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División de Matemáticas e Ingenierı́a, FES Acatlán,
Universidad Nacional Autónoma de México,
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Abstract

Complete vertex colorings have the property that any two color classes have at least
an edge between them. Parameters such as the Grundy, achromatic and pseudoachromatic
numbers come from complete colorings, with some additional requirement. In this paper,
we estimate these numbers in the Kneser graph K(n, k) for some values of n and k. We
give the exact value of the achromatic number of K(n, 2).
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1 Introduction
Since the beginning of the study of colorings in graph theory, many interesting results
have appeared in the literature, for instance, the chromatic number of Kneser graphs. Such
graphs give an interesting relation between finite sets and graphs.

Let V be the set of all k-subsets of [n] := {1, 2, . . . , n}, where 1 ≤ k ≤ n/2. The
Kneser graph K(n, k) is the graph with vertex set V such that two vertices are adjacent if
and only if the corresponding subsets are disjoint. Lovász [18] proved that χ(K(n, k)) =
n− 2(k − 1) via the Borsuk-Ulam theorem, see Chapter 38 of [2].

Some results on the Kneser graphs and parameters of colorings have appeared since
then, for instance [4, 8, 10, 13, 16, 19].

An l-coloring of a graph G is a surjective function ς that assigns a number from the
set [l] to each vertex of G. An l-coloring of G is proper if any two adjacent vertices have
different colors. An l-coloring ς is complete if for each pair of different colors i, j ∈ [l]
there exists an edge xy ∈ E(G) such that ς(x) = i and ς(y) = j.

The largest value of l for which G has a complete l-coloring is called the pseudoachro-
matic number of G [12], denoted ψ(G). A similar invariant, which additionally requires
an l-coloring to be proper, is called the achromatic number of G and denoted by α(G)
[15]. Note that α(G) is at least χ(G) since the chromatic number χ(G) of G is the smallest
number l for which there exists a proper l-coloring of G and then such an l-coloring is also
complete. Therefore, for any graph G, χ(G) ≤ α(G) ≤ ψ(G).

In this paper, we estimate these parameters arising from complete colorings of Kneser
graphs. The paper is organized as follows. In Section 2 we recall notions of block designs.

Section 3 is devoted to the achromatic number α(K(n, 2)) of the Kneser graphK(n, 2).
It is proved that α(K(n, 2)) =

⌊(
n+1
2

)
/3
⌋

for n ̸= 3.
In Section 4 it is shown that ψ(K(n, 2)) satisfies

⌊(
n
2

)
/2
⌋
≤ ψ(K(n, 2)) ≤

⌊
(
(
n
2

)
+
⌊n
2

⌋
)/2

⌋
for n ≥ 7 and that the upper bound is tight.

The Section 5 establishes that the Grundy number Γ(K(n, 2)) equals α(K(n, 2)). The
Grundy number Γ(G) of a graph G is determined by the worst-case result of a greedy
proper coloring applied on G. A greedy l-coloring technique operates as follows. The ver-
tices (listed in some particular order) are colored according to the algorithm that assigns to a
vertex under consideration the smallest available color. Therefore, greedy proper colorings
are also complete.

Section 6 gives a natural upper bound for the pseudoachromatic number ofK(n, k) and
a lower bound for the achromatic number of K(n, k) in terms of the b-chromatic number
of K(n, k), another parameter arising from complete colorings.

Section 7 is about the achromatic numbers of some geometric type Kneser graphs. A
complete geometric graph of n points is an embedding of the complete graph Kn in the
Euclidean plane such that its vertex set is a set V of points in general position, and its
edges are straight-line segments connecting pairs of points in V . We study the achromatic
numbers of graphs DV (n) whose vertex set is the set of edges of a complete geometric
graph of n points and adjacency is defined in terms of geometric disjointness.

To end, in Section 8, we discuss the case of the odd graphs K(2k + 1, k).
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2 Preliminaries
All graphs in this paper are finite and simple. Note that the complement of the line graph
of the complete graph on n vertices is the Kneser graph K(n, 2). We use this model of the
Kneser graph K(n, 2) in Sections 3, 4, 5 and 7.

Let n, b, k, r and λ be positive integers with n > 1. Let D = (P,B, I) be a triple
consisting of a set P of n distinct objects, called points of D, a set B of b distinct objects,
called blocks of D (with P ∩ B = ∅), and an incidence relation I , a subset of P × B. We
say that v is incident to u if exactly one of the ordered pairs (u, v) and (v, u) is in I; then
v is incident to u if and only if u is incident to v. D is called a 2-(n, b, k, r, λ) block design
(for short, 2-(n, b, k, r, λ) design) if it satisfies the following axioms.

1. Each block of D is incident to exactly k distinct points of D.

2. Each point of D is incident to exactly r distinct blocks of D.

3. If u and v are distinct points of D, then there are exactly λ blocks of D incident to
both u and v.

A 2-(n, b, k, r, λ) design is called a balanced incomplete block design BIBD; it is called an
(n, k, λ)-design, too, since the parameters of a 2-(n, b, k, r, λ) design are not all indepen-
dent. The two basic equations connecting them are nr = bk and r(k− 1) = λ(n− 1). For
a detailed introduction to block designs we refer to [5, 6].

A design is resolvable if its blocks can be partitioned into r sets so that b/r blocks of
each part are point-disjoint and each part is called a parallel class.

A Steiner triple system STS(n) is an (n, 3, 1)-design. It is well-known that an STS(n)
exists if and only if n ≡ 1, 3 mod 6. A resolvable STS(n) is called a Kirkman triple system
and denoted by KTS(n) and exists if and only if n ≡ 3 mod 6, see [21].

An (n, 5, 1)-design exists if and only if n ≡ 1, 5 mod 20, see [6].
An (n, k, 1)-design can naturally be regarded as an edge partition into Kk subgraphs,

of the complete graph Kn.
Finally, we recall that the concepts of a 1-factor and a 1-factorization represent, for the

case of Kn, a parallel class and a resolubility of an (n, 2, 1)-design, respectively.

3 The exact value of α(K(n, 2))

In this section, we prove that α(K(n, 2)) =
⌊(

n+1
2

)
/3
⌋

for every n ̸= 3. The proof is about
the upper bound and the lower bound have the same value.

Theorem 3.1. The achromatic number α(K(n, 2)) ofK(n, 2) equals
⌊(

n+1
2

)
/3
⌋

for n ̸= 3
and α(K(3, 2)) = 1.

Proof. First, we prove the upper bound α(K(n, 2)) ≤
⌊(

n+1
2

)
/3
⌋
.

Let ς be a proper and complete coloring of K(n, 2). Consider the graph K(n, 2) as the
complement of L(Kn). Note that vertices corresponding to a color class of ς of size two
induce a P3 subgraph, say abc, of the complete graphKn with V (Kn) = [n]; then no color
class of ς of size one is a pair containing b. Therefore, if ς has x color classes of size one
(they form a matching in Kn of size x) and y color classes of size two, then y ≤ n− 2x,

α(K(n, 2)) ≤
(
n
2

)
− x− 2(n− 2x)

3
+x+(n− 2x) =

(
n
2

)
+ 2x+ (n− 2x)

3
=

(
n
2

)
+ n

3
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and we get α(K(n, 2)) ≤
⌊(

n+1
2

)
/3
⌋
. For the case of n = 3, K(3, 2) is an edgeless graph,

hence α(K(3, 2)) = 1.
Next, we exhibit a proper and complete edge coloring of the complement of L(Kn) that

uses
⌊(

n+1
2

)
/3

⌋
colors. We remark that in order to obtain such a tight coloring it suffices

to achieve that all color classes are of size at most three, while the number of exceptional
vertices of Kn (that are involved neither in a color class of size one nor in the role of the
“center” of a color class of size two) is at most one. We shall refer to this condition as the
condition (C).

Figure 1 documents the equality for n ≤ 5. For the remainder of this proof, we need to

Figure 1: α(K(n, 2)) =
⌊(

n+1
2

)
/3
⌋

for n = 2, 4, 5 and α(K(3, 2)) = 1.

distinguish four cases, namely, when n = 6k, 6k+2; n = 6k+3, 6k+5; n = 6k+4 and
n = 6k + 1 for k ≥ 1.

1. Case n = 6k or n = 6k + 2. Since n + 1 ≡ 1, 3 mod 6 there exists an STS(n +
1). We can think of K(n, 2) as having the vertex set equal to the set of points of
STS(n + 1) other than v. Then each vertex of K(n, 2) is a subset of exactly one
block of STS(n+ 1)− v; the blocks of STS(n+ 1)− v are (3-element) blocks of
STS(n+1) not containing v, and (2-element) blocksB \{v}, whereB is a block of
STS(n+1) with v ∈ B. Consider a vertex coloring of K(n, 2) that is defined in the
following way: Color classes of size three are triangles of STS(n+ 1)− v (we use
this simplified expression to indicate that all vertices of K(n, 2), that are subsets of a
fixed triangle of STS(n+1)−v, receive the same color). All remaining color classes
are of size one; they are formed by 2-element blocks of STS(n+ 1)− v. (They can
also be regarded as edges of a perfect matching of the “underlying” complete graph
on points of STS(n+ 1)− v.) The coloring is obviously proper. It is complete, too
(see Figure 2), and satisfies the condition (C), hence α(K(n, 2)) =

⌊(
n+1
2

)
/3
⌋
.

Figure 2: Every two classes have two disjoint edges in the complement of L(Kn).

2. Case n = 6k + 3 or n = 6k + 5. Add two points u, v to the points of STS(n− 2),
and colorK(n, 2) as follows. Color classes of size three are triangles of STS(n−2)
except for one with points a, b, c. The remaining color classes are of size two. Five
of them correspond to the optimum coloring of K(5, 2) depicted in Figure 1 (with
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points a, b, c, u, v). Finally, every point x of STS(n− 2), x /∈ {a, b, c}, gives rise to
the color class {ux, xv}, see Figure 3 (Left). The coloring is proper and complete,
see Figure 3 (Right), and it satisfies the condition (C).

STS

u

v

a b

c x

Figure 3: (Left) Color classes of size two in the proof of Case 2. (Right) Every two distinct
color classes of size two contain disjoint edges in the complement of L(Kn).

3. Case n = 6k + 4. Add a point v to the points of a resolvable STS(n − 1), for
instance a KTS(n − 1). Color classes of size three are triangles of STS(n − 1)
except for the triangles of a parallel class P = {Ti : i = 0, 1, . . . , n−4

3 }, where
Ti = {v3i+1, v3i+2, v3i+3}. For each triangle Ti of P color vertices of K(4, 2) with
the vertex set Ti ∪ {v} according to the optimum coloring of Figure 1, see Figure
4. The resulting coloring is proper and complete, and it fulfills the condition (C).
Indeed, the number of color classes of size two is n − 1; since “centers” of those
color classes are pairwise disjoint, v is the only exceptional vertex.

STS

v

v1

v2

v3 vn−1

vn−2

vn−3

Figure 4: Color classes of size two in the proof of Case 3.

4. Case n = 6k + 1. First, we analyze the case of k = 1. Delete two points of
STS(9) presented in Figure 5 (Left) to finish with points v1, v2, . . . , v7. The “sur-
vived” triangles are color classes of size three, see Figure 5 (Center). The remain-
ing six pairs of points are divided into four color classes {v1v2, v2v3}, {v3v4},
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{v4v5, v5v6} and {v6v1}, see Figure 5 (Right). The obtained coloring shows that
α(K(7, 2)) = 9 =

⌊(
7+1
2

)
/3
⌋
.

v1

v2

v3

v4

v5

v6

Figure 5: (Left) STS(9). (Center) The 5 color classes of size three of K7. (Right) Color
classes of size one and two in K(7, 2).

If k ≥ 2, consider an STS(n − 4) with points v1, v2, . . . , vn−4 that has a paral-
lel class P = {Ti : i = 0, 1, . . . , n−7

3 }, where Ti = {v3i+1, v3i+2, v3i+3}. Add
to points of STS(n − 4) the points a, b, c, d. Every triangle of STS(n − 4) ex-
cept for the triangles of P is a color class of size three. Let Hi denote the join
of Ti with the complement of K4 on vertices a, b, c, d; the join of two vertex dis-
joint graphs G and H has the vertex set V (G) ∪ V (H) and the edge set E(G) ∪
E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}. Pairs of points corresponding to edges of
Hi, i = 0, 1, . . . , n−10

3 , form color classes of size three determined by point triples
{v3i+1, v3i+2, a}, {v3i+2, v3i+3, b} and {v3i+1, v3i+3, c}, and color classes of size
two {av3i+3, v3i+3d}, {bv3i+1, v3i+1d} and {cv3i+2, v3i+2d}, see Figure 6. Finally,
pairs of points from the set S = {vn−6, vn−5, vn−4, a, b, c, d} are colored so that
nine color classes are created just as in the coloring of K(7, 2) described above for
the case k = 1. The coloring is proper and complete, and the condition (C) is
fulfilled, since the number of exceptional vertices in the “underlying” Kn is one (ex-
ceptional is the vertex of S that is involved only in color classes of size three); so,
α(K(n, 2)) =

⌊(
n+1
2

)
/3
⌋

in this case, too.

a

b c

d

v3i+3

v3i+2

v3i+1

Figure 6: The 6-coloring of Hi.

By the four cases, the theorem follows.
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4 About the value of ψ(K(n, 2))

In this section, we determine bounds for ψ(K(n, 2)). The gap between the bounds is Θ(n),
however, the upper bound is tight for an infinite number of values of n.

Theorem 4.1. ψ(K(n, 2)) = α(K(n, 2)) for 2 ≤ n ≤ 6 and⌊(
n
2

)
2

⌋
≤ ψ(K(n, 2)) ≤

⌊(
n
2

)
+

⌊
n
2

⌋
2

⌋

for n ≥ 7. Moreover, the upper bound is tight if n ≡ 0, 4 mod 20.

Proof. For n = 2, 3, the graph K(n, 2) is edgeless and then ψ(K(n, 2)) = α(K(n, 2)) =
1.

For n = 4, 5, 6, α(K(n, 2)) is 3, 5, 7, respectively (by Theorem 3.1). Note that any
complete coloring having a color class of size one uses at most k = 2, 4, 7 colors, re-
spectively. And any complete coloring without color classes of size one uses at most
k = 3, 5, 7 colors, respectively. Therefore, ψ(K(n, 2)) is at most 3, 5, 7, respectively.
Hence ψ(K(n, 2)) = α(K(n, 2)).

For n ≥ 7, any complete coloring of K(n, 2) has at most ω(K(n, 2)) =
⌊
n
2

⌋
classes

of size 1 (ω(G) is the clique number of the garph G, that is, the largest order of a complete
subgraph of G), then

ψ(K(n, 2)) ≤

⌊(
n
2

)
−
⌊
n
2

⌋
2

+
⌊n
2

⌋⌋
=

⌊(
n
2

)
+

⌊
n
2

⌋
2

⌋
.

Such an upper bound is proved in [1].
To see the lower bound, we use a 1-factorization F of K2t such that no component

induced by two distinct 1-factors of F is a 4-cycle, see [17, 20]. We need to distinguish
four cases, namely, when n = 4k − 1, 4k, n = 4k + 1 and n = 4k + 2 for k ≥ 1.

1. Case n = 4k. Consider F for t = 2k. Since each 1-factor contains t edges, we have
k color classes of size two for each 1-factor, therefore the lower bound follows.

2. Case n = 4k + 1. Consider F for t = 2k + 1 and delete a vertex of K4k+2. Since
each maximal matching arising from a 1-factor of F contains t − 1 edges, we have
k color classes of size two for each such maximal matching, hence the lower bound
follows.

3. Case n = 4k + 2. Consider F for t = 2k and add two new vertices a and b to
V (K4k) to obtain K4k+2. Color the subgraph K4k as above, and the remaining
edges as follows. For each vertex x of K4k, we have the classes {ax, xb}. Finally,
color the edge ab in a greedy way and the result follows.

4. Case n = 4k − 1. Consider F for t = 2k − 1 and adding a new vertex b to obtain
K4k−1. Color the subgraph K4k−3 = K4k−1 − {a, b} as in the case n ≡ 1 mod 4,
and form for each vertex x of K4k−3 the color class {ax, xb}. Finally, choose for
the edge ab greedily a color that is already used; the result then follows.

Now, to verify that the upper bound is tight, consider an (n + 1, 5, 1)-design D, see
[6]. Therefore n + 1 ≡ 1, 5 mod 20. Choose a point v of D and let P = {Qi : i =
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0, 1, . . . , n−4
4 } with Qi = {v4i+1, v4i+2, v4i+3, v4i+4} be the set of 4-blocks of D − v.

Pairs of points of every 5-block of D − v are colored so that five color classes of size two
are created, see Figure 7; the coloring is not proper, since all those color classes induce a
K2 subgraph of K(n, 2).

Figure 7: A complete coloring of K(5, 2) using five colors that is not proper.

Label the edges of each block Qi of P as f2i = v4i+1v4i+2, f2i+1 = v4i+3v4i+4,
ei, en/4+i, en/2+i and e3n/4+i. Remaining vertices of K(n, 2) are colored to form color
classes {fi} of size one for i = 0, 1, . . . , n/2 − 1, and color classes {e2i, e2i+1} of size
two for i = 0, 1, . . . . , n/4− 1. The coloring is complete, hence the result follows.

5 On the Grundy number ofK(n, 2)

In this section, we observe that the coloring used in Theorem 3.1 is also a greedy coloring.

An l-coloring of G is called Grundy, if it is a proper coloring having the property that
for every two colors i and j with i < j, every vertex colored j has a neighbor colored i
(consequently, every Grundy coloring is a complete coloring). Moreover, a coloring ς of
a graph G is a Grundy coloring of G if and only if ς is a greedy coloring of G, see [7].
Therefore, the Grundy number Γ(G) is the largest l for which a Grundy l-coloring of G
exists. Any graph G satisfies, χ(G) ≤ Γ(G) ≤ α(G) ≤ ψ(G).

Consider the coloring used in Theorem 3.1. Divide colors into small, medium and high
(recall that colors used in Theorem 3.1 are positive integers), and use them for color classes
of size three, two and one, respectively. We only need to verify that if i and j are colors
with i < j, then for every edge e of color j there exists an edge of color i that is disjoint
with e. This is certainly true if j is a high color, since the coloring is complete. If the
color j is not high, the required condition is satisfied because of the following facts: (i)
(3-element) vertex sets corresponding to color classes i and j have at most one vertex in
common; (ii) the centers of involved P3 subgraphs are distinct if both i and j are medium
colors.

Consider the coloring used in Theorems 3.1. Taking the highest colors as the color
class of size 1 and the smallest colors as the color classes of size 3. We only need to verify
that for every two color classes with colors i and j, i < j, and every edge of color j there
always exist a disjoint edge of color i. This is true if the color classes are triangles because
they only share at most one vertex. If the color classes are an triangle K3 with color i and
a path P3 with color j this is also true.

Theorem 5.1. Γ(K(n, 2)) =
⌊(

n+1
2

)
/3
⌋

for n ̸= 3 and Γ(K(3, 2)) = 1.
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6 About general upper bounds
The known upper bound for the pseudoachromatic number states, for K(n, k) (see [7]),
that

ψ(K(n, k)) ≤ 1

2
+

√
1

4
+

(
n

k

)(
n− k

k

)
= O

(
nk/2(n− k)k/2

k!

)
. (6.1)

A slightly improved upper bound is the following. Let ς be a complete coloring of
K(n, k) using l colors with l = ψ(K(n, k)). Let x = min{

∣∣ς−1(i)
∣∣ : i ∈ [l]}, that is, x is

the cardinality of the smallest color class of ς; without loss of generality we may suppose
that x =

∣∣ς−1(l)
∣∣. Since ς defines a partition of the vertex set of K(n, k) it follows that

l ≤ f(x) :=
(
n
k

)
/x.

Additionally, since K(n, k) is
(
n−k
k

)
-regular, there are at most

(
n−k
k

)
vertices adjacent

in K(n, k) to a vertex of ς−1(l). With X :=
⋃

X∈ς−1(l)X we have |[n] \ X | ≥ n− kx. If
n−kx ≥ k and Y ⊆ [n]\X , |Y | = k, then each of x edgesXY , X ∈ ς−1(l), corresponds
to the pair of colors l, ς(Y ). Therefore, ψ(K(n, k)) ≤ g(x), where g(x) := 1+ x

(
n−k
k

)
−

(x−1)
(
n−kx

k

)
, if n−kx ≥ k, and g(x) := 1+x

(
n−k
k

)
otherwise. Consequently, we have:

ψ(K(n, k)) ≤ max {min{f(x), g(x)} : x ∈ N} .

Hence, we conclude that:

ψ(K(n, k)) ≤ ⌊max {min{f(x), g(x)} : x ∈ N}⌋

and then
ψ(K(n, k)) ≤

⌊
max

{
min{f(x), g(x)} : x ∈ R+

}⌋
.

It is not hard to see that max {min{f(x), g(x)} : x ∈ R+} ≤ 1
2 +

√
1
4 +

(
n
k

)(
n−k
k

)
.

On a general lower bound. An l-coloring ς is called dominating if every color class
contains a vertex that has a neighbor in every other color class. The b-chromatic number
φ(G) of G is defined as the largest number l for which there exists a dominating l-coloring
of G (see [16]). Since a dominating coloring is also complete, hence, for any graph G,
φ(G) ≤ α(G). The following theorem was proved in [13]:

Theorem 6.1 (Hajiabolhassan [13]). Let k ≥ 3 an integer. If n ≥ 2k, then 2
(⌊n

2 ⌋
k

)
≤

φ(K(n, k)).

In consequence, for any n, k satisfying n ≥ 2k ≥ 6, we have

α(K(n, k)) ≥ 2

(⌊n
2

⌋
k

)
= Ω

(
nk

2k−1kk

)
.

7 The achromatic numbers ofDV (n)

Let V be a set of n points in general position in the plane, i.e., no three points of V are
collinear. The segment disjointness graph DV (n) has the vertex set equal to the set of
all straight line segments with endpoints in V , and two segments are adjacent in DV (n)
if and only if they are disjoint. Each graph DV (n) is a spanning subgraph of K(n, 2).
The chromatic number of the graph DV (n) is bounded in [3] where it is proved that
χ(DV (n)) = Θ(n).



66 Ars Math. Contemp. 21 (2021) #P1.05 / 57–69

In this subsection, we prove bounds for α(DV (n)) and ψ(DV (n)). Having in mind the
fact that ψ(H) ≤ ψ(G) if H is a subgraph of G, Theorem 4.1 yields

ψ(DV (n)) ≤

⌊(
n
2

)
+
⌊
n
2

⌋
2

⌋
≤ n2

4
.

For the lower bound, we use the following results. A straight line thrackle is a set S of
straight line segments such that any two distinct segments of S either meet at a common
endpoint or they cross each other (see [9]).

Theorem 7.1 (Erdős [9] (see also the proof of Theorem 1 of [22])). If d1(n) denotes the
maximum number of edges of a straight line thrackle of n vertices then d1(n) = n.

Lemma 7.2. Any two triangles T1 and T2 with points in V , that share at most one point,
contain two disjoint edges.

Proof. Case 1. T1 has a point in common with T2: Since T1 ∪ T2 have five points and six
edges, then two of its edges are disjoint due to d1(5) = 5.

Case 2. T1 has no points in common with T2: Let e be an edge of T2. Let us suppose
that T1 ∪ T2 does not contain two disjoint edges, then T1 and e is a straight line thrackle.
Therefore, a vertex of e and a vertex of T1 have to be the same, which is impossible because
T1 has no points in common with T2.

Now, if we identify a Steiner triple system STS(n) with the complete geometric graph
of n points and we color each triangle with a different color, by Lemma 7.2, we have the
following.

Lemma 7.3. If n ≡ 1, 3 mod 6 and V is a set of n points in general position, then

n2

6
− n

6
=

1

3

(
n

2

)
≤ α(DV (n))

Therefore, we have the following theorem.

Theorem 7.4. For any natural number n and any set of n points V in general position,

n2

6
−Θ(n) ≤ α(DV (n)).

Further, if Kn has an even number of vertices, then there is a set F ⊆ E(Kn) such that
E(Kn) \ F can be partitioned into triangles. More precisely, if n ≡ 0, 2 mod 6,then F is a
perfect matching in Kn, and if n ≡ 4 mod 6, then F induces a spanning forest of n/2 + 1
edges in Kn with all vertices having an odd degree, see [11, 14].

A set V of n points in convex position is a set of n points in general position such
that they are the vertices of a convex polygon (each internal angle is strictly less than 180
degrees).

Theorem 7.5. For any even natural number n and any set of n points V in convex position,

n2

6
+ Θ(n) ≤ α(DV (n))
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Figure 8: Configurations of the color classes of size one arising from F and a dashed
triangle of Kn − F in the proof of Theorem 7.5.

Proof. Take the edges of F in the convex hull of V , except for one in the case of n ≡ 4
mod 6, see Figure 8. Each component of F is a color class. Each triangle of Kn − F is a
color class. Essentially we use

(
n+1
2

)
/3 triangles, and the result follows.

Finally, the geometric type Kneser graph DV (n, k) for k ≥ 2 whose vertex set consists
of all subsets of k points in V . Two such sets X and Y are adjacent if and only if their
convex hulls are disjoint. Given a point set V , for a line dividing V into two sets V1 and V2
of n/2 points, having a coloring such that each color class has sets X ⊆ V1 and Y ⊆ V2,
we have that

ψ(DV (n, k)) ≥
(
n/2

k

)
= Ω

(
nk

2kkk

)
8 On odd graphs
It is obvious to prove that the achromatic and the pseudoachromatic number as well of (the
graph induced by) a matching of size

(
k
2

)
is equal to k. Therefore, a matching of sizem has

achromatic and pseudoachromatic number equal to
⌊
1
2 +

√
1
4 + 2m

⌋
, which means that in

the case n = 2k the upper bound of (1) for ψ(K(2k, k)) is equal to the lower bound for
α(K(2k, k)); in other words,

α(K(2k, k)) = ψ(K(2k, k)) =

⌊
1

2
+

√
1

4
+

(
2k

k

)⌋

However, the situation is different in the case of K(2k + 1, k), the Kneser graphs that
are called odd graphs. The better lower bound we have is

Ω
(
2k/2

)
=

⌊
1

2
+

√
1

4
+

(
2k

k

)⌋
≤ ψ(K(2k + 1, k)),

due to the fact that K(2k, k) is a subgraph of the odd graph K(2k + 1, k).
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