inhomogeneity is evident in the apparent resistivity profile, whereas the vertical inhomogeneities are shown in the comparison of profiles of different depth penetrations. Fig. 2 (as well as fig. 9) clearly illustrates the increase of the average apparent resistivity with the increase in depth of penetration, which means the increase of resistivity in relation to the depth. Observation of the values in table 2 shows the same fact, which is evident from the course of the value pi. Resistivity increases in proportion to depth, owing to a lesser degree of fissuring and karstification. Moreover, the apparent resistivity increases as the current electrodes are separated; the increase is also due to the weakening in influence of the low-resistivity surface layer. This fact is reflected, in the case of simple models, in somewhat higher resistivities of the body and country rock. The RMS values at the test site show that the theoretical curves differ from the observed anomalies by an average of 3 (fig. 57) to 10 per cent (fig. 59). This dees not imply, however, such a close similarity between the models and the geological formations. Nevertheless, the values under 10 per cent may be considered as very favorable, whereas the somewhat higher values are only satisfactory. Because of the influence of other bodies as well as the inhomogeneities in general, it is not advisable to process quantitatively longer sections of the resistivity profiles. This is illustrated by the a = 10 m resistivity profile of the test location. In the section between 0 and 70 m of the profile, the RMS value amounts to 0.091 for the hemisphere and the dike, whereas in the section between 0 and 60 m the value for the hemisphere is 0.84 and 0.032 for the dike respectively. On the other hand, the model and field anomalies of the Wenner arrays with a = 20 m and a = 30 m fit very well, though the differences of calculated geometrical parameters are comparatively large. The processing of the test location anomaly may be used for the estimation of the accuracy of the 12 — Geologija 22/1 calculated model parameters. The position and the size of the body are important in this respect, and perhaps the strike of the dike as well. These parameters enable the setting of the exploratory drillholes. For the rest of the locations, the theoretical curves generally fit the observed anomalies (figs. 60 to 70) even better. A summary of the processing data is presented in table 3. For some locations the parameters have been estimated in two ways. The anomalies of two crossed traverses were evaluated at location No. 10, the calculated values for the body radius and for the body and country rock resistivities differing considerably. The conclusion is that the ground settlement is elongated in the direction of traverse lb, thus explaining a somewhat higher apparent resistivity in this direction. The values of the same parameters for two different arrays may be compared at location No. 20. More or less identical values for the position of the body were obtained in both cases (relatively remarkable variations in y are not of any particular significance, the absolute values of y being low), whereas the variation in radii is obvious. Somewhat greater resistivity values in the case of deeper penetration have already been given. The anomalies at locations Nos. 105 and 109 are interpreted by two models: the hemisphere and the dike. Here, too, the identical position of the bodies has been calculated and the dimensions of the bodies do not vary much. On the other hand the variations in resistivities are considerable. The real value may therefore be expected between the two values, i.e. between the value for the hemisphere and the value for the dike. With reference to the smaller RMS value in the case of the dike, it might be concluded that the corresponding resistivities are closer to the real values than the corresponding values of the hemisphere. Rather small RMS values show that model and field anomalies match well. At location No. 26 (fig. 65) there is a satisfactory matching for a rather long section of the resistivity profile, so enabling the presentation of the entire anomaly. A remarkable RMS value was obtained at location No. 109 for the hemispheroid model. For the dike, the RMS value is halved, this fact pointing to an elongated settlement. However, the fact that the theoretical and observed anomalies match, because of the equivalence, does not mean that the model corresponds well to the geological structure. Rough models should nevertheless be appreciated if the inhomogeneity of the karst is taken into consideration. The sensitivity of the applied electrode array can be estimated from the ratio of the body radius and of the electrode spacing in the Wenner array, as shown in tables 2 and 3. For the test location, the R/a values are somewhat more dispersed, whereas for the rest of locations, the R/a is between 0.4 and 0.6, or at least very close to these values. As stated in the previous chapters, the electrode spacing gives optimum sensitivity in the Wenner array at R/a — 0.5. Accordingly, the most appropriate spacing was observed for the examination of bauxite deposits. The largest bauxite body was found at location No. 109. Because of its relatively shallow depth, the direct model anomalies were calculated for this location. Figure 71 shows that the anomaly of a perfect conductive sphere is extremely small. Thus it follows that no direct geophysical model is available for the resistivity survey of the Istrian bauxite deposits. Table 2. Test location. Review of results of processing resistivity profiles Tabela 2. Poskusna lokacija. Pregled rezultatov numerične obdelave geoelektričnih anomalij SI. F»g. RAZVRSTITEV ARRAY PROFIL PROFILE (m) o MN/AB (m) model model X o (m) Y (m) R (m) R/a 06 <°> Pl {om.m) P2 (om.m) P3 (om.rr RMS 51 Wenner 0-70 10 Polkrog la Hemisphere 30,9 8.1 11.7 1.17 - 390 120 - 0.091 52 " 0-70 10 Ploičo Dike 31.4 — 8.0 0.80 0 390 160 410 0.091 53 K 0-60 10 Polkroglo Hemisphere 31.3 7.0 11.6 1.17 - 400 120 - 0.084 54 0-60 10 Ploščo Dike 31.4 — 7.9 0.79 166 400 150 470 0.032 55 •1 0-70 20 Polkrog la Hemisphere 31.5 0.5 15.3 0.77 - 690 220 - 0.043 56 H 0-70 30 H 28.0 0.3 12.4 0.41 - 880 240 - 0.028 57 H 0-70 40 " 27.2 0.5 13.8 0.35 - 1120 240 - 0.081 58 Schlumberger 5-65 1 R s 10 0 m o D = 20.0 m p = 6A0 ohtn m P = 0 ohm m Fig. 71. Location 109, profile P-69. Observed data and theoretical plot over direct model — hemisphere in homogeneous halfspace 3.3. Discussion A quantitative interpretation of resistivity anomalies of the Istrian bauxite deposits shows that the anomalies may only be explained by models of surface bodies. Comparatively simple models, like the hemisphere and the dike, make it possible to process a satisfactory quantitative anomaly by means of desk--computers like, for example, the Hewlett Packard 9830 A. For practical purposes, it is necessary to define the position and the approximate limits of the plate-shaped depressions superposed above the bauxite, which the above mentioned models do. The evaluation of such geometrical parameters may be quite adequately done without special calculation. It is clear, however, that more reliable qualitative information may be obtained by numerical processing. Model investigations have given the answer to some questions raised in the field work. Firstly the choice of the Wenner array has been justified by the model curve analysis, as far as the simplicity of processing is concerned. And secondly, the suitability of anomaly elimination was likewise justified for locations where the thickness of terra rossa and clay fillings is relatively small. In addition to this, the quantitative processing results answer some other questions. Referring to the discovered bauxite deposits, the selection of the array spacing proved to be appropriate. The ratio of the array spacing versus the size of settlement, is in most cases closely approaching the optimum. However, limitation to one single array spacing is likely to provoke suspicion that some bauxite deposits with less favourable settlement dimensions (the radius being far from 30 m, for which the array of a = 30 m, is most sensitive) do not respond with adequate anomalies, or that because of their low values, they can be overlooked. It is advantageous to operate with variable spacing between the electrodes, since a greater number of array dimensions certainly provides more information. However, in the attempt to justify the application of merely one array dimension, it is possible to find some arguments, other than financial. The applied array is sufficiently sensitive in the case of larger subsidences, since the depth of investigation is less important. Besides, larger subsidences may or may not be indicative of deeper bauxite bodies representing unfavorable mining propositions. On the other hand, settlements of limited size very likely harbour small bauxite bodies. Numerical processing entirely confirms the qualitative interpretation of apparent resistivity anomalies and the corresponding explanation of the cause of anomalies. 4. Conclusions The resistivity survey is applicable for the exploration of covered geological structures, such as ore bodies. The applicability of the resistivity survey, however, is limited to minor depths. The bauxite pockets within the Istrian Cretaceous limestone, for instance, lie far too deep to affect the electrical field on the surface to a significant extent. Although the resistivity of bauxite is several times lower than that of the surrounding limestone, it cannot be detected directly. In spite of this, the Istrian bauxite deposits are clearly evident in the apparent resistivity anomalies which are related to their hanging wall of Eocene limestone. Overlying the bauxite pocket, the wet fissured limestone layer responds as a low resistivity body. The model of the hemispheroid is applicable to such geological structures and, in the extreme, the model of the vertical dike can be considered as well. The comparison of observed resistivity anomaly curves of bauxite pockets with model curves pertaining to both types show that the geological structure can be satisfactorily illustrated by the two models, notwithstanding the impression of a very rough approximation. Theoretical anomalies obtained by computer data processing differ from the corresponding observed anomalies at an average of only a few percent. This equivalence does certainly not imply that the models correspond so closely to the geological structure. In this article, besides the qualitative and quantitative interpretations of apparent resistivity anomalies of the Istrian bauxite deposits, there is a collection of hemisphere resistivity type curves and some curves pertaining to the vertical dike. In the case of the conductive hemispheroid, an interesting paradox emerged: the thinner the hemispheroid, the higher the anomaly. References Cook K. L., Gray R. L., 1961, Theoretical horizontal resistivity profiles over hemispherical sinks. Geophysics 26, 342—354. Cook K. L., Van Nostrand R. G., 1954, Interpretation of resistivity data over filled sinks. Geophysics 19, 761—790. Hmelevskoj V. K., 1970, Osnovnoj kurs elektrorazvedki, čast I, Elektroraz-vedka postojannim tokom. Izdatelstvo Moskovskogo Universiteta. Jain S h. C., 1974, Theoretical broadside resistivity profiles over an outcropping dike. Geophys. Prosp. 22, 445—457. Krulc Z., Vidovič N.. 1960, Prim j ena metode otpora kod istraživanja bok-sitnih ležišta pod pokrovom u Istri. Vesnik, knjiga I, Serija C, Beograd. Kumar Rakesh, 1973, Resistivity type curves over outcropping vertical dyke — I. Geohys. Prosp. 21, 560—578. Kumar Rakesh, 1973, Resistivity type curves over outcropping vertical dyke — II. Gephys. Prosp. 21, 615—625. Lapajne J., 1969, Geoelektritne raziskave boksitnih nahajališč. Geologija 12, 153—159, Ljubljana. Lapajne J., 1974, Geofizikalne raziskave na krasu. Acta carsologica VI, 397 do 420, Ljubljana. Lapajne J., 1968, Influence of the Low Resistivity Surface Layer in Geoelec-tric Mining Prospecting. Mining and Metallurgy Quarterly, No. 3, 29—34, Ljubljana. Lapajne J., 1975, Some Remarks about the Geophysical Exploration of the Karst. Proceedings of the 6th International Congress of Speleology — Olomouc 1973, I., 291—295, Praha. Lapajne J., 1976, Some Remarks about the Geoelectrical Exploration of Buried Bodies. Geologija 19, 275—285, Ljubljana. Matveev B. K., 1961, Električeskoe pole točečnogo istočnika v mnogoslojnoj srede s šarovim vključeniem. Izvest. Akad. nauk SSSR, Ser. Geofiz., No. 12, 1784^-1791. Van Nostrand R. G., 1953, Limitations on resistivity methods as inferred from the buried sphere problem. Geophysics 18, 423—433. IZMENJAVA MNENJ DISCUSSION UDK 553.06(048)=20 Comments on the publication by Ernest Faninger & Ivo Strucl Plutonic Emplacement in the Eastern Karavanke Alps GEOLOGIJA Volume 21, Part 1, 81—87 (1978), Ljubljana Boris Bercé Geološki zavod, 61000 Ljubljana, Parmova 33 In the Geologija 21, vol. 1, pp. 81—87 has appeared the article "Plutonic emplacement in the eastern Karavanke Alps" written by E. Faninger and I. S t r u c I. I would like to comment the last paragraph concerning the conclusion and statement that the determined age of granite discussed in the article is Paleozoic and cannot be ascribed any association with the lead-zinc deposits at Mežica. The age determinations indicate whether the uppermost Paleozoic or the lower Triassic age. Not repeating various published data dealing with the accuracy of the age determination the article shows that the postmagmatic thermal activity has been active during middle Triassic or at least during a part of it. Persist just on the onesided explanation is professionally unacceptable, as about Mežica and similar other deposits in Eastern Alps no uniform opinion exists concerning their generation and emplacement. According to the last knowledge from similar deposits in the world such mineralizations may be formed only whenever a heat flow is added to the areas of ore deposition, because otherwise such deposits would be formed everywhere and not only at the limited spots. However, this matter is not in line with the article and needs no further remarks. UDK 553.06<076.2) Replay to the comments of Boris Bercé on the publication by Ernest Faninger & Ivo Strucl Plutonic Emplacement in the Eastern Karavanke Alps GEOLOGIJA Volume 21, Part 1, 81—87 (1978), Ljubljana Ivo Strucl Rudnik svinca in topilnica Mežica, 62392 Mežica Ernest Faninger Prirodoslovni muzej Slovenije, 61000 Ljubljana To the remark by B. Bercé regarding our paper "Plutonic Emplacement in the Eastern Karavanke Alps" (Geologija, 1978, vol. 21, p. 81—87, Ljubljana) we can give the following explanation. 13 — Geologija 22 i First of all we would like to emphasize that the age of intrusives of the granitic belt of the Eisenkappel emplacement in the Karavanke Alps was determined by radiometric dating as being between 216 and 244 million years, which places with a high probability the granite into the Upper Permian. Here the question arises whether this plutonism can be related to the origin of lead--zinc deposits in the Karavanke Alps and in other regions of the Eastern Alps, or not. We doubt in the reality of such relationship from following reasons. 1. In the Karavanke Alps no evidence of post-plutonic thermal activity can be found. Alteration of host rocks of the Middle and Upper Triassic lead-zinc deposits as represented e.g. by recrystallization, dolomitization, brecciation, metasomatosis etc., which were attributed to hydrothermal activity previously by almost everyone, at present, however, only by very few geologists, can be explained without difficulty by sedimentological, diagenetic and post-diagenetic processes. This view is supported also by investigations of the isotopic composition of sulphur (M. Drovenik and others, 1970, V. A. Grinenko and others, 1974) which is biogenic. Besides, also certain genetic relationships exist between the origin of the deposit, paleogeography and sedimentary environments. 2. Evidence of contact metamorphism has been found up to now only in rocks of the Magdalensberg series. In the rocks altered by contact metamorphism no enrichments of sulphide minerals can be detected. 3. Finally, also the lead isotope ratios in galena from different Eastern Alpine lead-zinc deposits must not be overlooked. The model age of lead from these deposits amounts to between 300 and 350 million years. Considering the relatively high 207 Pb/204 Pb ratios V. K ô p p e 1 (1977, unpublished report) attributed to this lead a crustal origin. B. Bercé reproaches us in his discussion that our explanations are one--sided and therefore professionally unacceptable. Actually, we only stated that the lead-zinc deposits could hardly be genetically related to the Karavanke plutons due to the considerable age difference, without however going into further detail. We could direct a similar reproach to his adress too. Let us quote the following paragraph of his text: .. such mineralizations may be formed only whenever a heat flow is added to the areas of ore deposition, because otherwise such deposits would be formed everywhere and not only at the limited spots". Unfortunately, this statement is not exact. Although we attribute to these lead-zinc deposits a syn-sedimentary origin, the process is not as simple as to be explained in a single sentence, because the deposition and especially the concentration of both metals depends on quite a few different factors. Therefore the statement by B. Bercé that deposits "...would be formed everywhere..." does not suit the circumstances. References Drovenik, M., Leskovšek, H., Pezdič, J. in Štrucl, I. 1970, Izotopska sestava žvepla v sulfidih nekaterih jugoslovanskih nahajališč. Rudarsko-metaluràki zbornik, št. 2—3, Ljubljana. Grinenko, V. A., Z a i r i, N. M., Sadlun, T. N. 1974, Foligennaja pri-roda globuljarnyh sulfidov v stratiformnyh mestoroždenijah. Geologija rudnyh me-storoždenij, XIV-1, 66—77 Moskva. NOVE KNJIGE BOOK REVIEWS UDK 048.1 Paul Ramdohr und Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. predelana in razširjena izdaja. Založba Ferdinand Enke Verlag, Stuttgart, 1978. Obseg XI + 876 strani, 631 slik in številne tabele, 16 X 24 cm, vezano 168 DM. Izšla je 16. izdaja Klockmannovega učbenika mineralogije. Tako kot prejšnjo izdajo sta tudi sedanjo priredila Paul Ramdohr in Hugo Strunz. Knjiga je razdeljena na dva dela: kristalografijo in specialno mineralogijo. Kristalografski del obsega morfologijo, notranjo zgradbo kristalov in kristalno kemijo. Obširno sta obdelana kristalna fizika, predvsem optika, in določevanje notranje zgradbe kristalov z rentgenskimi žarki. Drugi del knjige je obširnejši in vsebuje poglavja o geokemiji, zgradbi zemeljske notranjosti in nastanku mineralov, pri čemer so podane tudi osnove petrologije in nastanka rudišč. Klasifikacija mineralov temelji na strukturni osnovi, ki jo zagovarja H. Strunz v znanem, že večkrat ponatisnjenem in dopolnjenem priročniku »Mineralogische Tabellen«. Ker smo 15. izdajo Klockmannovega učbenika mineralogije že obširno obravnavali (Geologija, 11. knjiga, 1968, Ljubljana), se sedaj omejimo le na dopolnitve. S tem v zvezi moramo takoj poudariti, da je poglavje o kristalni optiki (str. 256—305) povsem na novo prirejeno. Poglavje o geokemiji obravnava tudi Lunine kamenine in minerale. Leta 1969, to je dve leti potem, ko je izšla prejšnja izdaja Klockmannovega učbenika, so kozmonavti prinesli na Zemljo prve vzorce Luninih kamenin. Zanje je značilno, da vsebujejo le izredno majhne sledove vode in nič prostega kisika. Na Luni torej ni nobenega minerala, katerega sestavni del bi bila voda niti izrazito oksidnega minerala, kakršni so npr. hematit, magnetit, egirin in podobni. Je pa veliko samorodnega železa. Sicer se pa v principu Lunine kamenine bistveno ne razlikujejo od dveh, na Zemlji zelo pogostnih kamenin, bazalta in gabra. Na drugi strani pa manjka na Luni mnogo vrst Zemljinih kamenin, npr.pravi granit, gnajs, apnenec in predvsem vse kamenine, nastale iz vodnih sedimentov ter nanesene z vetrom in ledeniki. S sedimenti na Zemlji bi se mogla primerjati le Lunin prah in Lunina breča. Lunin prah je nevezani fini pesek povečini iz okroglih zrn z nekaj krogel steklaste taline. Podobno sestavo ima tudi Lunina breča, vendar so njeni fragmenti bolj neenakomerno veliki in rahlo vezani. V obeh primerih gre za kameninsko podlago, zdrobljeno pod udari meteoritov. Lunine kamenine so zaradi pomanjkanja lahko hlapnih sestavin, posebno vode, skrepenele že pri znatno višjih temperaturah kakor Zemljine, tj. pri 1200 do 1300 °C, nasproti 700 do 1000 °C na Zemlji. Zato je na Luni namesto kremena mnogo kristobalita. Klasifikacija magmatskih kamenin upošteva priporočila IUGS (1972, 1976). Knjiga vsebuje še seznam najvažnejših mineralnih nahajališč, ki slovijo po obilici mineralnih vrst in lepo oblikovanih kristalnih kopučah. Od novih mineralnih vrst, ki so jih od 1. 1960 naprej odkrili na ozemlju Jugoslavije, so v 16. izdaji Klockmannove mineralogije omenjeni macedonit, pierrotit, picopaulit, lazarevi-čit, raguinit. Razveseljivo je, da sta opisana tudi baričit in maričit, minerala, ki ju sicer niso odkrili v Jugoslaviji, toda poimenovali so ju po jugoslovanskih znanstvenikih. V seznamu najvažnejših mineralnih nahajališč so navedene poleg sedanjih imen tudi starejše označbe, npr. Baia Mare (Nagybânya). Za mineraloga, ki ima opravka s starejšimi zbirkami, je to zelo praktično, saj v njih vsebujejo etikete le starejše označbe. Težave s pisanjem krajevnih imen pa so prišle do izraza tudi v tej knjigi. Na str. 803, vrsta 14 piše »Mežica (Miess)«. Želeti bi bilo, da bi avtorja upoštevala načelo obojne označbe tudi med tekstom v specialni mineralogiji. Toda Alšar je npr. na str. 475, vrsta 18, omenjen le kot »Allchar in Macédonien«, Idrija na str. 395, vrsta 46 in 444 vrsta 20 le kot »Idria«, ter Mežica na str. 441, vrsta 25 in 621 vrsta 3 le kot »Mies«. Tudi nemško ime za Mežico torej piše kot Miess in kot Mies. Ernest Faninger G. H. A. C o 1 e : The Structure of Planets. The Wykeham Science Series. Wykeham Publication (London) Ltd, London and Basingstoke, 1978. VII -i- 233 strani, 59 slik, 17 tabel. Format 22 X14 cm. Kartonirano 3,35 funta, platno vezano 7,25 funta. V seriji znanstvenih del angleške založbe Wykeham je izšlo novo delo, tokrat s področja geofizike in planetne fizike. Avtor je profesor teoretične fizike univerze v Hullu, ki se razen z znanostjo o planetih ukvarja še s fiziko tekočega stanja snovi. Knjiga predstavlja, tako kot vsa dela omenjene zbirke, zvezo med šolo in znanostjo. V prvi polovici knjige obravnava avtor teorijo splošnih načel in fizikalnih pogojev, pri katerih je nastal hladen planet v obliki, kot se pojavljajo planeti v našem osončju. V sedmih poglavjih polovice knjige je avtor opisal znane fizikalne pojave težnosti, hidrostatičnega ravnotežja, elastičnih napetosti, termodinamike planetnih materialov, teČenja materiala, termičnih efektov ter dipolnega magnetnega polja. Pri njihovi aplikaciji se je omejil predvsem na notranjost Zemlje in na njeno gibanje v vsemirju, njenega površja pa se ni dotaknil. Pri študiju fundamentalnih znanosti so se zvrstili vsi veliki duhovi matematike in fizike preteklosti. Sprva zelo spekulativni modeli so dobivali vedno eksaktnejše oblike, ki se stalno izboljšujejo z direktnimi opazovanji in laboratorijskimi raziskavami. Vedno bolj pa si prizadevajo za merjenja in situ. Čeprav vsakemu fizikalnemu polju v določeni razdalji od njegovega izvora ustreza samo ena struktura tega izvora pri določenih pogojih, ne moremo obratno, samo na podlagi merjenj v določeni razdalji sklepati o strukturi tega izvora. Tak podatek je vedno dvoumen, kar je splošno znana težava pri interpretaciji vseh indirektnih fizikalnih raziskav. V drugem delu knjige avtor na podlagi pridobljenih izkustev opisuje tudi notranje strukture drugih članov našega osončja. Mnogo so prispevale k temu poznavanju vsemirske raziskave s sateliti in z raketami v zadnjih dvajsetih letih. Nabralo se je ogromno materiala, ki stalno popravlja in dopolnjuje naše znanje. Največ prostora je seveda posvečenega zopet Zemlji. Študij njene oblike je star kot človekova kultura, pa še vedno prihajamo do novih podatkov. Posebno analize tirnic umetnih satelitov Zemlje nam posredujejo zelo natančno in detajlno njeno obliko. Meridionalni presek Zemlje kaže, da je idealizirana oblika sferoida na južnem polu vtisnjena za okoli 30 m, medtem ko je na severnem polu za 10 m izbočena. Južno od Indije leži obširna depresija, globoka prek 110 m. Petdesetmetrske depresije so našli še jugovzhodno od Nove Zelandije, na Pacifiku v bližini kalifornijske obale in v Atlantiku vzhodno od Floride. Nasprotno pa se nahaja v bližini Nove Gvineje okoli 80 m visoko izbočenje. Šestdesetmetrske vzpetine so ob Britanskih otokih in južno od Madagaskarja. Seizmologija je posredovala elastične razmere do sredine Zemlje in nam omogočila eksakten model o sestavi Zemlje. Pri tem sta najpomembnejši določitvi globine do plašča in do jedra. Obe odkritji sta bili napravljeni pred okoli 65 leti. Prvo je Mohorovičičeva, drugo pa Gutenbergova diskontinuiteta. Za vsakega od planetov in tudi za nekatere njihove naravne satelite so zbrani razni podatki. Jasno je, da z oddaljenostjo od Zemlje njihovo število in kvaliteta padata. Na koncu se avtor dotakne tudi vprašanja, ali smo sami v vesolju, ali pa obstajajo še druga svetovja z življenjem. Vsekakor lahko pričakujemo, da v toliki množici zvezd (okoli tisoč milijard), ki sestavljajo našo galaksijo Rimsko cesto, nismo edini. To še bolj velja, če upoštevamo še druge galaksije. Drugo vprašanje je evolucija Zemlje. Najstarejše kamenine na Zemlji ali na Mesecu so stare manj kot 5 milijard let, Sonce pa ni starejše od 10 milijard let. Verjetno je celotni sončni sistem nastal kot celota v sorazmerno kratkem času. Obstajata dve možnosti za njegov nastanek: ena je akumulacija hladnega medzvezdnega materiala, druga pa, da je mimoidoča zvezda gravitacijsko potegnila iz Sonca material, ki se je nato kondenziral v planete. Razni pojavi, kot npr. udarni kraterji na planetih, kažejo, da so morali planeti imeti že zgodaj trdno skorjo. Najstarejše sedimentne kamenine na Zemlji (okoli 3,6 milijarde let), nastale v morju, so sedaj metamorfozirane. To kaže, da je bila Zemlja že zgodaj hladna na površju in pokrita z vodo. Vsi pojavi toplote na Zemlji, pa tudi na drugih planetih, izvirajo iz radioaktivnega razpada pod površjem. In kakšen bo razvoj planetnih raziskav v bodoče? Vsekakor poskusa j o dobiti podatke in situ. Točne j še smernice je težko napovedati; tehnološke iznajdbe in znanstveni dosežki bodo v bodoče usmerjali raziskovalno delo. Snov knjige je geofizika in planetna fizika, vendar je problematika taka, da zadeva delno tudi uporabno geofiziko, tektoniko in druge geološke znanosti. Napisana je z izraznimi sredstvi matematične fizike, vendar je v glavnem razumljiva tudi za tiste, ki niso doma na tem polju. Zanimiva je prav tako za astronome kot za teoretične fizike, ki se ukvarjajo s fizikalnimi polji pri ekstremnih pogojih pritiskov in temperatur. Danilo Ravnik Jörg Barner: Rekultivierung zerstörter Landschaften. Oekologie, Meliorationswesen und Anbautechnik. (Rekultiviranje opustelih krajin. Ekologija, melioriranje in tehnika sajenja). Ferdinand Enke Verlag, Stuttgart, 1978. 220 strani, 76 slik in 12 tabel, obširen seznam literature in abecedni register gesel. Format 15,5 X 23 cm, kartonirano 34 DM. ISBN 3-432-89901-7. Avtor, ki ga pri nas že poznamo (Gozdarski vestnik 1978, 7-8) v uvodu ugotavlja, da je v teku človeške zgodovine le malo ostalo od nekdanje zelene odeje našega planeta. Tako je ogolela ogromna Kitajska. Erozija s svojimi odplakami je dala barvo Rumeni reki in Rumenemu morju. Uničenje rastlinja in ogolelost mediteranskih dežel je pokopala cvetoče antične kulture. Ni kontinenta in ne dežele, kjer Človekov življenjski prostor ne bi bil prizadet zaradi uničenja rastlinja na velikih površinah. Čim revnejša je dežela, tem hujši so ti problemi. Posebno je prizadet tropski in subtropski pas, pomislimo samo na širjenje puščav po vsem svetu, na vedno večjo ogolelost, sušnost in lakoto v sahelskem pasu v Afriki, na nezadržno uničevanje tropskega rastlinja. Celo dežele izrazitega blagostanja se ukvarjajo z rekultiviranjem znatnih površin; npr. Švica se trudi obnoviti nekdanje visokogorske gozdove. V Skandinaviji imajo veliko opraviti z rekultiviranjem barij, v Združenih državah Amerike so problemi opustelih krajin še mnogo večji. Od vse te problematike avtor obravnava le ekološke osnove ter tehnike melioriranja opustelih zemljišč in krajin. Knjiga se odlikuje po veliki sistema-tičnosti. Velik poudarek je na ugotavljanju ekološkega položaja, ki je izhodišče za rekultivacijska dela. Pretežni del knjige obravnava ekološke vidike in možnosti ozelenitve različnih krajin in rastišč. V tem poglavju je opisanih obilo izkušenj z rekultiva-cijskimi deli pri najrazličnejših ekoloških obremenitvah, od ozelenjevanja arid-nih površin do pogozdovanja v visokem gorovju, od problemov Skandinavije do problemov tropskega in subtropskega pasu. Zelo dobro je obdelano pogozdovanje Krasa. Profesor Barner dovolj nadrobno podaja zgodovino geološkega pojma kras in njegovega imena ter ponazori ekološke razmere jadranskega kraškega območja, od koder izhajajo najstarejše izkušnje za rekultiviranje in ponovno pogozdovanje opustelih kraških krajin. Za praktično kultiviranje opustelih krajin predlaga avtor zelo sistematičen postopek, ki se prične s preučevanjem ekološkega položaja, nadaljuje s preučevanjem možnih medsebojnih vplivov raznih nastopajočih ekoloških faktorjev, z vprašanji primernega semenskega in sadilnega materiala, ustreznih melioracijskih postopkov, utrditve in obdelave tal, tehnike sajenja. Po preučitvi vseh teh vprašanj naj se delo nadaljuje s poskusnimi rekultivacijskimi deli, ki bodo pokazala pot za delo na večjih površinah. Sploh je pomembna stalna kontrola rezultatov rekultivacije, da bi se tako Čimbolj izognili napakam in neuspehom. Knjiga se prav gotovo loteva zelo aktualne problematike. Rast svetovnega prebivalstva ter nezadržno uničevanje še ohranjenih naravnih bogastev nujno zahtevata temeljite spremembe na vseh področjih človeške dejavnosti. Treba je polagoma vrniti rastlinsko odejo in rodovitnost tal nepreglednim ogolelim površinam našega planeta. Avtor se zaveda strahovite teže tega problema, zato smatra svojo knjigo le kot skromen prispevek k njegovemu reševanju. Seveda ima knjiga tudi slabosti, kar bo kritika gotovo opazila. Knjiga ni kompleksna, je le bolj uvod v problematiko rekultivacije opustelih zemljišč in krajin. Knjigo lahko priporočamo vsem, ki se ukvarjajo s to problematiko, posebno še tistim, ki jih zanima pogozdovanje težavnih kraških predelov, ozelenjevanje v hudourništvu, ozelenjevanje v aridnih razmerah vročega pasu itd. Knjiga je posebno primerna tudi kot pomoč študentom pri njihovih seminarskih in diplomskih delih. Marjan Zupančič Leopold Muller — Salzburg, Der Felsbau. Dritter Band: Tunnelbau. Založba Ferdinand Enke Verlag, Stuttgart, 1978. Obseg XIX + 945 strani, 612 slik, 50 tabel s slikami, 3 priloge s slikami, format 17 X 24 cm. Čisto platno z zaščitnim ovitkom in v zaščitnem kartonu DM 296. Izšla je tretja knjiga znanega strokovnjaka na področju mehanike hribin o gradnjah v skali, ki obravnava gradnjo predorov. Po prvotnem načrtu naj bi delo obsegalo samo dve knjigi, od katerih prvi del, »teoretične osnove«, je izšel že leta 1963. Pri pripravljanju druge knjige, ki naj bi podala praktične izkušnje pri gradnji v skali, pa je tekst močno narastel prek prvotno določenega okvirja. Pokazalo se je, da bodo za celotno delo potrebne štiri knjige. Obseg 16. poglavja o predorih je večji kot obseg vseh trinajstih poglavij prve knjige. To poglavje je izšlo kot samostojna knjiga. V pripravi sta še dve knjigi. Druga knjiga bo podajala fundiranje dolinskih pregrad, četrta knjiga pa gradnjo jaškov, večjih podzemeljskih kavern ter dela pri injekcijskih zavesah in dre-nažah. Med vsemi gradbenimi deli so predori prav gotovo v največji meri odvisni od geološke zgradbe in sestave terena. Zato zahtevajo ne samo zelo obsežne in natančne predhodne geološke raziskave, temveč tudi stalno sodelovanje geologa med gradnjo in včasih tudi po končani gradnji, če se pokažejo v predoru poškodbe. Za uspešno sodelovanje geologa in gradbenika pri gradnji predorov je potrebno, da pri raziskavah in projektiranju upoštevata mehanske zakonitosti hribin. Po naslovu bi lahko sklepali, da je knjiga namenjena predvsem gradbenikom. V knjigi pa je odmerjenega le malo prostora čisto gradbenim problemom, kot so statični izračuni, dimenzioniranje, organizacija gradbišča idr. Težišče je povsod v ugotavljanju medsebojne odvisnosti med načinom gradnje in procesi v kamenini neposredno ob predoru. Osnovna misel, ki se vleče kot rdeča nit skozi vso knjigo, je ta, da moramo računati s kamenino ob predoru kot z delom nosilne konstrukcije predora. Kamenina se ne obnaša kot idealno elastično telo, temveč kaže deformacije, odvisne od časa. Pravilne gradbene metode se morajo prilagoditi tem reološkim lastnostim kamenin. Vsebino knjige naj prikaže pregled naslovov glavnih oddelkov: medsebojna odvisnost med kamenino, gradnjo in konstrukcijo; poskus statičnega izračuna; gradbena dela; metode gradenj predorov; gradbeni načrt in razpis; sanacija poškodovanih predorov; inženirskogeološke in geomehanske priprave na gradnjo. Po naslovih bi sklepali, da je močnejši poudarek na geoloških problemih le v zadnjem in delno v prvem oddelku. Pri prebiranju knjige pa vidimo, da avtor pravilno ocenjuje vpliv geologije na gradnjo predorov in zato v vseh poglavjih dokaj obširno razpravlja o odvisnosti gradnje od lastnosti kamenin. Nekateri gradbeniki bodo verjetno razočarani, ker je odmerjeno statičnemu izračunu tako malo prostora. Po mnenju avtorja pa je večina danes uporabljenih metod slabo utemeljena, ker ne upošteva dinamičnih dogajanj v kamenini med gradnjo in v zvezi s tem spremenjenih napetostnih stanj v kamenini ob predoru. Potek prelaganj napetosti v kamenini je med drugim odvisen od poteka in narave razpok v kamenini. Razpokanosti pa ne moremo tako točno in enostavno opisati, da bi jo zajeli z enostavnimi matematičnimi obrazci. Danes uporabljene metode izračuna zato nimajo velike praktične vrednosti. Avtor se zaradi tega izogiba kompliciranim matematičnim obrazcem in gradi v glavnem na izkušnjah dosedanjih gradenj ter na opazovanjih in meritvah, ki so bile v zadnjih desetletjih izvršene med gradnjo na mnogih predorih. Jezik avtorja je enostaven in lahko razumljiv. Pri razlagi navaja številne primere iz literature in lastnih izkušenj, ki bodo dobrodošla opora vsakemu gradbeniku in geologu pri raziskavah in projektiranju novih predorov. Tekst spremljajo Številne nazorne skice, diagrami in fotografije. Zaradi izčrpne razlage najnovejših izkušenj pri gradnji predorov in številnih praktičnih primerov bo knjiga kmalu postala neobhoden priročnik vsakega gradbenika in inženirskega geologa pri gradnji predorov. Dušan Kuščer