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Abstract. We review some basic properties of the N-∆ transition axial amplitudes and re-
late them to the strong πN∆ form-factor. In models with the pion cloud we derive a set
of constraints on the pion wave function which guaranty the correct behaviour of the am-
plitudes in the vicinity of the pion pole. Corrections due to the spurious center-of-mass
motion are calculated to the leading order in the inverse baryon mass. We give explicit ex-
pressions for the amplitudes in the Cloudy Bag Model and show that they rather strongly
underestimate the experimental values.

1 Introduction

The weak N-∆ transition amplitudes yield important information about the struc-
ture of the nucleon and the ∆, and in particular about the role of chiral mesons
since they explicitly enter in the expression for the axial part of the weak current.
There exist only very few calculations in quark models [1,2] yet none of them in-
cludes the mesonic degrees of freedom. This can be traced back to the difficulty
of incorporating consistently the pion field which is necessary to describe the cor-
rect low-Q2 behaviour of the amplitudes. Obviously, this can be done only in the
models that properly incorporate the chiral symmetry.

The aim of this work is to study the axial amplitudes of the N-∆ transition in
models with quarks and chiral mesons. In Sec. 2 we introduce expressions for the
axial helicity amplitudes and relate them to the experimentally measured quan-
tities, CA

i , i = 3, 6, the so called Adler form-factors. We derive the analog of the
Goldberger-Treiman relation that relates the leading axial form factor, CA

5 , to the
strong πN∆ coupling constant. In Sec. 3 we calculate the amplitudes in a simple
isobar model that includes the pion. In Sec. 4 we study some general properties
of the axial amplitudes in quark models that include the pion and possibly also
its chiral partner, the σ-meson. We derive a set of constraints on the pion field
and show that in models that satisfy these constraints the pion pole appears only
in the CA

6 form-factor. Furthermore, if the meson self-interaction is absent in the
model, i.e. if the pion interacts only with quarks, the pion contributes solely to
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the CA
6 form-factor while the CA

4 andCA
5 form-factors pick up only the contri-

bution from quarks. In most quark models the nucleon and the ∆ are calculated
as localized states while the expressions for the amplitudes require states with
good linear momenta. In Sec. 5 we use the wave packet formalism to derive cor-
rections to the amplitudes calculated between localized states and show that the
approximations are valid for momenta that are small compared to typical baryon
masses. In Sec. 6 we give explicit expressions for the axial as well as the strong
form-factors in the Cloudy Bag Model (CBM) and make a simple estimate of their
strengths.

The calculation of the form-factors in the CBM as well as in the linear σ-
model that includes besides the pion also the σ-meson is presented and compared
to the experimentally measure form-factors in [3,4] and in the contribution of
Simon Širca [5] to these Proceedings.

2 Same basic properties of transition amplitudes

2.1 Definition of the helicity amplitudes

The weak transition amplitudes are defined as the matrix elements of the weak
interaction Hamiltonian

M = 〈∆|H|N,W〉 = W(−)
aµ 〈∆|Vaµ −Aaµ|N〉 (1)

where a is the isospin index. For simplicity we shall assume a = 0 and will not
write it explicitly. For the axial part alone we have:

MA =

√

4παW

2K0

∑

λ

eµλ〈∆|Aµ|N〉 =

√

4παW

2K0

[

〈∆|A0|N〉 −
∑

λ

ελ · 〈∆|A|N〉
]

,

(2)
where

K0 =
M2

∆ −M2
N

2M∆

and 4παW =
4πα

sin2 θW

≈ 0.443 . (3)

The 4-momentum of the incident weak boson (W) is

kµ = (k0, 0, 0, k) , k0 =
M2

∆ −M2
N −Q2

2M∆

, k =

√

k2
0 +Q2 . (4)

The helicity amplitudes are defined as

S̃A = −〈∆+(p ′), s∆ = 1
2
|A0

0(0)|N+(p)sN = 1
2
〉 , (5)

ÃA
3

2

= −〈∆+(p ′), s∆ = 3
2
|ε+ · A(0)|N+(p)sN = 1

2
〉 , (6)

ÃA
1

2

= −〈∆+(p ′), s∆ = 1
2
|ε+ · A(0)|N+(p)sN = −1

2
〉 , (7)

L̃A = −〈∆+(p ′), s∆ = 1
2
|ε0 · A(0)|N+(p)sN = 1

2
〉 . (8)
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2.2 The Adler form-factors

Experimentalists measure the so called Adler form-factors defined as [6]:

〈∆+(p ′)|Aα(a=0)|N+(p)〉 = ū∆α

CA
4 (Q2)

M2
N

p ′
µq

µuN − ū∆µ

CA
4 (Q2)

M2
N

p ′
αq

µuN

+ū∆α C
A
5 (Q2)uN + ū∆µ

CA
6 (Q2)

M2
N

qµqαuN + ū∆α

CA
3 (Q2)

MN
γµq

µuN , (9)

where p ′
µ = (M∆; 0, 0, 0) and qµ = (ω; 0, 0, k), and u∆α is the Rarita-Schwinger

spinor:

uα(p, s∆) =
∑

λ ′,s

C
3

2
s∆

1λ ′ 1

2
s
eαλ ′(p)u(p, s) . (10)

Here

e
µ
λ(p) =

[

ελ · p
M∆

, ελ +
p(ελ · p)

M∆(p0 +M∆)

]

, (11)

and u(p, s) is the usual bispinor for a spin 1
2

particle. For the ∆ at rest it has a
simple form (e.g. [7], 414):

e
µ
λ = (0 , ελ) , u(p, s) =

(

1

0

)

χ 1

2
s , (12)

where ελ are the polarization vectors. The form-factor CA
3 is small; in models

with s-wave quarks and p-wave pions it is even identically 0; we shall therefore
assume CA

3 = 0 in the further derivations.
The helicity amplitudes can now be easily related to the form factors. For

α = 0 the evaluation is straightforward, while for α 6= 0 we multiply (9) by eα
λ

and use the following relations:

eα
λ ūα(p, s∆)uN = ελ

∑

λ ′,s

C
3

2
s∆

1λ ′ 1

2
s
(−ε∗

λ ′)ū(p, s)uN = −C
3

2
s∆

1λ 1

2
sN

, (13)

eα
λqα = −kδλ,0 , ūµ(p, s∆)qµuN = −kC

3

2
s∆

1λ 1

2
sN

. (14)

We obtain

S̃A = −

[

k
CA

4

M2
N

M∆ −ωk
CA

6

M2
N

]

√

2

3
, (15)

ÃA
3

2

= −

[

CA
4

M2
N

ωM∆ + CA
5

]

=
√
3 ÃA

1

2

, (16)

L̃A = −

[

CA
4

M2
N

ωM∆ + CA
5 −

k2

M2
N

CA
6

]

√

2

3
. (17)

The Adler form-factors read

CA
6 =

M2
N

k2

[

−ÃA
3

2

+

√

3

2
L̃A

]

, (18)
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CA
5 = −

√

3

2

(

L̃A −
k0

k
S̃A

)

−
k2

0 − k2

M2
N

CA
6 , (19)

CA
4 =

M2
N

kM∆

[

−

√

3

2
S̃A +

k0k

M2
N

CA
6

]

. (20)

2.3 The off-diagonal Goldberger-Treiman relation

Let us compute the divergence of the axial current between the∆ andN (9). Using
(14) we get (q2 ≡ −Q2):

〈∆+(P)|∂αAα|N+(p)〉 = ik
[

CA
5 (q2) +

CA
6 (q2)

M2
N

q2

]

C
3

2

1

2

10 1

2

1

2

. (21)

In the chiral limit the divergence has to vanish. From the above expression we
would conclude that CA

5 (q2) = 0 which is experimentally not the case. Hence
CA

6 (q2) should have a pole at q2 = 0 such that

CA
6 (q2) = −

M2
NC

A
5 (q2)

q2
. (22)

As in the nucleon case, we relate this term to the term in the axial current that is
responsible for the pion decay: Aα

apole(x) = fπ∂
απa(x). We can therefore identify

the CA
6 -term in (9) with:

ū∆µ

CA
6 (q2)

M2
N

qµqαuN = iqαfπ〈∆+(P)|π0(0)|N+(p)〉 . (23)

Indeed, the pion propagator behaves as q−2 in the chiral limit.
In the real world the pion mass is finite and we write the pion field as

〈∆+(P)|π0(0)|N+(p)〉 = i
GπN∆(q2)

2MN

ū∆µ q
µuN

−q2 +m2
π

√

2

3
. (24)

while the vanishing of (21) is replaced by PCAC:

〈∆+(P)|∂αAα a|N+(p)〉 = −m2
π fπ〈∆+(P)|πa(0)|N+(p)〉 . (25)

Replacing the LHS of (25) by (21) and using (23) and (24) we find

iqαū∆αuN

[

CA
5 (q2) + fπ

GπN∆(q2)

2MN

q2

−q2 +m2
π

√

2

3

]

=

iqαū∆αuN

GπN∆(q2)

2MN

m2
π fπ

−q2 +m2
π

√

2

3
. (26)

We finally obtain

CA
5 (q2) = fπ

GπN∆(q2)

2MN

√

2

3
, (27)

the off-diagonal Goldberger-Treiman relation, which – strictly speaking – holds only
in the limit q2 → m2

π. Assuming a smooth behaviour of the amplitudes for q2 in
the vicinity of m2

π we can expect (27) to remain valid for sufficiently small q2 in
the experimentally accessible range.
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3 The axial current in a simple isobar model with pions

The aim of this section is to derive the amplitudes in a simple model in order to
study the contribution of pions to the amplitudes and to analyze the qualitative
behaviour of the amplitudes. The derivation in this section is based on the stan-
dard derivation of the diagonal Goldberger-Treiman relation and PCAC (see e.g.
[7]).

We investigate the axial hadronic current in a model with two structureless
fermion fields, the nucleon and the ∆, and the pion field. Since we are interested
here only in the nucleon-∆ transition we shall write down explicitly only the per-
tinent parts of the Lagrangian and of the hadron current. The nucleon and the ∆
(at rest) satisfy the Dirac equation

(iγµ∂
µ − EN)ψN = 0 , (iγµ∂

µ −M∆)ψ∆ = 0 . (28)

We assume the following form of the πN∆ interaction

LπN∆ = −iGπN∆ψ̄∆γ5TaψNπa , (29)

where we introduce the transition operator ~T (and Σ) by

〈3
2
t∆|Ta|1

2
tN〉 = C

3

2
t∆

1a 1

2
tN

, 〈3
2
s∆|Σλ|1

2
sN〉 = C

3

2
s∆

1λ 1

2
sN

. (30)

(Note that γµ has a more complicated structure:

γ =

∣

∣

∣

∣

0 S

−S 0

∣

∣

∣

∣

, (31)

where the generalized Pauli matrices S act in the space spanned by the S = 1
2

and
S = 3

2
subspaces:

S =

∣

∣

∣

∣

σ Σ

Σ† σ∆∆

∣

∣

∣

∣

. (32)

The generalized isospin is introduce in the same way.)
The nucleon bispinor can be written as

uN(p) =

√

EN +MN

2MN

(

1
Σ·p

EN+MN

)

χ 1

2
sN
ξ 1

2
tN

≈
(

1
Σ·p

2MN

)

χ 1

2
sN
ξ 1

2
tN
, (33)

with χ and ξ describing respectively the spin and isospin part of the bispinor, and

pµ = (EN,p) , EN =

√

M2
N + p2 ≈MN . (34)

We assume that ∆ is at rest, p ′µ = (M∆; 0, 0, 0), hence

u∆(p ′) =

(

1

0

)

χ 3

2
s∆
ξ 3

2
t∆
. (35)

In the model, the transition part of the axial current takes the form:

Aµ
a = g∆

Aψ̄∆γ
µγ5

1
2
TaψN + fπ∂

µπa . (36)
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Using the Dirac equations (28) and the Klein-Gordon equation for the (pertinent
part of the) pion field:

(

∂µ∂
µ +m2

π

)

πa = −iGπN∆ψ̄∆γ5TaψN (37)

we immediately obtain

∂µA
µ
a = ig∆

A
1
2
(M∆ +MN)ψ̄∆γ5 TaψN − ifπGπN∆ψ̄∆γ5TaψN − fπm

2
π πa . (38)

In the limitmπ → 0 the current is conserved provided

1
2
(M∆ +MN)g∆

A = fπGπN∆ (39)

which is the off-diagonal Goldberger-Treiman relation (27). The constant g∆
A is related

to the experimentally measured CA
5 (0) by

g∆
A =

2MN

M∆ +MN

√
6CA

5 (0) , CA
5 (0) = 1.22± 0.06 . (40)

We now evaluate the matrix elements of the transition axial current. In this
case the solution of (37) is

〈∆(p ′)|πa(ω,k)|N(p)〉 = −i
GπN∆

2MN

〈∆| (−Σ · k) Ta|N〉
(−ω2 + k2 +m2

π)
(41)

withω = M∆ −MN, k = −p. For the time-like component of the current we get

〈∆(p ′)|A0
a(0)|N(p)〉 = −k

g∆
A

2MN

〈∆|Σ0
1
2
Ta|N〉 + iωfπ〈∆(p ′)|πa|N(p)〉

= −

[

g∆
A k

4MN

+
fπGπN∆

2MN

ωk

(−q2 +m2
π)

]

〈∆|Σ0 Ta|N〉 . (42)

The spatial part is

〈∆(p ′)|Aa(0)|N(p)〉 = g∆
A〈∆|Σ 1

2
Ta|N〉 + ikfπ〈∆(p ′)|πa|N(p)〉

= 1
2
g∆

A〈∆|Σ Ta|N〉 −
fπGπN∆

2MN

k

(−q2 +m2
π)

〈∆|(Σ · k) Ta|N〉 .

(43)

The helicity amplitudes introduced in the first section (for 4-vector momen-
tum transfer qµ = p ′µ − pµ = (ω; 0, 0, k)) are now expressed as

S̃A =

[

k
g∆

A

4MN

+ k
fπGπN∆

2MN

ω

(−q2 +m2
π)

]

√

2

3

2

, (44)

ÃA
3

2

= −1
2
g∆

A

√

2

3
=

√
3ÃA

1

2

, (45)

L̃A =

[

−1
2
g∆

A +
fπGπN∆

2MN

k2

(−q2 +m2
π)

]

√

2

3

2

. (46)
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Using (39) we are now able to explicitly check that PCAC holds in the model:

〈∆+(p ′)|∂µA
µ
a=0|N+(p)〉 = −i

(

ωS̃A − kL̃A
)

= −m2
πfπ〈∆+(p ′)|π0|N+(p)〉 . (47)

In this model we can express the Adler form-factors solely in terms of either g∆
A

or GπN∆:

CA
6 =

1√
6
fπMN

GπN∆

−q2 +m2
π

, (48)

CA
5 =

1√
6

M∆ +MN

2MN

g∆
A =

√

2

3

fπGπN∆

2MN

, (49)

CA
4 = −

1√
6

MN

2M∆

g∆
A = −

M2
N

M∆(M∆ +MN)
CA

5 ≈ −0.33CA
5 . (50)

The relations derived above show that only CA
6 exhibits the pole behavior while

in the other two amplitudes the pole behavior cancels out and the result is the
same as if we used only the fermion part of the axial current. In the next section
we shall see that this property holds in a vast class of models that fulfill certain
virial relations.

4 Helicity amplitudes in models with the pion cloud

We investigate quark models that include the pion and possibly also its chiral
partner, the σ-meson. The part of the Hamiltonian that involves pions can be
written in the following form:

Hπ =

∫

dr

{

1
2

[

~P2
π + (∇2 +m2

π)~π2
]

+U(σ, ~π) +
∑

t

jtπt

}

. (51)

Here jt represents the quark pseudoscalar-isovector source term, t is the third
component of the isospin, and U(σ, ~π) a possible meson self-interaction term
(such as the Mexican hat potential of the linear σ-model). Let |N〉 and |∆〉 be
the ground state and the excited state describing the ∆ with H|N〉 = EN|N〉 and
H|∆〉 = E∆|∆〉, then we can write the following virial theorems (relations):

〈N|[H,~Pπ]|N〉 = 〈N|H~Pπ − ~PπH|N〉 = 0 , (52)

〈∆|[H,~Pπ]|∆〉 = 0 , (53)

〈∆|[H,~Pπ]|N〉 = (E∆ − EN)〈∆|~Pπ|N〉 = i(E∆ − EN)2〈∆|~π|N〉 . (54)

We have used ~Pπ = i[H, ~π] in the last line. We call (54) the off-diagonal virial relation
(theorem). (Note that there is no off-diagonal relation of this type for the σ-field
because it is scalar-isoscalar and the matrix elements vanish identically.)

We now evaluate the commutators on the LHS using (51):

(−∆+m2
π)〈N|πt(r)|N〉 = −(−1)t〈N|J−t(r)|N〉 , (55)

(−∆+m2
π)〈∆|πt(r)|∆〉 = −(−1)t〈∆|J−t(r)|∆〉 , (56)

(−∆+m2
π −ω2

∗)〈∆|πt(r)|N〉 = −(−1)t〈∆|J−t(r)|N〉 . (57)
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We have defined ω∗ = (E∆ − EN) and

Jt(r) = jt(r) + (−1)t ∂U(σ, ~π)

∂π−t(r)
, (58)

and used
[πt ′(r ′), Pπ ,t(r)] = i(−1)tδt,−t ′δ(r ′ − r) . (59)

These relations hold for the exact solutions; in an approximate computational
scheme we can use these relations as constraints on the approximate states.

We now show an important property of the axial transition amplitudes which
holds for the states that satisfy the above virial relations. Let us split the axial cur-
rent into two parts:

~Aα = ~Aα
np + ~Aα

pole , (60)
~Aα

np = ψ̄γαγ5
1
2
~τψ+ (σ− fπ)∂α

~π− ~π∂ασ , (61)
~Aα

pole = fπ∂
α
~π . (62)

We can now relate the non-pole contribution (61) to the first term in (36) and (ob-
viously) the pole contribution to the second term in (36). Since the off-diagonal
virial relation (57) coincides with (41), the evaluation is similar to the derivation
presented in the previous section. The pole term (62) contributes only to the lon-
gitudinal and the scalar amplitude, hence:

CA
6 (pole) = −ifπ

M2
N

k

√

3

2
〈∆+

s∆= 1

2

|π0(0)|N+
sn= 1

2

〉 , (63)

CA
5 (pole) = 0 ,

CA
4 (pole) = 0 .

5 Calculation of form-factors between localized states

The amplitudes (5)-(8) are defined between states with good 4-momenta p ′ and p
respectively while in the model calculations localized states are used. We can use
such states in our calculation of amplitudes by interpreting them as wave packets
of states with good linear momenta:

|B(r)〉 =

∫

dpϕ(p) eip·r|B(p)〉 . (64)

The spin-momentum dependence of |B(p)〉 is expressed by the bispinor

uB(p) =

√

E+M

2M

(

1
σ·p

E+M

)

χspin . (65)

Requiring (65) is normalized, 〈B(p)|B(p)〉 = 1, we have
∫

dr〈B(r)|B(r)〉 = (2π)3

∫

dp |ϕ(p)|2 = 1 . (66)
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We now relate matrix elements between localized states to matrix elements
between states with good momenta. We start by a matrix element between local-
ized states:

∫

dr eik·r〈∆|M(r)|N〉 =

∫

dr

∫

dp ′

∫

dp ei(k−p ′+p)·r〈∆(p ′)|M(r)|N(p)〉

×ϕ∗
∆(p ′)ϕN(p). (67)

Since the matrix element 〈∆(p ′)|M(r)|N(p)〉 does not depend on r (all r-depen-
dence is contained in the exponential) we can substitute it by its value at r = 0.
We then carry out the r integration yielding δ(p − p ′ + k), and the above matrix
element reads:
∫

dr eik·r〈∆|M(r)|N〉 = (2π)3

∫

dp 〈∆(p+k)|M(0)|N(p)〉 ϕ∗
∆(p+k)ϕN(p) . (68)

From the parameterization of the axial current (9) we can read off the p ′ and p
dependence and plug it into (68). We neglect terms of the order p2/M2, e.g. the
last term in the expression (11) for eµ

λ(p). We find:

ūα(p ′, s∆ = 1
2
)qαuN(s = 1

2
) =

[

M∆ −MN

M∆

p ′
3 − k

]

√

2

3
(69)

and

ū0(p ′, s∆ = 1
2
)uN(s = 1

2
) =

p ′
3

M∆

√

2

3
. (70)

We can carry out the integration over p since Ci(q
2) do not depend on p. We

assume ϕ∆(p) ≈ ϕN(p) ≡ Π3
i=1ϕ(pi). A typical integral gives:

(2π)3

∫

dpp3ϕ(p + k)ϕ(p) = 2π

∫

dp3 p3ϕ(p3 + k)ϕ(p3)

= 2π

∫

dq (q− 1
2
k)ϕ(q+ 1

2
k)ϕ(q− 1

2
k)

= −1
2
k

[

1− 1
2
k2

∫

dqϕ ′(q)2 + . . .

]

≈ −1
2
k

[

1− 1
2
k2〈z2c.m.〉

]

, (71)

where we have taken into account that ϕ are normalized and used the relation
(ϕ̃(z) is the Fourier transform of ϕ(q)):

∫

dqϕ ′(q)2 =

∫

dz z2ϕ̃(z)2 = 〈z2〉 . (72)

(Integrating p ′
3 we would get 1

2
k.) Here 〈z2c.m.〉 = 1

3
〈r2c.m.〉 is a typical spread

of the wave packet describing the center-of-mass motion of the localized state
and is of the order of the inverse baryon mass. Clearly, in this approximation it
is not meaningful to calculate the form-factor to very high k. We finally obtain
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(neglecting terms of the order k2/M2):

S̃A = −

[

k
M∆

M2
N

CA
4 +

k

2M∆

CA
5 −

ωk

M2
N

M∆ +MN

2M∆

CA
6

]

√

2

3
, (73)

ÃA
3

2

= = −

[

ω
M∆

M2
N

CA
4 + CA

5

]

=
√
3 ÃA

1

2

, (74)

L̃A = = −

[

ω
M∆

M2
N

CA
4 + CA

5 −
k2

M2
N

M∆ +MN

2M∆

CA
6

]

√

2

3
. (75)

We now express the experimental amplitudes in terms of the helicity amplitudes
as

CA
6 =

M2
N

k2

[

−ÃA
3

2

+

√

3

2
L̃A

]

2M∆

M∆ +MN

, (76)

CA
5 = −

√

3

2

(

L̃A −
k0

k
S̃A

)

2M∆

M∆ +MN

−
k2

0 − k2

M2
N

CA
6 , (77)

CA
4 =

M2
N

kM∆

[

−

√

3

2
S̃A +

k0k

M2
N

M∆ +MN

2M∆

CA
6

]

−
M2

N

2M2
∆

CA
5 . (78)

The strong form-factor can be treated in the same way. The general coupling
of the pion field to the baryon is written in the form

HB−π =

∫

dr Jπa(r)πa(r) , (79)

where Jπa(r) is the baryon strong pseudoscalar- isovector current. The N-∆ tran-
sition matrix element is parameterized as

〈∆+(p ′)|Jπa(0)|N+(p)〉 = −iū∆µ

GπN∆(q2)

2MN

qµuN , (80)

where q = p ′ − p. Using (69) we find

〈∆+(p ′)|Jπa(0)|N+(p)〉 = −i
GπN∆(q2)

2MN

[

M∆ −MN

M∆

p ′
3 − k

]

C
3

2

1

2

10 1

2

1

2

. (81)

We now use of relation (68) as well as (71) to obtain

GπN∆(q2)

2MN

M∆ +MN

2M∆

=
1

ik
〈∆||

∫

dreik·rJ(r)||N〉 . (82)

6 Helicity amplitudes in the Cloudy Bag Model

The Cloudy Bag Model (CBM) is the simplest example of a quark model with the
pion cloud that fulfills the virial constraints (52)-(54) provided we take the usual
perturbative form for the pion profiles [8,9]. We also take the N-∆ splitting equal
to the experimental value,ω ≡M∆ −EN. Since the pion contribution to the axial
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current has the form of the pole term in (62), only the quarks contribute to the CA
5

and CA
4 amplitudes.

The helicity amplitudes and the Adler form-factors simplify further if we
make the usual assumption of the same quark profiles for the nucleon and the
∆. In this case the scalar amplitude picks up only the pion contribution while the
quark term is identically zero. The transverse amplitude ÃA

3

2

=
√
3 ÃA

1

2

has only
the quark contribution while the longitudinal amplitude has both:

ÃA
3

2

(Q2) = −
1√
6

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2

)

+
2

3
j2(kr)v2

]

〈∆||
∑

στ||N〉,(83)

L̃A(Q2) = −
2

3

{
1
2

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2

)

−
4

3
j2(kr)v2

]

−
ωMIT

ωMIT − 1

mπ

2fπ

j1(kR)

kR

k2

(Q2 +m2
π)

}

〈∆||
∑

στ||N〉 , (84)

S̃A(Q2) =
2

3

ωMIT

ωMIT − 1

mπ

2fπ

j1(kR)

kR

ωk

(Q2 +m2
π)

〈∆||
∑

στ||N〉 . (85)

Here k and Q2 ≡ −q2 are related through (4),ωMIT = 2.04, and

〈∆||
∑

στ||N〉 =
√

ZNZ∆

{

2
√
2

+

√
2

27π
P

∫∞

0

dkk2 ρ2(k)

[

25

ω2
k(ωk −ω)

+
2

ωk(ω2
k −ω2)

]

+
25
√
2

27π

∫∞

0

dkk2 ρ2(k)

[

5

4ω3
k

+
1

ω2
k(ωk +ω)

]

}

, (86)

where

ρ(k) =
ωMIT

ωMIT − 1

j1(kR)√
2π fπ R3

. (87)

and ZN and Z∆ are the usual wave-function-renormalization constants [8].
The strong transition form-factor GπN∆(Q2) is:

GπN∆(Q2)

2MN

=
ωMIT

ωMIT − 1

1

2fπ

j1(kR)

kR
〈∆||

∑
στ||N〉 2M∆

M∆ +MN

. (88)

Similarly as in (47) we can now explicitly show that PCAC is fulfilled pro-
vided the off-diagonal GT relation holds in the model. Since the Lagrangian is
invariant under the chiral transformation both relation should hold for the exact
solution, but this is of course not obvious for the approximate solution. In the
model it is straightforward to evaluate the pertinent quantities atQ2 = −m2

π. We
prefer to give here the expressions at Q2 = 0 which take much simpler forms,
e.g.:

CA
5 (0) =

1√
6

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2

)

−
4

3
j2(kr)v2

]

〈∆||
∑

στ||N〉 2M∆

M∆ +MN

,

(89)
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with k = K0 (see (3).
The constant (89) can be easily evaluated for the degenerate N and ∆ and

neglecting pion corrections to 〈∆||
∑
στ||N〉:

CA
5 (0) =

1√
6

3g◦A
5
2
√
2 = 0.755 , (90)

where g◦A = 1.09 is the value of the nucleon gA in the MIT bag model. Clearly,
(90) strongly underestimates the experimental value (40). In the same limit, the
strong coupling is

gπN∆ ≡ GπN∆(0)
mπ

2MN

=

√

72

25
g◦πNN = 1.39 . (91)

Here g◦πNN = 0.82 is the CBM value without pion correction. Again, (91) strongly
underestimates the experimental value of 2.2, though the off-diagonal Goldberger-
Treiman relation is exactly fulfilled in this approximation.

In [3] we show that the pion corrections improve the results in particular
the ratio of the strong gπN∆ and gπNN coupling constants but the value of C5(0)

remains far below the experimental value. A possible solution, described and
discussed in [3–5] is to include the contribution of the σ-meson which enters the
expression for the axial current (61) and considerably increases the value of CA

5 .
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S. Širca (eds.), Proceedings of the XVIII European Conference on Few-Body Problems
in Physics, 7–14 September 2002, Bled, Slovenia; hep-ph/0211290
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