
 Informatica 28 (2004) 13–22 13

An XML-based Serialization of Information Exchanged by Software
Agents
Sînică Alboaie
Institute of Theoretical Computer Science, Romanian Academy and Iaşi branch
abss@iit.iit.tuiasi.ro

Sabin Buraga and Lenuţa Alboaie
Faculty of Computer Science, “A.I.Cuza” University of Iaşi, Romania
{busaco,adria}@infoiasi.ro – http://www.infoiasi.ro/~busaco/

Keywords: Software Agent, Serialization, XML, Distributed Resources

Received: July 15, 2003

In this paper, we present an agent-based object-oriented solution to access the Web distributed
resources. We describe Omega – an agent framework viewed as a hierarchical space of a set of
distributed objects that models the Web resources. Also, we propose an XML-based model that can be
used as a universal manner for serialization of the objects processed by the (mobile) agents. The
serialization mechanism can use the Simple Object Access Protocol (SOAP) serialization facilities, also.

1 Introduction
The primary goal of Tim Berners-Lee's vision of the
Semantic Web [5, 12] is to develop different mechanisms
to automatically exchange, by the software entities,
knowledge on the Web instead of the conventional
manner used for accessing distributed resources.

 To do this, computer scientists need to achieve
the following:

 To understand the semantic mechanism of all
kinds of queries, and what kind of components
the process of questioning the Web formally
consists of;

 To rigorously capture, represent or symbolize
the knowledge contained on the Web.

To accomplish this goal, we are designing and

implementing a framework – Omega [2, 3] – for agent
software development viewed as a tree-like space of a set
of distributed objects that models the Web resources by
using XML (Extensible Markup Language) [7, 9]
constructs. The Omega system offers a flexible
framework for building agent-oriented distributed
applications on the Web (see details in section 2 of this
paper).

To assure the Web scalability, independently
designed programs (especially Web agents) must be able
to exchange and to process the meaning of data and
metadata in an independent manner. Semantic
interoperability can be completed only if different users
(agents, tools, other Web clients, etc.) interpret XML –
the actual lingua franca of the World-Wide Web
computing entities – documents in the same way.

The Omega framework offers an addressing
space for the Web objects and a mechanism for remotely
accessing the Web distributed resources (objects). In
section 2.2 of the paper we’ll present the internal
architecture of the Omega system, its functionality and
base classes. A script-like language is provided, in order
to implement an active (execution) part of the system and
to integrate the Omega object space with notions such as
execution thread, function, instruction, data types (see
details in section 2.3).

To enable the flexible querying and accessing
mechanisms about the distributed Web resources, we
must offer a facility for serialization – in an independent
way – of the data and metadata (objects) processed by
the Omega agent system. In section 3, we investigate
different possibilities of serialization given by the XML
family of mark-up languages [9, 24]. Some of the
drawbacks due of the lack of a description language
regarding the objects’ properties can be elegantly
resolved by XML. Also, a SOAP-based serialization
mechanism is presented and some advantages of the
SOAP protocol are discussed (see section 3.2).

Even our approach can be used in the context of
Web services discovery and description infrastructures,
the paper does not intend to discuss these issues.

From the authors’ point of view, the
serialization of the Web objects can be considered as a
flexible way to exchange information between software
agents. Related multi-agent environments are presented
in section 4 and some possible further development
directions are exposed in the last section of the paper.

14 Informatica 28 (2004) 13–22 S. Alboaie et al.

2 Omega Agent Framework

2.1 Motivation
We can consider as the fundamental resources

that computers expose to the software components (i.e.
operating system, applications) or users the following
items: computing capabilities, (volatile or non-volatile)
memory, local and remote data (documents), metadata
(different descriptions about several properties of the
resources: content, structure, layout/interface, dynamics,
security issues, etc.).

Of course, there are other modalities to describe

these properties without using XML-based assertions, but
with the penalty of the platform and software
independence. Obviously, these documents (including
XML resources) are made to be read and processed in a
distributed system (the Web itself). To easily access and
obtain the knowledge contained by a specific document,
a universal mechanism/model – based on the XML
family – must exist to accomplish that. This is the
seminal idea of the Semantic Web [5, 12].

WWW Space as a Distributed Hypermedia System
Also, the World-Wide Web space can be viewed as a
distributed hypermedia system that uses Internet
technologies (i.e. TCP/IP protocol family) – a global
system of heterogeneous networked computers.
Advances in networking and Internet/Web technologies
are leading to a network-centric computing model, and
the Web and Internet itself, of course, are evolving into
the infrastructure for global network computing. By
populating this infrastructure with object-based
components and combining them in various ways, we
can enable the development and deployment of
interoperable distributed object systems on the Web.

The object model provides the ability to mimic
real world processes in a fluid, dynamic and natural
manner. The Web space allows for objects to be
distributed to servers thereby centralizing access,
processing, and maintenance, provides a multiplexing
interface to distributed objects, and allows thin-clients
(e.g., mobile phones or handheld devices). We can safely
now state that Web + Object integration is a viable
reality [24]. This is emphasized by different software
organizations and companies – especially in the e-
business domain – that are using Web-enabled
distributed object technology, in the form of intranets and
extranets, to solve their computing problems, and the
emergence of an industry that provides Web and object
interfaces to distributed object tools [4].

From the CGI Approach
to a Distributed Object Infrastructure
But the Web didn't start out this way. Network-centric
object computing is the result of a logical technological
evolution. As originally conceived, it was driven by
hypertext documents called Web pages or HTML

documents [5, 9]. Initially, Web pages had static content
(rich text and graphics at first, complex multimedia
information later), and were interlinked. Browser
applications running on user PCs or workstations were
used to retrieve documents stored on Web servers.
Helper applications supplemented the browser, handling
other document types such as Word, PostScript, PDF
(Portable Document Format) or different graphics, video,
and audio formats. Web pages soon begun to include
dynamic content as helper applications, called plug-ins,
were integrated into the browser and CGI (Common
Gateway Interface) scripts enabled users to input data to
a Web server and access Internet services (i.e. data
queries). Finally, programmatic content was added, on
the client side, via Java applets, VBScript and JavaScript
programs, to provide further interactive functionality and
modify content in-place. These languages and techniques
enable richer documents (e.g., animation and Web forms
generated on-the-fly). Note that programmatic content
can also include server-side execution of code such as
accessing a remote database service (i.e. SQL queries)
via specific Web application platforms (from CGI
programs to PHP, ASP.NET or ColdFusion applications).

Prior to the addition of programmatic content,
the Web was based on a client/server computing model
which lacked scalability, common services, security, and
a development environment needed to develop and
deploy large-scale distributed applications. CGI scripts
are not scalable because each requires a separate server-
side process to handle each client request, services are
limited to accessing database servers via CGI scripts,
transaction information (such as credit card information)
is not encrypted, and the programming model offered by
HTML/HTTP using CGI and a three-tiered system is
limiting.

With the advent of Java, and the distributed
object infrastructures CORBA/IIOP and OLE/DCOM,
the stage was set to evolve the Web from a document
management system to a platform for distributed object
computing and electronic commerce.

Bringing distributed objects to the Web offers
the following advantages (to name only few of them):

 extensibility (e.g., for applications, services, and
APIs built from objects, objects can easily be
replaced or added);

 cross-platform interoperability;
 independent software development;
 reusable software components;
 componentware;
 network services;
 better utilization of system resources.

Existing legacy applications can even co-exist

with distributed objects through the use of object
wrappers. The interface could either be the client browser
or browser-like with super-positioned distributed object
infrastructures.

Mobile Agents
An important step towards Internet/Web Computing is
represented by the mobile computations. A mobile

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 15

object, usually called an agent when operating on behalf
of a user, is a downloadable, executable object that can
independently move (code and state) at its will – the
mobile agent is not bound to the system in which it began
the code execution and can travel from one node (host)
on a network to another. Agent technology can be
considered as a natural extension of object technology;
conceptually, agents support a much richer and complex
range of capability than objects, such as adaptability,
cooperation, autonomy, negotiation and delegation [6,
17]. These capabilities give the possibility to build a
sophisticated, expandable, maintainable, and distributed
computing environment.
 Mobile agents present the following main
attributes [6, 15]:

 reactivity – the ability to respond to changes
within agent environment;

 autonomy – the mobile agent is able to exercise
control over its own actions (decisions);

 goal-oriented – the agents have a planned
itinerary, they do not simply act in response to
the environment;

 communicative – the ability to communicate
with other agents, by exchanging information
(knowledge); in this sense, agents present a
collaborative behavior is order to achieve a
common goal with other agents of the
environment;

 temporal continuity – persistence of identity and
state over long periods of time;

 adaptability – being able to learn and improve
with experience;

 mobility – the mobile agents can transport
themselves from one machine to another, in a
self-directed manner.

Mobile agents provide a way to think about

solving software problems in a networked environment
that fits more naturally with the real world. Mobile
agents can be used to access and manage information that
is distributed over large areas [6].

The main benefit is that the software
components can be integrated into a coherent and
consistent software system – e.g. a multi-agent system –
in which they work together to better meet the needs of
the entire application (utilizing autonomy,
responsiveness, pro-activeness and social ability).

The mobile agent architecture provides the
“framework within which mobile agents can move across
distributed environments, integrate with local resources
and other mobile agents, and communicate the results of
their activities back to the user. This framework can then
be used to build mobile agents that perform user-driven
tasks to fulfill distributed information management
goals.” [6]

Taking this notion further, the mobile agents
could be used to monitor the network activities and
provide input to QoS (Quality of Service) and global
optimization mechanisms. They could be used during
negotiation (with representative agents) to solve different
constraint optimization problems.

One key research area is to provide security
against malicious agents (who intend to access local
resources or can carry a virus) and malicious hosts (who
can alter the agent code/state or read private
information).

Current mobile agent systems [17] – available
as commercial or open-source applications – are
implemented in different programming languages, such
as C++, Java, Tcl, Scheme or Python.

2.2 Internal Architecture of the Omega
System

Overview
Omega is an agent-based system that offers a tree-like
addressing space for the Web objects and different
techniques to remotely access the Web distributed
resources (viewed as objects) [2, 3]. Each object
processed by Omega can be viewed as a collection of
objects included in that one. The links (edges) between
the vertices of the tree are given by the aggregation
relationship exposed by the object-oriented
methodologies.

To emphasize the aggregation relationship, we
attach to each object a name or an index, and in this way
we can uniquely refer each object of the tree by its
name/index (viewed as an identifier). Each object will
have a unique list of the identifiers that represent its
“address” in the addressing space used by the Omega
agents. An identifier can be considered as an IName
object (at the implementation level, an IName object can
be viewed as an object-tree path or a list of object
identifiers). By using a tree of objects, we can structure
more easily the distributed resources for a given local
web (such as a cluster or an intranet).

Functionality
We choose to use an interpreted environment for our
multi-agent model and distributed object structure. Using
such an environment, it was easier to consider
serialization and various execution control
mechanisms [11] which are contributed to the
implementation of the Omega distributed object system.

Omega offers a distributed object structure, and
its initial goal was to determine some good
representations of data, types, instructions, functions and
objects of an object-oriented language that can be used as
a programming language for mobile agents. The result of
this effort is a system written in C++ that is able to unify
the notions behind the object-actor duality, namely the
duality between passive and active objects [1]. From this
point of view, Omega offers an infrastructure able to
support Web-based distributed applications [18] (e.g.,
software agents used in clusters or Grid).

 As an example, let us consider the problem of a
system in which someone from a location A wish to
obtain in real time data from another location B. There is
more than one solution, and we present here just two
possibilities [2]:

16 Informatica 28 (2004) 13–22 S. Alboaie et al.

 Using the multi-agent paradigm, we create two
agents in A: an agent for the information point,
and an agent to be sent at the location B in order
to obtain the information needed to be
communicated to the location A. This approach
is used in the design of Omega [3].

 Another way of solving this problem is to create
a Web site at B (providing different server-side
solutions [9] – i.e. CGI scripts or Java servlets)
or a client/server application using a proprietary
(TCP/IP-based) protocol [10].

We can observe that the first solution (the multi-

agent approach) is more scalable and closer to follow
certain good rules for programming design.

By using the multi-agent paradigm, a system
can be easily divided into small entities with control over
their interactions. Moreover, we can get a more flexible
and adaptable approach (in our example, we can have a
more adaptable way of presenting the information at the
location A). This flexibility is a part of the client task, as
opposed to the Web approach where we require more
tasks for the server. In the case of using a client/server
solution (with a proprietary communication protocol),
some problems come from the high cost of the system
design and maintenance.

The solutions that use C++ (networking,
DCOM, CORBA) or even Java/C# are quite complicated
and they are, in many cases, inappropriate for an open
system, as the Internet – and Web, also – is. At the
moment, for the generic problem of our example, a
client/server solution is more popular in industry (in
many cases based on HTML or XML). The later
approach is adopted by Web services [18, 25] scenarios,
also.

From the object-oriented paradigm's
perspective, Omega can be seen as an object hierarchy
that ensures a unitary way of programming, with an
implementation of a name-service (presented in [2]) that
is consistent for the resources (objects) that it makes
available. The Omega system offers serialization
mechanisms and garbage collection, also.

Omega Classes
The IObject class is the base-class for every other
class that has memory regions stored within a local
system. Every object and function that needs a store
space in Omega will use IObject. In this way, Omega
assures a space model provided by a common distributed
memory. This model is based on the existence of a given
node of an IObject’s tree, which is easily addressable
from the network.

Omega system offers a number of object types
which provide functionality to the following classes:

 String class,
 Number class,
 List class,
 Control agent-execution class (i.e. support for

virtual threads, scripting languages etc.).

Figure 1: Omega objects

Within the Omega framework, data types are

represented by different classes such as IString,
INumber, IOmegaStack, IOmegaList,
IOmegaQueue that are derived from the IObject
generic class (see also Figure 1).

Omega offers two categories of data types [3]:

 Simple data types – have no components (i.e.
INumber, IString, etc.)

 Compound data types – represent a mix-up of

two or more simple types (e.g., IName,
IOmegaList, IAThread).

A compound data type can be considered as an

“array” or a “struct” (very similar with the struct used
in the standard C language).

In our approach, the string data type
(IString) is not similar to the common concept of the
“string'” type (present in all modern programming
languages). At the implementation level, Omega system
will use for IString another manner to store the
content of a string (we do not use XML Schema's
xsd:string – see details in [13]).

2.3 Omega Language

For the object system presented above, we provide an
active (execution) part, which is the implementation of a
scripting language that is using Omega objects. We can
integrate the object space with notions such as execution
thread, function, instruction, data types to be modeled
with the help of IObject abstraction. The execution
threads represented by an IAThread object (actor
thread) will have a current execution context in which it
can keep the local names and a global name list of the
task (a task has more execution threads, some objects
have attached execution threads, and they have the same
name list from the task they belong to).

To simplify the development of a high-level
control language, we are started from a data-type model
that had IString, INumber, IThread, and
IObject as base types and various types derived from
IOmegaActor (this class is derived from IActor).
The system is able to initialize and execute
IOmegaActor objects.

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 17

Therefore the Omega object environment and
the OmegaKernel mini-interpreter provide [2]:

 A data model (base type-system, the

construction of new objects),
 An address space (every object has its own

address consistent at the Internet – by using the
TCP/IP stack – level),

 Techniques to implement the high-level
programming level statements (e.g., if,
while, or goto).

The Omega system is able to execute small

(“scripting”) programs. We present below such a
program called test program – new IObjects are
created. At runtime everything is reduced to a creation of
new IObjects in the distributed space of objects.

A simulation of while statement
OmegaTrace ("Test begin")
OmegaTrace could be used
for debugging purposes
BeginActor (SimulateDoWhile)
BeginActor initializes
an independent actor thread
NewINumber i 0
label begin
Inc i
OmegaTrace ("i++ in SimulateDoWhile")
LessThenGoTo i 2 begin
EndActor
SimulateDoWhile ()
OmegaTrace ("Test end")

The language provided by the Omega
framework is similar to an assembler language and may
be easily extended with other instructions. The main
syntactic construct is similar to a function (method) call.
An important step was to create a mechanism for
representing data structures, statements and objects under
the same abstraction (IObject) that is a network shared
entity.

3 Serialization Mechanism

All classes derived from IObject must implement the
serialization (marshalling) and deserialization
(unmarshalling) methods. The process of building of the
new data types is based on the fact that an IObject has
a member of the IOmegaList type. That member
contains associated links which are instances of the
derived classes. In this manner, the serialization of the
new types of objects can be automatically accomplished
by Omega via members' serialization and the call of the
overloaded own methods. Of course, for several types of
objects – e.g. IOmegaSocket used for usual BSD-like
socket operations [10], such as bind(), listen(),
accept() or connect() – the serialization and

deserialization activities can not be viewed as a proper
solution.

For each access to a sharable object, a proxy-
object is created, using the RPC (Remote Procedure Call)
mechanism [9]. This proxy-object is placed in the same
tree of the target object. In the tree of the accessed object,
a stub-object is created, too. The stub will contain meta-
descriptions about the sharable object and will be derived
from IObject. The stub-object will be a member of the
sharable object, to allow us to remotely access the stub.
In this way, the system will be able to keep updated
versions of the different object trees. To obtain the
serialized form of an object, the RPC-like mechanism is
able to transmit the URI (Uniform Resource
Identifier) [9, 25] of that object. As a response, the
system will get the serialized forms of the object and of
the proxy-object as well, if it is possible. The Omega
system is responsible to regularly update the proxy-
objects.

The object serialization does not imply the
serialization of the whole sub-tree that has as root the
object in cause. For an object, only the serialization of
the object itself and of the IName list of its children is
done.

3.1 XML-based Serialization

The process of the Omega’s object serialization uses
XML-based constructs. We use the XML namespaces
defined by the XML Schema specification (see [13]) to
retain the primary types of the data exchanged by agents
in the serialization and deserialization processes.

 An example is following (we are using an
IString object):

<?xml version="1.0"?>
<IString>
 <name xsi:type="xsd:string">
 Hello from Omega
 </name>
</IString>

The Omega encoding style is based on the usual

XML Schema's data types [13]. All data types used
within the Omega system of agents must either be taken
directly from the XML Schema or derived from Omega
data types (see section 2.2).

The XML Schema specification (see Datatypes
section from [13]) does not offer the possibility to
express data types as XML elements, but only as
attributes. To address this, the Omega framework
declares a schema, called OMEGA-ENC, used to define an
XML element for each data type (see the example
below).

<OMEGA-ENC:int id="int1">
 33
</OMEGA-ENC:int>

18 Informatica 28 (2004) 13–22 S. Alboaie et al.

Example
An example of Omega object serialization follows:

<element
 name="local_address_type"
 type="...">
 <simpleType
 name="local_address_type"
 base="xsd:string">
 <enumeration
 value="tree_id" />
 <enumeration
 value="unique_name" />
 </simpleType>
</element>
<element
 name="local_address"
 type="..." />
 <complexType
 name="local_address">
 <element
 name="la_type"
 type="local_address_type" />
 <element
 name="la_value"
 type="xsd:string" />
 </complexType>
</element>

<IName>
 <IOmegaDomain>
 ...
 </IOmegaDomain>
 <!-- info about local addr. -->
 <local_address>
 <la_type>
 tree_id
 </la_type>
 <la_value>
 1
 </la_value>
 </local_address>
 <local_address>
 <la_type>
 unique_name
 </la_type>
 <la_value>
 member_name
 </la_value>
 </local_address>
 <!-- other similar constructs... -->
</IName>

These XML elements could be used to extend the
functionality of the Omega system with new data types.

We can note the Omega system only proposes the

presented XML-based manner of object serialization, but
does not interdict other mechanisms – e.g. SOAP-based
serialization – to be adopted for data serialization.

3.2 SOAP-based Serialization

SOAP – or other protocols that use the RPC over XML
approach (e.g., XML-RPC) – will be used to transport
the serialized data. SOAP looks to be the right solution
because of the great support it gets from different
companies and organizations.

Short Description
SOAP (Simple Object Access Protocol) [14, 25] is a
simple lightweight protocol used for XML-based
structured and strong-type information exchange in a
decentralized, distributed environment. The protocol is
based on XML and consists of three parts:

 An envelope that describes the contents of the

message and how to use it;
 A set of rules for serializing data exchanged

between applications;
 A procedure to represent remote procedure

calls, that is the way in which queries and the
resulting responses to the procedure are
represented.

Similar to object distribution models (e.g., IIOP

and DCOM) [4], SOAP can invoke methods, services,
components, and objects on remote servers. However,
unlike these protocols, which use binary formats for the
calls, SOAP uses a text format (Unicode), with the help
of XML, to structure the nature of the exchanges.

SOAP can generally function with several
protocols, such as FTP (File Transfer Protocol) or SMTP
(Simple Mail Transfer Protocol), but it is particularly
well-suited for the HTTP (HyperText Transfer Protocol)
[9, 25]. It defines a reduced set of parameters that are
specified in the HTTP header, making it easier to pass
through proxies and firewalls. The use of SOAP over
HTTP also enables resources already present on the Web
to be unified by using the natural request/response model
of HTTP protocol. The only constraint is that a SOAP
message via HTTP must use the MIME (Multi-purpose
Internet Mail Extensions) [9, 25] type text/xml.

Also, SOAP protocol can help in activities of
message exchange and routing and agent communication
by integrating well-known actual standards (e.g., The
Foundation of Intelligent Physical Agents – FIPA agent
standard [23]).

The actual SOAP implementations are available
for a broad range of programming languages, such as
C++, C#, Java, Perl, PHP or Python.

SOAP vs. CORBA
Although SOAP was initially intended as a remote
method invocation protocol running over the Internet and
using XML messaging, the SOAP protocol is not just
another Common Object Request Broker Architecture
(CORBA) [4, 20].

SOAP presents the subsequent significant
improvements [14, 16]:

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 19

 Human readability – SOAP does not expose a
binary format like CORBA Internet Inter ORB
Protocol (IIOP); even if SOAP is mainly
projected to be read by machines and to give
support for Web services, human readability is
very useful for debugging purposes and rapid
and simple implementations;

 Simple installation – because SOAP is based on
HTTP and XML, the protocol can be
implemented with slight effort by using
existing processing libraries for XML and
HTTP; contrary, CORBA requires complex
software packages and does not provide a
commonly accepted bootstrapping mechanism.

The SOAP protocol has the potential to become

the connecting point between heterogeneous distributed
platforms and architectures, such as Sun ONE, Microsoft
.NET, Perl or PHP scripting applications.

SOAP Data Model
SOAP is based on a simple object-oriented data model.
The SOAP data model consists of structured objects
having certain properties and a type. The SOAP
specification allows, through a set of unambiguous rules,
alternative syntax forms for embedded and referenced
objects. Objects can be embedded if there exists only one
referenced to them; otherwise they are linked [14, 25].

SOAP does not provide its own schema
language. For this, the protocol uses XML Schema [13]
for validation of the syntactical correctness of SOAP
serialization model. Also, SOAP serialization fits fine
into Unified Modeling Language (UML) modeling [20].
Even if SOAP describes instance serialization only, the
UML meta-model can be utilized to serialize UML
models using SOAP serialization syntax [16]. This can
be a helpful feature in the activity of multi-agent system
design.

In [16], the SOAP-based serialization
mechanism is discussed in conjunction to Resource
Description Framework (RDF) and the related Semantic
Web activity. Also, RDF assertions can be used to store
certain metadata about existing objects [8].

Example
A short example is following, when a request to invoke a
remote method of an object is made and a response that
contains the result is returned. The invoked method
returns the services provided by a given node (agent) of
the system.

 The SOAP request can be (first five lines are
HTTP header fields followed by the SOAP envelope
marked-up in XML; the SOAPAction field specifies
the action to be executed on the remote site):

POST /omega/interface HTTP/1.1
Host: 193.231.30.197
Content-type: text/xml
Content-length: nnn
SOAPAction: urn:omega.ro:Omega:#getSrv
<SOAP-ENV:Envelope

 xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/
 soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/
 soap/encoding/">
 <SOAP-ENV:Body>
 <o:getSrv
 xmlns:o="urn:omega.ro:Omega">
 <node ip="193.231.30.225">
 thor.infoiasi.ro
 </node>
 </o:getSrv>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 A possible response (on success) can be the
following (first three lines denote the response given by
Web server, followed by SOAP data – in this case an
XML-based document that contains the list of the
existing agents and additional information about them):

200 OK
Content-type: text/xml
Content-length: mmm
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/
 soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/
 soap/encoding/">
 <SOAP-ENV:Body>
 <o:listSrv
 xmlns:o="urn:omega.ro:Omega">
 <service desc="...">
 <stateInformation>
 ...
 </stateInformation>
 <securityInformation>
 ...
 </securityInformation>
 <transportProfile>
 ...
 </transportProfile>
 </service>
 <service desc="...">
 <stateInformation>
 ...
 </stateInformation>
 <securityInformation>
 ...
 </securityInformation>
 <transportProfile>
 ...
 </transportProfile>
 </service>
 <!-- other information -->
 </o:listSrv>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

20 Informatica 28 (2004) 13–22 S. Alboaie et al.

Using gSOAP for Data Serialization
We are using an existing tool named gSOAP [21], which
is able to generate the code for serialization from a user-
defined specification.

Most toolkits for C++ Web services adopt a
SOAP-centric view and offer APIs for C++ that require
the use of class libraries for SOAP-specific data
structures. This often forces a user to adapt the
application logic to these libraries. In contrast, the
gSOAP compiler tools provide a unique SOAP/XML-to-
C/C++ language binding to ease the development of
SOAP/XML Web services and clients in C and/or C++
languages.

The compiler enables the integration of (legacy)
C/C++ programs, embedded systems, and real-time
software in SOAP applications that share computational
resources and information with other SOAP applications,
possibly across different platforms, language
environments, and disparate organizations located behind
firewalls.

4 Related Work

Although there is not a formal framework for multi-agent
systems development, due to dependence on application
domains, it has been that the construction of these
systems requires a different approach from that of
conventional software systems development.

We are aware of multiple platforms developed
both in academia and software industry companies [17].
This confirms that many computer scientists are
considering the agent-oriented software as a possible
paradigm, designed and implemented especially in very
dynamic environments (such as World-Wide Web
space). We can give different examples of frameworks
and tools used to develop multi-agent systems (for more
details, see [17]), some of them using the Internet open
standards:

 Tryllian's ADK (Agent Development Kit) – an

agent-based business integration platform,
designed and built in Java, XML and JXTA
with a modular architecture and a unique mobile
component approach;

 Toshiba's Bee-gent (Bonding and Encapsulation
Enhancement Agents) – a CORBA-based
communication framework intended to provide
co-operative processing in the advanced
network society;

 FIPA-OS – a Java component-based layered
toolkit enabling rapid development of FIPA
(Foundation for Intelligent Physical Agents)
compliant agents;

 Grasshoper – an open-source CORBA-based
platform that allows software agents to move
between different fixed and wireless computing
systems and to execute various tasks in the
process; this platform provides support for
MASIF (Mobile Agent System Interoperability

Facility) – a standard specification developed by
the Object Management Group (OMG) [20];

 JADE (Java Agent DEvelopment Framework) –
a widely used agent platform that can be
distributed across heterogeneous machines and
that can be configured via a remote GUI
(Graphical User Interface);

 Xraptor – a simulation environment for
continuous virtual multi-agent systems written
in C++ for UNIX platforms that allows studying
the behavior of agents in different 2- or 3-
dimensional worlds.

Another interesting approach is Agentcities – a

world wide initiative designed to help realize the
commercial and research potential of agent based
applications by constructing an open distributed network
of platforms hosting diverse agents and services [19].

However, the existing implementations have not
convinced the whole community or do not cover or
provide certain facilities desired by programmers or final
users. Some proprietary solutions, though well
developed, are not built as open systems and can not be
easily extended or modified. On the other hand, we were
not impressed by the available open-source platforms.
Therefore, from the authors' point of view, it was more
useful and interesting to design and implement new
systems, hoping that they will cover and combine better
features.
The existing multi-agent platforms use different
approaches for communication between agents, by using
low-level communication protocols (TCP/IP, SMTP and
HTTP) or standard high-level languages – such as
KQML (Knowledge Query Manipulation Language)
[6, 17]. One of the noticed difficulties is to design a
platform-independent inter-agent communication
language.

The Omega system presents an advantage, by
adopting an XML-based platform-independent approach
in serialization and exchanging information between
agents. The SOAP model is more flexible and easy to use
than CORBA or DCOM solutions. Some of the Omega's
facilities could be also integrated, for example, into the
MAIS (Mobile Agents Information System) – a platform
for creating dynamic clusters [15].

5 Conclusion

We have used the design principles of the distributed
systems to develop our own software platforms and ideas
related to the multi-agent paradigm and actor spaces (see
also [1, 11]). From this point of view, the Omega project
represents an infrastructure able to support the agent-
oriented programming and to assure an XML-based
flexible way for object serialization.

 The paper focused on different platform-
independent methods of exchanging information between
the entities of a multi-agent infrastructure – Omega –
presented in section 2.2. The Omega project can be
viewed as a platform for developing distributed object

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 21

middleware components [4]. Omega proposes a
distributed object structure, and its initial goal was to
determine some good representations of data, types,
instructions, functions and objects of an object-oriented
language that can be used as a programming language for
mobile agents. The language provided by the Omega
environment is a simple scripting language described in
section 2.3.

To proper exchange information between the
entities of a multi-agent system, an XML-like messaging
solution is proposed. All classes within the Omega
system must implement certain serialization
(marshalling) and deserialization (unmarshalling)
methods. The process of the Omega’s object serialization
uses XML-based constructs and is detailed in section 3.1.
Another method for object serialization is the use of
SOAP-based serialization (see section 3.2).

Using these approaches, the Omega multi-agent
system could integrate different Web services or could be
integrated into complex distributed architectures such as
Grid [18].

As a further research work, the proposed model
for serialization will be used to exchange knowledge
(using RDF, DAML+OIL or OWL assertions, for
example) [8, 9, 12, 25] between intelligent Web agents.
This research direction can be viewed as an effort to give
support for Semantic Web projects [12, 21].

Also, we intend to experiment an XML-based
version of the Omega language to be used to exchange
mobile code of the software agents coded within the
Omega framework.

References

[1] G. Agha, C. Callsen (1993) Actor Spaces: An Open
Distributed Programming Paradigm, Proceedings of the
4th ACM Symposium on Principles and Practice of
Parallel Programming, ACM Press

[2] S. Alboaie, S. Buraga, L. Alboaie (2002) An
XML-based Object-Oriented Framework for Developing
Software Agents, Scientific Annals of the “A.I. Cuza”
University, Computer Science section, Tome XII, “A.I.
Cuza” University Press, Iaşi, Romania, pp.109--134

[3] S. Alboaie, G. Ciobanu (2002) Designing and
Developing Multi-Agent Systems, in International
Symposium on Parallel and Distributed Computing
(ISPDC) Proceedings, Scientific Annals of the “A.I.
Cuza” University, Computer Science section, Tome XI,
“A.I. Cuza” University Press, Iaşi, Romania, pp.142--153

[4] D. Bakken (2001) Middleware, in Encyclopedia of
Distributed Computing, Kluwer Academic Press

[5] T. Berners-Lee (1999) Weaving the Web, Orion
Business Books, London, UK

[6] J. Bradshow (1997) Software Agents, AAAI Press

[7] T. Bray et al. (eds.) (2000) Extensible Markup
Language (XML) 1.0 (Second Edition), World-Wide
Web Consortium’s Recommendation, Boston:
http://www.w3.org/TR/REC-xml

[8] S. Buraga, S. Alboaie, A. Alboaie (2003) An
XML/RDF-based Proposal to Exchange Information
within a Multi-Agent System, in D. Grigoraş et al. (eds.),
Proceedings of NATO Advanced Research Workshop on
Concurrent Information Processing and Computing,
IOS Press (to appear)

[9] S. Buraga (2001) Web Technologies (in Romanian),
Matrix Rom, Bucureşti, Romania

[10] S. Buraga, G. Ciobanu (2001) Programming
Workshop in Computer Networks (in Romanian),
Polirom, Iaşi, Romania

[11] C. Callsen (1997) Open Distributed Heterogeneous
Computing, PhD Thesis, University of Illinois at Urbana-
Champaign

[12] J. Davies, D. Fensel, F. van Harmelen (eds.) (2003)
Towards the Semantic Web, John Wiley & Sons

[13] D. Fallside (ed.) (2001) XML Schema, World-Wide
Web Consortium’s Recommendation, Boston:
http://www.w3.org/TR/xmlschema-0/

[14] C. Gorman (2001) Programming Web Services with
SOAP, O'Reilly and Associates

[15] D. Grigoraş et al. (2002) MAIS – The Mobile Agents
Information System Support for Creating Dynamic
Clusters, in Proceedings of ICA3PP, Beijing, China

[16] S. Haustein (2001) Semantic Web Languages: RDF
vs. SOAP Serialization, Proceedings of Semantic Web
Workshop, Hongkong, China

[17] E. Mangina (2003) Review of Software Products for
Multi-Agent Systems, AgentLink.org:
http://www.agentlink.org

[18] L. Moreau (2002) Agents for the Grid:
A Comparison with Web Services (Part I: the transport
layer), IEEE International Symposium on Cluster
Computing and the Grid Proceedings, IEEE Press

[19] * * *, Agentcitites Network:
http://www.agentcities.net/

[20] * * *, Object Management Group Activity:
http://www.omg.org/

[21] * * *, Semantic Web:
http://www.semanticweb.org/

[22] * * *, SOAP Software:
http://www.soapware.org/

22 Informatica 28 (2004) 13–22 S. Alboaie et al.

[23] * * *, The Foundation of Intelligent Physical Agents
(FIPA): http://www.fipa.org/

[24] * * *, Web Object Integration:
http://www.objs.com/survey/web-object-
integration.htm

[25] * * *, World Wide Consortium’s Technical Reports:
http://www.w3.org/TR/

