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A recursive computer algorithm was developed which generates line spectra from 
experimental response functions. The method allows storing information on the 
mechanical properties of polymeric materials in a convenient way. The algorithm also 
interconverts betvveen relaxation and retardation spectra. From the spectra, any desired 
response funetion can then be recovered. The algorithm essentially utilizes the fact that 
the kernel functions resemble step functions. 
Slightly different codes are used for each kernel funetion. The appearance of negative 
relaxation or retardation lines is obviated. Mathematically such lines vvould be 
acceptable, and they do not seriously affect reconstruction of responses vvithin 
relaxation or retardation behavior. Hovvever, they vvould seriously interfere vvith 
interconversion betvveen the tvvo types of behavior, and they vvould also pose problems 
in the interpretation of the spectra. 
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Razvit je rekurziven računalniški algoritem, ki izračuna spekter iz eksperimentalno 
dobljenih odzivnih funkcij. Metoda omogoča shranjevanje informacij o mehanskih 
lastnostih polimernih materialov v prikladni obliki. Algoritem omogoča tudi 
interkonverzijo med relaksacijskim in retardacijskim spektrom. Iz spektra lahko 
izračunamo katerokoli materialno funkcijo. Bistvo algoritma je uporaba dejstva, da so 
jedra podobna koračni funkciji. Malenkostno drugačne metode so uporabljene za vsako 
od jeder. Pri določevanju relaksacijskega in retardacijskega linijskega spektra, se s tem 
algoritmom izognemo negativnim spektralnim linijam. Matematično so take linije 
sprejemljive in nimajo velikega vpliva na rekonstrukcijo materialnih funkcij. Problem 
zaradi negativnih spektralnih linij se pojavi pri interkonverziji med dvema tipoma 
obnašanja, poleg tega pa povzročijo nepremostljive ovire pri fizikalni interpretaciji 
spektra. 

Ključne besede: viskoelastičnost, relaksacija, retardacija, spekter, jedro, polimeri 

1. Introduction 

In the response of a linearly viscoelastic material to a strain 
excitation, eomplete information on the time-dependent part of 
the response is contained in the relaxation spectrum. In the re-
sponse to a stress excitation the same role is played by the retar-
dation spectrum. The response then consists of the appropriate 
viscoelastic constants (such as the equilibrium modulus, or the 
glass compliance and the steady-flow fluidity), in addition to the 
integral over the spectrum multiplied by a kernel funetion char-
acteristic of the type of excitation chosen to elicit the response. 
If this is a strain or a stress as a step funetion of time, the result 
is the relaxation modulus in the first. and the creep compliance 
in the second čase. Thus, once the spectrum is known in addition 

to the viscoelastic constants, it is possible to generate from it the 
response to any desired type of excitation. 

The spectrum itself is not accessible by direct experiment. 
From a theoretical response curve it can often be calculated1". 
From experimental data the spectrum is necessarily obtained as 
an approximation to the true spectrum. A variety of methods 
have been proposed1"2 to extract approximations to the spectra 
f rom experimental data by mathematical manipulation. The well 
knovvn methods based on numerical or graphical differentiation 
typify this approach. In another approach an attempt is made to 
determine a distribution of diserete spectral lines from vvhich the 
original response curve can be more or less faithfully repro-
duced1 ' . Among the better knovvn older methods are Procedure 



X of Tobolsky and Murakami 3 , the collocation method of 
Schapery4 , and an extension of it by Cost and Becker 1 vvhich they 
call the mult idata method. The tvvo last named require matrix in-
version. Both are likely to generate a negat ive spectrum lines, 
vvhich makes virtually impossible to use this spectra for inter-
conversion betvveen the relaxation and retardation behavior . In 
the past few years several new papers have been devoted to this 
subject6"14. An extensive compar i son of these methods along 
vvith the method introduced here is presented elsevvhere". 

We present here the method based on an iterative compute r 
algorithm for calculat ing a distr ibution of spectral lines vvhich, 
for a given set of data, is unique vvithin the desired degree of ac-
curacy. It must be emphas ized , that the discrete distr ibution of 
moduli or compl iances on respondance (relaxation or retarda-
tion) t imes obtained in this way is stili an approximat ion. 
Hovvever, as vvill be shovvn belovv, the calculated distr ibutions 
appear to yield better results than any of the other methods . 

In this paper we shall sketch only the application of the al-
gorithm to the relaxation modulus . The power of the algori thm 
vvill be than demonst ra ted on the experimental data obtained by 
Catsiff and Tobolsky 1 6 . These data vvere originally reported in 
terms of the tensile modulus , E(t). For the compar ison reasons, 
presented in' the data vvere first conver ted to the shear modulus , 
as reported in1'. For the same reason the units of the modulus 
vvere conver ted f rom dynes /cm 2 and hours to N/m 2 and seconds. 

A complete presentat ion of the algori thm has been published 
elsewhere-in the series of four papers1 7 20. The first paper in this 
series17 describes the algori thm for obtaining a discrete distribu-
tion of relation t imes f rom simulated relaxation modulus data, or 
of retardation t imes f rom simulated creep compl iance data. The 
second paper"1 deals vvith the determinat ion of the spectra f rom 
theoretical storage and loss funct ions . The third paper1 ' ' takes up 
the problem of conver t ing betvveen relaxation modulus and creep 
compliance. In these first three papers the algori thm have been 
thus applied to data sets obtained by sampling cont inuous theo-
retical curves. This has s impli f ied presentation of the details and 
the povver of the algori thm. The fourth paper2 0 deals f inally vvith 
the application of our method to exper imental data, i.e., data that 
are not f ree of exper imentai error. 

2. Theoretical 

Essentially the method consis ts in p rede te rmin ing a set of 
respondance t imes vvhich are equal ly spaced on the logar i thmic 
time-axis, and then calculat ing the strength of the spectral line 
associated vvith each re spondance t ime. Our method shares this 
feature vvith the col locat ion method and the mul t idata method. 
Hovvever. in contrast to these methods , ours does not require 
matrix inversion and thus avoids mathemat ica l dif f icul t ies as-
sociated vvith sueh an inversion (sueh as. e.g., occasional ly gen-
erating t roublesome negat ive respondance t imes). W e calculate 
the intensity (i.e. the strength) of the k"' spectral line eorre-
sponding to the k ,h r espondance t ime. Tk. f r o m ali source data ly-
ing vvithin a f ixed t ime interval ( 'Window 1) a round Tk, Fig. 1. 
The contributions to the strength of this line arising f rom the 
presence of ne ighbor ing spectral lines is taken into account by 
making appropriate assumpt ions concern ing the spread of the 
neighboring lines vvhich vvill make non-negl ig ible contr ibut ions 
(Window 2). Fig. 2. The spec t rum is calculated by proceeding 
from the lovv end tovvards the high end of the response , again 
making appropriate assumpt ions . Final ly , the erude distr ibution 
of spectral lines obta ined in the first pass is improved by itera-
tion. 

As ment ioned previously, we shall demonst ra te our method 
on hand of the shear relaxation modulus . The method can be eas-
ily adapted to deal ing vvith the tensile relaxation modulus or the 
tensile creep compl iance or, for that matter , vvith any other re-
sponse to the imposition of a strain or a stress as a step funet ion 
oftime1 ' ' . 

3. The Algori thm 

The theory of linear viscoelastic behavior describes the shear 
relaxation modulus by the relation 

G ( t ) = { G e } + ( G g - { G c } ) j h ( r ) e x p - t / r d ln r (1) 
u 

vvhere h(T) is the (normalized) cont inuous relaxation spectrum, 
and G g and G e are the instantaneous and the equil ibr ium modu-
lus. respectively. The braces signify that ( G f | = G e vvhen the 
modu lus describes an arrheodictic material , and that { G J = 0 
vvhen the material is rheodictic (The term rheodictic refers to a 
material shovving steady-state flovv). Dividing by G f - ( G J 
yields 

g ( t ) = {ge} + J h ( X ) e x p - T / T d In T, (2) 
n 

vvhere g(t) and ge are the normal ized relaxation modulus , and 
equil ibr ium modulus , respectively. 

The source data are assumed to be available as a set of M dis-
crete data points 

G J e { t j , G ( t j ) ; j = 1, 2 M}. (3) 

Each of these data points can be normal ized by the d i f fe rence 
betvveen the largest. G, , and the smallest point, G M , to yield the 
set 

g, e {t,. g ( t j ) ; j = l, 2 M}. (4) 

Novv. the modulus can be expressed alternatively by a dis-
crete set of (normalized) spectral lines, h,. In terms of these we 
have 

G(t) = { G , } + ( G ( - { G e } ) £ h i e x p - t / r , (5) 

or, in normal ized fo rm, 

g ( . ) = K } + S h , e x p - t / x , . ( 6) 
i i 

W e intend to determine, f rom the set of source data, I g,; j = l , 
2, 3, ... , M}, a set of spectral lines, j h,; i = l , 2, 3 n ) , vvhich 
vvill fa i thful ly reproduce the modulus , G(t). In proceeding to ex-
plain hovv this is done, we initially use the cont inuous represen-
tation (2), instead of its discrete equivalent (6), because this sim-
plif ies the presentat ion. 

We begin by splitting the integral in equation (2) to obtain 

r, 

g( t ) = { c . } + J h ( r ) e x p - 1 / r d In r + 
, n 

r, 

+ J h ( t ) e x p - t / r d In T + h ( r k ) e x p - t / r k + 
r, 

+ J h ( r ) e x p - t / t d In z. (7) 

Let the kernel in the integrals in equat ion (7) be represented 
by the funet ion K(t)=exp-t / i \ Figure 1 shovvs a plot of Kk = 
exp-t/Tk as a funet ion of ln t/Tk. The broken line represents the 
tangent to Kk(t) at ln t/Tk = 0. From the behavior of the kernel vve 
can dravv tvvo immedia te conclusions. 

First, 

K k ( l 0 0 x k ) = 3 . 7 2 x 1 0 44 = 0. ( g ) 



and 

t, = -

and 

In 

In k+1 
r, 

(9) 

(10) 

If P is the number of spectral lines per decade of log t, then 
we have log t U l - log Tk and, therefore. 

t, = -
2 .303 

P ( l 0 l / p - l ) 
( 1 1 ) 
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Figure 2. Definition of Window 2 (the Modeling Window) 

Slika 2. Definicija Okna 2 (Okno modeliranja) 
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t„ = 7 r- T . 
p ( l O ' " - l ) 

Therefore, the spread of Window 2 is given by [t„ t j . The 
width of the window decreases as the number of spectral lines in-
ereases. Accordingly. 

lim Window 2 = 0 p—•<» (13) 
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Figure 1. Definition of Window I (the Boundary Window) 

Slika 1. Definicija Okna I (Mejno okno) 

Second, the logarithmic t ime interval -0.6<t/-rk>0.4 def ines 
the region over which Kk(t) shows its largest t ime dependence. 
We call this interval Window I. The interval f rom vvhich data 
points will be drawn f rom the set of source data to calculate the 
k"' spectrum line depends on the number of lines per logarithmic 
decade of time. W e call this interval Window 2. Figure 2 shows 
DTRAN(0 = K'( t ) , the derivative of K(t), as a funet ion of In t/-rk for 
T = TK-I. TK- a n d TK+1. The interseetions of the central derivative 
with its neighbors to the left and to the right, designated by t, and 
t„ (for lower and upper) are given by 

marks the transition f rom the diserete to the continuous form of 
the representation of G(t). 

The third conclusion we can draw f rom Fig. 1 states that 
Window2 must not be largerthan Window 1. Outside of Window 
I the k"1 spectral line cannot handle data points because its con-
tribution on the right is virtually zero, and on the left it ap-
proaches a constant value. On the other hand, we must have at 
least one diserete data point lying vvithin Window 2. This real-
ization allovvs us to determine the opt imum number of spectrum 
lines per logarithmic decade to be chosen. This number must be 
sueh that the width of Windo\v 2 approaches (but does not ex-
ceed) the vvidth Window 1. The number can be found by solving 
the transcendental equations (11) and (12). In equation (11) we 
let log t,/Tk=-0.6, in equation (12) we let it be log t / r k = 0 . 4 , and 
solve for the nearest integer P. The smaller of the tvvo solutions 
gives the desired opt imum number of spectral lines per decade. 

We can now return to equation (7). Each datum point within 
Window 2 pertaining to the k"1 spectrum line can be modeled as 

T 

gj = {g c } + J h ( x ) e x p - t | / x d In T + 
o 

\ 
+ J h ( t ) e x p - t j / T d / « x + h ( t k ) e x p - t ( / t k + 

T 

+ | h ( x ) e x p - t j / x d In i . (14) 

By our first conclusion f rom Fig. 1. if t , < tk/100, then the 
first integral in (14) vanishes. 

Proceeding now f rom the continuous to the diserete repre-
sentation. we vvrite 

g j = { g M } + Z h i e K p - t j / T . + h , e x p - t | / x k + 
i=m 

+ ^ h, e x p - t | / i l + A r (15) 
i=k+i 

In the equation above m is the diserete counterpart of Ta and 
is given by m = k - 2 n - l . The term A, has been added to take into 
account the absolute error introduced by svvitching f rom the con-
tinuous to the diserete representation. Using the abbreviation 

i=k i 
^ ( t

J ) = { g M } + X h l e x p - t j / r + 
i=m 

+ hk e x p - t i / rk + ^ h, e x p - t ; / r,. (16 ) 

where Z(tj) denotes the theoretical (error-free) value of the nor-
malized experimental datum point g r the term A! can be ex-
pressed as 

( 1 7 ) 

To avoid the instability problems caused by the large differ-
ence in magni tude of modulus on both sides of Window 2 we in-
troduce the relative error of approximation (for details see17) 



( 1 8 ) 

The sum. Qk, of the squares of d, within Window 2 is 

j=\u 

= 2 > 2 (19) 
J = \ 

where s u and skli are the first and the last discrete points in 
Window 2 belonging to the k"1 spectrum line. Minimizing the er-
ror according to 

d h, 
(20) 

where hk is the k"' spectrum line. leads to the expression from 
which the strength of the k"1 spectral line is to be obtained, 

g I 

2 - T — F 8 ' e x p - t , / r L = 0 . (21) 

" No] 
Using the abbreviation 

-^ r ( t J ) = { g M } + S h i e x P - l A + 

+ e x p - t j / T i , (22) 
i=k+l 

and equation (16) in addition, we obtain the equation 

X 
| + hk e x p - t J / x k ] 

[ • n j + hk e x p - t i / TkJ r g, e x p - t j / Tk = 0. (23) 

This equation must be satisfied to minimize the sum of 
squares of the relative quadratic errors. Qk, in the k'h window. It 
must be solved numerically by iteration for it cannot be made ex-
plicit for hk as is possible vvhen minimizing the absolute 
error1 7". We therefore now recast (23) in a form in vvhieh it be-
comes suitable for recursion. We let 

h m ' = 
" h f 

where hk'" is the value of hk obtained in the i"' iteration, 

^ [ ^ - - ^ ( 0 ] g, e x p - t , / x k 

and 

J3 h ' = X 

- ^ ( t j + hi'1 e x P - t , / T k 

[ e x p - t , / x k j 

^ ( t j j + h f e x p - t j / x k 

(24) 

(25) 

( 2 6 ) 

The starting set of spectrum lines for the iteration is ( V = 
h("(Tk); k=l ,2 n) . This starting set is obtained in a first svveep 
through the data using the method detailed in the paper17. For 
subsequent svveeps we then use the method just deseribed. The 
iteration is broken off vvhen an appropriately chosen limit of the 
absolute differenee betvveen the new and the preceding square 
relative error, Qk. has been reached. 

4. Results 
We demonstrate the povver of the algorithm by obtaining the 

distribution of spectral lines from the experimental data obtained 

by Catsiff and Tobolsky"' - CT data. The data has been first con-
verted as deseribed in the introduetion. In this form they are tab-
ulated in'7, and are presented in Fig. 3. The solid line represents 
a spline funetion21 through the data. Figure 4 shovvs the relax-
ation spectrum H c t ( t ) calculated from these data, using the pre-
sented method. 

The reconstruction of the shear relaxation modulus, G(t), 
from the calculated spectrum H c t ( t ) , using the relation (5) is 
compared vvith the spline funetion through the original experi-
mental data in Fig. 5. Both curves can not be distinguished with-
in the resolving povver of the plot. 
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Figure 4. Re laxa t ion spec t rum, log H c t (T ) , as fune t ion of log T 

Slika 4. Re laksac i j sk i spekter , log H ^ T ) , kot funkc i j a log T 

Knovving the spectrum H ( t ) in addition to the viscoelastic 
constants one can generate from it the response to any desired 
type of excitation. In order to demonstrate this we first calculate 
G ' < t ( i o ) a n d G " a ( w ) f r o m H c t ( t ) u s i n g t h e r e l a t i o n s 1 ' 
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J'ct(C0) and J"CT(co) are compared with the experimental da-
ta obtained by Fitzgerald, Grandine, and Ferry22 -FGF data. The 
comparison is presented in Fig. 7. J'CT(co) and J"CT((0), repre-
sented as broken lines, are compared with the spline functions 
through the experimental data, J'KUF(co) and J"R1F(C0). shown as 
solid line. The original FGF data are shovvn in Fig. 6. The agree-
ment betvveen the prediction and the spline function through the 
experimental data is excellent. 
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5. Conclusion 

In this paper we have presented the algorithm for evaluation 
of relaxation line spectra from experimental data. The algorithm 
can be easily modified for the assessment of retardation spectra. 
The algorithm essentiafly utilizes the fact that the kernel func-
tions resemble step functions. Slightly different codes are used 
for each kernel function. as presented elsevvhere17. 

We feel that vve have demonstrated that the proposed algo-
rithm is indeed capable of generating the underlying line spectra 
from the experimental data vvithout producing a negative lines 
that are physically unacceptable. 
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G V, (CD) and G"c-T(co) can be than interconverted to storage 
compliance, J'rT(K>). and loss compliance, J", ,(co). using the 
relations1 ' 

r ( o > ) = 
cr(co) 

J'H]J+[G»]J 
(29) 
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