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1 Introduction and preliminaries
The idea of unsplittable configuration was conceived in 2004 and formally introduced in
the monograph [8] by Grünbaum. Later, it was also used in [19]. In [20], the notion was
generalized to graphs. In this paper we present some constructions for splittable and un-
splittable cyclic configurations. In [9], the notion of cyclic Haar graph was introduced. It
was shown that cyclic Haar graphs are closely related to cyclic configurations. Namely,
each cyclic Haar graph of girth 6 is a Levi graph of a cyclic combinatorial configuration;
see also [18]. For the definition of the Levi graph (also called incidence graph) of a con-
figuration the reader is referred to [4]. The classification of configurations with respect to
splittability is a purely combinatorial problem and can be interpreted purely in terms of
Levi graphs.

Let n be a positive integer, let Zn be the cyclic group of integers modulo n and let
S ⊆ Zn be a set, called the symbol. The graph H(n, S) with the vertex set {ui | i ∈
Zn}∪ {vi | i ∈ Zn} and edges joining ui to vi+k for each i ∈ Zn and each k ∈ S is called
a cyclic Haar graph over Zn with symbol S [9]. In practice, we will simplify the notation
by denoting ui by i+ and vi by i−.

Definition 1.1. A combinatorial (vk) configuration is an incidence structure C = (P,B, I),
where I ⊆ P × B, P ∩ B = ∅ and |P| = |B| = v. The elements of P are called points,
the elements of B are called lines and the relation I is called the incidence relation. Fur-
thermore, each line is incident with k points, each point is incident with k lines and two
distinct points are incident with at most one common line, i.e.,

{(p1, b1), (p2, b1), (p1, b2), (p2, b2)} ⊆ I, p1 6= p2 =⇒ b1 = b2. (1.1)

If (p, b) ∈ I then we say that the line b passes through point p or that the point p lies
on line b. An element of P ∪ B is called an element of configuration C.

A combinatorial (vk) configuration C = (P,B, I) is geometrically realisable if the
elements of P can be mapped to different points in the Euclidean plane and the elements
of B can be mapped to different lines in the Euclidean plane, such that (p, b) ∈ I if and
only if the point that corresponds to p lies on the line that corresponds to b. A geometric
realisation of a combinatorial (vk) configuration is called a geometric (vk) configuration.
Note that examples in Figures 2, 3 and 4 are all geometric configurations. The Fano plane
(73) is an example of a geometrically non-realizable configuration.

An isomorphism between configurations (P,B, I) and (P ′,B′, I ′) is a pair of bijec-
tions ψ : P → P ′ and ϕ : B → B′, such that

(p, b) ∈ I if and only if (ψ(p), ϕ(b)) ∈ I ′. (1.2)

The configuration C∗ = (B,P, I∗), where I∗ = {(b, p) ∈ B×P | (p, b) ∈ I}, is called the
dual configuration of C. A configuration that is isomorphic to its dual is called a self-dual
configuration.

The Levi graph of a configuration C is the bipartite graph on the vertex set P∪B having
an edge between p ∈ P and b ∈ B if and only if the elements p and b are incident in C,
i.e., if (p, b) ∈ I. It is denoted L(C). Condition (1.1) in Definition 1.1 implies that the
girth of L(C) is at least 6. Moreover, any combinatorial (vk) configuration is completely
determined by a k-regular bipartite graph of girth at least 6 with a given black-and-white
vertex coloring, where black vertices correspond to points and white vertices correspond
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to lines. Such a graph will be called a colored Levi graph. Note that the reverse coloring
determines the dual configuration C∗ = (B,P, I∗). Also, an isomorphism between con-
figurations corresponds to color-preserving isomorphism between their respective colored
Levi graphs.

A configuration C is said to be connected if its Levi graph L(C) is connected. Similarly,
a configuration C is said to be k-connected if its Levi graph L(C) is k-connected.

Definition 1.2 ([19]). A combinatorial (vk) configuration C is cyclic if it admits an auto-
morphism of order v that cyclically permutes the points and lines, respectively.

In [9] the following was proved:

Proposition 1.3 ([9]). A configuration C is cyclic if and only if its Levi graph is isomorphic
to a cyclic Haar graph of girth 6.

It can be shown that each cyclic configuration is self-dual, see for instance [9].

2 Splittable and unsplittable configurations (and graphs)
Let G be any graph. The square of G, denoted G2, is a graph with the same vertex set
as G, where two vertices are adjacent if and only if their distance in G is at most 2. In
other words, V (G2) = V (G) and E(G2) = {uv | dG(u, v) ≤ 2}. The square of the Levi
graph L(C) of a configuration C is called the Grünbaum graph of C in [19] and [20]. In
[8], it is called the independence graph. Two elements of a configuration C are said to be
independent if they correspond to independent vertices of the Grünbaum graph.

Example 2.1. The Grünbaum graph of the Heawood graph is shown in Figure 1. Its com-
plement is the Möbius ladder M14.

6−

6+

0−
0+1−

1+

2−

2+

3−

3+

4− 4+
5−

5+

(a)

6−

6+

0−
0+1−

1+

2−

2+

3−

3+

4− 4+
5−

5+

(b)

Figure 1: The Heawood graph H = H(7, {0, 1, 3}) ∼= LCF[5,−5]7 (on the left) is the
Levi graph of the Fano plane. Its Grünbaum graph G is on the right. Note that there is an
orange solid edge between two vertices of G if and only if they are at distance 2 in H .

It is easy to see that two elements of C are independent if and only if one of the following
hold:
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(i) two points of C that do not lie on a common line of C;

(ii) two lines of C that do not intersect in a common point of C;

(iii) a point of C and a line of C that are not incident.

The definition of unsplittable configuration was introduced in [8] and is equivalent to
the following:

Definition 2.2. A configuration C is splittable if there exists an independent set of vertices
Σ in the Grünbaum graph (L(C))2 such that L(C)−Σ, i.e., the graph obtained by removing
the set of vertices Σ from the Levi graph L(C), is disconnected. In this case the set Σ is
called a splitting set of elements. A configuration that is not splittable is called unsplittable.

This definition carries over to graphs:

Definition 2.3. A connected graph G is splittable if there exists an independent set Σ in
G2 such that G− Σ is disconnected.

Example 2.4. Every cycle of length at least 6 is splittable (there exists a pair of vertices at
distance 3 in G).

Every graph of diameter 2 without a cut vertex is unsplittable. The square of such a
graph on n vertices is the complete graphKn. This implies that |S| = 1. Since there are no
cut vertices, a splitting set does not exist. The Petersen graph is an example of unsplittable
graph.

In [8], refinements of the above definition are also considered. Configuration C is point-
splittable if it is splittable and there exists a splitting set of elements that consists of points
only (i.e., only black vertices in the corresponding colored Levi graph). In a similar way
line-splittable configurations are defined. Note that these refinements can be defined for
any bipartite graph with a given black-and-white coloring. There are four possibilities, that
we call splitting types. Any configuration may be:

(T1) point-splittable, line-splittable,

(T2) point-splittable, line-unsplittable,

(T3) point-unsplittable, line-splittable,

(T4) point-unsplittable, line-unsplittable.

Any configuration of splitting type T1, T2 or T3 is splittable. A configuration of split-
ting type T4 may be splittable or unsplittable. For an example of a point-splittable (T2)
configuration see Figure 2. The configuration on Figure 2 is isomorphic to a configura-
tion on Figure 5.1.11 from [8]. For an example of a line-splittable (T3) configuration see
Figure 3.

Note the following:

Proposition 2.5. If C is of type T1 then its dual is also of type T1. If it is of type T2 then its
dual is of type T3 (and vice versa). If it is of type T4 then its dual is also of type T4.

Since types are mutually disjoint, this has a straightforward consequence for cyclic
configurations:

Corollary 2.6. Any self-dual configuration, in particular any cyclic configuration, is either
of type T1 or T4.
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Figure 2: A point-splittable (153) configuration of type T2. Points that belong to a splitting
set are colored red. Its dual is of type T3 (see Figure 3).

Figure 3: A line-splittable (153) configuration of type T3. Lines that belong to a splitting
set are colored orange. Its dual is depicted in Figure 2.

Obviously, unsplittable configurations are of type T4. However, the converse is not
true:

Proposition 2.7. Any unsplittable configuration is point-unsplittable and line-unsplittable.
There exist splittable configurations that are both point-unsplittable and line-unsplittable.

Proof. The first statement of Proposition 2.7 is obviously true. An example that provides
the proof of the second statement is shown in Figure 4. The splitting set is

{0, 8, 10, (1, 9, 11), (6, 7, 14)}.

Note that configuration in Figure 4 is not cyclic, but it is 3-connected. In [8], the
following theorem is proven:

Theorem 2.8 ([8, Theorem 5.1.5]). Any unsplittable (n3) configuration is 3-connected.

Our computational results show that the converse to Theorem 2.8 is not true. There
exist 3-connected splittable configurations. See, for instance, the configuration in Figure 4.
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Figure 4: A splittable (153) configuration of type T4. Elements of a splitting set are points
0, 8 and 10 (colored red) and lines (1, 9, 11) and (6, 7, 14) (colored orange).

3 Splittable and unsplittable cyclic (n3) configurations
We used a computer program to analyse all cyclic (n3) configurations for 7 ≤ n ≤ 30
(see Table 1, Table 2 and Table 3). In [9] it was shown that cyclic Haar graphs contain
all information about cyclic combinatorial configurations. In trivalent case combinatorial
isomorphisms of cyclic configurations are well-understood; see [11]. Namely, it is known
how to obtain all sets of parameters of isomorphic cyclic Haar graphs. We would like to
draw the reader’s attention to the manuscript [10], where the main result of [11] is extended
to cyclic (nk) configurations for all k > 3. One would expect that large sparse graphs are
splittable. In this sense the following result is not a surprise:

Theorem 3.1. Let H(n, {0, a, b}) be a cyclic Haar graph, where 0 < a < b. Let

W = {0, a, b, 2b, b+ a, b− a, 2b− a, 2b− 2a, 3b− a, 3b− 2a, 2b+ a, 3b} and

B = {0, a, b, 2b, b+ a, b− a, 2b− a, 2b− 2a, 3b− a, 3b− 2a,−a, b− 2a}

be multisets with elements from Zn. If all elements of W are distinct and all elements of
B are distinct (i.e. W and B are ordinary sets, |W| = |B| = 12) then H(n, {0, a, b}) is
splittable and

Σ = {0+, 2b+, (2b− 2a)+, (b− a)−, (b+ a)−, (3b− a)−}

is a splitting set for H(n, {0, a, b}).

Proof. See Figure 5. IfW and B are ordinary sets then the graph in Figure 5 is a subgraph
of H(n, {0, a, b}). It is easy to see that Σ is a splitting set. The set Σ is indeed an indepen-
dent set in the square of the graph H(n, {0, a, b}) since no two vertices of Σ are adjacent
to the same vertex. In order to see that the subgraph obtained by removing the vertices of
Σ is disconnected, note that one of the connected components is the cycle determined by
vertices {b+, (b− a)+, (2b− a)+, b−, 2b−, (2b− a)−}.

Corollary 3.2. Under conditions of Theorem 3.1, the girth of the graph H(n, {0, a, b})
is 6.
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(2b− a)−

(b− a)+

b−

(2b− a)+

2b−

b+

(b− a)−

0+

(b+ a)−

2b+

(3b− a)−

(2b− 2a)+

(b− 2a)+ −a+

a−

0−

a+

(b+ a)+

3b−(2b+ a)−

(3b− a)+

(3b− 2a)+

(3b− 2a)−

(2b− 2a)−

Figure 5: The set Σ = {0+, 2b+, (2b− 2a)+, (b− a)−, (b+ a)−, (3b− a)−} is a splitting
set for H(n, {0, a, b}).

Proof. The girth of such a graph is at most 6 because it contains a 6-cycle (see Figure 5).
It is easy to see that the girth cannot be 4. Because the graph H(n, {0, a, b}) is bipartite,
each 4-cycle must contain a black vertex. Consider vertex b+ in Figure 5. Its neighborhood
is {b−, 2b−, (b + a)−}. None of those vertices have a common neighbor, so b+ does not
belong to any 4-cycle. Because of symmetry this argument holds for all black vertices.

Corollary 3.3. There exist infinitely many cyclic (n3) configurations that are splittable.
For example, the following three families of cyclic Haar graphs are splittable:

(a) H(n, {0, 1, 4}) for n ≥ 13,

(b) H(n, {0, 1, 5}) for n ≥ 16, and

(c) H(n, {0, 2, 5}) for n ≥ 16.

Proof. Corollary 3.2 implies that each graph from any of the three families has girth
6. From Theorem 3.1 it follows that Σ = {0+, 6+, 8+, 3−, 5−, 11−} is a splitting set
for H(n, {0, 1, 4}) if n ≥ 13 (see Figure 6), {0+, 8+, 10+, 4−, 6−, 14−} is a splitting
set for H(n, {0, 1, 5}) if n ≥ 16, and {0+, 6+, 10+, 3−, 7−, 13−} is a splitting set for
H(n, {0, 2, 5}) if n ≥ 16.

If n < 13 then conditions of Theorem 3.1 are not fulfilled. If n = 12 then (n− 1)+ =
11+ which means that the vertices of the graph in Figure 6 are not all distinct. If n = 9
then 9− = 0− since we work with Z9. Similar arguments can be made if n < 16 in the
case of the other two families from Corollary 3.3.

We investigated the first 100 graphs from the H(n, {0, 1, 4}) family. All but two
are zero symmetric, nowadays called graphical regular representation or GRR for short
(see [5]). The exceptions are for n = 13 and n = 15.
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11+

10+
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Figure 6: The set Σ = {0+, 6+, 8+, 3−, 5−, 11−} is a splitting set for H(n, {0, 1, 4})
where n ≥ 13.

By Corollary 3.3, there are infinitely many splittable (n3) configurations. However, we
are also able to show that there is no upper bound on the number of vertices of unsplittable
(n3) configurations:

Theorem 3.4. There exist infinitely many cyclic (n3) configurations that are unsplittable.

Proof. We use the cyclic Haar graphs X = H(n, {0, 1, 3}), where n ≥ 7. Clearly, each
of them has girth 6. The graph can be written as LCF[5,−5]n. (For the LCF notation
see [19].) This means that the edges determined by symbols 0 and 1 form a Hamiltonian
cycle while the edges arising from the symbol 3 form chords of length 5. See Figure 1 for
an example.

Let us assume the result does not hold. This means there exists a splitting set Σ. By
removing Σ from the graph the Hamiltonial cycle breaks into paths. Each path must contain
at least two vertices. Let the sequence Π = (p1, p2, . . . , pk) denote the lengths of the
consecutive paths along the Hamiltonial cycle. The rest of the proof is in two steps:

Step 1. If there are no two consecutive numbers of Π equal to 2, then the corresponding
segments are connected in X − Σ since there is a chord of length 5 joining these two
segments. But this means that all paths are connected by chords, so Σ is not a splitting set.

Step 2. We can show that no two consecutive segments are of length 2. In case of two
adjacent segments of length 2 we would have vertices {i − 3, i, i + 3} ⊆ Σ. But that is
impossible, since i− 3 is adjacent to i+ 3 in X2.

Note that this is not the only such family. Here is another one:

Theorem 3.5. Cyclic configurations defined by H(3n, {0, 1, n}), where n ≥ 2, are un-
splittable.
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Proof. The technique used here is similar to the technique used in proof of Theorem 3.4.
Let X = H(3n, {0, 1, n}). The graph X can be written as LCF[2n − 1,−(2n − 1)]3n.
Suppose that there exists a splitting set Σ. The edges determined by symbols 0 and 1 form
a Hamiltonian cycle which breaks into paths when the splitting set Σ is removed.

We show that any two consecutive paths are connected in X − Σ. Without loss of
generality (because of symmetry), we may assume that 0+ ∈ Σ is the vertex adjacent to the
two paths under consideration. If 0+ ∈ Σ then 1−, 0−, n−, n+, 1+, 2n+, (2n + 1)+ /∈ Σ.
We show that vertices 1− and 0− (which belong to the two paths under consideration) are
connected in X − Σ.

If (2n+1)− /∈ Σ then 2n+ and (2n+1)+ are connected inX−Σ. Since 0− is adjacent
to 2n+ and 1− is adjacent to (2n+ 1)+, vertices 0− and 1− are also connected in X − Σ.
Now, suppose that (2n + 1)− ∈ Σ. This implies that 2n−, (n + 1)+(n + 1)− /∈ Σ. Then
2n+ is adjacent to 2n−, 2n− is adjacent to n+, n+ is adjacent to (n + 1)−, (n + 1)− is
adjacent to 1+, and 1+ is adjacent to 1− in X −Σ. Therefore, 1− and 0− are connected in
X − Σ.

Cubic symmetric bicirculants were classified in [13] and [16]. These results can be
summarised as follows:

Theorem 3.6 ([13, 16]). A connected cubic symmetric graph is a bicirculant if and only if
it is isomorphic to one of the following graphs:

(1) the complete graph K4,

(2) the complete bipartite graph K3,3,

(3) the seven symmetric generalized Petersen graphs GP (4, 1), GP (5, 2), GP (8, 3),
GP (10, 2), GP (10, 3), GP (12, 5) and GP (24, 5),

(4) the Heawood graph H(7, {0, 1, 3}), and

(5) the cyclic Haar graph H(n, {0, 1, r + 1}), where n ≥ 11 is odd and r ∈ Z∗n such
that r2 + r + 1 ≡ 0 (mod n).

It is well known that an (n3) configuration is flag-transitive if and only if its Levi graph
is cubic symmetric graph of girth at least 6. From Theorem 3.6 it follows that the girth
of any connected cubic symmetric bicirculant is at most 6. If the girth of such a graph
is 6 or more then it is a Levi graph of a flag-transitive configuration. This enables us to
characterise splittability of such configurations:

Theorem 3.7. The Fano plane (73), the Möbius-Kantor configuration (83), and the De-
sargues configuration (103) are unsplittable. Their Levi graphs are

H(7, {0, 1, 3}), H(8, {0, 1, 3}) ∼= GP (8, 3) and GP (10, 3),

respectively.
If n ≥ 9, all flag-transitive (n3) configurations, except the Desargues configuration,

are splittable.

Proof. We start with the classification given in Theorem 3.6. Only bipartite graphs of girth
6 have to be considered. This rules out the complete graphK4, the complete bipartite graph
K3,3, and the generalised Petersen graphs GP (5, 2), GP (10, 2) and GP (4, 1). Note that
GP (4, 1) is isomorphic to the cube graph Q3.
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Table 1: Overview of splittable and unsplittable connected cyclic Haar graphs.

n (a) (b) (c) (d) (e) (f)
3 1 0 0 1 0 0
4 1 0 0 1 0 0
5 1 0 0 1 0 0
6 2 0 0 2 0 0
7 2 1 0 2 0 1
8 3 1 1 2 0 1
9 2 1 0 2 0 1
10 3 1 1 2 0 1
11 2 1 0 2 0 1
12 5 3 1 4 0 3
13 3 2 1 2 1 1
14 4 2 2 2 1 1
15 5 4 1 4 1 3
16 5 3 3 2 2 1
17 3 2 1 2 1 1
18 6 4 3 3 2 2
19 4 3 2 2 2 1
20 7 5 5 2 4 1
21 7 6 3 4 3 3
22 6 4 4 2 3 1
23 4 3 2 2 2 1
24 11 9 7 4 6 3
25 5 4 3 2 3 1
26 7 5 5 2 4 1
27 6 5 3 3 3 2
28 9 7 7 2 6 1
29 5 4 3 2 3 1
30 13 11 9 4 8 3

(a) Number of non-isomorphic connected cubic cyclic Haar graphs on 2n vertices.
(b) Those that have girth 6. (c) Those that are splittable. (d) Those that are unsplittable.

(e) Those that are splittable of girth 6. (f) Those that are unsplittable of girth 6.
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It is well known, but one may check by computer that GP (8, 3) ∼= H(8, {0, 1, 3}). See
for instance [9, Table 2].

One may also check by computer that GP (8, 3), GP (10, 3) and the Heawood graph
H(7, {0, 1, 3}) are unsplittable.

Let

V (GP (n, k)) = {0, 1, . . . , n− 1, 0′, 1′, . . . , (n− 1)′} and
E(GP (n, k)) = {{i′, ((i+ 1) mod n)′}, {i, i′}, {i, (i+ k) mod n} | i = 0, . . . , n− 1}.

Note that Σ = {0′, 4′, 8′, 2, 6, 10} is a splitting set for GP (12, 5) as shown in Figure 7.
Also, GP (12, 5) − S ∼= 3C6, i.e., a disjoint union of three copies of C6. The splitting

01
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0′

1′

2′
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4′

5′
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7′
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11′

Figure 7: The magenta vertices form a splitting set for the Nauru graph GP (12, 5) [6, 21].

set for GP (24, 5) is Σ = {0′, 4′, 8′, 12′, 16′, 20′, 2, 6, 10, 14, 18, 22} as shown in Figure 8.
Note that GP (24, 5)− S ∼= 3C12. Also, note that GP (24, 5) is not isomorphic to a cyclic
Haar graph since its girth is 8.

Using Theorem 3.1, one may verify that all graphs in item (5) of Theorem 3.6 have girth
6 and for each of them the splitting set is {0+, 2r+, (2r + 2)+, r−, (r + 2)−, (3r + 2)−}.
We have

W = {0, 1, r, r + 1, r + 2, 2r, 2r + 1, 2r + 2, 2r + 3, 3r + 1, 3r + 2, 3r + 3},
B = {0, 1, n− 1, r − 1, r, r + 1, r + 2, 2r, 2r + 1, 2r + 2, 3r + 1, 3r + 2}.

It is easy to verify that all elements ofW are distinct and that all elements of B are distinct.
For example, suppose that r ≡ 3r + 3 (mod n). This means that

2r ≡ −3 (mod n). (3.1)

From condition r2 + r + 1 ≡ 0 (mod n) we obtain

4r2 + 4r + 4 = (2r)2 + 2 · 2r + 4 ≡ 0 (mod n). (3.2)
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Figure 8: The magenta vertices form a splitting set for GP (24, 5) which was recently
named the ADAM graph [14].

Equations (3.1) and (3.2) together imply that (−3)2 + 2 · (−3) + 4 = 7 ≡ 0 (mod n),
which is a contradiction since n > 11. All other cases can be checked in a similar way.

From Theorem 3.7 we directly obtain the following corollary.

Corollary 3.8. A cyclic flag-transitive (n3) configuration is splittable if and only if n > 8.
The only two exceptions are:

(1) H(7, {0, 1, 3}), i.e. the Fano plane, and

(2) H(8, {0, 1, 3}), i.e. the Möbius-Kantor configuration.

4 Splittable geometric (nk) configurations
We will now show that for any k there exist a geometric, triangle-free, (nk) configuration
which is of type T1, i.e., it is point-splittable and line-splittable.

Let us first provide a construction to obtain a geometric (nk) configuration for any k.
We start with an unbalanced (k1, 1k) configuration, denoted G(1)k , that consists of a single
line containing k points. Let G(i)k be a configuration that is obtained from G(i−1)k by the
k-fold parallel replication (see [19, p. 245]). The configuration G(k)k is a balanced (kkk)
configuration, called a generalised Gray configuration; see [17].

Lemma 4.1. Let C be an arbitrary geometric (nk) configuration. There exists a geometric
(knk) configurationD that is point- and line-splittable. Moreover, if C is triangle-free then
D is also triangle-free.

Proof. Let C be as stated. Select an arbitrary line L of C passing through points p(1), p(2),
. . . , p(k) of C as shown in Figure 9(a). Remove line L and call the resulting structure
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Table 2: List of non-isomorphic connected trivalent cyclic Haar graphs H(n, S) with
n ≤ 25 and some of their properties.

n S (a) (b) (c) (d)
3 {0, 1, 2} ⊥ 4 2 >
4 {0, 1, 2} ⊥ 4 3 >
5 {0, 1, 2} ⊥ 4 3 ⊥
6 {0, 1, 2} ⊥ 4 4 ⊥
6 {0, 1, 3} ⊥ 4 3 ⊥
7 {0, 1, 2} ⊥ 4 4 ⊥
7 {0, 1, 3} ⊥ 6 3 >
8 {0, 1, 2} ⊥ 4 5 ⊥
8 {0, 1, 3} ⊥ 6 4 >
8 {0, 1, 4} > 4 4 ⊥
9 {0, 1, 2} ⊥ 4 5 ⊥
9 {0, 1, 3} ⊥ 6 4 ⊥
10 {0, 1, 2} ⊥ 4 6 ⊥
10 {0, 1, 3} ⊥ 6 4 ⊥
10 {0, 1, 5} > 4 5 ⊥
11 {0, 1, 2} ⊥ 4 6 ⊥
11 {0, 1, 3} ⊥ 6 5 ⊥
12 {0, 1, 2} ⊥ 4 7 ⊥
12 {0, 1, 3} ⊥ 6 5 ⊥
12 {0, 1, 4} ⊥ 6 5 ⊥
12 {0, 1, 5} ⊥ 6 5 ⊥
12 {0, 1, 6} > 4 6 ⊥
13 {0, 1, 2} ⊥ 4 7 ⊥
13 {0, 1, 3} ⊥ 6 5 ⊥
13 {0, 1, 4} > 6 5 >
14 {0, 1, 2} ⊥ 4 8 ⊥
14 {0, 1, 3} ⊥ 6 6 ⊥
14 {0, 1, 4} > 6 5 ⊥
14 {0, 1, 7} > 4 7 ⊥
15 {0, 1, 2} ⊥ 4 8 ⊥
15 {0, 1, 3} ⊥ 6 6 ⊥
15 {0, 1, 4} > 6 5 ⊥
15 {0, 1, 5} ⊥ 6 5 ⊥
15 {0, 1, 6} ⊥ 6 5 ⊥
16 {0, 1, 2} ⊥ 4 9 ⊥
16 {0, 1, 3} ⊥ 6 6 ⊥
16 {0, 1, 4} > 6 5 ⊥
16 {0, 1, 7} > 6 5 ⊥
16 {0, 1, 8} > 4 8 ⊥
17 {0, 1, 2} ⊥ 4 9 ⊥
17 {0, 1, 3} ⊥ 6 7 ⊥
17 {0, 1, 4} > 6 5 ⊥
18 {0, 1, 2} ⊥ 4 10 ⊥
18 {0, 1, 3} ⊥ 6 7 ⊥
18 {0, 1, 4} > 6 6 ⊥
18 {0, 1, 5} > 6 6 ⊥

n S (a) (b) (c) (d)
18 {0, 1, 6} ⊥ 6 6 ⊥
18 {0, 1, 9} > 4 9 ⊥
19 {0, 1, 2} ⊥ 4 10 ⊥
19 {0, 1, 3} ⊥ 6 7 ⊥
19 {0, 1, 4} > 6 6 ⊥
19 {0, 1, 8} > 6 5 >
20 {0, 1, 2} ⊥ 4 11 ⊥
20 {0, 1, 3} ⊥ 6 8 ⊥
20 {0, 1, 4} > 6 6 ⊥
20 {0, 1, 5} > 6 6 ⊥
20 {0, 1, 6} > 6 6 ⊥
20 {0, 1, 9} > 6 7 ⊥
20 {0, 1, 10} > 4 10 ⊥
21 {0, 1, 2} ⊥ 4 11 ⊥
21 {0, 1, 3} ⊥ 6 8 ⊥
21 {0, 1, 4} > 6 6 ⊥
21 {0, 1, 5} > 6 6 >
21 {0, 1, 7} ⊥ 6 7 ⊥
21 {0, 1, 8} ⊥ 6 7 ⊥
21 {0, 1, 9} > 6 6 ⊥
22 {0, 1, 2} ⊥ 4 12 ⊥
22 {0, 1, 3} ⊥ 6 8 ⊥
22 {0, 1, 4} > 6 7 ⊥
22 {0, 1, 5} > 6 6 ⊥
22 {0, 1, 6} > 6 7 ⊥
22 {0, 1, 11} > 4 11 ⊥
23 {0, 1, 2} ⊥ 4 12 ⊥
23 {0, 1, 3} ⊥ 6 9 ⊥
23 {0, 1, 4} > 6 7 ⊥
23 {0, 1, 5} > 6 7 ⊥
24 {0, 1, 2} ⊥ 4 13 ⊥
24 {0, 1, 3} ⊥ 6 9 ⊥
24 {0, 1, 4} > 6 7 ⊥
24 {0, 1, 5} > 6 7 ⊥
24 {0, 1, 6} > 6 7 ⊥
24 {0, 1, 7} > 6 7 ⊥
24 {0, 1, 8} ⊥ 6 8 ⊥
24 {0, 1, 9} ⊥ 6 8 ⊥
24 {0, 1, 10} > 6 6 ⊥
24 {0, 1, 11} > 6 7 ⊥
24 {0, 1, 12} > 4 12 ⊥
25 {0, 1, 2} ⊥ 4 13 ⊥
25 {0, 1, 3} ⊥ 6 9 ⊥
25 {0, 1, 4} > 6 7 ⊥
25 {0, 1, 5} > 6 7 ⊥
25 {0, 1, 10} > 6 7 ⊥

(a) splittable? (b) girth (c) diameter (d) arc-transitive?
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Table 3: List of non-isomorphic connected trivalent cyclic Haar graphs H(n, S) with
26 ≤ n ≤ 30 and some of their properties.

n S (a) (b) (c) (d)
26 {0, 1, 2} ⊥ 4 14 ⊥
26 {0, 1, 3} ⊥ 6 10 ⊥
26 {0, 1, 4} > 6 8 ⊥
26 {0, 1, 5} > 6 7 ⊥
26 {0, 1, 7} > 6 8 ⊥
26 {0, 1, 8} > 6 7 ⊥
26 {0, 1, 13} > 4 13 ⊥
27 {0, 1, 2} ⊥ 4 14 ⊥
27 {0, 1, 3} ⊥ 6 10 ⊥
27 {0, 1, 4} > 6 8 ⊥
27 {0, 1, 5} > 6 7 ⊥
27 {0, 1, 6} > 6 7 ⊥
27 {0, 1, 9} ⊥ 6 9 ⊥
28 {0, 1, 2} ⊥ 4 15 ⊥
28 {0, 1, 3} ⊥ 6 10 ⊥
28 {0, 1, 4} > 6 8 ⊥
28 {0, 1, 5} > 6 7 ⊥
28 {0, 1, 6} > 6 8 ⊥
28 {0, 1, 7} > 6 7 ⊥
28 {0, 1, 8} > 6 7 ⊥
28 {0, 1, 13} > 6 9 ⊥
28 {0, 1, 14} > 4 14 ⊥
29 {0, 1, 2} ⊥ 4 15 ⊥
29 {0, 1, 3} ⊥ 6 11 ⊥
29 {0, 1, 4} > 6 8 ⊥
29 {0, 1, 5} > 6 7 ⊥
29 {0, 1, 9} > 6 7 ⊥
30 {0, 1, 2} ⊥ 4 16 ⊥
30 {0, 1, 3} ⊥ 6 11 ⊥
30 {0, 1, 4} > 6 9 ⊥
30 {0, 1, 5} > 6 7 ⊥
30 {0, 1, 6} > 6 7 ⊥
30 {0, 1, 7} > 6 7 ⊥
30 {0, 1, 8} > 6 9 ⊥
30 {0, 1, 9} > 6 7 ⊥
30 {0, 1, 10} ⊥ 6 10 ⊥
30 {0, 1, 11} ⊥ 6 10 ⊥
30 {0, 1, 12} > 6 8 ⊥
30 {0, 1, 15} > 4 15 ⊥
30 {0, 2, 5} > 6 8 ⊥

(a) splittable? (b) girth (c) diameter (d) arc-transitive?
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C′. Make k copies of C′: C′1, C′2, . . . , C′k and place them equally spaced in any direction
~v that is non-parallel to the direction of any line of C′ (see Figure 9(b)). Point of C′i that
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Figure 9: Construction provided by Lemma 4.1.

correspond to p(j) in C′ is denoted p(j)i . Now add lines M1,M2, . . . ,Mk, such that Mi

passes through points p(i)1 , p
(i)
2 , . . . , p

(i)
k . The resulting structure, denoted D, is clearly a

(knk) configuration.
The set of lines {M1,M2, . . . ,Mk} is a splitting set of D which proves that D is line-

splittable. The set of points {p(1)i , p
(2)
i , . . . , p

(k)
i } is a splitting set for an arbitrary 1 ≤ i ≤ k

which proves that D is also point-splittable.
It is easy to see that the resulting structure D is triangle-free.

Now we can state the main result of this section.

Theorem 4.2. For any k > 1 and any n0 there exist a number n > n0, such that there
exists a splittable (nk) configuration.

Proof. Let C0 = G(k)k , i.e. the generalised Gray (kkk) configuration. Let Ci be a con-
figuration obtained from Ci−1 by an application of Lemma 4.1. Note that the obtained
configuration Ci is not uniquely defined – it depends on the choice of the line L.

From Lemma 4.1 it follows that each Ci, i ≥ 1, is a point- and line-splittable configura-
tion. Each configuration Ci is balanced and the number of points of Ci+1 is strictly greater
than the number of points of Ci. Therefore, for increasing values of i, the number of points
will eventually exceed any given number n0.

Since configurations C1, C2, . . . constructed in the proof of Theorem 4.2 are all of type
T1, their duals are also of type T1.

Example 4.3. The generalised Gray (kkk) configuration for k = 3 is simply called the
Gray configuration (see Figure 10(a) and [17]). Let C0 be the Gray configuration. By one
application of Lemma 4.1 we obtain a configuration C1 (see Figure 10(b)) which is point-
and line-splittable.

5 Conclusion
Theorems 3.4 and 3.5, Corollary 3.3, and our experimental investigations (see periodic
behaviour of the last column of Table 1 past n = 9) of splittability of cyclic Haar graphs
led us to the following conjecture.
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(a) (b)

Figure 10: The Gray (273) configuration C0 and the corresponding C1.

Conjecture 5.1. A cyclic (n3) configuration is unsplittable if and only if its Levi graph
belongs to one of the following three infinite families:

(1) H(n, {0, 1, 3}) for n ≥ 7;

(2) H(3n, {0, 1, n}) for n ≥ 2;

(3) H(3n, {0, 1, n+ 1}) for n ≥ 4 where n 6≡ 0 (mod 3).

To show that all other cyclic (n3) configurations are splittable, we expect that the
method used in the proof of Theorem 3.1, Corollary 3.2 and Corollary 3.3 can be extended.
Nedela and Škoviera [15] showed a nice property of cubic graphs with respect to the cyclic
connectivity. Their result is likely to have applications in splittablity.

In Section 4 we have shown how to construct geometric point- and line-splittable (nk)
configuration for any k. However, we were not able to obtain any splittable cyclic (nk)
configuration for k ≥ 4 so far. Therefore, we pose the following claim.

Conjecture 5.2. All cyclic (nk) configurations for k ≥ 4 are unsplittable.

Notions of splittable and unsplittable configurations have been defined via associated
graphs. Since splittability is a property of combinatorial configurations, it can be extended
from bipartite graphs of girth at least 6 to more general graphs. We expect that results
concerning cyclic connectivity such as those presented in [15] will play an important role
in such investigations.

Note that cyclic Haar graphs have girth at most 6 and form a special class of bicirculants
[16]. However, there exist other bicirculants with girth greater than 6. The corresponding
configurations have been investigated in [3, 1]. One way of extending this study is on the
one hand to consider splittability of these more general bicirculants and on the other hand
to study tricirculants [12], tetracirculants and beyond [7]. In the language of configurations,
they can be described as special classes of polycyclic configurations [2].
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