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Abstract

Huang and Wu in [IEEE Transactions on Computers 46 (1997), pp. 484–490] intro-
duced the balanced hypercubeBHn as an interconnection network topology for computing
systems. In this paper, we completely determine the full automorphism group of the bal-
anced hypercube. Applying this, we first show that the n-dimensional balanced hypercube
BHn is arc-transitive but not 2-arc-transitive whenever n ≥ 2. Then, we show that BHn

is a lexicographic product of an n-valent graph Xn and the null graph with two vertices,
where Xn is a Zn−12 -regular cover of the n-dimensional hypercube Qn.
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1 Introduction
The hypercube is widely known as one of the most popular interconnection networks for
parallel computing systems. As a variant of the hypercube, the balanced hypercube was
proposed by Huang and Wu [8] to enhance some properties of the hypercube. An n-
dimensional balanced hypercube, denoted by BHn, is defined as follows.

Definition 1.1. For n ≥ 1,BHn has 4n vertices, and each vertex has a unique n-component
vector on {0, 1, 2, 3} for an address, also called an n-bit string. A vertex (a0, a1, . . . , an−1)
is connected to the following 2n vertices:{

((a0 + 1)(mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),
((a0 − 1)(mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),
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{
((a0 + 1)(mod 4), a1, . . . , ai−1, (ai + (−1)a0)(mod 4), ai+1, . . . , an−1),
((a0 − 1)(mod 4), a1, . . . , ai−1, (ai + (−1)a0)(mod 4), ai+1, . . . , an−1),

for 1 ≤ i ≤ n− 1.
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Figure 1: Two balanced hypercubes: BH1 and BH2

By now, various properties of the balanced hypercube, such as, Hamiltonian laceabil-
ity, bipanconnectivity, super connectivity etc. have been extensively investigated in the
literature [7, 8, 9, 14, 16, 17, 18, 19]. In many situations, it is highly desired to use inter-
connection networks which are highly symmetric. This often simplifies the computational
and routing algorithms. It has been shown that the balanced hypercube is vertex-transitive
and arc-transitive (see [14, 22]). When dealing with the symmetry of graphs, the goal
is to gain as much information as possible about the structure of the full automorphism
groups. Recently, several publications have been put into investigation of automorphism
groups of Cayley graphs having connection with interconnection networks (see, for exam-
ple, [5, 10, 20, 21]).

In [22], it was proved that BHn is an arc-transitive Cayley graph.

Definition 1.2. For n ≥ 1, let Hn be an abelian group defined as follows:

Hn = 〈y〉 × 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 ∼= Z2 × Z4 × Z4 × . . .× Z4.

The generalized dihedral group of Hn, denoted by Dih(Hn), is the semi-direct product of
Hn by a group 〈x〉 of order 2 with the involution x inverting every element in Hn. Let
Gn = Dih(Hn) = Hn o 〈x〉 and let S = {x, xy, xzi, xyzi | i = 1, 2, . . . , n− 1}. Let Γn
be the following Cayley graph:

Γn = Cay(Gn, S). (1.1)

Proposition 1.3. [22, Theorem 3.7] For each n ≥ 1, BHn
∼= Γn is arc-transitive.

Definition 1.4. Let Ln be a subgroup of Hn defined by

Ln = 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 ∼= Z4 × Z4 × . . .× Z4︸ ︷︷ ︸
n−1

.
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Let Tn = Dih(Ln) = Ln o 〈x〉. Clearly, Tn is a subgroup of Gn of index 2. Set Ω =
{x, xzi | i = 1, 2, . . . , n− 1}, and define Xn as the following Cayley graph:

Xn = Cay(Tn,Ω). (1.2)

For convenience, in what follows we shall always let Γn = BHn. In [3], the authors
proved the following result.

Proposition 1.5. [3, Theorem 3.4] For each n ≥ 1,BHn
∼= Xn[2K1], whereXn is defined

as following:
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Figure 2: Another layout of BH2

By Proposition 2.1, it is easy to see that Aut(BHn) = Z2 oAut(Xn) ∗. So, to determine
the automorphism group of BHn, the key is to determine the automorphism group of Xn.
In this paper, we prove that Xn is a 2-arc-transitive normal Cayley graph, and Aut(Xn) =
R(Tn) o Aut(Tn,Ω) ∼= Tn o Sn.

As the automorphism group of BHn is known, one may ask: Does BHn have a
stronger symmetry property? In this paper, we show that BHn is arc-transitive but not
2-arc-transitive.

As another application, we prove that Xn is a Zn−12 -regular cover of the hypercube
Qn. This, together with the fact BHn

∼= Xn[2K1], gives a theoretical explanation of the
relationship between BHn and Qn.

2 Preliminaries
In this section, we shall introduce some notations, terminology and preliminary results.
Throughout this paper only undirected simple connected graphs without loops and mul-
tiple edges are considered. Unless stated otherwise, we follow Bondy and Murty [2] for
terminology and definitions.

Let n be a positive integer. Denote by Zn the cyclic group of order n, by Sn the sym-
metric group of degree n and byKn,n the complete bipartite graph of order 2n and valency
n, respectively. We also use nK1, Kn and Cn to denote the null graph, the complete graph
and the cycle with n vertices, respectively.

In a parallel computing system, processors are connected based on a specific intercon-
nection network. An interconnection network is usually represented by a graph in which
vertices represent processors and edges represent links between processors. LetG be a sim-
ple undirected connected graph. We denote by Aut(G) the full automorphism group of G,
and by V (G) and E(G) the sets of vertices and edges of G, respectively. For u, v ∈ V (G),
denote by {u, v} the edge incident to u and v in G. For a vertex v in a graph G, use NG(v)
to denote the neighborhood of v, that is, the set of vertices adjacent to v.
∗One can also obtain this by using [4, Theorem 5.7]. We thank a referee for pointing out this.
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An s-arc in a graph G is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of
G such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1.
A graph G is said to be s-arc-transitive if Aut(G) is transitive on the set of s-arcs in
G. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-
transitive or symmetric. A graph G is edge-transitive if Aut(G) acts transitively on E(G).
Clearly, every arc-transitive graph is both edge-transitive and vertex-transitive.

2.1 Wreath products of groups

For a set V and a group G with identity element 1, an action of G on V is a mapping
V ×G→ V , (v, g) 7→ vg , such that v1 = v and (vg)h = vgh for v ∈ V and g, h ∈ G. The
kernel of G acting on V is the subgroup of G fixing V pointwise. For two groups K,H , if
H acts on K (as a set) such that (xy)h = xhyh for any x, y ∈ K and h ∈ H , then H is
said to act on K as a group. In this case, we use K oH to denote the semi-direct product
of K by H with respect to the action.

LetH be a permutation group on a finite set ∆. For convenience, let ∆ = {1, 2, · · · , n}.
Let G be a permutation group on a finite set Φ, and let

N = G×G× · · · ×G︸ ︷︷ ︸
n times

.

We define the action of H on N as following:

∀h ∈ H, (g1, g2 · · · , gn)h = (g1h−1 , g2h−1 , · · · , gnh−1 ), gi ∈ G, i = 1, 2, · · · , n.

Then the semi-direct product of N by H with respect to this action is called the wreath
product of G and H , denoted by G oH . Clearly,

G oH = {(g1, g2, · · · , gn;h) | gi ∈ G, h ∈ H}.

Moreover, G oH can be viewed as a permutation group on Φ×∆ as following:

(x, i)(g1,g2,··· ,gn;h) = (xgi , ih).

Let G and H be two graphs. The lexicographic product G[H] is defined as the graph
with vertex set V (G)×V (H) and for any two vertices (u1, v1), (u2, v2) ∈ V (G)×V (H),
they are adjacent in G[H] if and only if either u1 = u2 and v1 is adjacent to v2 in H , or u1
is adjacent to u2 in G. In view of [13, Theorem.], we have the following.

Proposition 2.1. [13, Theorem.] LetX and Y be two graphs. Then Aut(X[Y ]) = Aut(Y )o
Aut(X) if and only if

(1) if there are two distinct vertices u, v ∈ V (X) such that NX(u) = NX(v), then Y is
connected;

(2) if there are two distinct vertices u, v ∈ V (X) such thatNX(u)∪{u} = NX(v)∪{v},
then the complement Y of Y is connected.

2.2 Cayley graphs

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if
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Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. Given a finite
group G and an inverse closed subset S ⊆ G \ {1}, the Cayley graph Cay(G,S) on G
with respect to S is defined to have vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}.
A Cayley graph Cay(G,S) is connected if and only if S generates G. Given a g ∈ G,
define the permutation R(g) on G by x 7→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G},
called the right regular representation of G, is a permutation group isomorphic to G. It is
well-known that R(G) ≤ Aut(Cay(G,S)). So, Cay(G,S) is vertex-transitive. In general,
a vertex-transitive graph X is isomorphic to a Cayley graph on a group G if and only if its
automorphism group has a subgroup isomorphic to G, acting regularly on the vertex set of
X (see [1, Lemma 16.3]).

For two inverse closed subsets S and T of a group G not containing the identity 1, if
there is an α ∈ Aut(G) such that Sα = T then S and T are said to be equivalent, denoted
by S ≡ T . The following proposition is easy to obtain.

Proposition 2.2. If S and T are equivalent then Cay(G,S) ∼= Cay(G,T ).

A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G,S))
(see [15]). Let Cay(G,S) be a Cayley graph on a group G with respect to a subset S of G.
Set A = Aut(Cay(G,S)) and Aut(G,S) = {α ∈ Aut(G) | Sα = S}.

Proposition 2.3. [15, Proposition 1.5] The Cayley graph Cay(G,S) is normal if and only
if A1 = Aut(G,S), where A1 is the stabilizer of the identity 1 of G in A.

2.3 Covers of graphs

An important tool in studying symmetry properties of graphs is the covering technique.
An epimorphism ℘ : X̃ → X of graphs is called a regular covering projection if there is
a semiregular subgroup CT(℘) of the automorphism group Aut(X̃) of X̃ whose orbits in
V (X̃) coincide with the vertex fibers ℘−1(v), v ∈ V (X), and the arc and edge orbits of
CT(℘) coincide with the arc fibers ℘−1((u, v)), u ∼ v, and the edge fibers ℘−1({u, v}),
u ∼ v, respectively. In particular, we call the graph X̃ a regular cover of the graph X . The
semiregular group CT(℘) is the covering transformation group. If CT(℘) is isomorphic to
an abstract group N then we speak of X̃ as a regular N -cover of X . For more results on
the covering of graphs, we refer the reader to [6, 12].

Let X be a connected k-valent graph and let G ≤ Aut(X) act transitively on the 2-arcs
of X . Let N be a normal subgroup of G. The quotient graph XN of X relative to N is
defined as the graph with vertices the orbits of N in V (X) and with two orbits adjacent if
there is an edge in X between those two orbits. In view of [11, Theorem 9], we have the
following.

Proposition 2.4. If N has more than two orbits in V (X), then N is semiregular on V (X),
XN is a k-valent graph with G/N as a 2-arc-transitive group of automorphisms, and X is
a regular N -cover of XN .

3 Automorphism group of the balanced hypercube
In this section, we shall determine the full automorphism group of the balanced hypercube.
From Proposition 1.5 we know that Γn ∼= Xn[2K1], and by Proposition 2.1, Aut(Γn) ∼=
Z2 o Aut(Xn). So, the key step is to determine the automorphism group of Xn.
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Lemma 3.1. For n ≥ 1, Xn is a 2-arc-transitive normal Cayley graph, and furthermore,
Aut(Xn) = R(Tn) o Aut(Tn,Ω), where R(Tn) ∼= Tn = Dih(Zn−14 ) and Aut(Tn,Ω) ∼=
Sn.

Proof. Clearly, X1
∼= K2 and X2

∼= C8. It is easy to see that the statement is true for these
two cases. In what follows, assume that n ≥ 3. We first prove the following two claims.

Claim 1 Aut(Tn,Ω) ∼= Sn.
Since Ω generates Tn, Aut(Tn,Ω) acts faithfully on Ω, and hence Aut(Tn,Ω) ≤ Sn.
It is easy to verify that xz1, z−11 zi(2 ≤ i ≤ n − 1), z−11 generate Tn and they satisfy

the same relations as x, zi(1 ≤ i ≤ n− 2), zn−1. This implies that the map

α : x 7→ xz1, zi 7→ z−11 zi+1(1 ≤ i ≤ n− 2), zn−1 7→ z−11 ,

induces an automorphism of Tn. Clearly, for each 1 ≤ i ≤ n − 2, (xzi)
α = xzi+1, and

x 7→ xz1 and (xzn−1)α = x. This implies that α cyclicly permutates the elements in Ω,
and so α ∈ Aut(Tn,Ω).

Similarly, for each 2 ≤ i ≤ n− 1, we define a map as the following:

βi : x 7→ x, z1 7→ zi, zi 7→ z1, zj 7→ zj(1 ≤ i, j ≤ n− 1 and i 6= j).

Then βi induces an automorphism of Tn, and furthermore, βi interchanges xz1 and xzi
and fixes all other elements in Ω. Hence, βi ∈ Aut(Tn,Ω) and by elementary group theory,
we obtain that the subgroup generated by βi(2 ≤ i ≤ n − 1) is isomorphic to Sn−1.
Since Sn−1 is maximal in Sn, one has 〈α, βi | 2 ≤ i ≤ n − 1〉 ∼= Sn. It follows that
Aut(Tn,Ω) = 〈α, βi | 2 ≤ i ≤ n− 1〉 ∼= Sn.

Claim 2 For any xzi, there are (n−2) 6-cycles inXn passing through the 2-arc (x, 1, xzi),
namely, Ci,j = (1, x, z−1j , xziz

−1
j , z−1j zi, xzi, 1) with j 6= i and 1 ≤ j ≤ n− 1.

By Claim 1, Aut(Tn,Ω) acts 2-transitively on Ω. It is well-known that a vertex-transi-
tive graph is 2-arc-transitive if and only if the vertex-stabilizer Aut(Xn)v is 2-transitive on
the set of vertices adjacent to v. So, Xn is 2-arc-transitive. To prove the claim, it suffices
to show that the statement is true for the case when i = 1.

First, for any 2 ≤ j ≤ n − 1, one may easily check that C1,j = (1, x, z−1j , xz1z
−1
j ,

z1z
−1
j , xz1, 1) is a 6-cycle passing through the 2-arc (x, 1, xz1). Let C ′ be an arbitrary

6-cycle passing through (x, 1, xz1). Then there exist s1, s2, t1, t2 ∈ Ω such that C ′ =
(1, x, s1x, s2s1x = t2t1xz1, t1xz1, xz1, 1), where s1 6= x, s2 6= s1, t1 6= xz1 and t1 6= t2.
Clearly, s1 = xzj for some 1 ≤ j ≤ n−1. In the rest of the proof of Claim 2 the following
well-known fact will be frequently used.

Fact Every element in 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 can be uniquely written in the following
form

za11 za22 . . . z
an−1

n−1 , ai ∈ Z4(1 ≤ i ≤ n− 1).

If s2 = x, then xxzjx = t2t1xz1. It follows that zjx = t2t1xz1 and hence zjz1 = t2t1.
If t2 = x, then t1 = xzk for some 1 ≤ k ≤ n − 1, and so zjz1 = zk. By Fact, this is
impossible. If t2 = xz` for some 1 ≤ ` ≤ n − 1, then we have either t1 = x or t1 = xzp
for some 1 ≤ p ≤ n− 1. For the former, we have zjz1 = z−1` , and for the latter, we have
t2t1 = xz`xzp = z−1` zp = zjz1. From the above Fact, both of these cannot happen.
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If s2 = xzi for some 1 ≤ i ≤ n − 1, then xzixzjx = t2t1xz1. It follows that
z−1i zjx = t2t1xz1 and hence z−1i zjz1 = t2t1. If t1 = xzk and t2 = xzp for some
1 ≤ k, p ≤ n − 1, then t2t1 = z−1p zk = z−1i zjz1. This is also impossible. If t1 = x and
t2 = xzp for some 1 ≤ p ≤ n−1, then t2t1 = z−1p = z−1i zjz1. This is also impossible. So,
we must have t1 = xzk and t2 = x for some 1 ≤ k ≤ n− 1. Then t2t1 = zk = z−1i zjz1.
Clearly, s1 6= s2. Then zk = zj and zi = z1. That is s2 = xz1, t2 = x, t1 = s1 = xzj . It
follows that C ′ = C1,j = (1, x, z−1j , xz1z

−1
j , z−1j z1, xz1, 1).
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Figure 3: 6-cycles passing through (x, 1, xzi)

Now we are ready to complete the proof. Let A = Aut(Xn) and let A1 be the stabilizer
of the identity 1 inA. LetA∗1 be the kernel ofA1 acting on Ω. ThenA∗1 fixes every element
in Ω. For any xzi (1 ≤ i ≤ n − 1), by Claim 2, there are exactly (n − 2) 6-cycles in
Xn passing through the 2-arc (x, 1, xzi), namely, Ci,j = (1, x, z−1j , xziz

−1
j , z−1j zi, xzi, 1)

with j 6= i and 1 ≤ j ≤ n−1 (see Fig. (3)). Note that the neighborhood of x is {1, z−1i | 1 ≤
i ≤ n− 1} and the neighborhood of xzi is {1, zi, z−1j zi | 1 ≤ i, j ≤ n− 1, j 6= i}. Since
there are no 6-cycles passing through z−1i , x, 1, xzi and zi, it follows that A∗1 fixes z−1i and
zi (1 ≤ i ≤ n− 1).

By [3, Lemma 4.2], Xn has girth 6, and so Ci,j is the unique 6-cycle passing through
z−1j , x, 1, xzi, z

−1
j zi. AsA∗1 fixes z−1j , x, 1 and xzi,A∗1 must fix z−1j zi. By the arbitrariness

of i, j, we obtain thatA∗1 fixes every vertex of the set {z−1i , zi, z
−1
j zi | 1 ≤ i, j ≤ n−1, j 6=

i}which is just the set of vertices at distance 2 from the identity 1. By the vertex-transitivity
and connectivity of Xn, A∗1 fixes all vertices of Xn. It follows that A∗1 = 1, and so A1

acts faithfully on Ω. Therefore, A1 . Sn. By Claim 1, Aut(Tn,Ω) ∼= Sn, and since
Aut(Tn,Ω) ≤ A1, one has Aut(Tn,Ω) = A1. By Proposition 2.3, Xn is normal, and so
A = R(Tn) o Aut(Tn,Ω). �

Now we are ready to determine the automorphism group of BHn.

Theorem 3.2. For n ≥ 1, Aut(BHn) = Z2 o (Tn o Sn).

Proof. By Proposition 1.5, BHn
∼= Xn[2K1]. By Proposition 2.1, Aut(BHn) ∼= Z2 o

Aut(Xn). From Theorem 3.1 we obtain that Aut(Xn) = R(Tn)oAut(Tn,Ω) ∼= TnoSn.
It follows that Aut(BHn) = Z2 o (Tn o Sn). �
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4 Related results
As the automorphism group of BHn is known, we can obtain more information about the
symmetry properties of BHn. By Proposition 1.3, BHn is arc-transitive, and by Theo-
rem 3.1, Xn is 2-arc-transitive. It is natural to ask: whether BHn has much stronger sym-
metry property? We answer this in negative by showing that BHn is not 2-arc-transitive.

Theorem 4.1. For n ≥ 2, BHn is arc-transitive but not 2-arc-transitive.

Proof. Suppose, by way of contradiction, thatBHn is 2-arc-transitive. Recall thatBHn =
Cay(Gn, S). Then the vertex-stabilizer Aut(BHn)1 of the identity 1 of Gn in Aut(BHn)
is 2-transitive on S. That is, for any two distinct ordered pairs from S×S, say (u1, v1) and
(u2, v2), there exists α ∈ Aut(BHn)1 such that (u1, v1)α = (u2, v2). In particular, there
exists α ∈ Aut(BHn)1 such that (x, xy)α = (x, xz1). This implies that x and xz1 have
the same neighborhood because x and xy have the same neighborhood. However, from
[22, Lemma 3.8], we see that xy is the unique vertex which has the same neighborhood as
x, a contradiction. �

By Proposition 1.5, BHn
∼= Xn[2K1]. As a consequence of Theorem 3.1, we can also

prove that Xn is a Zn−12 -regular cover of the hypercube Qn. This reveals the relationship
between the balanced hypercube BHn and the hypercube Qn.

Lemma 4.2. For n ≥ 1, let N = Zn2 . Let G = Cay(N,S) be a connected n-valent Cayley
graph. Then G is isomorphic to the n-dimensional hypercube Qn.

Proof. It is well-known that Qn is a Cayley graph on N with respect to the subset

T = {(1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, 0, · · · , 1)}.

Viewing N as an n-dimensional vector space on the field Z2, one may see that T is a basis
of N . Since G is an n-valent Cayley graph, one has |S| = n, and since G is connected, one
has N = 〈S〉. This means that S is also a basis of N . So, there is an automorphism of N
which maps S to T . By Proposition 2.2, G ∼= Qn, as desired. �

Theorem 4.3. For n ≥ 3, Xn is a Zn−12 -regular cover of Qn.

Proof. By Theorem 3.1, R(Tn) is normal in Aut(Xn). Remember that Tn = Dih(Ln) =
Ln o 〈x〉, where

Ln = 〈z1〉 × . . .× 〈zn−1〉 ∼= Z4 × . . .× Z4︸ ︷︷ ︸
n−1 times

,

and x is an involution inverting every element in Ln. Set Z = 〈R(z21)〉× . . .×〈R(z2n−1)〉.
Then

Z ∼= Z2 × . . .× Z2︸ ︷︷ ︸
n−1 times

,

and Z is just the center of R(Tn). It follows that Z is characteristic in R(Tn). Since
R(Tn)E Aut(Xn), one has Z E Aut(Xn). Consider the quotient graph Yn of Xn relative
to Z. Clearly, Z is semiregular on the vertex-set of Xn, and so it has more than 2 orbits on
V (X). Since Xn is 2-arc-transitive, by Proposition 2.4, Yn is also an n-valent graph with
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Aut(Xn)/Z as a 2-arc-transitive automorphism group, and Xn is a Z-regular cover of Yn.
To complete the proof, it suffices to prove that Yn ∼= Qn.

Noting that Z E R(Tn) and R(Tn) is regular on V (Xn), R(Tn)/Z is regular on
V (Yn). It follows that Yn is a Cayley graph on R(Tn)/Z. As R(Tn) = Dih(Ln), one
has R(Tn)/Z ∼= Zn2 . Since Yn has valency n, by Lemma 4.2, one has Yn ∼= Qn. �

Conclusion
In [14], the authors introduced the balanced hypercube to enhance some properties of the
hypercube. Graph symmetry is an important factor in the design of an interconnection
network. In 1997, it has been shown that the balanced hypercube is vertex-transitive. Re-
cently, it was shown that the balanced hypercube is also arc-transitive. However, the full
automorphism group of the balanced hypercube remained unknown. In this paper, we
solve this problem. As applications, we first analyze the symmetry properties of the bal-
anced hypercube and show that the balanced hypercube is not 2-arc-transitive. Then, we
give a theoretical explanation of the relationship between the balanced hypercube and the
hypercube.
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