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Budapest University of Technology, Műegyetem rakpart 1-3., Budapest, Hungary, 1111

Zsolt Lángi †
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Abstract

We define the mechanical complexity C(P ) of a 3-dimensional convex polyhedron P ,
interpreted as a homogeneous solid, as the difference between the total number of its faces,
edges and vertices and of its static equilibria; and the mechanical complexity C(S,U)
of primary equilibrium classes (S,U)E with S stable and U unstable equilibria as the
infimum of the mechanical complexity of all polyhedra in that class. We prove that the
mechanical complexity of a class (S,U)E with S,U > 1 is the minimum of 2(f + v −
∗The authors acknowledge the support of the BME Water Sciences & Disaster Prevention TKP2020 IE grant of

NKFIH Hungary (BME IE-VIZ TKP2020) and the NKFIH grant K119245. The authors thank Mr. Otto Albrecht
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S − U) over all polyhedral pairs (f, v), where a pair of integers is called a polyhedral
pair if there is a convex polyhedron with f faces and v vertices. In particular, we prove
that the mechanical complexity of a class (S,U)E is zero if and only if there exists a
convex polyhedron with S faces and U vertices. We also give asymptotically sharp bounds
for the mechanical complexity of the monostatic classes (1, U)E and (S, 1)E , and offer a
complexity-dependent prize for the complexity of the Gömböc-class (1, 1)E .

Keywords: Polyhedron, static equilibrium, monostatic polyhedron, f -vector.

Math. Subj. Class. (2020): 52B10, 70C20, 52A38

1 Introduction
1.1 Basic concepts and the main result

Polyhedra may be regarded as purely geometric objects, however, they are also often intu-
itively identified with solids. Among the most obvious sources of such intuition are dice
which appear in various polyhedral shapes: while classical, cubic dice have 6 faces, a large
diversity of other dice exists as well: dice with 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30 and 100
faces appear in various games [37]. The key idea behind throwing dice is that each of the
aforementioned faces is associated with a stable mechanical equilibrium point where dice
may be at rest on a horizontal plane. Dice are called fair if the probabilities to rest on
any face (after a random throw) are equal [10], otherwise they are called loaded [9]. The
concept of mechanical equilibrium may also be defined in purely geometric terms:

Definition 1.1. Let P be a 3-dimensional convex polyhedron, let intP and bdP denote
its interior and boundary, respectively and let c ∈ intP . We say that q ∈ bdP is an
equilibrium point of P with respect to c if the planeH through q and perpendicular to [c, q]
supports P at q. In this case q is nondegenerate, if H ∩ P is the (unique) vertex, edge, or
face of P , respectively, that contains q in its relative interior. A nondegenerate equilibrium
point q is called stable, saddle-type or unstable, if dim(H ∩ P ) = 2, 1 or 0, respectively.

Throughout this paper we deal only with equilibrium points with respect to the center
of mass of polyhedra, assuming uniform density. A support plane is a generalization of
the tangent plane for non-smooth objects. While it is a central concept of convex geometry
its name may be related to the mechanical concept of equilibrium. If c coincides with the
center of mass of P , then equilibrium points gain intuitive interpretation as locations on
bdP where P may be balanced if it is supported on a horizontal surface (identical to the
support plane) without friction in the presence of uniform gravity. Equilibrium points may
belong to three stability types: faces may carry stable equilibria, vertices may carry unstable
equilibria and edges may carry saddle-type equilibria. Denoting their respective numbers
by S,U,H , by the Poincaré-Hopf formula [25] for a convex polyhedron one obtains the
following relation for them:

S + U −H = 2, (1.1)
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which is strongly reminiscent of the well-known Euler formula

f + v − e = 2, (1.2)

relating the respective numbers f , v and e of the faces, vertices and edges of a convex
polyhedron. In the case of regular, homogeneous, cubic dice the formulae (1.1) and (1.2)
appear to express the same fact, however, in case of irregular polyhedra the connection
is much less apparent. While the striking similarity between (1.1) and (1.2) can only be
fully explained via deep topological and analytic ideas [25], our goal in this paper is to
demonstrate an interesting connection at an elementary, geometric level. To this end, we
define

N = S + U +H,

n = f + v + e.

Figure 1 shows three polyhedra where the values for all these quantities can be compared.

f 6 7 7

v 8 10 10

e 12 15 15

n=f+v+e 26 32 32

S 6 7 6

U 8 10 8

H 12 15 12

N=S+U+H 26 32 26

C=n-N 0 0 6

U=1
v=1 2 3 4 5 6 7 8 9 10

S=1
f=1

2

3

4

5

6

7

8

9

10

(S,U)E=(6,8)E

(f,v)C=(7,10) C

(a) (b)(a1) (a2) (a3)

Figure 1: (a): Three polyhedra interpreted as homogeneous solids with given numbers for
faces (f ), vertices (v), edges (e), stable equilibria (S), unstable equilibria (U ) and saddle-
type equilibria (H), their respective sums n = f + v+ e, N = S+U +H and mechanical
complexity C = n − N (given in Definition 1.2). (b): Polyhedron in column (a3) shown
on the overlay of the (S,U) and (f, v) grids, complexity obtained from distance between
corresponding diagonals.

The numbers S,U,H may serve, from the mechanical point of view, as a first-order
characterization of P and via (1.1) the triplet (S,U,H) may be uniquely represented by the
pair (S,U), which is called primary equilibrium class of P [35]. Based on this, we denote
by (S,U)E the family of all convex polyhedra having S stable and U unstable equilibrium
points with respect to their centers of mass. In an analogous manner, the numbers (v, e, f)
(also called the f -vector of P ) serve as a first-order combinatorial characterization of P ,
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and via (1.2) they may be uniquely represented by the pair (f, v). Here, we call the family
of all convex polyhedra having v vertices and f faces the primary combinatorial class of
P , and denote it by (f, v)C . The face structure of a convex polyhedron P permits a finer
combinatorial description of P . In the literature, the family of convex polyhedra having the
same face lattice is called a combinatorial class; here we call it a secondary combinatorial
class, and discuss it in Section 5. In an entirely analogous manner, one can define also
secondary equilibrium classes of convex bodies, for more details the interested reader is
referred to [16]. While it is immediately clear that for any polyhedron P we have

f ≥ S, v ≥ U, (1.3)

inverse type relationships (e.g. defining the minimal number of faces and vertices for given
numbers of equilibria) are much less obvious.

A trivial necessary condition for any die to be fair can be stated as f = S and it is
relatively easy to construct a polyhedron with this property. The opposite extreme case
(when a polyhedron is stable only on one of its faces) appears to be far more complicated.
John H. Conway was first to notice this curious fact [5] and ever since, his idea has been
expanded in various ways [2, 28]. In broader terms, it appears that, as the number of
equilibria in a given equilibrium class gets smaller, it is getting increasingly difficult to
identify the corresponding geometry. In other words, the difference (n − N) between
the topological and mechanical characteristics of the polyhedron appears to indicate some
kind of complexity of the geometry. Motivated by this intuition we define the mechanical
complexity of polyhedra.

Definition 1.2. Let P be a convex polyhedron and letN(P ), n(P ) denote the total number
of its equilibria and the total number of its k-faces (i.e., faces of k dimensions) for all values
k = 0, 1, 2, respectively. Then C(P ) = n(P )−N(P ) is called the mechanical complexity
of P .

We remark that the term mechanical complexity has been used in various contexts,
ranging from robotics [1] to cell biology [21], to describe phenomena where the observed
complexity is rooted in the mechanical properties of the investigated subject. In our case
we witness the same phenomenon: the apparent complexity of some polyhedral shapes
arises from the mechanical constraint that the number of static equilibria is kept, compared
to the number of vertices, edges and faces, very low.

Mechanical complexity may not only be associated with individual polyhedra but also
with primary equilibrium classes.

Definition 1.3. If (S,U)E is a primary equilibrium class, then the quantity

C(S,U) = min{C(P ) : P ∈ (S,U)E}

is called the mechanical complexity of (S,U)E .

Our goal is to find the values of C(S,U) for all primary equilibrium classes. For
S,U > 1 we will achieve this goal while for S = 1 or U = 1 we provide some partial
results. To formulate our main results, we introduce the following concept:

Definition 1.4. Let x, y be positive integers. We say that (x, y) is a polyhedral pair if and
only if x ≥ 4 and x

2 + 2 ≤ y ≤ 2x− 4.
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The combinatorial classification of convex polyhedra was established by Steinitz [30,
31] (for a proof, see also [20]), who proved, in particular, the following.

Theorem 1.5. For any positive integers f, v, there is a convex polyhedron P with f faces
and v vertices if and only if (f, v) is a polyhedral pair.

Based on this theorem, we call a primary equilibrium class (S,U)E a polyhedral (pri-
mary equilibrium) class if (S,U) is a polyhedral pair, and the remaining primary equilib-
rium classes non-polyhedral classes.

Definition 1.6. For any primary equilibrium class (S,U)E with S,U ≥ 1, let

R(S,U) = min{f + v − S − U : (f, v) is a polyhedral pair and f, v satisfy (1.3)}.

The geometric interpretation of R(S,U) is given in the left panel of Figure 2. Since
(1.3) holds for any polyhedron P ∈ (S,U)E , we immediately have the trivial lower bound
for mechanical complexity:

C(S,U) ≥ 2R(S,U). (1.4)

Remark 1.7. Based on Definition 1.4, the function R(S,U) can be expressed as

R(S,U) =


dS2 e − U + 2, if S > 4 and S > 2U − 4,
dU2 e − S + 2, if U > 4 and U > 2S − 4,
8− S − U, if S,U ≤ 4,
0, otherwise.

(1.5)

Our main result is Theorem 1.8, stating that this bound is sharp if S,U > 1:

Theorem 1.8. Let S,U ≥ 2 be positive integers. Then C(S,U) = 2R(S,U).

We remark that, as a consequence of Theorem 1.8, C(S,U) = 0 if and only if (S,U) is
a polyhedral pair. For monostatic equilibrium classes (S = 1 or U = 1) we cannot provide
a sharp value for their mechanical complexity. However, we will provide an upper bound
for their complexity, which differs from 2R(S,U) only by a constant:

Theorem 1.9. If S ≥ 4 then C(S, 1) ≤ 59 + (−1)S + 2R(S, 1); if U ≥ 4 then C(1, U) ≤
90 + 2R(1, U).

We also improve the lower bound (1.4) in some of these classes by generalizing a
theorem of Conway [7] about the non-existence of a homogeneous tetrahedron with only
one stable equilibrium point. We state our result in the following form:

Theorem 1.10. Any homogeneous tetrahedron has S ≥ 2 stable and U ≥ 2 unstable
equilibrium points.

We summarize all results (including those about monostatic classes) in Figure 2.
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Figure 2: Summary of results for S,U ≤ 10. Left panel: the (S,U) grid with some selected
polyhedra as examples. Polyhedral pairs on the (S,U) grid have white background. The
functionR(S,U) illustrated for classes (2, 2)E , (2, 9)E , (10, 3)E . Right panel: Mechanical
complexity of equilibrium classes (S,U)E . Polyhedral pairs on the (S,U) grid have white
background. Sharp values for mechanical complexityC(S,U) are given as integers without
brackets. In column U = 1 and row S = 1 we give bounds. If two integers are given in
square brackets then they are the lower and upper bounds for C(S,U), if only one integer
is given in square brackets then it is the lower bound (and no upper bound is available).

1.2 Sketch of the proof

The main idea of the proofs of Theorems 1.8 and 1.9 is to provide explicit constructions
for at least one polyhedron P in each class (S,U)E , S,U > 1 with mechanical complexity
C(P ) = 2R(S,U), in class (S, 1)E , S ≥ 4 with C(P ) = 59 + (−1)S + 2R(S, 1), and in
class (1, U)E , U ≥ 4 with C(P ) = 90 + 2R(1, U). By Definition 1.3, such a construction
establishes an upper bound for C(S,U). In case of S > 1 and U > 1, by Definition 1.6,
this coincides with the lower bound while for S = 1 or U = 1 the bounds remain separate.

Our proof consists of five parts:

(a) for classes (S, S)E with S ≥ 4, suitably chosen pyramids have zero mechanical
complexity (Section 3);

(b) for classes 1 < S ≤ 5 and 1 < U ≤ 5, (S,U)E 6= (4, 4)E , (5, 5)E , we provide
examples found by computer search (Subsection 3.2, Tables 1 and 2);

(c) for polyhedral classes with S 6= U , we construct examples by recursive, local ma-
nipulations of the pyramids mentioned in (a) (Subsection 3.1);

(d) for non-polyhedral classes with U > S ≥ 6, we construct examples by recursive, lo-
cal manipulations starting with polyhedral classes containing simple polyhedra (Sub-
section 3.2);

(e) for non-polyhedral classes with 6 ≤ U < S we provide examples by using the
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polyhedra obtained in (d) and the properties of polarity proved in Section 2. We also
show how to modify the construction in (d) for this case (Subsection 3.2);

(f) for monostatic classes with S = 1 or U = 1 we provide examples using Conway’s
polyhedron PC in class (1, 4)E , we also construct a polyhedron P3 in class (3, 1)
and subsequently we apply recursive, local truncations (Section 4).

In Section 2, we prove a number of lemmas which help us keep track of the change
of the center of mass of a convex polyhedron under local deformations and establish a
connection between equilibrium points of a convex polyhedron and its polar. The local
manipulations in our proof may be regarded as generalizations of the algorithm of Steinitz
[20]. Figure 3 and Figure 4 summarize the steps outlined above.

Figure 3: Summary of the proof. Left panel: Symbols on the (S,U) grid indicate how
polyhedra in the given equilibrium class (S,U)E have been constructed. Dark background
corresponds to classes where polyhedra have been identified by computer search. Light
grey background corresponds to polyhedral pairs. Symbols are explained in the right panel.
For S,U > 1 the indicated constructions provide minimal complexity and thus the com-
plexity of the class itself. Hyphen indicates that no polyhedron is known in that class. Right
panel: Symbols in the left panel explained briefly with reference to sections, subsections
and sub-subsections of the paper.

2 Preliminaries
Before we prove some lemmas that we need for Theorem 1.8, we make a general remark
about small perturbations:

Remark 2.1. Observe that

(i) a nondegenerate (stable) equilibrium point sF on face F of a convex polyhedron P
exists if and only if the orthogonal projection sF of c(P ) (the center of mass of P )
onto F is in the relative interior of F ;

(ii) a vertex q is a nondegenerate (unstable) equilibrium point of P if and only if the
plane perpendicular to q − c(P ) and containing q contains no other point of P ;
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Figure 4: Summary of the proof. (a) – (b): Upper row: schematic picture of local manip-
ulations L1 – L6, showing local face structure and equilibria on original and manipulated
polyhedra P and P ′, respectively. Lower rows: Original and manipulated polyhedra P and
P ′ shown on the (f, v) and (S,U) grids.

(iii) a nondegenerate equilibrium point sE on an edge E of P exists if and only if the
orthogonal projection sE of c(P ) onto E is in the relative interior of E, and the
angle between c(P )− sE and any of the two faces of P containing E is acute.

The subject of our investigation is the family of 3-dimensional convex polyhedra which
have only nondegenerate equilibria, and all polyhedra appearing in the paper satisfy this
property. Then the following observation is used many times in the paper for some 3-
dimensional convex polyhedron P :

If all equilibria are nondegenerate then we will find the same number of equilibria

(a) after applying any sufficiently small perturbation of vertices which leaves the com-
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binatorial structure unchanged on all vertices, edges and faces,

(b) after applying a truncation to the polyhedron with sufficiently small volume, on ver-
tices, edges or faces left unchanged by the truncation and

(c) after applying an augmentation (inverse of truncation) to the polyhedron with suffi-
ciently small volume, on vertices, edges or faces left unchanged by the augmentation.

In the following, convX , aff X , intX and clX denote the convex hull, the affine hull,
the interior and the closure of the set X ⊂ Rd, respectively. The origin is denoted by o.
For any convex polytope P in Rd, we denote by V (P ) the set of vertices of P , and the
volume and the center of mass of P by w(P ) and c(P ), respectively. The polar of the set
X is denoted by X◦.

The first three lemmas investigate the behavior of the center of mass of a convex poly-
hedron under local deformations.

Lemma 2.2. Let P be a convex polyhedron and let q be a vertex of P . Let Pε be a convex
polyhedron such that Pε ⊂ P , and every point of P \Pε is contained in the ε-neighborhood
of q. Let c = c(P ) and cε = C(Pε). Then there is a constant γ > 0, independent of ε, such
that |cε − c| ≤ γε3 holds for every polyhedron Pε satisfying the above conditions.

Proof. Without loss of generality, let c = o, c̄ε = c(cl(P \ Pε)), w = w(P ) and wε =
w(Pε). Then o = wεcε + (w − wε)c̄ε, implying that cε = −w−wε

wε
c̄ε. Note that for some

γ′ > 0 independent of ε, we have 0 ≤ w−wε

wε
< 2w−wε

w ≤ γ′ε3. Furthermore, for some
γ′′ > 0, |q − c̄ε| ≤ γ′′ε, which yields that |c̄ε| is bounded. Thus, the assertion readily
follows.

Lemma 2.3. Let F be a triangular face of the convex polyhedron P , and assume that
each vertex of P lying in F has degree 3. Let q1, q2 and q3 be the vertices of P on
F , and for i = 1, 2, 3, let Li denote the line containing the edge of P through qi that
is not contained in F . For i = 1, 2, 3 and τ ∈ R, let qi(τ) denote the point of Li at
the signed distance τ from qi, where we orient each Li in such a way that qi(τ) is a
point of P for any sufficiently small negative value of τ . Let U be a neighborhood of
o, and for any t = (τ1, τ2, τ3) ∈ U , let W (t) = w(P (t)) and C(t) = c(P (t)), where
P (t) = conv ((V (P ) \ {q1, q2, q3}) ∪ {q1(τ1), q2(τ2), q3(τ3)}). Then the Jacobian of the
function W (t)C(t) is nondegenerate at t = o.

Proof. It is sufficient to show that the partial derivatives of the examined function span R3.
Without loss of generality, we may assume that q1, q2 and q3 are linearly independent.

Consider the polyhedron P (τ1, 0, 0) for some τ1 > 0, and let W̄ (τ1) = w(T (τ1)),
C̄(τ1) = c(T (τ1)) and T (τ1) = conv{q1, q2, q3, q1(τ1)}. Let A be the area of the triangle
conv{q1, q2, q3}. If τ1 > 0 is sufficiently small, then

∂

∂τ1
W (t)C(t)

∣∣∣∣
t=(0,0,0)

=
sinα1A

12
(2q1 + q2 + q3),

W (τ1, 0, 0)C(τ1, 0, 0) = w(P )c(P ) + W̄ (τ1)C̄(τ1).

Since C̄(τ1) = 1
4 (q1 + q2 + q3 + q1(τ1)), it follows that

∂

∂τ1
W (t)C(t)

∣∣∣∣
t=(0,0,0)

=
sinα1A

12
(2q1 + q2 + q3),
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where αi denotes the angle between Li and the plane through q1, q2, q3.
Using a similar consideration, we obtain the same formula if τ1 < 0, and similar for-

mulas, where q2 or q3 plays the role of q1, in the partial derivatives with respect to τ2 or τ3,
respectively. Note that 0 < α1, α2, α3 ≤ π

2 . Thus, to show that the three partial derivatives
are linearly independent, it suffices to show that the vectors 2q1 + q2 + q3, q1 + 2q2 + q3
and q1 + q2 + 2q3 are linearly independent. To show it under the assumption that q1, q2, q3
are linearly independent can be done using elementary computations, which we leave to
the reader.

Remark 2.4. We remark that Lemma 2.3 can be ‘dualized’ in the following form: Assume
that q is a 3-valent vertex of P , and each face of P that q lies on is a triangle. Furthermore,
let Y be a neighborhood of q, and for any x ∈ Y , let

W (x) = w (conv ((V (P ) \ {q}) ∪ {x})) ,

and C(x) = c (conv ((V (P ) \ {q}) ∪ {x})). Then the Jacobian matrix of the function
W (·)C(·) : Y → R3 is nondegenerate at q.

Remark 2.5. If the Jacobian of a smooth vector-valued function in R3 is nondegenerate, by
the Inverse Function Theorem it follows that the function is surjective. Thus, a geometric
interpretation of Lemma 2.3 and Remark 2.4 is that under the given conditions, by slight
modifications of a vertex or a face of P the function w(P )c(P ) moves everywhere within
a small neighborhood of its original position.

In the forthcoming two lemmas we investigate the connection between polarity and
equilibrium points.

Lemma 2.6. Let S be a d-dimensional simplex in the Euclidean space Rd such that o ∈
intS. Then o = c(S◦) if and only if o = c(S).

Proof. Let the vertices of S be denoted by p1, p2, . . . , pd+1. For i = 1, 2, . . . , d+ 1, let ni
denote the orthogonal projection of o onto the facet hyperplane Hi of S not containing pi,
and let H ′i be the hyperplane through o and parallel to Hi. We remark that since o ∈ intS,
none of the pis and the nis is zero. Finally, let αi denote the angle between pi and ni.

Assume that o = c(S). Then for all values of i, we have dist(pi, H
′
i) = ddist(H ′i, Hi),

where dist(A,B) = inf{|a− b| : a ∈ A, b ∈ B} is the distance of the sets A and B. This
implies that the projection of pi onto the line through o and ni is −dni for all values of i,
or in other words,

cosαi|pi| = −d|ni| (2.1)

for all values of i. On the other hand, it is easy to see that if (2.1) holds for all values of i,
then o = c(S).

The vertices of S◦ are the points p?i = ni

|ni|2 , where i = 1, 2, . . . , d + 1, and the
projection of o onto the facet hyperplane of P ◦ not containing p?i is n?i = pi

|pi|2 . Hence, the
angle between p?i and n?i is αi. Similarly like in the previous paragraph, o = c(S◦) if and
only if

cosαi|p?i | = −d|n?i | (2.2)

holds for all values of i. On the other hand, if cosαi|pi| = −d|ni| for some value of i,
then cosαi|p?i | = cosαi

|ni| = − d
|pi| = −d|n?i |, and vice versa. Thus, (2.1) and (2.2) are

equivalent, implying Lemma 2.6.
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Lemma 2.7. Let P be a convex d-polytope in the Euclidean space Rd such that o ∈ intP ,
and let P ◦ be its polar. Let F be a k-face of P , where 0 ≤ k ≤ d − 1, and let F ? denote
the corresponding (d − k − 1)-face of P ◦. Then F contains a nondegenerate equilibrium
point of P with respect to o if and only if F ? contains a nondegenerate equilibrium point
of P ◦ with respect to o.

Proof. Let F = conv{pi : i ∈ I}, where I is the set of the indices of the vertices of P
such that pi is contained in F , and let p be the orthogonal projection of o onto aff F . Let
L = aff(F ∪ {o}), and let Lc denote the orthogonal complement of L passing through
o. For any facet hyperplane of P containing F , let nj , j ∈ J denote the projection of o
onto this hyperplane. Let H+

j be the closed half space {q ∈ Rd : 〈q, nj〉 ≤ 〈nj , nj〉}. Let
H̄+
i = H+

i ∩H for any i /∈ I . Finally, let n̄i be the component of ni parallel to H .
Before proving the lemma, we observe that for any given vectors n1, n2, . . . , nk span-

ning Rd, the following are equivalent:

(a) o is an interior point of a polytope Q in Rd with outer facet normals n1, n2, . . . , nk.

(b) There are some λ1, λ2, . . . , λk > 0 such that o ∈ intQ′, where

Q′ = conv{λ1n1, λ2n2, . . . , λknk}.

(c) We have o ∈ int conv{λ1n1, λ2n2, . . . , λknk} for any λ1, λ2, . . . , λk > 0.

We note that if a polytope Q satisfies the conditions in (a), then its polar Q′ = Q◦ satisfies
the conditions in (b), and vice versa. Finally, observe that if F contains an equilibrium
point, then by exclusion it is p.

We show that p is a nondegenerate equilibrium point of F if and only if it is contained
in the relative interiors of the conic hulls of the pis as well as those of the njs. First, let
p be a nondegenerate equilibrium point. Then p ∈ relintF , that is, it is in the relative
interior of the conic hull (in particular, the convex hull) of the pis. Observe that since the
projection of o onto aff F is p, for any j ∈ J , the projection of nj onto aff F is p. In other
words, nj ∈ L′ = aff(Lc ∪ {p}) for all j ∈ J . Since p is a vertex of the polytope P ∩ L′,
the vectors nj , j ∈ J span this linear subspace, or equivalently, the vectors n̄j span Lc.
Observe that the intersection of P with the affine subspace (1 − ε)p + Lc, for sufficiently
small values of ε > 0, is a (d− k− 1)-polytope, with outer facet normals n̄j , j ∈ J , which
contains (1 − ε)p in its relative interior. By the observation in the previous paragraph,
it follows that o is contained in the relative interior of the convex hull of the n̄js, which
implies that p is contained in the relative interior of the conic hull of the njs. On the other
hand, if p is contained in the relative interior of the conic hull of the pis, then the fact that
p ∈ aff F implies that p ∈ relintF . Furthermore, if p is contained in the relative interior
of the conic hull of the njs, then o is contained in the relative interior of the convex hull of
the n̄js. Thus, the only solution for q ∈ Lc of the system of linear inequalities 〈q, n̄j〉 ≤ 0,
where j ∈ J , is q = p, which implies that the only point of P in p + Lc is p. This means
that p is a nondegenerate equilibrium point of P .

Finally, observe that the vertices of F ? are the points nj

|nj |2 , and the projections of o
onto the facet hyperplanes of P ◦ containing F ? are the points pi

|pi|2 . Furthermore, aff F ? =
p
|p|2 + Lc, which yields that the projection of o onto aff F ? is p

|p|2 . Combining it with the
consideration in the previous paragraph, this yields the assertion.
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The next corollary is an immediate consequence of Lemmas 2.6 and 2.7 and, together
with the result of Conway [7], implies Theorem 1.10.

Corollary 2.8. Every homogeneous tetrahedron has at least two vertices which are equi-
librium points. Furthermore, there are inhomogeneous tetrahedra with exactly one vertex
which is an equilibrium point.

3 Polyhedra with many stable or unstable equilibria: proof of Theo-
rem 1.8

3.1 Proof of Theorem 1.8 for polyhedral pairs

We need to show that if (S,U)E is a polyhedral class (see the remark after Theorem 1.5),
then there is a polyhedron with S faces and U vertices. For brevity, we call such a polyhe-
dron a minimal polyhedron in class (S,U)E . We do the construction separately in several
cases.

3.1.1 Case 1: S = U ≥ 4

Let S ≥ 4, and consider a regular (S−1)-gonRS in the (x, y)-plane, centered at o and with
unit inradius. Let Pv(h) be the pyramid with base Rv and apex (0, 0, h). By its symmetry
properties, PS(h) is a minimal polyhedron in the class (S, S)E for all h > 0.

3.1.2 Case 2: S > 4 and S < U ≤ 2S − 4

In this case the proof is based on Lemma 3.1.

Lemma 3.1. Assume that P is a minimal polyhedron in class (S,U)E having a vertex of
degree 3. Then there is a minimal polyhedron in class (S + 1, U + 2)E having a vertex of
degree 3.

Proof. Let P be a minimal polyhedron in class (S,U)E with a vertex q of degree 3. For
sufficiently small ε > 0, let Pε ⊂ P be the intersection of P with the closed half space
with inner normal vector c − q, at the distance ε from q. We show that if ε is sufficiently
small, then Pε satisfies the conditions in the lemma.

If ε is sufficiently small, the boundary of this half space intersects only those edges of
P that start at q. Thus, Pε has one new triangular face F , and three new vertices q1, q2, q3
on F . Since q is not a vertex of Pε, Pε has S + 1 faces and U + 2 vertices. Furthermore,
q1, q2 and q3 have degree 3, which means that we need only to show that Pε is a minimal
polyhedron. To do it, we set c = c(P ) and cε = c(Pε).

Note that by (1.2) and (1.1), every edge of a minimal polyhedron contains an equilib-
rium point. Thus, by Remark 2.1, if ε is sufficiently small, then every edge of Pε, apart
from those having at least one common point with F , contains an equilibrium point with
respect to cε. For a sufficiently small ε, clearly, |c− cε| is also small enough such that the
edges starting at (but not contained by) F still contain equilibrium points with respect to
cε. We intend to show that if ε is sufficiently small, then the edges of Pε in F also contain
equilibrium points with respect to cε, which, by (1.2) and (1.1) clearly implies that Pε is a
minimal polyhedron.

Consider, e.g. the edge E = [q1, q2], and let F3 be the face of Pε different from F and
containing E. Let h and s be the equilibrium point on E and on F3, respectively, with
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respect to c. Let α and β denote the dihedral angles between the planes aff(E ∪ {c})
and aff F , and the planes aff(E ∪ {c}) and aff F3, respectively. The fact that h is an
equilibrium point with respect to c is equivalent to saying that the orthogonal projection of
c onto the line of E is h, and that 0 < α, β < π

2 .
Since h is contained in the plane aff{q, c, s} for all values of ε, and it is easy to see that

there is some constant γ′ > 0 independent of ε such that |q1−h|, |q2−h| ≥ γ′ε. Similarly,
an elementary computation shows that for some constant γ′′ > 0 independent of ε, we have
0 < α, β ≤ π

2 − γ
′′ε. Thus, Lemma 2.2 implies that for small values of ε, E contains an

equilibrium point with respect to cε, implying that Pε is a minimal polyhedron.

Now, consider some class (S,U)E with S > 4 and S < U ≤ 2S − 4. Then, if we
set k = U − S and S0 = S − k, we have 0 < k ≤ S − 4 and 4 ≤ S0. In other words,
(S,U)E = (S0+k, S0+2k)E for some S0 ≥ 4 and k > 0. Now, by the proof in Case 1, the
class (S0, S0)E contains a minimal polyhedron, e.g. a right pyramid PS0

(h) with a regular
(S0 − 1)-gon as its base, where h > 0 is arbitrary. Note that the degree of every vertex
of PS0(h) on its base is 3, and thus, applying Lemma 3.1 yields a minimal polyhedron in
class (S0 +1, S0 +2)E having a vertex of degree 3. Repeating this argument (k−1) times,
we obtain a minimal polyhedron in class (S,U)E .

3.1.3 Case 3: S > 4 and S
2
+ 2 ≤ U < S

Note that these inequalities are equivalent to U > 4 and U < S ≤ 2U − 4. For the proof
in this case we need Lemma 3.2.

Lemma 3.2. Assume that there is a minimal polyhedron P in class (S,U)E having a
triangular face. Then there is a minimal polyhedron P ′ in class (S + 2, U + 1)E having a
triangular face F ′.

Proof. Let c = c(P ), and let cF be its orthogonal projection on the plane of F . Since P
is a minimal polyhedron, cF is a relative interior point of F , and an equilibrium point with
respect to c (see also Figure 5 for illustration). Let c̄ be the centroid of F and define the
vector u as c̄ − cF . Let v be the outer unit normal vector of F , and for any 0 < ε and
0 ≤ α ≤ 1, let Tεα denote the tetrahedron with base F and apex q = cF + εv + αu such
that Tεα ∩ P = F . Let Pεα = Tεα ∪ P , c′ = c(Pεα), and c′F be the orthogonal projection
of c′ on the plane of F . By Remark 2.1, for a sufficiently small ε, equilibrium points on all
vertices of Pεα except q, as well as on all edges and faces of Pεα not containing q will be
preserved.

It is also easy to see from simple geometric considerations that for small values of ε,
every face and vertex of Pεα contains an equilibrium point with respect to c′ if q, c′F and c′

are collinear. In the special case of u = 0, those points are obviously collinear. In any other
case, it is also straightforward to see that c′F ∈ relint conv{cF , cF /4+3c̄/4}. Let us define
d(α) = (cF + αu − c′F ) · u. Since d continuously varies with α and d(0) < 0, d(1) > 0,
for any small ε > 0 there is an α0 such that apex q and all edges and faces it is contained
in have equilibrium points.

Remark 3.3. Note that the argument also yields a polyhedron P ′ such that there is an equi-
librium point on each face and at every vertex of P ′ with respect to the original reference
point: in this case we may choose the value of α in the proof simply as α = 0.
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Figure 5: Building a tetrahedron on a triangular face of a convex polyhedron.

Now we prove Theorem 1.8 for Case 3. Like in Case 2, if we set k = S − U and
S0 = U − k, then S0 ≥ 4, k > 0, and (S,U)E = (S0 + 2k, S0 + k)E . Consider the
right pyramid PS0

(h) in Case 1. This pyramid has S0 faces consisting of S0 − 1 triangles
and one regular (S0 − 1)-gon shaped face. Thus, applying the construction in Lemma 3.2
k times subsequently yields the desired polyhedron.

3.2 Proof of Theorem 1.8 for non-polyhedral pairs

3.2.1 Case 1: 2 ≤ S ≤ 4 and 2 ≤ U ≤ 4

Lemma 3.4. Let S,U ∈ {2, 3, 4}. Then C(S,U) = 2R(S,U).

Proof. Table 1 contains an example for a tetrahedron in each of the 9 classes (illustrated
in Figure 6) and for the tetrahedron we have n = f + v + e = 14, consequently an upper
bound for complexity can be computed as C(S,U) ≤ 14− S − U −H = 16− 2S − 2U .
Since from (1.5) we have the same for the lower bound we proved the claim.

3.2.2 Case 2: 2 ≤ S ≤ 4, U = 5 or 2 ≤ U ≤ 4, S = 5

This case follows from Lemma 3.5.

Lemma 3.5. Let 2 ≤ S ≤ 4, U = 5 or 2 ≤ U ≤ 4, S = 5. Then C(S,U) = 2R(S,U).

Proof. Table 2 contains an example for a pentahedron in each of the 6 classes (illustrated
in Figure 6) and for the pentahedron we have n = f + v + e = 18, consequently an upper
bound for complexity can be computed as C(S,U) ≤ 18− S − U −H = 20− 2S − 2U .
From (1.5) we obtain the same lower bound for all 6 classes so we proved the claim.

3.2.3 Case 3: S ≥ 5 and U > 2S − 4, or 2 ≤ S ≤ 4 and U ≥ 6

First, we prove the following lemma.

Lemma 3.6. Let P ∈ (S,U)E be a convex polyhedron with f faces and v vertices. Let qi,
i = 1, . . . , j, be successive vertices of an m-gonal (m ≥, j ≥ 3) face F of P such that

(i) the lines aff({q1, q2}) and aff({qj−1, qj}) intersect at some point q with the property
|q − q1| > |q − q2|;
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(2,2) (2,3) (2,4)

(3,2) (3,3) (3,4)

(4,2) (4,4)

(2,5)

(3,5)

(4,5)

(5,2) (5,4) (5,5)

(4,3)

(5,3)

(2,2) (2,3) (2,4) (2,5)

Figure 6: The 8 tetrahedra in Table 1 and the 6 pentahedra in Table 2, the regular tetrahedron
and the symmetrical pyramid in equilibrium classes (S,U)E , S,U ∈ {2, 3, 4, 5} produced
by 3D printing.

Non-constant vertex coordinates
Class Cx Cy Dx Dy Ex Ey Ez

(2, 5) 1.0 1.7 0.5 −0.3 2.1 1.2 1.2
(3, 5) 1.0 1.7 3.8 −2.2 1.6 0.9 0.9
(4, 5) 2.5 1.4 3.8 −2.2 2.0 1.2 1.2
(5, 2) 1.0 1.7 0.9 0.5 −0.6 −1.1 −1.1
(5, 3) 1.0 1.7 0.9 0.5 1.5 2.6 2.6
(5, 4) 1.0 1.7 1.3 0.8 1.5 2.6 2.6

Table 2: Examples for pentahedra in equilibrium classes (i, 5) and (5, i), i ∈ {2, 3, 4}.
Constant vertex coordinates for all pentahedra areAx = Ay = Az = Bx = Cz = Dz = 0,
By = 1.

(ii) both edges Ea = [q1, q2] and Eb = [qj−1, qj ] contain saddle points;

(iii) the vertices qi, i = 2, . . . , j − 1, are trivalent.

Then there is convex polyhedron P ′ ∈ (S,U + 2)E with f + 1 faces and v + 2 vertices.

Proof. Let the saddle points on Ea and Eb be denoted by xa and xb. In the proof, based
on Remark 2.1, we show that there is an arbitrarily small truncation of P by a plane that
intersects F in a line close to xa and xb that results in two new unstable vertices ua and ub.

We choose a suitable truncation from a 2-parameter family of truncations defined as
follows (see also Figure 7 for explanation): For any t ∈ [0, 1], set ya(t) = tq2 + (1− t)q1
and yb(t) = tqj−1 + (1 − t)qj . Let G(s, t) be the plane that intersects [q1, q2] at ya(s)
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and [qj−1, qj ] at yb(t), whose angle with the plane of F is a sufficiently small value ε > 0
(the term ‘sufficiently small’ is explained in the next paragraph) and truncates the vertices
q2, q3, . . . , qj−1. For i = 2, 3, . . . , j − 1, let qi(s, t) be the intersection of G(s, t) with the
edge of P starting at qi and not contained in F . Finally, let P (s, t) be the truncation of P by
G(s, t), that is, P (s, t) = cl(P \ conv{ya(s), yb(t), q2, . . . , qj−1, q2(s, t), . . . , qj−1(s, t)}.
We denote the center of mass of P (s, t) by c(s, t), and the projection of c and c(s, t) onto
the plane of F by cF and cF (s, t), respectively. Furthermore, we denote the new edge of
P (s, t) starting at ya(s) and different from [ya(s), yb(t)] by Ya(s, t), and define Yb(s, t)
similarly.

Figure 7: Increasing the number of unstable equilibria by two. Views perpendicular to the
plane F (a) and edge [ua, ub] (b).

We choose some ε > 0 to satisfy the following conditions: with respect to any point
c′ ∈ V , the original polyhedron P has equilibrium points on the same faces and edges, and
at the same vertices, as with respect to the center of mass c of P , where V is the locus of
the centers of mass of all truncations of P by the plane G(s, t), s, t ∈ [0, 1] (for a suffi-
ciently small ε, clearly, |c−c′| and the volume removed by truncation are also small enough
for the number of original equilibrium points on vertices, edges and faces to be preserved
as well; new face and edges included in G(s, t) have no equilibrium points). Further-
more, we assume also that G(s, t) truncates no vertex or equilibrium point of P other than
those on F , and that there is some arbitrarily small, fixed value δ > 0 (independent of
(s, t)) such that c(s, t) is a Lipschitz function at every (s, t) with Lipschitz constant δ, i.e.
|c(s+ ∆s, t+ ∆t)− c(s, t)| ≤ δ

√
(∆s)2 + (∆t)2 for all s, t ∈ [0, 1].

First, we show that for some suitable choice of s and t, the orthogonal projections of
c(s, t) onto the lines of Ea and Eb are ya(s) and yb(t), respectively. To do this, we use
a consequence of Brouwer’s fixed point theorem, the so-called Cube Separation Theorem
from [27], which states the following: Let the pairs of opposite facets of a d-dimensional
cube K be denoted by F ′i and F ′′i , i = 1, 2, . . . , d, and let Ci, i = 1, 2, . . . , d, be compact
sets such that Ci ‘separates’ F ′i and F ′′i , or in other words, K \ Ci is the disjoint union of
two open sets Q′i, Q

′′
i such that F ′i ⊂ Q′i, and F ′′i ⊂ Q′′i . Then

⋂d
i=1 Ci 6= ∅.

To apply this theorem, we set K = {(s, t) : 0 ≤ s, t ≤ 1}, and define Q′1, C1 and
Q′′1 as the set of pairs (s, t) such that the orthogonal projection of c(s, t) onto the line of
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Ea is a relative interior point of [ya(s), q1], coincides with ya(s), or does not belong to
[ya(s), q1], respectively. We define Q′2, C2 and Q′′2 similarly. Then these sets satisfy the
conditions of theorem, and we obtain a pair (s̄, t̄) with the desired property. Note that by
the choice of ε > 0, it holds that in a neighborhood of (s̄, t̄), the orthogonal projection of
c(s, t) onto the line of Ya(s, t) is in the relative interior of Ya(s, t), and the same holds also
for the projection onto the line of Yb(s, t). Now we choose some (s′, t′) sufficiently close
to (s̄, t̄) such that the intersections of G(s′, t′) and G(s̄, t̄) with F are parallel, and that of
G(s′, t′) is closer to q2 and qj−1 than that of G(s̄, t̄). By the Lipschitz property of c(s, t),
we have that the distance of the two intersection lines is greater than |c(s′, t′) − c(s̄, t̄)|,
and hence, the projections of c(s′, t′) onto the lines of Ea and Eb lie in the relative interior
of the segments [ya(s′), q1] and [yb(t

′), qj ], respectively. From this it readily follows that
both these edges of P ′ = P (s′, t′) and also Ya(s′, t′) and Yb(s′, t′) contain saddle points
with respect to c(s′, t′). This implies also that ya(s′) and yb(t′) are vertices of P ′ carrying
unstable equilibrium points, and the assertion follows.

Corollary 3.7. Let conditions (i) and (iii) of Lemma 3.6 hold and (ii) be modified as fol-
lows:

(ii) q1 contains an unstable and Eb = [qj−1, qj ] contains a saddle-type equilibrium
point.

Then there exists a polyhedron P ′′ ∈ (S,U + 1)E with f + 1 faces and v + 1 vertices.

Remark 3.8. A simplified version of the proof of Lemma 3.6 can be used to prove the
same statement for a fixed reference point c.

To prove Theorem 1.8 in Case 3, we construct a simple polyhedron with U vertices
that has S stable and U unstable points. Since any polyhedron in class (S,U)E has at least
U vertices, and among polyhedra with U vertices those with a minimum number of faces
are the simple ones, such a polyhedron clearly has minimal mechanical complexity in class
(S,U)E .

First, consider the case that S ≥ 5 and U > 2S − 4. Let U0 = 2S − 4. By the
construction in Subsection 3.1, class (S,U0)E contains a simple polyhedron P0 with U0

vertices and S faces. Remember that to construct P0 we started with a tetrahedron T in
class (4, 4)E , and in each step we truncated a vertex of the polyhedron sufficiently close to
this vertex. Throughout the process, the vertex can be chosen as one of those created during
the previous step. Since in this case the conditions of Lemma 3.6 are satisfied for any face
of P0, applying Lemma 3.6 to it we obtain a polyhedron P1 with two more vertices, one
more face, two more unstable and the same number of stable points. By subsequently
applying the same procedure, we can construct a convex polyhedron in class (S,U)E for
every even value of U . To obtain a polyhedron in class (S,U)E where U is odd, we can
modify a polyhedron in class (S,U − 1)E according to Corollary 3.10.

Now, consider the case that 2 ≤ S ≤ 4, and U ≥ 6. Then, starting with a tetrahedron
in class (S, 4)E (based on the data of Table 1, all three tetrahedra meet the conditions of
Lemma 3.6) we can repeat the argument in the previous paragraph.

3.2.4 Case 4: U ≥ 5 and S > 2U − 4, or 2 ≤ U ≤ 4 and S ≥ 6

Theorem 1.8 in Case 4 can be deduced from Case 3 using direct geometric properties of
polarity. Nevertheless, also the proof in Case 3 via Lemma 3.6 can be dualized as well. In
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Lemma 3.9 and Corollary 3.10 we prove dual versions of Lemma 3.6 and Corollary 3.7,
respectively, which we are going to use also in Section 4, in our investigation of monostatic
polyhedra. Since Theorem 1.8 follows from Lemma 3.9 and Corollary 3.10 similarly like
in the proof of Case 3, we leave it to the reader.

We start with the proof using polarity. Considering a tetrahedron T centered at o, a
straightforward modification of the construction in Lemma 3.1 and by Remark 3.8, we
may construct a simple polyhedron P with U vertices that has S stable and U unstable
equilibrium points with respect to o. Using small truncations, we may assume that P
is arbitrarily close to T measured in Hausdorff distance. Furthermore, without loss of
generality, we may assume that a face of T , and all vertices of this face have degree 3 in P .
Let this face of T be denoted by F .

Recall that P ◦ denotes the polar of P . By Lemma 2.6, c(T ◦) = o, and by the continuity
of polar and the center of mass, c(P ◦) is ‘close’ to o. On the other hand, since the vertex q
of P ◦ corresponding to F has degree 3, and each face containing q is a triangle, Lemma 2.3
implies that by a slight modification of q we obtain a polyhedron Q such that c(Q) = o,
and a face/edge/vertex of Q contains an equilibrium point with respect to o if and only if
the corresponding vertex/edge/face of P contains an equilibrium point with respect to o.
Thus, Q satisfies the required properties.

As we mentioned, an alternative way to prove Theorem 1.8 in Case 4 is using Lemma 3.9
and Corollary 3.10.

Lemma 3.9. Let P ∈ (S,U)E be a convex polyhedron with f faces and v vertices. Let qi,
i = 1, . . . , j − 1, j, . . . ,m (j ≥ 3), be successive vertices of an m-gonal (m ≥ 3) face F
of P such that

(i) P has a stable equilibrium point cF on F , which is contained in the relative interior
of the triangle T = conv{q1, qj−1, qj};

(ii) the edge E = [qj−1qj ] contains a saddle-type equilibrium point cE;

(iii) the vertices qi, i = 2, . . . , j − 1 and i = j + 1, . . . ,m, are trivalent;

(iv) q1, cF and cE are not collinear.

Then there exists a polyhedron P ′ ∈ (S + 2, U)E with f + 2 faces and v + 1 vertices.

Proof. In the proof, we show that for a sufficiently small pyramid erected over the triangle
T = conv{q1, qj−1, qj} (which is contained by F and carries a stable equilibrium point)
followed by a truncation of P by the plane of the three new faces of the pyramid, results
in three new faces instead of F all carrying stable equilibrium and two new edges both
carrying saddle-type equilibrium, see Figure 8 (subfigure (a)).

Let the intersection point of the line through q1 and cF with E be denoted by x. We
choose the apex q of the pyramid from a fixed, sufficiently small neighborhood V of x. Let
U be the set of the centers of mass of the modified convex polyhedra, which we denote
by P (q). We choose V in such a way that, apart from the three new faces and edges, and
the new vertex, P (q) and P have equilibrium points on the same faces and edges, and at
the same vertices. Furthermore, we choose V such that for all q ∈ V , the face structure
of the resulting polyhedron P (q) is the one described in the previous paragraph, and for
any y ∈ U , the Euclidean distance function from y on [qj−1, q] ∪ [q, qj ] has a unique
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Figure 8: Increasing the number of stable equilibria by two. Schematic view of the pyramid
with three light faces instead of the original dark one denoted as F (a); view perpendicular
to face F : full circles mean stable equilibrium points, the empty circle is the projection of
c(α, β, γ) onto F (b); illustration for the application of the Cube Separation Theorem for
compact sets Xα and Xβ (c).

local minimum, and this point is different from q, for all q ∈ V . Note that the latter
condition implies that the new vertex q is not an unstable equilibrium point. Thus, we need
to prove only that, with a suitable choice of q, all the three new faces contain a new stable
equilibrium point.

We parametrize q using the following parameters:

• the angle α of the plane of conv{qj−1, qj , q} and the plane of F . Here we assume
that 0 ≤ α ≤ α0, where the sum of α0 and the dihedral angle of P at E is π;

• the angle β between two rays, both starting at q1, and containing qj−1 and the orthog-
onal projection qF of q onto the plane of F , respectively. Here we set β1 ≤ β ≤ β2,
where [β1, β2] is a sufficiently small interval containing the angle ∠qj−1q1cF ;

• the angle γ between the ray starting at q1 and containing q, and the plane of F . Here
we assume that 0 < γ < γ0 for some small, fixed value γ0.

We choose the values of β1, β2, γ0 such that in the permitted range of the parameters, q ∈
V . For brevity, we may refer to P (q(α, β, γ)) as P (α, β, γ), c(P (α, β, γ)) as c(α, β, γ)
and observe that these three quantities determine q.
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Note that, using the idea of the proof of Lemma 2.2, we have that |c(P (q))− c(P )| =
O(γ), and for some constant C > 0 independent of α, β, γ, if |α′ − α| ≤ γ, then
|c(α′, β, γ)− c(α, β, γ)| ≤ Cγ2.

Fix some γ > 0, and let Xα be the set of pairs (α, β) ∈ [0, α0]× [β1, β2] such that the
planes through E, and containing c(α, β, γ) and q(α, β, γ), respectively, are perpendicular.
Furthermore, let Xβ be the set of pairs (α, β) ∈ [0, α0] × [β1, β2] such that q1, and the
projections of c(α, β, γ) and q(α, β, γ) onto the plane of F are collinear. If γ > 0 is
sufficiently small, the property |c(P (q))− c(P )| = O(γ) implies that Xα strictly separates
the sets {(0, β) : β ∈ [β1, β2]} and {(α0, β) : β ∈ [β1, β2]}, and Xβ strictly separates the
sets {(α, β1) : α ∈ [0, α0]} and {(α, β2) : α ∈ [0, α0]}. Since Xα and Xβ are compact,
we may apply the Cube Separation Theorem [27] as in the proof of Lemma 3.6. From this,
it follows that there is some (αγ , βγ) ∈ Xα ∩Xβ .

It is easy to see that (αγ , βγ) ∈ Xα implies that for sufficiently small values γ, the poly-
hedron P (αγ , βγ , γ) has stable equilibrium points on both faces containing the new edge
[q1, q(αγ , βγ , γ)]. Furthermore, the orthogonal projection of c(αγ , βγ , γ) onto the plane
containingE and q = q(αγ , βγ , γ) lies onE. Now, let us replace αγ by α′ = αγ−γ. Then,
since in this case |c(α′, βγ , γ)−c(αγ , βγ , γ)| ≤ Cγ2, we have that if γ is sufficiently small,
then the orthogonal projection of c(α′, βγ , γ) onto the face conv{qj−1, qj , q(α′, βγ , γ)}
lies inside the face; that is, P has a stable equilibrium point on this face. This yields the
assertion.

Corollary 3.10. If all conditions (i) – (iv) of Lemma 3.9 hold, then there is a polyhedron
P ′′ ∈ (S + 1, U)E with f + 2 faces and v + 1 vertices.

4 Monostatic polyhedra: proof of Theorem 1.9
Our theory of mechanical complexity highlights the special role of polyhedra in the first row
and first column of the (S,U) grid. These objects have either only one stable equilibrium
point (first row) or just one unstable equilibrium point (first column) and therefore they
are called collectively monostatic. In particular, the first row is sometimes referred to as
mono-stable and the first column as mono-unstable. Our theory provided only a rough
lower bound for their mechanical complexity. While no general upper bound is known,
individual constructions provide upper bounds for some particular classes; based on these
values one might think that the mechanical complexity of these classes, in particular when
both S and U are relatively low, is very high. Monostatic objects have peculiar properties,
apparently the overall shape in these equilibrium classes is constrained. In [35] the thinness
T and the flatness F of convex bodies is defined (1 ≤ T, F ≤ ∞) and it is shown that, for
nondegenerate convex bodies, T = 1 if and only if U = 1, and F = 1 if and only if S = 1.
This constrained overall geometry may partly account for the high mechanical complexity
of monostatic polyhedra.

4.1 Known examples

The first (and probably best) known such object is the monostatic polyhedron PC con-
structed by Conway and Guy in 1969 [19] (cf. Figure 9) having mechanical complexity
C(PC) = 96. Recently, there have been two additions: the polyhedron PB by Bezdek
[2] (cf. Figure 10) and the polyhedron PR by Reshetov [28] with respective mechanical
complexities C(PB) = 64 and C(PR) = 70. It is apparent that all of these authors were
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primarily interested in minimizing the number of faces on the condition that there is only
one stable equilibrium, so, if one seeks minimal complexity in any of these classes it is
possible that these constructions could be improved. Also, as we show below, the same
ideas can be used to construct examples of mono-unstable polyhedra. The construction in
[19] relies on a delicate calculation for a certain discretized planar spiral, defining a planar
polygon P , serving as the basis of a prism which is truncated in an oblique manner (cf. Fig-
ure 9). The spiral consists of 2m similar right triangles, each having an angle β = π/m at
the point o. The cathetus of the smallest pair of triangles has length r0, and this will be the
vertical height of o when the solid stands in stable equilibrium.

h1

s1

a b

u4 (h3,u3)u2 (h2,u1)

u3

h3

u4

u1

h2

u2

h1 

(s1)

u1 h2 u2 

(u3 h3 u4)

h1

r rO

c
o

PC

Figure 9: Schematic view of the monostatic polyhedron PC ∈ (1, 4)E , (19, 34)C con-
structed by Conway and Guy in 1969 [19]. Stable, unstable and saddle-type equilibria are
marked with si, uj , hk, i = 1, j = 1, 2, 3, 4, k = 1, 2, 3, respectively. Complexity can be
computed as C(PC) = 2(19 + 34− 1− 4) = 96.

We denote the height of the center of mass c by r in the same configuration. It is evident
from the construction that if P is a homogeneous planar disc then we have r > r0 since
such a disc cannot be monostatic [17]. However, it is also clear that for a non-uniform mass
distribution resulting in r < r0, P would be monostatic (cf. Figure 9). In the construction
of Conway and Guy we can regard r as a function r(a, b) of the geometric parameters
a, b (cf. Figure 9). Apparently, r(0, b) = r1 and r(a, 0) = r2 are constants. If P is the
aforementioned homogeneous disc then we have r = r2 > r0. Next we state a corollary to
the main result of [19]:

Corollary 4.1. If m ≥ 9 then r1 < r0.

4.2 Examples in (3, 1)E and (2, 1)E

Consider a Conway construction with b = 0 and denote its vertical centroidal coordinate by
r3: it equals the centroidal coordinate of a plane polygon depicted on the right of Figure 9.
Now erect a mirror-symmetric pyramid over the polygon with its apex close to the bottom
edge: the vertical coordinate of the body centre of the pyramid will then be close to 3r3/4.
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Figure 10: Schematic view of the monostatic polyhedron PB ∈ (1, 3)E , (18, 18)C con-
structed by Bezdek in 2011 [2]. Stable, unstable and saddle-type equilibria are marked
with si, uj , hk, i = 1, j = 1, 2, 3, k = 1, 2, respectively. Complexity can be computed as
C(PB) = 2(18 + 18− 1− 3) = 64.

It can be shown that for a sufficiently flat pyramid (we call it P3) will be in classes (3, 1)E

and (18, 18)C . Introducing a small asymmetry to P3 by moving the apex off the symmetry
plane, a polyhedron P2 is obtained which belongs to classes (2, 1)E and (18, 18)C .

These ‘mono-unstable’ polyhedra are illustrated in Figure 11. An overview of the
discussed monostatic polyhedra is shown in Figure 12 on an overlay of the (f, v)C and
(S,U)E grids.

4.3 Proof of Theorem 1.9

Proof. Consider the case C(1, U) first. The polyhedron PC has a narrow rectangular face
with a stable point and two saddle points on opposite short edges of the same face. They do
not satisfiy condition (i) of Lemma 3.6 because of being collinear, but both 17-gonal faces
of PC can slightly be rotated to get P ′C according to Remark 2.1 in a way that no equilib-
rium points appear or disappear but the two edges with saddle points become nonparallel,
and thus Lemma 3.6 turns to be applicable.

Since the same face of PC contains four unstable points as well (and none of them is
collinear with the stable and any saddle point), Corollary 3.7 can directly be applied to
get PD with C(PD) = C(PC) + 2 = 98. It means that C(1, 4) ≤ 2R(1, 4) + 90 and
C(1, 5) ≤ 2R(1, 5) + 90. Applying now Lemma 3.6 on both PC and PD successively, the
assertion readily follows. Note that PB could not be used as departure instead of PC , since
its saddle points are not on edges of the same face.

A similar path is taken for the case C(S, 1). Depart now P3 with C(P3) = 64: that
polyhedron has a 17-gonal face with a stable equilibrium and there is a vertex and an edge
on its perimeter having an unstable and a saddle point, respectively. Now it is possible
again to slightly rotate the plane of the symmetric triangular face about an axis which is
perpendicular to the 17-gon and runs through the apex of the pyramid, making the stable
(s3) and saddle (h1) point to move off the symmetry axis of the 17-gon, so that they become
non-collinear with u1 (Remark 2.1 guarantees that it can always be done without changing
the number of equilibrium points of any kind). Applying or not Corollary 3.10 first then
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Figure 11: Schematic view of two polyhedra P3 ∈ (3, 1)E , (18, 18)C and P2 ∈
(2, 1)E , (18, 18)C , obtained by using the ideas of the Conway and Bezdek constructions.
Stable, unstable and saddle-type equilibria are marked with si, uj , hk. In case of P3 we
have i = 1, 2, 3, j = 1, k = 1, 2 and in case of P2 we have i = 1, 2, j = 1, k = 1. Com-
plexity can be computed asC(P3) = 2(18+18−3−1) = 64, C(P2) = 2(18+18−2−1) =
66.

Lemma 3.9 successively gives C(S, 1) ≤ S + 61 and C(S, 1) ≤ S + 62 for odd and even
S, respectively, which is equivalent to the second statement of the theorem.

4.4 Gömböcedron prize

While the construction of monostatic polyhedra with less than 34 edges appears to be chal-
lenging (cf. Figure 12), the only case which has been excluded is the tetrahedron with e = 6
edges.

It also appears to be very likely that Gömböc-like polyhedra in class (1, 1)E do exist,
however, based on this chart and the previous results, one would expect polyhedra with high
mechanical complexity. To further motivate this research we offer a prize for establishing
the mechanical complexity C(1, 1), the amount p of the prize is given in US dollars as

p =
106

C(1, 1)
.

5 Generalizations and applications
5.1 Complexity of secondary equilibrium classes

A special case of Theorem 1.8 states that for any polyhedral pair (f, v) one can construct
a homogeneous polyhedron P with f faces and v vertices in such a manner that C(P ) =
0. In other words, in any primary combinatorial class there exist polyhedra with zero
complexity. A natural generalization of this statement is to ask whether this is also true for
any secondary combinatorial class of convex polyhedra. While we do not have this result,
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Figure 12: Polyhedra with a single stable or unstable equilibrium point. The grid shown
is an overlay of the (f, v) and the (S,U) grids. White squares correspond to poly-
hedral pairs. Location of monostatic polyhedra is shown with black capital letters on
the (f, v) grid and white capital letters on the (S,U) grid. Abbreviations: PC : Con-
way and Guy, 1969 [19], PB : Bezdek, 2011 [2], PR: Reshetov, 2014 [28]. P2, P3:
current paper, Figure 11. Complexity for these polyhedra can be readily computed as
C(PC) = 96, C(PB) = 64, C(PR) = 70, C(P3) = 64, C(P2) = 66.

we present an affirmative statement for the inhomogeneous case:

Proposition 5.1. Let P be a Koebe polyhedron, i.e. a convex polyhedron midscribed (edge-
circumscribed) about the unit sphere S2 with center o. Then every face, edge and vertex of
P carries an equilibrium point with respect to o.

Proof. By (1.1) and (1.2) it is sufficient to show that every edge of P contains an equilib-
rium point with respect to o.

Let E be an edge of P that touches S2 at a point q, and let H be the plane touching S2
at q. Clearly, H is orthogonal to q, and since every face of P intersects the interior of the
sphere, we have H ∩ P = E. Thus, q is an equilibrium point of P with respect to o.

Here it might be worth noting that for any convex body K and any point p ∈ intK
there is a density function ρ : K → [0,∞) such that the center of mass of K with respect
to this density function is p, implying that Proposition 5.1 can indeed be reformulated in
terms of Koebe polyhedra with inhomogeneous densities. Thus, since a variant of the Circle
Packing Theorem [4] states that every combinatorial class contains a Koebe polyhedron, it
follows that every combinatorial class contains an inhomogeneous polyhedron with zero
mechanical complexity. To find a homogeneous representative appears to be a challenge.

In [24], the author strengthened the result in [4] by showing the existence of a Koebe
polyhedron P in each combinatorial class such that the center of mass of the k-dimensional
skeleton of P , where k = 0, 1 or 2, coincides with o. This result and Proposition 5.1 imply
that replacing c(P ) by the center of mass of the k-skeleton of a polyhedron with 0 ≤ k ≤ 2,
every combinatorial class contains a polyhedron with zero mechanical complexity.
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5.2 Inverse type questions

The basic goal of this paper is to explore the nontrivial links between the combinatorial
(f, v)C and the mechanical (S,U)E classification of convex polyhedra. The concept of
mechanical complexity (Definition 1.2) helps to explore the (S,U)E → (f, v)C direction
of this link. Inverse type questions may be equally useful to understand this relationship:
for example, a natural question to ask is the following: Is it true that any equilibrium class
(S,U)E intersects all but at most finitely many combinatorial classes (f, v)C? Here it is
worth noting that it is easy to carry out local deformations on a polyhedron that increase
the number of faces and vertices, but not the number of equilibria. Alternatively, one may
ask to provide the list of all (S,U)E classes represented by homogeneous polyhedra in
a given combinatorial class (f, v)C . A similar question may be asked for a secondary
combinatorial class of polyhedra. In general, we know little about the answers, however
we certainly know that (1.3) holds and we also know that S = f, U = v is a part of this
list. The minimal values for S and U are less clear. In particular, based on our previous
results it appears that the values S = 1 and U = 1 can be only achieved for sufficiently
high values of f, v. On the other hand, Theorem 1.10 and Lemma 3.4 resolve this problem
at least for the (4, 4)C class. The latter is based on a global numerical search and this could
be done at least for some polyhedral classes, although the computational time grows with
exponent (f + v).

5.3 Inhomogeneity and higher dimensions

While here we described only 3D shapes, the generalization of Definitions 1.2 and 1.3 to
arbitrary dimensions is straightforward. While the actual values of mechanical complex-
ity are trivial in the planar case (class (2)E has mechanical complexity 2 and every other
equilibrium class has mechanical complexity zero), the d > 3 dimensional case appears
an interesting question in the light of the results of Dawson et al. on monostatic simplices
in higher dimensions [6, 7, 8]. We formulated all our results for homogeneous polyhedra,
nevertheless, some remain valid in the inhomogeneous case which also offers interesting
open questions. In particular, the universal lower bound (1.3) is independent of the material
density distribution so it remains valid for inhomogeneous polyhedra and as a consequence,
so does Theorem 1.8. However, our other results (in particular the bounds for monostatic
equilibrium classes) are only valid for the homogeneous case. In the latter context it is
interesting to note that Conway proved the existence of inhomogeneous, monostatic tetra-
hedra [7].

5.4 Classification of centric minimal polyhedra

Recall from Subsection 3.1 that a 3-dimensional convex polyhedron is called a minimal
polyhedron if its every vertex, edge and face contains an equilibrium point. To further
specify these polyhedra, we define a centric minimal polyhedron P as a minimal polyhe-
dron with the additional property that the orthogonal projection of the center of mass of P
onto the affine hull of every face/edge of P coincides with the center of mass of the cor-
responding face/edge of P . It is worth noting that the notions of both minimal polyhedra
and centric minimal polyhedra can be defined for d-dimensional convex polytopes in an
analogous manner for any d ≥ 2. Then, for any centric minimal d-polytope P and k-face
F , F is a centric minimal k-polytope.
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Problem 5.2. Characterize the family of centric minimal polyhedra in R3.

In Proposition 5.3 we collect some elementary properties of centric minimal polyhedra.

Proposition 5.3. Let P ⊂ Rd with d ≥ 2 be a d-dimensional convex polytope.

(i) If d = 2, then P is a centric minimal polygon if and only if every vertex of P is at
the same distance from the center of mass of P .

(ii) If d ≥ 3 and P is a centric minimal polytope, then every vertex of P is at the same
distance from the center of mass of P .

Proof. Let o be the center of mass of P . Then the orthogonal projection of o onto the
line through any edge of P is the midpoint of the edge, which yields that the two end-
points of the edge are at the same distance from o. Thus, both (i) and (ii) follow from the
connectedness of the edge graph of P .

By relaxing the definition of centric minimal polyhedra, we may define a weakly centric
d-dimensional minimal polytope P as a minimal polytope such that the orthogonal projec-
tion of the center of mass of P onto the affine hull of every (d − 1)-face of P coincides
with the center of mass of the corresponding (d− 1)-face of P .

Problem 5.4. Characterize the family of weakly centric minimal polyhedra in R3.

5.5 Applications

Here we describe some problems in mineralogy, geomorphology and industry where the
concept of mechanical complexity could potentially contribute to the efficient description
and the better understanding of the main phenomena.

5.5.1 Crystal shapes

Crystal shapes are probably the best known examples of polyhedra appearing in Nature
and the literature on their morphological, combinatorial and topological classification is
substantial [22]. However, as crystals are not just geometric objects but also (nearly ho-
mogeneous) 3D solids, their equilibrium classification appears to be relevant. The number
of static balance points has been recognized as a meaningful geophysical shape descriptor
[11, 18, 33] and it has also been investigated in the context of crystal shapes [32]. The
theory outlined in our paper may help to add new aspects to their understanding. While
the study of a broader class of crystal shapes is beyond the scope of this paper, we can
illustrate this idea in Figure 13 by two examples of quartz crystals with identical number of
faces displaying a large difference in mechanical complexity. The length a of the middle,
prismatic part of the hexagonal crystal shape (appearing on the left side of Figure 13) is
not fixed in the crystal. As we can observe, for sufficiently small values of the length a
the crystal will be still in the same combinatorial class (18, 14)C , however, its mechanical
complexity will be reduced to zero.

5.5.2 Random polytopes, chipping models and natural fragments

There is substantial literature on the shape of random polytopes [29] which are obtained by
successive intersections of planes at random positions. Under rather general assumptions



122 Ars Math. Contemp. 19 (2020) 95–124

b

b

a

Figure 13: Quartz crystals. Left: Hexagonal habit in classes (18, 14)C and (6, 2)E ,
C(P ) = 48. Right: Cumberland habit [36] in classes(18, 32)C and (12, 8)E , C(P ) = 60.
Picture source [26].

on the distribution of the intersecting planes it can be shown that the expected primary com-
binatorial class of such a random polytope is (6, 8)C (see Theorem 10.3.1 in [29]), however,
there are no results on the mechanical complexity. A very special limit of random poly-
topes can be created if we use a chipping model [13, 23] where one polytope is truncated
with planes in such a manner that the truncated pieces are small compared to the polytope.
Although not much is known about the combinatorial properties of these polytopes, it can
be shown [15] that under a sufficiently small truncation the mechanical complexity either
remains constant or it increases (this is illustrated in Figure 1). Apparently, random poly-
topes can be used to approximate natural fragments [12, 14]. There is data available on
the number and type of static equilibria of the latter, so any result on the mechanical com-
plexity of random polytopes could be readily tested and also used to identify fragmentation
processes.

5.5.3 Assembly processes

In industrial assembly processes parts are processed by a feeder and often these parts can
be approximated by polyhedra. These polyhedra arrive in a random orientation on a hori-
zontal surface (tray) and end up ultimately on one of their faces carrying a stable equilib-
rium. Based on the relative frequency of this position, one can derive face statistics and the
throughput of a part feeder is heavily influenced by the face statistics of the parts processed
by the feeder. Design algorithms for feeders are often investigated from this perspective
[3, 34]. It is apparent that one key factor determining the entropy of the face statistics is
the mechanical complexity of the polyhedron, in particular, higher mechanical complex-
ity leads to better predictability of the assembly process so this concept may add a useful
aspect to the description of this industrial problem.

5.6 Concluding remarks

We showed an elementary connection between the Euler and Poincaré-Hopf formulae (1.1)
and (1.2): the mechanical complexity of a polyhedron is determined jointly by its equilib-
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rium class (S,U)E and combinatorial class (f, v)C . Mechanical complexity appears to be
a good tool to highlight the special properties of monostatic polyhedra and offers a new
approach to the classification of crystal shapes. We defined polyhedral pairs (x, y) of in-
tegers (cf. Definition 1.4) and showed that they play a central role in both classifications:
they define all possible combinatorial classes (f, v)C while in the mechanical classification
they correspond to classes with zero complexity.
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lopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III.1.2,
Teubner, Leipzig, pp. 1–139, 1922.

[32] T. Szabó and G. Domokos, A new classification system for pebble and crystal shapes based on
static equilibrium points, Cent. Eur. Geol. 53 (2010), 1–19, doi:10.1556/ceugeol.53.2010.1.1.
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