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0  INTRODUCTION

Planning of smooth trajectories has been a very active 
area of research, hence a number of scientific reports 
address the problem. The publications concern both the 
generation of manipulator end-effector trajectories and 
designing the motion of tools of machine tools. With 
regard to manipulators, smooth trajectory planning 
is mostly imposed by the given tasks (assembly, 
transport of fragile objects, carrying open containers, 
gluing and painting) as well as through attempts 
to reduce the wear of manipulator components 
(decreased driving torque or limited vibration level 
caused by a resonance frequency). Regarding machine 
tools, smooth trajectory planning can facilitate a full 
utilization of the tools’ dynamic capabilities, with 
high-performance maintenance. Boryga and Grabos 
[1] presented a planning mode of trajectory for a serial-
link manipulator with higher-degree polynomials 
application. The linear acceleration profiles of end-
effectors were planned as polynomials of degree 9th, 
7th and 5th. Chettibi [2] proposed a method to plan 
minimum cost movements for robotic manipulators 
along prescribed geometric paths while taking into 
account various kinodynamic constraints. Numerical 
examples using genetic algorithms are presented to 
illustrate the effectiveness of the proposed approach. 
Constantinescu and Croft [3] obtained the smooth 
trajectory of manipulators by considering torque rate 
and jerk limits in trajectory planning problem which 
was solved using flexible tolerance method. Elnagar 
and Hussein [4] studied acceleration-based optimal 
piecewise trajectory planning. The acceleration 
and curvature were used to generate the minimum-
energy trajectory. Gasparetto and Zanotto [5] and [6] 
presented a method for smooth and optimal trajectory 
planning of robot manipulators. They worked out an 
objective function containing a term proportional 

to the integral of the squared jerk and a second term 
proportional to the total execution time. The algorithm 
has been tested in simulation, yielding good results. 
Machmudah et al. [7] described a point-to-point of an 
arm robot motion planning in complex geometrical 
obstacle utilizing a 6th degree polynomial as the joint 
angle path. A planar robot will be utilized to simulate 
the proposed approach. Perumaal and Jawahar [8] 
proposed an approach to generate a synchronized jerk-
bounded trigonometric S-curve trajectory for a robotic 
manipulator. The results of simulations show that the 
proposed approach is able to generate a synchronized, 
smooth trajectory with minimum execution time. 
Tian and Collins [9] formulated a constraint by 
keeping the end-effector trajectory for a manipulator 
away from the obstacle. A genetic algorithm using a 
floating point representation is proposed to search for 
the optimal trajectory. In the work of Bu et al. [10], 
the complicated robotic task is decomposed into two 
kinds of subprocesses. In the free motion process, 
the kinematic models of the quasi trapezoidal and 
quasi triangular waveform are proposed with the 
dynamic limits of maximum velocities, accelerations 
and jerks of robotic joints. In the constrained motion 
process, the mathematical presentation of the task 
paths is extracted from the CAD models of the work 
pieces. Chen et al. [11] presented a smooth S-curve 
feed-rate profiling generation algorithm that produces 
continuous feed-rate, acceleration, and jerk profiles. 
The proposed algorithm ensures the automated 
machinery’s motion smoothness. Du et al. [12] 
presented an adaptive NURBS (Non-Uniform Rational 
B-Spline) interpolator taking into consideration 
an acceleration-deceleration control. A real-time 
flexible acceleration-deceleration control scheme 
was introduced to solve the sudden feed-rate change 
around corners with large curvature in their method. 
Emami and Arezoo [13] introduced look-ahead 

Trajectory Planning of an End-Effector for Path with Loop
Boryga, M.

Marek Boryga
University of Life Sciences in Lublin, Faculty of Production Engineering, Poland

This paper presents an algorithm for rectilinear-arc trajectory planning whose path is composed of two rectilinear segments connected with a 
loop-shaped arc. The algorithm can be used in solutions with high speed cornering applications. During the realization of the given trajectory, 
the end-effector passed through the corner twice and the time difference is, simultaneously, the time of loop tracking. On the rectilinear 
segments, end-effector acceleration was described by a 7th degree polynomial, whereas the velocity while moving through a loop was a 
constant value. The results of the trajectory planning are presented as courses of displacements, speeds and accelerations of the end-effector 
and displacements, speeds and accelerations in kinematic pairs of the three manipulators.
Keywords: trajectory planning, sharp corner, path with loop, polynomial acceleration profile, manipulator



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)12, 804-814

805Trajectory Planning of an End-Effector for Path with Loop

trajectory generation to determine the deceleration 
stage according to the fast estimated arc length and the 
reverse interpolation of each curve at every sampling 
time. Erkorkmaz and Altintas [14] presented a quintic 
spline trajectory generation algorithm that produces 
continuous position, velocity, and acceleration 
profiles. The proposed trajectory generation algorithm 
has been tested in machining on a three-axis milling 
machine. Farouki et al. [15] proposed an approach 
that takes into account limiting constraints such as 
the maximal of motor torque and power available to 
each axis of the machine tool in the calculation of the 
tool path feed-rate. Nam and Yang [16] developed a 
recursive trajectory generation method to estimate and 
determine the final deceleration stage according to 
the distance left to travel, resulting in exact feed-rate 
trajectory generation through jerk-limited acceleration 
profiles for the parametric curves. Stori and Wright 
[17] proposed an algorithm for convex contours, where 
an offset tool path is modified so that the engagement 
is kept constant. Zheng et al. [18] proposed two 
modified nonlinear tracking differentiators to generate 
the smooth trajectory for industrial mechatronic 
system from a rough reference, with bounded velocity 
and acceleration. Kovacic and Balic [19] proposed an 
autonomous, intelligent programming system for the 
cutting device controller based on an evolutionary 
genetics algorithm. Some research reports discuss the 
planning of motion, in which a tool moves over the 
path with a so-called sharp corner. Lloyd and Hayward 
[20] proposed the use of a 5th degree polynomial to 
connect the successive motions. To adjust the spatial 
shape of the transition curve, the authors defined 
two parameters that can be set for the various values 
in the interval (0,1). As an example, they presented 
a simple algorithm for the trajectory generation. 
Macfarlane and Croft [21] described a method, 
which uses a concatenation of quintic polynomials 
to provide a smooth trajectory between two points. 
The authors presented the experimental results and 
simulations on an industrial robot. Erkorkmaz et 
al. [22] put forward a path planning strategy for 
maintaining a high positioning accuracy in high 
speed cornering applications. The authors developed 
two spline-fitting strategies for smoothing sharp 
corners (the under-corner and over-corner approach). 
The obtained cornering accuracy was verified in 
the experiments. To eliminate jerk constraints and 
remove discontinuities in the acceleration profile, 
Dong et al. [23] added an acceleration-continuation 
procedure to the feed-rate optimization algorithm. In 
order to verify the effectiveness of this approach, the 
authors presented some application examples and the 

research results obtained. Tsai et al. [24] proposed an 
interpolation algorithm ILD (Integrated Look-ahead 
Dynamics-based) that considers geometric and servo 
errors simultaneously. The study results indicate that 
the proposed approach significantly improves tracking 
and contour accuracy. Tseng et al. [25], aiming at 
jerk limitation, suggested a parametric interpolator 
composed of a look-ahead stage and a real-time 
sampling stage. The algorithm ensures that chord 
error as well as maximum acceleration and jerk are 
within the allowable limits. In the work of Wang et 
al. [26], aiming to minimize contour errors and feed 
rate fluctuations, a NURBS (Non-Uniform Rational 
B-Spline) interpolation algorithm was developed 
that adjusts adaptively to the machine dynamics 
and kinematics. The simulation test results confirm 
the effectiveness of the proposed interpolator for 
machining curved paths. Grabos and Boryga [27] 
presented an algorithm PCM  (Polynomial Cross 
Method) for planning motion of a manipulator end-
effector, whose path was composed of two rectilinear 
segments. The paper proposes the algorithm of the 
method and research results in the form of runs of 
velocities, acceleration and jerk for the prescribed 
motion trajectory.

The objective of the present study was to 
develop a trajectory-planning algorithm that could 
automatically reconcile two essential requirements, 
i.e. trajectory smoothing and end-effector moving 
along the sharp corner. The most commonly used 
method consists in smoothing the corner. This method 
prevents a transition of the end-effector through the 
sharp corner. One solution, which simultaneously 
provides trajectory smoothing and transition through 
the corner, is using a loop. The path of the end-effector 
comprises two rectilinear segments, connected with a 
loop. The end-effector passes through the corner twice 
and the time difference is, simultaneously, the time of 
loop tracking. 

The work is organized as follows: Section 1 
depicting a trajectory planning technique with the 7th 

degree polynomial application; Section 2 presents the 
algorithm for planning rectilinear-arc trajectory with a 
loop; Section 3 depicts the numerical example, while 
the simulation results are given in Section 4. The final 
section includes the concluding remarks.

1 TRAJECTORY PLANNING WITH  
7th DEGREE POLYNOMIAL USE

The planning of the robot end-effector trajectory can 
be accomplished by using higher-degree polynomials 
that facilitate the acceleration profile development. In a 
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study by Boryga and Grabos [1] to build a polynomial 
form, the properties of the root’s multiplicity were 
utilized. This approach to polynomial form structure 
necessitates the determination of only one polynomial 
coefficient, irrespective of its order. Their work 
also shows the 5th, 7th and 9th degree polynomials 
describing the acceleration profile; the lowest 
values of linear and angular jerks were reported for 
the 7th degree polynomial. Therefore, in this paper, 
the acceleration profile on rectilinear segments is 
described with the 7th degree polynomial in the form 
of:

	 a t p t t t t tf f( ) ( ) ( . ) ( ) ,= − ⋅ − −2 3 20 5 	 (1)

where p is coefficient of polynomial 7th degree, and tf 
time of motion end.

The polynomials describing the profiles of 
velocity and displacement are as following:
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Sample profiles of acceleration, velocity and 
displacement are shown in Fig. 1. 

Fig. 1.  The profiles of acceleration, velocity and displacement for 
the acceleration profile described by a 7th degree polynomial

It was assumed that the velocity profile should 
realize the following conditions:
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In order to determine the time of movement tf and 
polynomial coefficient p for a given path Δs it was 
set to the maximum polynomial value, which defines 
the profile of the displacement. Then, a system of 
equations was created,
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whose solution is the time of movement tf and 
polynomial coefficient p.

2  ALGORITHM FOR TRAJECTORY PLANNING 

2.1  Algorithm Description

Fig. 2 shows the path of the end-effector’s movement 
with an implemented, local coordinate system ξηζ.

Fig. 2.  Path of motion with the introduced local coordinate system

The acceleration profile on a straight BM section 
is described by a 7th degree polynomial being used 
only at the first part of the profile, which represents the 
start-up phase (a solid line in Fig. 1). In the initial point 
B and final M, the acceleration profile is tangential to 
the time axis, which eliminates any undesirable jerk 
effect in these points. Over the MT1 segment, the end-
effector moves at a constant velocity, just like over the 
arc connecting the points T1 and T2 as well as along 
the T2M segment. The acceleration profile on the ME 
segment was described, like the BM segment, by a 7th 
degree polynomial. The second phase of the profile 
was used and it is the braking phase (broken lines in 
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Fig. 1). The maximum linear velocity on the BM and 
ME segments is νmax. This velocity is also the end-
effector velocity on the loop.

2.2  Calculations of Path Geometry

Flowchart in Fig. 3 presents the calculations of path 
geometry step by step.

Assume the following: the coordinates of the 
initial point B, the coordinates of the final point E, 
the coordinates of the point M, and distance from the 
point M to the center of a circle Δ. It is also possible 
to assume the radius R, calculate the angle BME and 
introduce into the algorithm the distance Δ calculated 
using sine function of half angle BME.

Fig. 3.  Flowchart for calculation of path geometry

Let a denote a vector of the start point B and end 
point M, while d is a vector starting at the point E and 
ending at the point M. Unit vectors of these vectors 

will be a a a = /  and d d d = / , respectively. The 
equation of the straight line on which the angle bisector 
BME lies can be established using the coordinates of 
the point M and direction vector b, which is the sum 
of the unit vectors a  and d .

Normalize vector b and the obtained unit vector 
b  multiplied by Δ value. The coordinates of the 
vector calculated in this way should be added to the 
coordinates of the point M to obtain the coordinates 
of the O1 loop arc center. The radius R of a circle 
is determined as the distance from the center of the 
circle O1 to the line going through the points B and M 
(or the line going through the points E and M).

Calculate the distance between the tangency 
points and point M using the Pythagorean theorem. 
Multiply the calculated distance value by the unit 
vector a  and add to the coordinates of the point M 
to get the coordinates of the point T1, then multiply 
by the unit vector d  and add to the coordinates of the 
point M to finally obtain the coordinates of point T2. 

The angle β can be determined by adding to the 
angle π the angle between vectors a  and d .

Path increments on the rectilinear segments are 
calculated using the coordinates of the starts and ends 
of the appropriate segments.

2.3  Calculations for the First Rectilinear Segment

For calculating the time of movement on the BM 
section it is necessary to use a solution of a system 
of equations and use substitutions tf = 2tBM and  
Δs = 2 ΔsBM. Finally:

	 t s
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where νmax is linear velocity in the motion through the 
loop, which is simultaneously the maximum velocity 
on the rectilinear segment BM.

As for the motion along the MT1 segment, the 
following dependency should be utilized:
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The motion time on the BT1 segment is equal to 
the sum of tBM and tMT1  times.

The polynomial coefficient for the BM section 
can be calculated from the dependency:
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In order to determine the acceleration, velocity 
and dislocation profiles on the BM section, it is 
necessary to use dependencies (Eqs. (1) to (3)) and 
use substitutions tf = 2tBM and p = pBM.

2.4  Calculations for the arc

Motion time over the T1T2 arc is calculated from the 
formula:

	 t R
v

A =
⋅β

max
. 	 (10)

The angular position for t t t tBT BT A1 1≤ ≤ +  is 
obtained from the following dependency considering 
the initial angular position βb:

	 β β( ) ( ),maxt v
R

t tb
BT= + ⋅ − 1 	 (11)

where β π βb = − ( / ).2
Coordinates of the position vector SA in the 

motion on the arc in the basic coordinate system 
xyz are calculated using the transformation matrix T 
between the local coordinate system ξηζ and basic 
system xyz:

	 S TA A= ⋅ΞΞ , 	 (12)
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Velocities VA and accelerations AA are derived as 
the successive derivatives of the position vector SA.

2.4  Calculations for the Second Rectilinear Segment

The motion time on the T2M segment is the same as 
on the MT1 segment. In order to obtain motion time 
over the ME segment, the dependency (Eq. (7)) should 
be used with the path increment ΔsME substitution. 
Motion time on the T2E segment is equal to the sum of 
tT M2  and tME times. For the calculation of a polynomial 
coefficient on a segment, use the Eq. (9) and substitute 
path increment ΔsME and time tME in the formula. A 
profile of acceleration, velocity, and position on the 
ME segment can be derived in an analogous manner 
as with the BM segment, and each of them needs 
translation in the time by τ:

	 τ = + + −t t t tBT A T M ME1 2 . 	 (13)

2.5  Final Calculations

Motion time over the BT1T2E trajectory is calculated, 
summing up the motion times on the rectilinear 
segments and the motion time over the arc

	 t t t te
BT A T E= + +1 2 . 	 (14)

The linear path on the BT1T2E trajectory is 
calculated as the sum of the path on the rectilinear 
segments and the path over the arc.

3  NUMERICAL EXAMPLE

The coordinates of the points for the prescribed end-
effector trajectory B, M, E, the center of loop O1 and 
tangent points T1, T2 are presented in Table 1.

Table 1.  Coordinates of characteristic points of trajectory

Point
denotation

Point coordinates [m]
x y z

B 0.5 0.5 1

M 0.54 0.53 1

E 0.54 0.5 1

T1 0.554 0.541 1

T2 0.54 0.548 1

O1 0.549 0.548 1

The assumed distance between the center of loop 
O1 and point M was Δ = 0.02 m. A calculated radius 
arc circle was R = 8.944×10–3 m, while the angle  
β = 4.069 rad. The path increments on the 
rectilinear segments are as follows: ∆sBM = 0.05 m,  
∆ ∆s sMT T M1 2= = 0.0179 m and ∆sME = 0.03 m. There 
was an assumed maximum velocity on the rectilinear 
segments νmax = 0.25 m/s. The motion times over the 
rectilinear segments BM and MT1 are tBM = 0.328 s 
and tMT1 = 0.072 s, respectively, whereas for the 
coefficient of the polynomial profile of acceleration, 
the velocity and position for the segment BM was 
pBM232

44 46156 10= ×. m/s9. The motion time through 
the loop arc tA = 0.146 s and the initial angle value 
was βp = 1.107 rad. The motion times on the 
rectilinear segments T2M and ME were as follows: 
tT M2 =0.072 s and tME = 0.197 s, while the coefficient 
of the polynomial profile of acceleration, velocity and 
position for the segment ME was pME = 2.65844×106 
m/s9. The translation in time was τ = 0.42 s, whereas 
the total motion time te = 0.815 s. The total path along 
the motion trajectory was Δs = 0.152 m, while on the 
loop ΔsA = 0.036 m.

Fig. 4 presents the planned path of movement in a 
coordinate system xyz.
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Fig. 4.  The assumed end-effector’s path  
in a coordinate system xyz

4  SIMULATION RESULTS

Fig. 5a gives the course of end-effector positions 
along the axes x and y, whereas Fig. 5b is the course 
of end-effector positions along the prescribed 
trajectory. Fig. 6 presents the courses of velocity 
components of the end-effector toward the axes x 
and y, and the run of the resultant velocity. During 
the motion through the loop (on the rectilinear 
segments MT1 and T2M and arc T1T2), the resultant 
velocity does not change and is equal to the preset one  
νmax = 0.25 m/s, while on the segments BM and ME 
it changes in accordance with the assumed profile. 
The components of velocity along axes x and y are 
obtained through the projection of the resultant 
velocity vector onto the directions of the coordinate 
system xyz. The changes in the components on the 
segments BM and ME are associated with changes 
in the resultant velocity, while the change in velocity 
components on the loop are associated with changes 
in the direction of a constant vector of resultant 
velocity. Both the runs of the components and the 
resultant velocity run are continuous functions 
considering the value. Fig. 7 presents the course of 
acceleration components in the x, y direction, and the 
course of resultant acceleration. A profile of resultant 
acceleration and acceleration components at points B, 
M, E, are tangential to the time axis and their value 
is equal to zero. The acceleration value is also equal 
to zero on the segments MT1 and T2M. The jump in 
the acceleration value on the arc T1T2 results from 
the motion on curved path. Tangential acceleration 
in motion along an arc equals zero, while centripetal 

acceleration is proportional to the square of the 
velocity and is inversely proportional to the radius 
of the arc. The changing direction of centripetal 
acceleration results in a change in components in the 
direction x and y. The period of movement on the 
MT1T2M loop is marked in addition.

Fig. 5.  The courses of end-effector position  
a) on x and y coordinates, b) along the path

Fig. 6.  The courses of linear velocity on x, y coordinates and 
resultant velocity

The suggested method of trajectory planning 
is used to simulate a motion of three manipulators. 
For each of the manipulators, the following are 
determined:
•	 coordinates of the end-effector in the coordinate 

system xyz,
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•	 configuration coordinates (inverse kinematic 
task),

•	 velocity and acceleration of links.

Fig. 7.  The courses of acceleration on x, y coordinates,  
and resultant acceleration

Fig. 8 presents a manipulator with an 
anthropomorphic structure. The coordinates of the 
end-effector’s location in the coordinate system xyz 
are written below:

	 s c l c l cx
a a= +1 2 2 3 23( ), 	 (15)

	 s s l c l cy
a a= +1 2 2 3 23( ), 	 (16)

	 s l s l sz
a a a= + +λ1 2 2 3 23, 	 (17)

where λ1
a , la2 , la3  are the lengths of links and 

ci i
a= cos( )θ , si i

a= sin( )θ , cij i
a

j
a= +cos( )θ θ ,  

sij i
a

j
a= +sin( )θ θ . 

The assumed lengths of respective kinematic 
chain links were as following λ1

a =0.33 m, la2 =0.42 
m, la3 =0.36 m.

As a result of a system of Eqs. (15) to (17) due to 
the configuration coordinates is:

	 θ1
a y

x

s
s

= arctg( ), 	 (18)

    θ2
2 2 2

2 2
a A

B
C B A D
E B A

= −
− + −

+
arctg arcsin ( )

( )
, 	 (19)

	 θ3
2

a B A D
C

=
+ −arccos( ), 	 (20)

where A sz
a= −λ1 , B s sx y= +2 2 , C l la a= 2 2 3 , 

D l la a= +( ) ( )2
2

3
2  and E la= 2 2 .

Courses of links’ angular displacements for the 
generated trajectory are presented in Fig. 9.

Fig. 8.  The anthropomorphic manipulator

Fig. 9.  The courses of angular displacement for an 
anthropomorphic manipulator a) link 1, b) link 2, c) link 3
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The course of velocities and accelerations of links 
is presented on Figs. 10 and 11.

Fig. 10.  The courses of angular velocity of links for an 
anthropomorphic manipulator

Fig. 11.  The courses of angular acceleration of links for an 
anthropomorphic manipulator

Fig. 12 shows the SCARA manipulator.

Fig. 12.  The SCARA manipulator

Coordinates of the end-effector in the coordinate 
xyz system are defined by the following dependencies:

	 s l c l cx
s s= +1 1 2 12 , 	 (21)

	 s l s l sy
s s= +1 1 2 12 , 	 (22)

	 sz
s s s= + −λ λ λ1 2 3 	 (23)

where λ1
s , λ2

s , l s1 , l s2  are the lengths of the links, 
while ci i

s= cos( )θ , si i
s= sin( )θ , cij i

s
j
s= +cos( )θ θ , 

sij i
s

j
s= +sin( )θ θ .

The assumed lengths of particular links of 
respective kinematic chain were as following  
λ1

s =0.3 m, λ2
s =0.065 m, l s1 =0.54 m, l s2 =0.42 m. 

As a consequence of the equation system (Eqs. 
(21) to (23)), and due to configuration coordinates, the 
below was obtained:

	 θ1
2 2

2
a y

x

s
s

C B D
E B

= −
− −arctg arcsin(( ) ( ) ), 	 (24)

	 θ2
a B D

C
= −

−arccos( ), 	 (25)

	 λ λ λ3 1 2
s s s

zs= + − , 	 (26)

where B s sx y= +2 2 , C l ls s= 2 1 2 , E ls= 2 1  and  
D l ls s= +( ) ( )1

2
2
2 .

The courses of angular accelerations in the 
kinematic pairs of the SCARA manipulator for a 
planned trajectory are presented in Fig. 13 (coordinate  
λ3

s  was skipped because it has a constant value). The 
velocities and link angular accelerations are presented 
in Figs. 14 and 15.

Fig. 13.  The courses of angular displacement for the SCARA 
manipulator: a) link 1, b) link 2 
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Fig. 14.  The courses of angular velocity for the SCARA 
manipulator 

Fig. 15.  The courses of angular acceleration for the SCARA 
manipulator

Fig. 16 shows a manipulator with a Cartesian 
structure.

Fig. 16.  The Cartesian manipulator

The coordinates of end-effector position in the 
xyz coordinate system are:

	 sx
c= −λ3 , 	 (27)

	 sy
c= λ2 , 	 (28)

	 s lz
c c= +λ1 2 , 	 (29)

where l c2  is the length of manipulator’s link and  
l c2  =0.24 m. 

As a result of the equation system solution (Eqs. 
(27) to (29)), and due to configuration coordinates, the 
following is obtained:

	 λ1 2
c

z
cs l= − , 	 (30)

	 λ2
c

ys= , 	 (31)

	 λ3
c

xs= − . 	 (32)

The courses of displacement of links for the 
kinematic chain studied for a planned trajectory are 
presented in Fig. 17 ( λ1

c  coordinate was skipped 
because it has a constant value).

Fig. 17.  The courses of linear displacement for the Cartesian 
manipulator a) link 2, b) link 3

Velocities and linear accelerations of the links are 
presented in Figs. 18 and 19.

For all manipulators, the courses of movements 
and velocities in kinematic pairs are continuous. 
The courses of accelerations in kinematic pairs are 
discontinuous. Discontinuity of acceleration results 
from centripetal acceleration, which occurs during the 
motion of end-effector on a curved path.
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Fig. 18.  The courses of linear velocity for the Cartesian 
manipulator

Fig. 19.  The courses of linear acceleration for the Cartesian 
manipulator

5  CONCLUSIONS

In order to obtain high accuracy mapping of a 
trajectory with concomitant full utilization of machine 
dynamic capabilities, it is necessary to generate 
smooth trajectories with minimum jerk constraints, 
acceleration or velocity. This paper proposes a method 
for planning a rectilinear-arc trajectory in which two 
opposite requirements meet, i.e. trajectory smoothing 
and simultaneous passing through a sharp corner. The 
simulation tests performed allowed for the formulation 
of the following final remarks:
1.	 For the reason that a tool passes through the point 

M twice, the generated motion trajectory can be 
used both, as a whole – BT1T2E or in part – BME. 
In the latter case, the on-loop motion MT1T2M 
can be treated as the tool output.

2.	 At the characteristic points B, M, E of the 
trajectory, the acceleration profile is tangential 
to the time axis which causes zero jerk value at 
these points.

3.	 The algorithm is effective for calculations. The 
most laborious prove to be the calculations of 
trajectory geometry, whereas to obtain a profile of 

position, velocity and acceleration, it is sufficient 
to calculate a polynomial coefficient and motion 
time.

4.	 The simulation results indicate the applicability 
of the proposed method in the analysis stage as 
well as the design of manipulators and machine 
tools.
Further studies will be needed to determine the 

effect of loop size on trajectory mapping accuracy, 
taking into account the deformability of manipulator 
kinematic chains.
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