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Determination of Mechanical Spectra from
Experimental Responses

Dolo¢anje mehanskega spektra na osnovi izmerjenih
relaksacijskih krivulj

Emri |., Fakulteta za strojnistvo, Ljubljana
N. W. Tschoegl, California Institute of Technology, Pasadena, California 91125, USA

A recursive computer algorithm was developed which generates line spectra from
experimental response functions. The method allows storing information on the
mechanical properties of polymeric materials in a convenient way. The algorithm also
interconverts between relaxation and retardation spectra. From the spectra, any desired
response function can then be recovered. The algorithm essentially utilizes the fact that
the kernel functions resemble step functions.

Slightly different codes are used for each kernel function. The appearance of negative

relaxation or retardation lines is obviated. Mathematically such lines would be
acceptable, and they do not seriously affect reconstruction of responses within
relaxation or retardation behavior. However, they would seriously interfere with
interconversion between the two types of behavior, and they would also pose problems

in the interpretation of the spectra.
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Razvit je rekurziven racunainiski algoritern, ki izracuna spekter iz eksperimentaino
dobljenih odzivnih funkcij. Metoda omogoca shranjevanje informacij o mehanskih
lastnostih polimernih materialov v prikladni obliki. Algoritem omogoca tudi
interkonverzijo med relaksacijskim in retardacijskim spektrom. Iz spektra lahko
izracunamo katerokoli materialno funkcijo. Bistvo algoritma je uporaba dejstva, da so
jedra podobna koracni funkciji. Malenkostno drugacne metode so uporabljene za vsako
od jeder. Pri dolo¢evanju relaksacijskega in retardacijskega linijskega spektra, se s tem
algoritmom izognemo negativnim spektralnim linijam. Matemati¢no so take linije
sprejemijive in nimajo velikega vpliva na rekonstrukcijo materiainih funkcij. Problem
zaradi negativnih spektralnih linij se pojavi pri interkonverziji med dvema tipoma
obnasanja, poleg tega pa povzrocijo nepremostijive ovire pri fizikalni interpretaciji

spektra.

Kliuéne besede: viskoelasticnost, relaksacija, retardacija, spekter, jedro, polimeri

1. Introduction

In the response of a lincarly viscoelastic material to a strain
excitation, complete information on the time-dependent part of
the response is contained in the relaxation spectrum. In the re-
sponse to a stress excitation the same role is played by the retar-
dation spectrum. The response then consists of the appropriate
viscoelastic constants (such as the equilibrium modulus, or the
glass compliance and the steady-flow fuidity). in addition to the
integral over the spectrum multiplied by a kemel function char-
acteristic of the type of excitation chosen to elicit the response.
If this is & strain or a stress as a step function of time, the result
is the relaxation modulus in the first, and the creep compliance
in the second case. Thus. once the spectrum is known in addition
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to the viscoelastic constants, it is possible to generate from it the
response to any desired type of excitation.

The spectrum itself 1s not accessible by direct experiment.
From a theoretical response curve it can often be calculated'.
From experimental data the spectrum is necessarily obtained as
an approximation to the true spectrum. A variety of methods
have been proposed™ 10 extract approximations 1o the spectra
from experimental data by mathematical manipulation. The well
known methaods based on numerical or graphical differenuation
typify this approach. In another approach an attempt is made to
determine a distribution of discrete spectral lines from which the
original response curve can be more or less faithfully repro-
duced". Among the better known older methods are Procedure
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X of Tobolsky and Murakami', the collocation method of

Schapery”, and an extension of it by Cost and Becker® which they
call the multidata method. The two last named require matrix in-
version. Both are likely to generate a negative spectrum lines,
which makes virtually impossible to usc this spectra for inter-
conversion between the relaxation and retardation behavior. In
the past few years several new papers have been devoted to this
subject® . An extensive comparison of these methods along
with the method introduced here is presented elsewhere’”.

We present here the method based on an iterative computer
algorithm for calculating a distribution of spectral lines which,
for a given set of data, is unique within the desired degree of ac-
curacy, It must be emphasized, that the discrete distribution of
moduli or compliances on respondance (relaxation or retarda-
tion) times obtained in this way is sull an approximation.
However, as will be shown below, the calculated distributions
appear to yield better results than any of the other methods.

In this paper we shall sketch only the application of the al-
gorithm to the relaxation modulus. The power of the algorithm
will be than demonstrated on the experimental data obtained by
Catsiff and Tobolsky'®. These data were originally reported in
terms of lhc tensile modulus. E(1). For the comparison reasons,
presented in' lhc data were first converted to the shear modulus,
as reported in", For the same reason the units of the modulus
were converted from dynes/cm’ and hours to N/m® and seconds.

A wmplele presentation of the algorithm has been publlshed
elsewhere-in the series of four papers'” ™. The first paper in this
series’ describes the algorithm for obtaining a discrete distribu-
tion of relation times from simulated relaxation modulus data, or
of retardation times from simulated creep compliance data. The
second paper'™ deals with the determination of the spectra from
theoretical storage and loss functions. The third paper"” takes up
the problem of converting between relaxation modulus and creep
compliance. In these first three papers the algorithm have been
thus applied to data sets obtained by sampling continuous theo-
retical curves. This has simplified presentation of the details and
the power of the algorithm, The fourth paper™ deals finally with
the application of our method to experimental data, i.c.. data that
are not free of experimental error.

2, Theoretical

Essentially the method consists in predetermining a set of
respondance times which are equally spaced on the logarithmic
time-axis. and then calculating the strength of the spectral line
associated with each respondance time. Our method shares this
feature with the collocation method and the multidaia method.
However, in contrast to these methods, ours does not require
matrix inversion and thus avoids mathematical difficulties as-
sociated with such an inversion (such as. e.g., occasionally gen-
erating troublesome negative respondance times). We calculate
the intensity (i.c. the strength) of the k™ spectral line corre-
sponding to the k" respondance time, 7, from all source data ly-
ing within a fixed time imerval (Window 1) around 7k, Fig. 1.
The contributions to the strength of this line arising from the
presence of neighboring spectral lines is taken into account by
making appropriate assumptions concerning the spread of the
neighboring lines which will make non-negligible contributions
(Window 2). Fig. 2. The spectrum is calculated by proceeding
from the low end towards the high end of the response, again
making appropriate assumptions. Finally, the crude distribution
of spectral lines obtained in the first pass is improved by itera-
tion.

As mentioned previously. we shall demonstrate our method
on hand of the shear relaxation modulus. The method can be eas-
ily adapted to dealing with the tensile relaxation modulus or the
tensile creep compliance or. for that matter, with any other re-
sponse o the imposition of a strain or a stress as a step function
of time'”,

3. The Algorithm

The theory of linear viscoelastic behavior describes the shear
relaxation modulus by the relation

G(t):{Gv}+[G,—{G,})Ih[r) exp-t/Td Int (1)

where h(7) is the (normalized) continuous relaxation spectrum,
and G, and G, are the instantancous and the equilibrium modu-
lus, respectively. The braces signify that (G.) = G, when the
modulus describes an arrheodictic material, and that {G.) =0
when the matenal is rheodictic (The term rheodicric refers to a
material showing steady-state flow). Dividing by G, - {G,_]
yields

g(t) { } Ih{t) exp-t/tdint. )

where g(1) and g, are lhc normalized relaxation modulus, and
equilibrium modulus, respectively.

The source data are assumed to be available as a set of M dis-
crete data points
e [u,. G(1): j=t 2 ... M}. 3)

Each of these data points can be normalized by the difference
between the largest, G, and the smallest point, Gy, to yield the

set
g € {t,. glv) i=h 2 .. M}. (4)

Now, the modulus can be expressed alternatively by a dis-
crete set of (normalized) spectral lines, h,. In terms of these we

have
6l)={6.}+(G,~{G S0 ew-tir )
wl
or, in normalized form,

g(l):{g,}+ih, exp-t/t. (6)

We intend to determine, from the set of source data, {g: j=1,
2, 3, .... M}, a set of spectral lines, [h; i=1, 2, 3. ..., n], which
will faithfully reproduce the modulus, G(1). In proceeding to ex-
plain how this is done. we initially use the continuous represen-
tation (2), instead of its discrete equivalent (6). because this sim-
plifies the presentation.

We begin by splitting the integral in equation (2) to obtain
g(;)={c,,}+:[h(r) exp-t/Td Int+
+]h{l) exp-1/7 d Int+h(z,) exp-t/ 7+
+]h(r) exp=t/rdinrt. (N

Let the kernel in the integrals in equation (7) be represented
by the function K(t)=exp-1/7. Figure 1 shows a plot of K, =
exp-t/7, as a function of In t/7. The broken line represents the
tangent to K, (1) at In t/z, = 0. From the behavior of the Kemel we
can draw two immediate conclusions.

Firse,
K, (1007, )=372x10* =0. &)
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Figure 1. Definition of Window [ (the Boundary Window)

Slika 1. Definicija Okna § (Mejno okno)

Second. the logarithmic time interval -0.6<t/7,>0.4 defines
the region over which K, (1) shows its largest time dependence.,
We call this interval Window [, The interval from which data
points will be drawn from the set of source data to calculate the
k" spectrum line depends on the number of lines per logarithmic
decade of time, We call this interval Window 2. Figure 2 shows
Dyyan(t) = K'(1), the derivative of K(1t), as a function of In t/5, for
T =T 7, and 7. The intersections of the central derivative
with its neighbors to the left and to the right. designated by t, and
t, (for lower and upper) are given by
(= B g B (9)
L-T LI

and

luz—’—r" it n —r‘".

Al . 3

(10)

If P is the number of spectral lines per decade of /og 1, then
we have log 7., - log 7, and. therefore,

2.303
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Figure 2. Definition of Window 2 (the Modeling Window)
Slika 2. Definicya Qkna 2 (Okno modeliranja)

Tk +)

and
e 2,303x10""

© 107 -1) b2

“r

Therefore, the spread of Window 2 is given by (1. t|. The
width of the window decreases as the number of spectral lines in-
creases. Accordingly,

l'im Window 2=0 (13)
marks the transition from the discrete 10 the continuous form of
the representation of Git).

The third conclusion we can draw from Fig. 1 states that
Window 2 must not be larger than Window [, Outside of Window
1 the k" spectral line cannot handle data points because its con-
tribution on the right is virtually zero, and on the left it ap-
proaches a constant value. On the other hand, we must have at
least one discrete data point lying within Window 2. This real-
1zation allows us to determine the optimum number of spectrum
lines per logarithmic decade to be chosen. This number must be
such that the width of Window 2 approaches (but does not ex-
ceed) the width Window I. The number can be found by solving
the transcendental equations (11) and (12). In equation (11) we
let log t/7,=-0.6, in equation (12) we let it be log 1,/7,=0.4, and
solve for the nearest integer P. The smaller of the two solutions
gives the desired optimum number of spectral lines per decade,

We can now retumn to equation (7). Each datum point within
Window 2 pertaining to the k" spectrum line can be modeled as

8.={8,}+]h(t) exp—t {td Int+

+jh(l) exp=t /Tt d Int+h(z,) exp—t /1, +

]

+jh(t) exp—t,/tdnt. (14)

W

By our first conclusion from Fig. 1, if 7, < /100, then the
first integral in (14) vanishes.

Proceeding now from the continuous to the discrete repre-
sentation, we write

g ={g,}+‘i.h‘ exp—t, /T +h, exp-t [T 4+

+3 h exp-t, /T +A. (15)

kel
In the equation above m is the discrete counterpart of 7, and
is given by m=k-2n-1. The term A, has been added 1o take into
account the absolute error introduced by switching from the con-
tinuous to the discrete representation. Using the abbreviation
1=A-1
z(l,)= {g“}-r z h exp-t /7 +

bt

+h, cxp—l,/tﬁ»Zh exp—-t /T. (16)
L

where Z(1,) denotes the theoretical (error-free) value of the nor-

malized experimental datum point g. the term A can be ex-

pressed as

A=g-Z() (17)
To avoid the instability problems caused by the large difter-

ence in magnitude of modulus on both sides of Window 2 we in-

troduce the relative error of approximation (for details see'’)
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SR ) (18)
“Z6)T Zh)

The sum, Q,. of the squares of g, within Window 2 is
Q=38

where s, and s, are the first and the last discrete points in

Window 2 belonging to the k" spectrum line. Minimizing the er-
ror according to

4

(19)

i—"l'- =), (20
dh, S

where h, is the K" spectrum line. leads to the expression from
which the strength of the k spectral line is to be obtained,

Z .g_'_(':)g' exp-l'/r.z(), ‘2“
= =2
Using the abbreviation
’V"'F{gu}*.“h,cxp-l,/t,+
*ih. exp—t, /%, (22)

IR LR}

and equation (16) in addition, we obtain the equation
I~ g,—[.y(l')‘#'h. t‘xp—l./t.J
™ [y(',)*’h. cxp—l,/t‘]'

This equation must be satisfied to minimize the sum of
squares of the relative quadratic errors, Q,, in the k™ window. It
must be salved numerically by iteration for it cannot be made ex-
plicit_for b, as is possible when minimizing the absolute
error' """, We therefore now recast (23) in a form in which it be-

comes suitable for recursion, We let

g, exp=t, /1, =0, (23)

(24)
where h,"'is the value of h, obtained in the i" iteration,
o g =0 )| g exp-t /T
AT bllae iy
A [.y(ll)-%h‘;' cxp—t,/t.]
and
SO Ny B lexp-l,/tk]:
.ﬂ[h,]zz g (26)

S T

The starting set of spectrum lines for the iteration is [h,'" =
W70 k=1.2,...n ). This starting set is obtained in a first sweep
through the data using the method detailed in the paper'’. For
subsequent sweeps we then use the method just described. The
iteration is broken off when an appropriately chosen limit of the
absolute difference between the new and the preceding square
relative error, Q,, has been reached.

4. Results

We demonstrate the power of the algorithm by obtaining the
distnbution of spectral lines from the experimental data obtained

by Catsiff and Tobolsky' - CT data. The data has been first con-
verted as described in the introduction. In this form they are tab-
ulated in", and are presented in Fig. 3. The solid line represents
a spline function® through the data. Figure 4 shows the relax-
ation spectrum He(7) calculated from these data, using the pre-
sented method.

The reconstruction of the shear relaxation modulus, G(1),
from the calculated spectrum Hi (1), using the relation (5) is
compared with the spline function through the original experi-
mental data in Fig. 5. Both curves can not be distinguished with-
in the resolving power of the plot,
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Figure 3. Relaxanion modulus, log Gey(t). as function of Jog t
Slika 3. Relaksacijski modul. log G (1), kot funkcija log 1
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Figure 4. Relaxation spectrum, log H(7), as function of log T
Slika 4. Relaksacijski spekter, log He (1), kot funkeija log 7

Knowing the spectrum H(t) in addition to the viscoelastic
constants one can generate from it the response to any desired
type of excitation. In order to demonstrate this we first calculate
G’ lw) and G (w) from H(7) using the relations'

509



L. Emri, N. W, Tschoegl: Determination of Mechanical Spectra from Experimental Responses

XO}vwr] | RTRYS frmmes P, by == = e S S s
8- -
8- g

o~ - —

£

Z A= -

| o <

&b il
- -

<

o S - ~—

Q

-l e -
4 —
- N
—_ ——
o i =) Sy ] e il | Y S I S| (YO o] YIS

<12 ~10:;-«8 B~ -4 =2 0O 2 4 & 3
Log t - second

Figure 5. Reconstruction of fog G (1) from H (7). compared with the
spline function through the expenmental data, as functions of Jog t
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Figure 6. Storage compliance, fog J', (w). and loss compliance,
fog 1", (), as functions of log

Slika 6. Shranitveni dinamini modul fog )y ) in dinamiéni modul
izgub log 1% (w) kot funkeiji log o

G’ () and G (w) can be than interconverted to storage
uunphamc J(m), and loss compliance, J* (@), using the
relations'*

G'(w)

V(o) =
[oto)] +["(o)]

(29)
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and
6*(o)

J"{
[G (u))] [G m)]

V(W) and )" (@) are compared with the experimental da-
ta obtained by Fitzgerald, Grandine, and Ferry™ -FGF data. The
comparison is presented in Fig. 7, J' (@) and J"{®), repre-
sented as broken lines, are compared with the spline functions
through the experimental data, ', {®) and J", A ®), shown as
solid line. The original FGF data are shown in Fig. 6. The agree-
ment between the prediction and the spline function through the
experimental data is excellent.

(30
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Figure 7. Smoothed J';,,(®) and 1%, (©) datz compared with
I tw) and 1" () denved from H, (7}

Slika 7. Zglajeni cksperimentalni krivulji fog 1, (@) in log
J¥ @) primerani z log V' (m) in log )° (o) wzraCunanimi iz H (1)

5. Conclusion

In this paper we have presented the algorithm for evaluation
of relaxation line spectra from experimental data. The algorithm
can be easily modified for the assessment of retardation spectra.
The algorithm essentially utilizes the fact that the kernel func-
tions resemble step functions. Slightly different codes are used
for each kernel function, as presented elsewhere'”.

We feel that we have demonstrated that the proposed ulgo-
rithm is indeed capable of generating the underlying line spectra
from the experimental data without producing a negative lines
that are physically unacceptable.
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