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Abstract

We give new results about the set of all medians, the set of all first quartiles and the set
of all third quartiles of a finite dataset. We also give new and interesting results about rela-
tionships between these sets. We also use these results to provide an elementary correctness
proof of the Langford’s doubling method.
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1 Introduction
Quantiles play a fundamental role in statistics: they are the critical values used in hypoth-
esis testing and interval estimation. Often they are the characteristics of distributions we
usually wish to estimate. The use of quantiles as primary measure of performance has
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gained prominence, particularly in microeconomic, financial and environmental analysis
and others. Quartiles (i.e 0.25, 0.50, and 0,75 quantiles) are used in elementary statistics
very early, c.f. for drawing box and whisker plots.

Whereas there is no dispute that the median of an ordered dataset is either the middle
element or the arithmetic mean of the two middle elements (when the number of elements
is even), the situation is seemingly much more complicated when quartiles are considered.
There are many well-known formulas and algorithms that give certain values, claiming for
these values to be medians (or quartiles) for a given statistical data (for examples see [5]).
However, the trouble begins when realizing that different formulas (or algorithms) may
give different values. Many authors or users of such formulas or algorithms go even further
by taking the value obtained by such a formula or an algorithm to be the definition of the
median or the first quartile or the third quartile of a given data. As a result, going through
the literature, one may find it very difficult to find and then choose an appropriate definition
(formula, algorithm) of a median or a quartile to use it for the statistical analysis of a given
data. In [2, 5] provide references and comparison of several methods for computing the
quartiles of a finite data set that appear in the literature and in software. While it is well
known that these methods do not always give the same results, Langford writes that the
“situation is far worse than most realize ” [5]. Although the differences tend to be small,
Langford further answered the question “Why worry? The differences are small so who
cares? ” with words of [1]:

“Before we go into any details, let us point out that the numerical differences
between answers produced by the different methods are not necessarily large; in-
deed, they may be very small. Yet if quartiles are used, say to establish criteria
for making decisions, the method of their calculation becomes of critical concern.
For instance, if sales quotas are established from historical data, and salesper-
sons in the highest quarter of the quota are to receive bonuses, while those in
the lowest quarter are to be fired, establishing these boundaries is of interest to
both employer and employee. In addition, computer-software users are sometimes
unaware of the fact that different methods can provide different answers to their
problems, and they may not know which method of calculating quartiles is actually
provided by their software.”

Langford [5] also proposes a method that is consistent with the CDF (cumulative distri-
bution function). The method is slightly more complicated than some other methods used,
however it is not too much involved and there are equivalent methods that can be used in the
classroom [10, 9]. Indeed, the discussion about quartiles in teaching elementary statistics
is considerable, c.f. [10, 1, 4, 5, 9]. In short, some of the elementary methods are based
on the idea that a quartile is a median of the lower, or the upper half of the dataset. The
question arises what is the half of dataset when it has an odd number of elements. Langford
naturally answers with the idea of doubling the dataset thus assuring the even number of
elements, while the quantile values remain the same.

On the positive side, it seems that all methods have one thing in common: they all
expect the following to hold:

1. the median to be such a value m ∈ R, for which at least half of the data is less or
equal to m and at least half of the data is greater or equal to m,

2. the first quartile to be such a value q1 ∈ R, for which at least quarter of the data is
less or equal to q1 and at least three quarters of the data is greater or equal to q1,
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3. the third quartile to be such a value q3 ∈ R, for which at least three quarters of the
data is less or equal to q3 and at least quarter of the data is greater or equal to q3.

We will use this fact as a motivation to define the median set, the first quartile set, and the
third quartile set of a given data.

The main contribution of this paper is the idea to redefine the median, and the quartiles,
and possibly more general, the quantiles as sets (intervals) instead of the usual considera-
tion of this notions as reals. We indicate that in this way we may avoid the dispute caused
by various methods, algorithms, and even definitions of quartiles. We also show that some
methods for computing the quartiles do not extend to quartile sets, and provide an elemen-
tary method that can be used to compute the quartile sets.

The rest of the paper is organized as follows. The set of all medians M(X) of X is
defined in Section 3, and in Section 4, the set of all first quartiles Q1(X) of X and the
set of all third quartiles Q3(X) of X are defined. Main results about relationships among
these sets are provided in Section 5. In Section 6, we recall some well known methods for
computing of quartiles and show that one of them, the Langford’s doubling method can be
used to compute the quartile sets.

2 Preliminaries
Here we introduce some basic notions that we use in the paper. Suppose that we have
a finite ordered m-tuple (y1, y2, y3, . . . , ym) ∈ Rm of some data such that y1 < y2 <
y3 < . . . < ym, together with the m-tuple of their frequencies (k1, k2, k3, . . . , km) ∈
Nm. This means that the datum yi occurs ki-times for each i ∈ {1, 2, 3, . . . ,m}. Let
k1 + k2 + k3 + . . .+ km = n. Then the random variable Y defined by

Y ∼
(

y1 y2 y3 · · · ym
k1

n
k2

n
k3

n · · · km

n

)
,

where ki

n is the probability P (Y = yi) for each i ∈ {1, 2, 3, . . . ,m}, represents these data.
One may represent the above data equivalently, using the random variable X in the

following way

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
,

where x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn and

x1 = x2 = x3 = . . . = xk1
= y1,

xk1+1 = xk1+2 = xk1+3 = . . . = xk1+k2
= y2,

xk1+k2+1 = xk1+k2+2 = xk1+k2+3 = . . . = xk1+k2+k3 = y3,

...

xk1+k2+...+km−1+1 = xk1+k2+...+km−1+2 = xk1+k2+...+km−1+3 = . . . = xn = ym.

In this article, we will present data using such random variable X . We will call such a
random variable X an ordered random variable.

Using this notation, we define the set of all medians M(X) of X , the set of all first
quartiles Q1(X) of X , and the set of all third quartiles Q3(X) of X in the following
sections.
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3 The median set of a random variable
We begin the section by giving the definition of a median and the median set of an ordered
random variable.

Definition 3.1. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
,

and let x be any real number. We say that x is a median of X , if

P (X ≤ x) ≥ 1

2
and P (X ≥ x) ≥ 1

2
.

We call the set
M(X) = {x ∈ R | x is a median of X}

the median set of the random variable X .

In the following proposition we give an explicit description of the median set M(X)
for any ordered random variable X .

Proposition 3.2. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then

M(X) =

{
{xk} if n = 2k − 1 for some positive integer k,
[xk, xk+1] if n = 2k for some positive integer k.

Proof. We consider the following two possible cases.

CASE 1: n = 2k − 1 for some positive integer k. Since

P (X ≤ xk) = k · 1
n
=

n+ 1

2
· 1
n
=

1

2
+

1

2n
≥ 1

2

and
P (X ≥ xk) = k · 1

n
=

n+ 1

2
· 1
n
=

1

2
+

1

2n
≥ 1

2
,

it follows that xk ∈M(X). Next, let x < xk. Since

P (X ≤ x) ≤ P (x ≤ xk−1) = (k − 1) · 1
n
=

n− 1

2
· 1
n
=

1

2
− 1

2n
<

1

2
,

therefore x 6∈M(X). Finally, let x > xk. Since

P (X ≥ x) ≤ P (x ≥ xk+1) = (k − 1) · 1
n
=

n− 1

2
· 1
n
=

1

2
− 1

2n
<

1

2
,

it follows that x 6∈M(X).
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CASE 2: n = 2k for some positive integer k and let x ∈ [xk, xk+1]. Since

P (X ≤ x) ≥ P (X ≤ xk) = k · 1
n
=

n

2
· 1
n
=

1

2
≥ 1

2

and
P (X ≥ x) ≥ P (X ≥ xk+1) = k · 1

n
=

n

2
· 1
n
=

1

2
≥ 1

2
,

it follows that x ∈M(X) for any x ∈ [xk, xk+1]. Next, let x < xk. Since

P (X ≤ x) ≤ P (x ≤ xk−1) = (k − 1) · 1
n
=

n− 2

2
· 1
n
=

1

2
− 1

n
<

1

2
,

therefore x 6∈M(X). Finally, let x > xk+1. Since

P (X ≥ x) ≤ P (x ≥ xk+2) = (n− k + 1) · 1
n
=

n− 2

2
· 1
n
=

1

2
− 1

n
<

1

2
,

therefore x 6∈M(X).

Note that for any ordered random variable X ,

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
,

the following holds:

1. the median set M(X) is nonempty,

2. the median set M(X) is bounded and closed in R,

3. max(M(X)) =

{
xk if n = 2k − 1 for some positive integer k,
xk+1 if n = 2k for some positive integer k.

4. min(M(X)) =

{
xk if n = 2k − 1 for some positive integer k,
xk if n = 2k for some positive integer k.

5. M(X) ∩ {x1, x2, x3, . . . , xn} =

=

{
{xk} if n = 2k − 1 for some positive integer k,
{xk, xk+1} if n = 2k for some positive integer k.

Clearly, the statements (1) and (2) above imply

Fact 3.3. The median set M(X) is either a singleton (one real number) or a closed inter-
val.

We call the maximum max(M(X)) of M(X) the upper median of X and we will
always denote it by m1; we call the minimum min(M(X)) of M(X) the lower median of
X and we will always denote it by m0. The median

m
1
2 =

min(M(X)) + max(M(X))

2

=

{
xk if n = 2k − 1 for some positive integer k,
xk+xk+1

2 if n = 2k for some positive integer k

will be called the middle median of X or the canonical value of median of X .
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4 The first and the third quartile sets of a random variable
We begin this section by giving the definition of a first and a third quartile as well as the
first quartile and the third quartile set of an ordered random variable.

Definition 4.1. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
,

and let x be any real number. We say that x is

1. a first quartile of X , if

P (X ≤ x) ≥ 1

4
and P (X ≥ x) ≥ 3

4
.

2. a third quartile of X , if

P (X ≤ x) ≥ 3

4
and P (X ≥ x) ≥ 1

4
.

We call the set
Q1(X) = {x ∈ R | x is a first quartile of X}

the first quartile set of the random variable X and the set

Q3(X) = {x ∈ R | x is a third quartile of X}

the third quartile set of the random variable X .

In the following proposition we give an explicit description of the sets Q1(X) and
Q2(X) for any ordered random variable X .

Proposition 4.2. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then

Q1(X) =


[xk, xk+1] if n = 4k for some positive integer k,
{xk+1} if n = 4k + 1 for some non-negative integer k,
{xk+1} if n = 4k + 2 for some non-negative integer k,
{xk+1} if n = 4k + 3 for some non-negative integer k

and

Q3(X) =


[x3k, x3k+1] if n = 4k for some positive integer k,
{x3k+1} if n = 4k + 1 for some non-negative integer k,
{x3k+2} if n = 4k + 2 for some non-negative integer k,
{x3k+3} if n = 4k + 3 for some non-negative integer k.
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Proof. We consider the following four possible cases.

CASE 1: n = 4k for some positive integer k.
First we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q1(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q1(X). Then

•
`

4k
≥ 1

4
holds and

`

4k
≥ 1

4
⇐⇒ ` ≥ k,

•
4k − `+ 1

4k
≥ 3

4
holds and

4k − `+ 1

4k
≥ 3

4
⇐⇒ ` ≤ k + 1.

Therefore,
x` ∈ Q1(X) ⇐⇒ ` ∈ {k, k + 1}.

Therefore, it can easily be seen that Q1(X) = [xk, xk+1].
Next we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q3(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q3(X). Then

•
`

4k
≥ 3

4
holds and

`

4k
≥ 3

4
⇐⇒ ` ≥ 3k,

•
4k − `+ 1

4k
≥ 1

4
holds and

4k − `+ 1

4k
≥ 1

4
⇐⇒ ` ≤ 3k + 1.

Therefore,
x` ∈ Q3(X) ⇐⇒ ` ∈ {3k, 3k + 1}.

Therefore, it can easily be seen that Q3(X) = [x3k, x3k+1].

CASE 2: n = 4k + 1 for some non-negative integer k.
First we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q1(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q1(X). Then

•
`

4k + 1
≥ 1

4
holds and

`

4k + 1
≥ 1

4
⇐⇒ ` ≥ k +

1

4
,

•
4k + 1− `+ 1

4k + 1
≥ 3

4
holds and

4k − `+ 2

4k + 1
≥ 3

4
⇐⇒ ` ≤ k +

5

4
.
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Therefore,
x` ∈ Q1(X) ⇐⇒ ` = k + 1.

Therefore, it can easily be seen that Q1(X) = {xk+1}.
Next we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q3(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q3(X). Then

•
`

4k + 1
≥ 3

4
holds and

`

4k + 1
≥ 3

4
⇐⇒ ` ≥ 3k +

3

4
,

•
4k + 1− `+ 1

4k + 1
≥ 1

4
holds and

4k − `+ 2

4k + 1
≥ 1

4
⇐⇒ ` ≤ 3k +

7

4
.

Therefore,
x` ∈ Q3(X) ⇐⇒ ` = 3k + 1.

Therefore, it can easily be seen that Q3(X) = {x3k+1}.

CASE 3: n = 4k + 2 for some non-negative integer k.
First we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q1(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q1(X). Then

•
`

4k + 2
≥ 1

4
holds and

`

4k + 2
≥ 1

4
⇐⇒ ` ≥ k +

1

2
,

•
4k + 2− `+ 1

4k + 2
≥ 3

4
holds and

4k − `+ 3

4k + 2
≥ 3

4
⇐⇒ ` ≤ k +

3

2
.

Therefore,
x` ∈ Q1(X) ⇐⇒ ` = k + 1.

Therefore, it can easily be seen that Q1(X) = {xk+1}.
Next we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q3(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q3(X). Then

•
`

4k + 2
≥ 3

4
holds and

`

4k + 2
≥ 3

4
⇐⇒ ` ≥ 3k +

3

2
,
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•
4k + 2− `+ 1

4k + 2
≥ 1

4
holds and

4k − `+ 3

4k + 2
≥ 1

4
⇐⇒ ` ≤ 3k +

5

2
.

Therefore,
x` ∈ Q3(X) ⇐⇒ ` = 3k + 2.

Therefore, it can easily be seen that Q3(X) = {x3k+2}.

CASE 4: n = 4k + 3 for some non-negative integer k.
First we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q1(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q1(X). Then

•
`

4k + 3
≥ 1

4
holds and

`

4k + 3
≥ 1

4
⇐⇒ ` ≥ k +

3

4
,

•
4k + 3− `+ 1

4k + 3
≥ 3

4
holds and

4k − `+ 4

4k + 3
≥ 3

4
⇐⇒ ` ≤ k +

7

4
.

Therefore,
x` ∈ Q1(X) ⇐⇒ ` = k + 1.

Therefore, it can easily be seen that Q1(X) = {xk+1}.
Finally, we find all such ` ∈ {1, 2, 3, . . . , n} that x` ∈ Q3(X). Suppose that ` ∈

{1, 2, 3, . . . , n} is such an integer that x` ∈ Q3(X). Then

•
`

4k + 3
≥ 3

4
holds and

`

4k + 3
≥ 3

4
⇐⇒ ` ≥ 3k +

9

4
,

•
4k + 3− `+ 1

4k + 3
≥ 1

4
holds and

4k − `+ 4

4k + 3
≥ 1

4
⇐⇒ ` ≤ 3k +

13

4
.

Therefore,
x` ∈ Q3(X) ⇐⇒ ` = 3k + 3.

Therefore, it can easily be seen that Q3(X) = {x3k+3}.
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Note that for any ordered random variable X ,

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
,

the following holds:

1. the sets Q1(X) and Q3(X) are both nonempty,

2. the sets Q1(X) and Q3(X) are both bounded and closed in R,

3. max(Q1(X)) =


xk+1 if n = 4k for some positive integer k,
xk+1 if n = 4k + 1 for some non-negative integer k,
xk+1 if n = 4k + 2 for some non-negative integer k,
xk+1 if n = 4k + 3 for some non-negative integer k

4. min(Q1(X)) =


xk if n = 4k for some positive integer k,
xk+1 if n = 4k + 1 for some non-negative integer k,
xk+1 if n = 4k + 2 for some non-negative integer k,
xk+1 if n = 4k + 3 for some non-negative integer k

5. max(Q3(X)) =


x3k+1 if n = 4k for some positive integer k,
x3k+1 if n = 4k + 1 for some non-negative integer k,
x3k+2 if n = 4k + 2 for some non-negative integer k,
x3k+3 if n = 4k + 3 for some non-negative integer k

6. min(Q3(X)) =


x3k if n = 4k for some positive integer k,
x3k+1 if n = 4k + 1 for some non-negative integer k,
x3k+2 if n = 4k + 2 for some non-negative integer k,
x3k+3 if n = 4k + 3 for some non-negative integer k

7. Q1(X) ∩ {x1, x2, x3, . . . , xn} =

=


{xk, xk+1} if n = 4k for some positive integer k,
{xk+1} if n = 4k + 1 for some non-negative integer k,
{xk+1} if n = 4k + 2 for some non-negative integer k,
{xk+1} if n = 4k + 3 for some non-negative integer k

8. Q3(X) ∩ {x1, x2, x3, . . . , xn} =

=


{x3k, x3k+1} if n = 4k for some positive integer k,
{x3k+1} if n = 4k + 1 for some non-negative integer k,
{x3k+2} if n = 4k + 2 for some non-negative integer k,
{x3k+3} if n = 4k + 3 for some non-negative integer k

Similarly as for the median, we observe that

Fact 4.3. The quartile sets Q1(X) and Q3(X) are either singletons (one real number) or
closed intervals.



I. Banič and J. Žerovnik: On median and quartile sets of ordered random variables 11

We call the maximum max(Q1(X)) and the minimum min(Q1(X)) of Q1(X) the
upper first quartile and the lower first quartile of X respectively, and we will denote them
by q11 and q01 respectively. The first quartile

q
1
2
1 =

min(Q1(X)) + max(Q1(X))

2

=


xk+xk+1

2 if n = 4k for some positive integer k,
xk+1 if n = 4k + 1 for some non-negative integer k,
xk+1 if n = 4k + 2 for some non-negative integer k,
xk+1 if n = 4k + 3 for some non-negative integer k

will be called the middle first quartile of X (or, the canonical value of the first quartile).
We call the maximum max(Q3(X)) and the minimum min(Q3(X)) of Q3(X) the

upper third quartile and the lower third quartile of X respectively, and we will always
denote them by q13 and q03 respectively. The third quartile

q
1
2
3 =

min(Q3(X)) + max(Q3(X))

2

=


x3k+x3k+1

2 if n = 4k for some positive integer k,
x3k+1 if n = 4k + 1 for some non-negative integer k,
x3k+2 if n = 4k + 2 for some non-negative integer k,
x3k+3 if n = 4k + 3 for some non-negative integer k

will be called the middle third quartile of X (or, the canonical value of the third quartile).

5 Main results
In present section we formulate and prove our main theorems. We start with the following
definition.

Definition 5.1. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then 2X is the ordered random variable, defined by

2X ∼
(

y1 y2 y3 · · · y2n
1
2n

1
2n

1
2n · · · 1

2n

)
,

where y2i−1 = y2i = xi for each i ∈ {1, 2, 3, . . . , n}.

The following theorem says that the set of all medians of X may be obtained by calcu-
lating the set of all medians of 2X .

Theorem 5.2. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then M(X) = M(2X).
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Proof. Let

2X ∼
(

y1 y2 y3 · · · y2n
1
2n

1
2n

1
2n · · · 1

2n

)
,

We look at the following two possible cases.

CASE 1: n = 2k − 1 for some positive integer k.
By Proposition 3.2 and by the definition of 2X , the following holds:

M(2X) = [y2k−1, y2k] = [xk, xk] = {xk} = M(X).

CASE 2: n = 2k for some positive integer k.
By Proposition 3.2 and by the definition of 2X , the following holds:

M(2X) = [y2k, y2k+1] = [xk, xk+1] = M(X).

In the following theorem, the ordered random variable 4X is defined to be the ordered
random variable 2(2X). The theorem says that the set of all first (third) quartiles of X may
be obtained by calculating the set of all first (third) quartiles of 4X .

Theorem 5.3. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then Q1(X) = Q1(4X) and Q3(X) = Q3(4X).

Proof. Let

4X ∼
(

y1 y2 y3 · · · y4n
1
4n

1
4n

1
4n · · · 1

4n

)
,

We look at the following four possible cases.

CASE 1: n = 4k for some positive integer k.
By Proposition 4.2 and by the definition of 4X , the following holds:

Q1(4X) = [yn, yn+1] = [xk, xk+1] = Q1(X)

and
Q3(4X) = [y3n, y3n+1] = [x3k, x3k+1] = Q3(X).

CASE 2: n = 4k + 1 for some non-negative integer k.
By Proposition 4.2 and by the definition of 4X , the following holds:

Q1(4X) = [yn, yn+1] = [xk+1, xk+1] = {xk+1} = Q1(X)

and
Q3(4X) = [y3n, y3n+1] = [x3k+1, x3k+1] = {x3k+1} = Q3(X).

CASE 3: n = 4k + 2 for some non-negative integer k.
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By Proposition 4.2 and by the definition of 4X , the following holds:

Q1(4X) = [yn, yn+1] = [xk+1, xk+1] = {xk+1} = Q1(X)

and
Q3(4X) = [y3n, y3n+1] = [x3k+2, x3k+2] = {x3k+2} = Q3(X).

CASE 4: n = 4k + 3 for some non-negative integer k.
By Proposition 4.2 and by the definition of 4X , the following holds:

Q1(4X) = [yn, yn+1] = [xk+1, xk+1] = {xk+1} = Q1(X)

and
Q3(4X) = [y3n, y3n+1] = [x3k+3, x3k+3] = {x3k+3} = Q3(X).

In the definitions and the results that follow we try to mimic statistical methods that
suggest the following well-known strategy. To find a first or a third quartile, split the data
into two halves and find the medians of these halves.

Definition 5.4. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · x2n
1
2n

1
2n

1
2n · · · 1

2n

)
.

Then 1
2X

− is the ordered random variable, given by

1

2
X− ∼

(
x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
and 1

2X
+ is the ordered random variable, given by

1

2
X+ ∼

(
xn+1 xn+2 xn+3 · · · x2n

1
n

1
n

1
n · · · 1

n

)
We continue with the following theorem which gives a relationship between M( 12X

−)
and Q1(X), and M( 12X

+) and Q3(X).

Theorem 5.5. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · x2n
1
2n

1
2n

1
2n · · · 1

2n

)
.

Then M( 12X
−) = Q1(X) and M( 12X

+) = Q3(X).

Proof. We look at the following two possible cases.

CASE 1: n = 2k − 1 for some positive integer k.
By Propositions 3.2 and 4.2, and by the definition of 1

2X
− and 1

2X
+, the following

holds:
M(

1

2
X−) = {xk} = Q1(X)
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and

M(
1

2
X+) = {xn+k} = {x3k−1} = Q3(X).

CASE 2: n = 2k for some positive integer k.
By Propositions 3.2 and 4.2, and by the definition of 1

2X
− and 1

2X
+, the following

holds:

M(
1

2
X−) = [xk, xk+1] = Q1(X)

and

M(
1

2
X+) = [xn+k, xn+k+1] = [x3k, x3k+1] = Q3(X).

Note that 1
2X

− and 1
2X

+ can only be obtained if n = 2k for some positive integer k.
The following definition generalizes the notion of 1

2X
− and 1

2X
+ to define the lower and

upper parts of X in any proportion for arbitrary n.

Definition 5.6. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
and let x ∈ [x1, xn] be any real number. Then we define the ordered random variables Lc

x,
Lo
x, U c

x, and Uo
x by

Lc
x ∼



(
x1 x2 x3 · · · xk

1
k

1
k

1
k · · · 1

k

)
if x = xk for some k,(

x1 x2 x3 · · · xk

1
k

1
k

1
k · · · 1

k

)
if xk < x < xk+1 for some k

Lo
x ∼



(
x1 x2 x3 · · · xk−1

1
k−1

1
k−1

1
k−1 · · · 1

k−1

)
if x = xk for some k,(

x1 x2 x3 · · · xk

1
k

1
k

1
k · · · 1

k

)
if xk < x < xk+1 for some k

U c
x ∼



(
xk xk+1 xk+2 · · · xn

1
n−k+1

1
n−k+1

1
n−k+1 · · · 1

n−k+1

)
if x = xk for some k,(

xk+1 xk+2 · · · xn

1
n−k

1
n−k · · · 1

n−k

)
if xk < x < xk+1 for some k.

Uo
x ∼



(
xk+1 xk+2 · · · xn

1
n−k

1
n−k · · · 1

n−k

)
if x = xk for some k,(

xk+1 xk+2 · · · xn

1
n−k

1
n−k · · · 1

n−k

)
if xk < x < xk+1 for some k.
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The sets Lo
x, Lc

x, Uo
x , and U c

x can respectively be called open and closed lower part, and
open and closed upper parts of X relative to x.

From the definitions it directly follows:

Proposition 5.7. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then

1. Lc
x ⊇ Lo

x, U c
x ⊇ Uo

x for any x ∈ [x1, xn],

2. Lo
x ∩ Uo

x = ∅ for any x ∈ [x1, xn],

3. if x = xk ∈ X then Lc
x ∩ U c

x = {x},
4. if x 6= xk ∈ X then Lo

x ∪ Uo
x = X ,

5. Lc
x ∪ U c

x = X for any x ∈ [x1, xn].

Furthermore, the following theorem holds.

Theorem 5.8. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

If n = 2k for some k, then for any median m ∈M(X), m 6= m0, m 6= m1, we have
(1) Lc

m = Lo
m = 1

2X
− and U c

m = Uo
m = 1

2X
+.

(2) M(Lc
m) = M(Lo

m) = Q1(X) and M(U c
m) = M(Uo

m) = Q3(X) .

Proof. Statement (1) follows directly from the definitions. Statement (2) follows from (1)
and Theorem 5.5.

The situation is a bit more complicated for odd n. Recall that for odd number of ele-
ments n = 2`+ 1, the median m = x`+1 is an element of X .

Theorem 5.9. Let n be an odd integer and X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then
(1) if n = 4k+1 then for the unique median m = x2k+1 we have M(Lc

m) = Q1(X) =
{xk+1} ⊆ M(Lo

m) = [xk, xk+1] and M(Lc
m) = Q3(X) = {x3k+1} ⊆ M(Lo

m) =
[xk+1, xk+2].

(2) if n = 4k+3 then for the unique median m = x2k+2 we have M(Lo
m) = Q1(X) =

{xk+1} ⊆ M(Lc
m) = [xk+1, xk+2] and M(Lo

m) = Q3(X) = {x3k+3} ⊆ M(Lo
m) =

[x3k+2, x3k+3].

Proof. The proof is straight forward. We leave it to a reader.
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Thus from Theorem 5.8 we have learned that for X with even number of elements,
taking any value from the median set to divide X to obtain the lower and the upper half,
and computing its median sets will provide exact values of the first and the third quartile
sets.

However, by Theorem 5.9, the situation is slightly more complicated for odd n. Two
cases have to be distinguished, because the quartile sets are median sets of the open halves
when n = 4k + 1 and are medians of the closed halves when n = 4k + 3.

We conclude the section by stating and proving another interesting result not depending
whether n is even or odd. It gives an algorithm how to obtain the first and the third quartile
sets of any data by doubling the data first, and then obtaining the median sets of the first
and the second halves of the obtained doubled data. The advantage of this method is the
fact that it works perfectly in both cases — for any even and for any odd n.

Theorem 5.10. Let X be an ordered random variable, given by

X ∼
(

x1 x2 x3 · · · xn
1
n

1
n

1
n · · · 1

n

)
.

Then M( 12 (2X)
−
) = Q1(X) and M( 12 (2X)

+
) = Q3(X).

Proof. We distinguish the following four possible cases.

CASE 1: n = 4k for some positive integer k.
By Proposition 4.2, Q1(X) = [xk, xk+1] and Q3(X) = [x3k, x3k+1].
In this case

2X ∼
(

x1 x1 · · · x2k x2k x2k+1 x2k+1 · · · xn−1 xn xn
1
2n

1
2n · · · 1

2n
1
2n

1
2n

1
2n · · · 1

2n
1
2n

1
2n

)
.

By Proposition 3.2, one can easily get that M( 12 (2X)
−
) = [xk, xk+1] = Q1(X) and

M( 12 (2X)
+
) = [x3k, x3k+1] = Q3(X).

CASE 2: n = 4k + 1 for some non-negative integer k.
By Proposition 4.2, Q1(X) = {xk+1} and Q3(X) = {x3k+1}, and by Proposition 3.2,

M(X) = {x2k+1}.
In this case

2X ∼
(

x1 x1 x2 · · · x2k x2k+1 x2k+1 x2k+2 · · · xn xn
1
2n

1
2n

1
2n · · · 1

2n
1
2n

1
2n

1
2n · · · 1

2n
1
2n

)
.

By Proposition 3.2, M( 12 (2X)
−
) = {xk+1} = Q1(X) and M( 12 (2X)

+
) = {x3k+1} =

Q3(X).

CASE 3: n = 4k + 2 for some non-negative integer k.
By Proposition 4.2, Q1(X) = {xk+1} and Q3(X) = {x3k+2}.
In this case

2X ∼
(

x1 x1 x2 · · · x2k+1 x2k+2 · · · xn−1 xn xn
1
2n

1
2n

1
2n · · · 1

2n
1
2n · · · 1

2n
1
2n

1
2n

)
.

By Proposition 3.2, M( 12 (2X)
−
) = {xk+1} = Q1(X) and M( 12 (2X)

+
) = {x3k+2} =

Q3(X).
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CASE 4: n = 4k + 3 for some non-negative integer k.
By Proposition 4.2, Q1(X) = {xk+1} and Q3(X) = {x3k+3}.
In this case

2X ∼
(

x1 x1 x2 x2 · · · x2k+2 x2k+2 · · · xn xn
1
2n

1
2n

1
2n

1
2n · · · 1

2n
1
2n · · · 1

2n
1
2n

)
.

By Proposition 3.2, M( 12 (2X)
−
) = {xk+1} = Q1(X) and M( 12 (2X)

+
) = {x3k+3} =

Q3(X).

6 On some elementary methods for computing the quartiles
The usual methods for computation of quartiles are based on the idea to split the dataset
in two halves and obtain the quartiles as the medians of the halves. The obvious question
arises ”how to define the halves if the number of elements is odd ?”. As we know it is
answered differently, yielding different methods and, unfortunately, different results(!) [5].
Three methods are among the most popular, the first two being often used in elementary
textbooks. The third was proposed in [5] and argued to be accessible at elementary level in
[10]. All the methods below first compute the median of X and then divide X in two halves
to obtain the quartiles as medians of the halves. However, when n is odd, the methods differ
as follows:

• Method M1. Include the median in both halves.

• Method M2. Exclude the median in both halves.

• Method L. If n = 4k + 1 then include the median. If n = 4k + 3 then exclude the
median.

Method L was suggested by Langford [5] who shows that both M1 and M2 fail to
provide correct answers in some cases.

We say that a method or an algorithm for computing a first quartile of a given data is
correct, if it gives a value q and q ∈ Q1(X). We say that a method or an algorithm for
computing a third quartile of a given data is correct, if it gives a value q and q ∈ Q3(X).

Considering Theorem 5.9 immediately confirms that M1 and M2 are not correct. For
example, for n = 4k+3, method M1 gives q1 as the median of the lowest 2k+2 elements,
i.e. 1

2 (xk+1 + xk+2) whereas Q1(X) = {xk+1}. Similarly, for n = 4k + 1, method M2
gives q1 as the median of the lowest 2k elements, i.e. 1

2 (xk + xk+1) whereas Q1(X) =
{xk+1}.

Method L however naturally extends to the general case.

Theorem 6.1. The L method is a correct algorithm for computing the quartile sets.

Proof. Let n be even, say n = 2k. Then by method L, the first quartile is the median of the
set {x1, x2, . . . , xk}, and the third quartile is the median of the set {xk+1, xk+2, . . . , x2k},
which is correct by Theorem 5.5.

Let n be odd. If n = 4k+1 then by method L, the first quartile is the median of the set
{x1, x2, . . . , x2k+1}, and the third quartile is the median of the set
{x2k+1, x2k+2, . . . , x4k+1}, (median included in both sets), which is correct by Theo-
rems 5.8 and 5.9.
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If n = 4k + 3 then by method L, the first quartile is the median of the set
{x1, x2, . . . , x2k+1}, and the third quartile is the median of {x2k+3, x2k+4, . . . , x4k+3},
(median excluded from both sets), which is correct by Theorems 5.8 and 5.9.

Another natural idea [5], equivalent to method L, can naturally be extended to a method
for computing the quartile sets. Instead of asking and to answering the question whether
to include or exclude the median when splitting the dataset in two halves, one can decide
to give ”half of the median” to each part. This can be realized by doubling the dataset and
giving one copy of the median into each half. We call this the Langford’s doubling method.
Recall that Theorem 5.5 implies that this method works correctly for the generalized defi-
nition of quartiles.

Theorem 6.2. The doubling method is a correct algorithm for computing the quartile sets.

In conclusion, one may ask how some other methods for computing quartiles are related
to the generalized notion of median and quartiles. For example, assuming n = 4k, one
could ask whether a method of interest gives quartile values that are within the quartile set.
This may be a good evidence that the method is sound.

Finally, we wish to note that the interval sets can be naturally associated with any
quantiles, and an analogous theory may be developed.
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