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Abstract

We discuss a new family of cubic graphs, which we call group divisible generalised Pe-
tersen graphs (GDGP -graphs), that bears a close resemblance to the family of generalised
Petersen graphs, both in definition and properties. The focus of our paper is on determin-
ing the algebraic properties of graphs from our new family. We look for highly symmetric
graphs, e.g., graphs with large automorphism groups, and vertex- or arc-transitive graphs.
In particular, we present arithmetic conditions for the defining parameters that guarantee
that graphs with these parameters are vertex-transitive or Cayley, and we find one arc-
transitive GDGP -graph which is neither a CQ graph of Feng and Wang, nor a generalised
Petersen graph.
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1 Introduction
Generalised Petersen graphs GP (n, k) (the name and notation coined in 1969 by Watkins
[18], with the subclass with n and k relatively prime considered already by Coxeter in
1950 [6]) constitute one of the central families of algebraic graph theory. While there are
many reasons for the interest in this family, with a bit of oversimplification one could say
that among the most important is the simplicity of their description (requiring just two
parameters n and k) combined with the richness of the family that includes the well-known
Petersen and dodecahedron graphs, as well as large families of vertex-transitive graphs and
seven symmetric (arc-transitive) graphs.

Our motivation for studying the new family of group divisible generalised Petersen
graphs (GDGP -graphs; introduced in [11] under the name SGP -graphs) lies in the fact
that they share the above characteristics with the generalised Petersen graphs. They include
all vertex-transitive generalised Petersen graphs but the dodecahedron as a proper subclass,
are easily defined via a sequence of integral parameters, and contain graphs of various
levels of symmetry.

Historically, ours is certainly not the first attempt at generalising generalised Petersen
graphs. In 1988, the family of I-graphs was introduced in the Foster Census [2]. This
family differs from the generalised Petersen graphs in allowing the span on the outer rim
to be different from 1: The I-graph I(n, j, k) is the cubic graph with vertex set {ui, vi | i ∈
Zn} and edge set {{ui, ui+j}, {ui, vi}, {vi, vi+k} | i ∈ Zn}. However, the only I-graphs
that are vertex-transitive are the original generalised Petersen graphs which are the graphs
I(n, 1, k) [1, 14].

The family of GI-graphs introduced in [5] by Conder, Pisanski and Žitnik in 2014 is a
further generalisation of I-graphs. For positive integers n ≥ 3,m ≥ 1, and a sequenceK of
elements in Zn−{0, n2 },K = (k0, k1, . . . , km−1), theGI-graphGI(n; k0, k1, . . . , km−1)
is the graph with vertex set Zm × Zn and edges of two types:

(i) an edge from (u, v) to (u′, v), for all distinct u, u′ ∈ Zm and all v ∈ Zn,

(ii) edges from (u, v) to (u, v ± ku), for all u ∈ Zm and all v ∈ Zn.

The GI-graphs are (m+1)-regular, thus cubic when m = 2, which is the case that covers
the I-graphs, with the subclass of the GI(n; 1, k) graphs covering the generalised Petersen
graphs.

Another generalisation is due to Lovrečič-Saražin, Pacco and Previtali, who extended
the class of generalised Petersen graphs to the so-called supergeneralised Petersen graphs
[15]. Let n ≥ 3 and m ≥ 2 be integers and k0, k1, . . . , km−1 ∈ Zn − {0}. The vertex-set
of the supergeneralised Petersen graph P (m,n; k0, . . . , km−1) is Zm × Zn and its edges
are of two types:

(i) an edge from (u, v) to (u+ 1, v), for all u ∈ Zm and all v ∈ Zn,

(ii) edges from (u, v) to (u, v ± ku), for all u ∈ Zm and all v ∈ Zn.

Note that GP (n, k) is isomorphic to P (2, n; 1, k).
Finally, in 2012, Zhou and Feng [20] modified the class of generalised Petersen graphs

in order to classify cubic vertex-transitive non-Cayley graphs of order 8p, for any prime p
[20]. In their definition, the subgraph induced by the outer edges is a union of two n-cycles.
Let n ≥ 3 and k ∈ Zn − {0}. The double generalised Petersen graph DP (n, k) is defined
to have the vertex set {xi, yi, ui, vi | i ∈ Zn} and the edge set equal to the union of the outer
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Figure 1: GI(5; 1, 1, 1, 2) and P (4, 5; 1, 1, 1, 2).
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Figure 2: DP (5, 2).

edges {{xi, xi+1}, {yi, yi+1} | i ∈ Zn}, the inner edges {{ui, vi+k}, {vi, ui+k} | i ∈ Zn},
and the spokes {{xi, ui}, {yi, vi} | i ∈ Zn}.

Even though non-empty intersections exist between the above classes and the class of
group divisible generalised Petersen graphs considered in our paper, none of these is sig-
nificant, and we believe that ours is, in a way, the most natural generalisation of generalised
Petersen graphs.

2 Generalised Petersen graphs
Let us review the basic properties of generalised Petersen graphs. A generalised Petersen
graph GP (n, k) is determined by integers n and k, n ≥ 3 and n

2 > k ≥ 1. The vertex set
V (GP (n, k)) = {ui, vi | i ∈ Zn} is of order 2n and the edge set E(GP (n, k)) of size 3n
consists of edges of the form

{ui, ui+1}, {ui, vi}, {vi, vi+k}, (2.1)

where i ∈ Zn. Thus, GP (n, k) is always a trivalent graph, the Petersen graph is the graph
GP (5, 2), the dodecahedron is GP (10, 2), and the ADAM graph is GP (24, 5).

We will call the ui vertices the outer vertices, the vi vertices the inner vertices, and
the three distinct forms of edges displayed in (2.1) outer edges, spokes, and inner edges,
respectively. Graphs introduced in this paper will also contain vertices and edges of these
types. We will use the symbols Ω,Σ and I , respectively, to denote the three n-sets of
edges. The n-circuit induced in GP (n, k) by Ω will be called the outer rim. If d denotes
the greatest common divisor of n and k, then I induces a subgraph which is the union of
d pairwise-disjoint nd -circuits, called inner rims. The parameter k also denotes the span of
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Figure 3: Voltage graph for the generalised Petersen graph GP (n, k).

the inner rims (which is the distance, as measured on the outer rim, between the outer rim
neighbors of two vertices adjacent on an inner rim).

The class of generalised Petersen graphs is well understood and has been studied by
many authors. In 1971, Frucht, Graver and Watkins [9] determined their automorphism
groups. They proved that GP (n, k) is vertex-transitive if and only if k2 ≡ ±1 mod n or
(n, k) = (10, 2). Later, Nedela and Škoviera [16], and (independently) Lovrečič-Saražin
[13] proved that a generalised Petersen graph GP (n, k) is Cayley if and only if k2 ≡ 1
mod n. Recall that a Cayley graph Cay(G,X), where G is a group generated by the set
X which does not contain the identity 1G and is closed under taking inverses, is the graph
whose vertices are the elements of G and edges are the pairs {g, xg}, g ∈ G, x ∈ X .

3 Polycirculants and voltage graphs
A non-identity automorphism of a graph is (m,n)-semiregular if its cycle decomposition
consists of m cycles of length n. Graphs admitting (m,n)-semiregular automorphisms
are called m-circulants (if one chooses to suppress the parameter m, they are sometimes
called polycirculants). If m = 1, 2, 3, or 4, an m-circulant is said to be a circulant, a bi-
circulant, a tricirculant, or a tetracirculant, respectively. It is easy to see that generalised
Petersen graphs are bicirculants; the corresponding automorphism consists of the two cy-
cles (u0, u1, u2, . . . , un−1), (v0, v1, v2, . . . , vn−1).

The reader is also most likely familiar with the fact that generalised Petersen graphs
can be defined in a nice and compact way using the language of voltage graphs (a more
detailed treatment may be found for example in [10]):

If Γ is an undirected graph, we associate each edge of Γ with a pair of opposite arcs
and denote the set of all such arcs by D(Γ). A voltage assignment on Γ is any mapping α
from D(Γ) into a group G that satisfies the condition α(e−1) = (α(e))−1 for all e ∈ D(Γ)
(with e−1 being the opposite arc of e, and (α(e))−1 being the inverse of α(e) in G). The
lift (sometimes called the derived regular cover) of Γ with respect to a voltage assignment
α on Γ is a graph denoted by Γα. The vertex set V (Γα) consists of |V (Γ)| · |G| vertices
ug = (u, g), (u, g) ∈ V (Γ) × G. Two vertices ug and vf are adjacent in Γα if e = (u, v)
is an arc of Γ and f = g · α(e) in G.

All generalised Petersen graphs GP (n, k) are lifts of the dumbbell graph D which
consists of two vertices joined by an edge and loops attached to them. The corresponding
voltage assignment α : D(D) −→ Zn assigns 0 to the arcs connecting the two vertices, 1
and −1 to the arcs of the loop at one of the vertices, and k and −k to the arcs of the loop at
the other vertex (Figure 3).

Similarly, the I-graph I(n, j, k) is a derived regular cover of the dumbbell graph with
0 assigned to the ‘handle’, and the values j,−j and k,−k ∈ Zn assigned to the loops
(Figure 4).

The GI-graph GI(n; a, b, c, d) is a lift of the complete graph K4, and so is the super-
generalised Petersen graph P (4, n; a, b, c, d) (see Figures 5 and 6, respectively).
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Figure 4: Voltage graph for the I-graph I(n, j, k).

a b

c d

Zn

0

0

0 0

0 0

Figure 5: Voltage graph for the GI-graph GI(n; a, b, c, d).

Recently, Conder, Estélyi, and Pisanski in [4] considered more general voltage assign-
ments, and thus generalised the double generalised Petersen graphs even further.

There is another family of polycirculants that will prove useful later in our paper, in-
troduced by Feng and Wang in 2003 [7]. Their graphs are called CQ graphs, and were
originally introduced as octacirculants (for their voltage graph description see Figure 7).
The definition of CQ(k, n) used in [7] makes sense for any k, n such that gcd(k, n) = 1,
which is equivalent to k ∈ Z∗n. Frelih and Kutnar [8] later correctly showed that each
CQ(k, n) is in fact a tetracirculant. However, their voltage graph depiction is not correct.
One needs two different voltage graphs, depending on the parity of m. The correct voltage
graphs are depicted in Figures 8 and 9.

Moreover, in the definition of CQ(k,m) used by Frelih and Kutnar the inverse k−1 is

a b

c d

Zn

0

0

0 0

Figure 6: Voltage graph for the supergeneralised Petersen graph P (4, n; a, b, c, d).
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Figure 7: Original voltage graph for the octacirculant graph CQ(k, n), gcd(k, n) = 1,
which appeared in [7].
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Figure 8: Corrected voltage graph for the tetracirculant graph CQ(k,m), k odd, m even.
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Figure 9: Corrected voltage graph for the tetracirculant graph CQ(k,m), k odd, m odd.
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not needed. Hence, their voltage graphs define a family of graphs that is more general than
that of Feng and Wang [7]. In our paper, we shall use this more general definition.

4 GDGP -graphs
The graphs we shall focus on in this paper are defined as follows.

Definition 4.1. Let n ≥ 3 and m ≥ 2 be positive integers such that m divides n, let a be a
non-zero element of Zm, and let K = (k0, k1, . . . , km−1) be a sequence of elements from
Zn all of which are congruent to a modulo m and satisfy the requirement kj + kj−a 6≡ 0
(mod n), for all j ∈ Zm.

The graph GDGPm(n;K), or alternatively GDGPm(n; k0, k1, . . . , km−1), has the
vertex set {ui, vi | i ∈ Zn} of order 2n and the edge set of size 3n:

{ui, ui+1}, {ui, vi}, {vmi+j , vmi+j+kj}, (4.1)

where i ∈ Z n
m

, j ∈ Zm, and the arithmetic operations are performed modulo n.

While the GDGP -graphs defined above share the outer rim edges and the spokes with
the generalised Petersen graphs (and are therefore all connected), the inner edges are de-
termined by the more complicated rule {{vmi+j , vmi+j+kj} | i ∈ Z n

m
, j ∈ Zm} applied in

groups of size m ≥ 2.
The choices made in our definition guarantee that the GDGP -graphs are cubic. This

claim is obviously true for the outer vertices ui. To prove the claim for the inner ver-
tices vmi+j , i ∈ Z n

m
, j ∈ Zm, it is enough to show that each inner vertex vmi+j of

GDGPm(n;K) is incident with exactly two edges of the type determined by the third rule
of (4.1). Thus, assume that {vmi′+j′ , vmi′+j′+kj′} is incident with vmi+j . Then, either
vmi+j = vmi′+j′ or vmi+j = vmi′+j′+kj′ . If vmi+j = vmi′+j′ , then i = i′, j = j′, and
kj = kj′ is uniquely determined; there is exactly one such edge. If vmi+j = vmi′+j′+kj′ ,
then mi + j = mi′ + j′ + kj′ , thus j ≡ j′ + kj′ ≡ j′ + a (mod m), which uniquely
determines j′ = j − a ∈ Zm as well as kj′ . The equation mi + j = mi′ + j′ + kj′

then uniquely determines i′, and therefore there is exactly one edge {vmi′+j′ , vmi′+j′+kj′}
for which vmi+j = vmi′+j′+kj′ . To complete the argument, note that the two edges
{vmi+j , vmi+j+kj} and {vmi+j−kj−a , vmi+j} are necessarily different, since we assume
that kj + kj−a 6≡ 0 (mod n), for all j ∈ Zm. Let us observe for future reference that the
three neighbors of vmi+j are the vertices umi+j , vmi+j+kj and vmi+j−kj−a

.
Being 2-regular, the graph induced by the inner vertices vi, i ∈ Zn consists of disjoint

cycles. If we denote the order of a in Zm by om(a), it is easy to see that the length of
the inner cycle containing vmi+j is the product of om(a) with the order on(kj + kj+a +
kj+2a + . . . + kj+(om(a)−1)a) of the element kj + kj+a + kj+2a + . . . + kj+(om(a)−1)a

in Zn (with the indices calculated modulo m). Thus, if a is chosen to be a generator for
Zm (i.e., om(a) = m), all inner cycles in GDGPm(n; k0, k1, . . . , km−1) are of the same
length m · on(k0 + k1 + . . .+ km−1). In particular, if m = 2, a is by definition necessarily
congruent to 1 (mod 2), and is therefore a generator for Z2, hence all inner cycles of the
graphs GDGP2(n; k0, k1) are of length 2 · on(k0 + k1).

Example 4.2. Consider the graph GDGP2(8; 1, 3) in Figure 10. Both 1 and 3 are congru-
ent to 1 (mod 2), which is a generator for Z2. The order of the sum 1 + 3 = 4 is 2 in Z8,
and hence the inner edges of this graph form two disjoint 4-cycles.
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Figure 10: GDGP2(8; 1, 3).

It is easy to see that, for even n and odd k,GP (n, k) is isomorphic toGDGP2(n; k, k),
and for n divisible by 3 and k 6≡ 0 (mod 3),GP (n, k) is isomorphic toGDGP3(n; k, k, k).
We generalise this observation in the following lemma. A sequence k0, . . . , km−1 is said
to be periodic if there exists an integer 0 < p < m that divides m and ki = ki+p, for all
i ∈ Zm. The smallest p with this property is the period of the sequence. The proof of the
following lemma is now obvious.

Lemma 4.3. Let GDGPm(n;K) be a graph such that K = (k0, . . . , km−1) is a periodic
sequence with a period p. If p = 1, the graph GDGPm(n;K) is isomorphic to the graph
GP (n, k), and if p > 1, GDGPm(n;K) is isomorphic to the graph GDGPp(n;K ′),
where K ′ = (k0, . . . , kp−1).

Consequently, GDGPm(n; k, k, . . . , k) ∼= GP (n, k), for all divisors m of n and all
k 6≡ 0 (mod m). To simplify our notation and arguments, we will assume from now on
that the sequence K used in the notation GDGPm(n;K) is aperiodic.

Most importantly, not all GDGP -graphs are generalised Petersen graphs. Consider,
for example, the graph GDGP2(8; 1, 3) constructed in Example 4.2. The subgraph in-
duced by the inner vertices consists of two disjoint 4-cycles. While the same is true for
GP (8, 2), nevertheless, GDGP2(8; 1, 3) is not isomorphic to any generalised Petersen
graph. To see this, note that each of the outer vertices of this graph lies on exactly one
4-cycle, while each of the inner vertices lies on two 4-cycles. Thus, no automorphism of
GDGP2(8; 1, 3) interchanges the outer and inner vertices (and GDGP2(8; 1, 3) is not a
vertex-transitive graph). If GDGP2(8; 1, 3) were to be isomorphic to a generalised Pe-
tersen graph, it would have to be a bicirculant and would have to admit a (2, 8)-semiregular
automorphism. The two 8-orbits would thus necessarily consist of the outer and inner ver-
tices. The automorphism group of the 8-cycle induced by the outer vertices is equal to
the dihedral group D8 which contains only two 8-cycles: (u0, u1, . . . , u7), and its inverse.
Thus, the action of any (2, 8)-semiregular automorphism of GDGP2(8; 1, 3) on the outer
vertices would have to be equal to one of these cycles. Since automorphisms must pre-
serve adjacency, this would necessarily force the action of this semiregular automorphism
on the inner vertices to be the cycle (v0, v1, . . . , v7) or its inverse. However, neither the
permutation (u0, u1, . . . , u7)(v0, v1, . . . , v7) nor its inverse are graph automorphisms of
GDGP2(8; 1, 3). Hence, GDGP2(8; 1, 3) is not a bicirculant, and is therefore not isomor-
phic to any generalised Petersen graph.
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Figure 11: GDGP2(8; 1, 5).

On the other hand, it is not hard to see that the (4, 4)-semiregular permutation (u0, u2,
u4, u6)(u1, u3, u5, u7)(v0, v2, v4, v6)(v1, v3, v5, v7) is an automorphism ofGDGP2(8; 1, 3),
and that the following theorem holds in general.

Theorem 4.4. For all m ≥ 2, the permutation

α : V (GDGPm(n;K))→ V (GDGPm(n;K)), ui 7→ ui+m, vi 7→ vi+m, i ∈ Zn,

is a (2m, nm )-semiregular automorphism of GDGPm(n;K).
Thus, every GDGPm(n;K)-graph is a 2m-circulant.

We conclude the section with an easy but useful graph-theoretical property of the
GDGP -graphs.

Lemma 4.5. The GDGPm(n;K) is a bipartite graph if and only if n is even and all
elements in K are odd.

5 Automorphisms of GDGP -graphs
Many of the ideas of this and the forthcoming sections can be demonstrated with the use of
the following family of GDGP -graphs.

Example 5.1. For each even n ≥ 4, consider the graph GDGP2(n; 1, n − 3). The
graphs in this family are also known as the crossed prism graphs [19]. In particular,
GDGP2(4; 1, 1) ∼= GP (4, 1), and GDGP2(6; 1, 3) is the Franklin graph. The graph
GDGP2(8; 1, 5) is depicted in Figure 11. All the graphs GDGP2(n; 1, n− 3) are vertex-
transitive, which means, in particular, that they admit an automorphism mapping an outer
vertex to an inner vertex.

Our first result follows already from our discussion of GDGP2(8; 1, 3).

Lemma 5.2. If γ ∈ Aut(GDGPm(n;K)) fixes set-wise any of the sets Ω,Σ or I , then it
either fixes all three sets or fixes Σ set-wise and interchanges Ω and I .

We have observed already that the action on Ω of an Ω-preserving automorphism must
belong to Dn. Assume that an automorphism σ preserves Ω and acts on Ω as a reflection.
Then one of the following occurs:
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1. σ has no fixed points, in which case n is necessarily even and there exists an s ∈ Zn
such that σ swaps us and us+1, and, consequently, σ swaps all the pairs us−i and
us+1+i, i ∈ Zn;

2. σ fixes at least one vertex, say us, and consequently swaps the pairs us+i and us−i,
i ∈ Zn.

The same is necessarily true for the inner vertices, and in case (1) σ swaps vs−i and vs+1+i,
i ∈ Zn, while in case (2) σ swaps the pairs vs+i, vs−i, i ∈ Zn.

In either case, σ is a bijection on the vertices and it preserves the outer edges and the
spokes. Thus the image of an inner edge must again be an inner edge. Assume first that σ is
of type (1), and consider an arbitrary inner edge {vmi+j , vmi+j+kj}. Its image under σ is
the pair {v2s−mi−j+1, v2s−mi−j−kj+1}, which is an edge of GDGPm(n;K) if and only
if 2s−mi−j−kj+1 ≡ 2s−mi−j+1+kj′ (mod n), i.e.,−kj ≡ kj′ (mod n), where
j′ ≡ 2s−mi−j+1 ≡ 2s−j+1 (mod m), or, 2s−mi−j+1 ≡ 2s−mi−j−kj+1+kj′′

(mod n), i.e., kj ≡ kj′′ (mod n), where j′′ ≡ 2s −mi − j − kj + 1 ≡ 2s − j − a + 1
(mod m). Therefore, σ is a graph automorphism ofGDGPm(n;K) if and only if (at least)
one the above equalities holds for each i ∈ Z n

m
, j ∈ Zm. In the special case when m = 2,

a is necessarily 1, j′′ ≡ 2s+ j + 1 + 1 ≡ j (mod 2), and hence:

Lemma 5.3. For every GDGP2(n;K), and for every s ∈ Zn, the reflection σs swapping
the pairs us−i and us+1+i, and the pairs vs−i and vs+1+i, for all i ∈ Zn, is a graph
automorphism of GDGP2(n;K). Consequently, Aut(GDGP2(n;K)) acts transitively
on the two sets of outer and inner vertices of GDGP2(n;K).

Proof. The graph automorphism α : V (GDGP2(n;K))→ V (GDGP2(n;K)) defined in
Theorem 4.4 and sending ui 7→ ui+2 and vi 7→ vi+2, for all i ∈ Z2, has two orbits on the
outer and two orbits on the inner vertices. The reflection automorphisms σs mix these two
orbits.

Both of our examples, GDGP2(8; 1, 3) and GDGP2(8; 1, 5), can be easily seen to be
symmetric with respect to reflections about axes passing through the centers of a pair of
opposing outer edges.

Next, let us consider σ of type (2). The image of an arbitrary edge {vmi+j , vmi+j+kj}
is the pair {v2s−mi−j , v2s−mi−j−kj}, which is an edge if and only if 2s−mi− j − kj ≡
2s −mi − j + kj′ (mod n), i.e., −kj ≡ kj′ (mod n), for j′ ≡ 2s −mi − j ≡ 2s − j
(mod m), or 2s−mi− j ≡ 2s−mi− j − kj + kj′′ (mod n), i.e., kj ≡ kj′′ (mod n),
for j′′ ≡ 2s − mi − j − kj ≡ 2s − j − a (mod m). Comparing this result to that of
Lemma 5.3, assuming m = 2 would require −kj ≡ kj′ (mod n), for j′ ≡ j (mod 2),
or kj ≡ kj′′ (mod n), for j′′ ≡ j + a (mod 2). The first is impossible as that would
require k0 = k1 = n

2 , which would violate our agreement that we do not consider periodic
sequences, while the second possibility is explicitely prohibited in the definition of the
GDGP-graphs. Hence, no GDGP2(n;K) that is not a generalised Petersen graph admits
automorphisms of type (2). Specifically, it is easy to see that neither GDGP2(8; 1, 3) nor
GDGP2(8; 1, 5) admits such automorphisms. There are, on the other hand, infinitely many
graphs that do admit at least one such automorphism. The proof of the next lemma follows
from the above discussion.

Lemma 5.4. Let n ≥ 3, and let K have the property that −kj ≡ kj′ (mod n), for
j′ ≡ 2s− j (mod m), or let K have the property kj ≡ kj′′ (mod n), for j′′ ≡ 2s− j−a



K. Jasenčáková et al.: A new generalisation of generalised Petersen graphs 11

Figure 12: GDGP3(12; 1, 4, 1).

1
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c

0 0

0
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Z4

Figure 13: The voltage graph for GDGP3(12; 1, 4, 1), a = 0, b = 0, c = 2.

(mod m). Then GDGPm(n,K) admits an automorphism σ that fixes us and vs, and
swaps the pairs us+i and us−i, vs+i and vs−i, i ∈ Zn.

Example 5.5. The graphsGDGP3(n; a, 1, n−1) as well as the graphsGDGP3(n; 1, a, 1),
a ∈ Zn, all admit an automorphism fixing the vertex u0. In particular, the graph
GDGP3(12; 1, 4, 1) pictured in Figure 12 is symmetric with respect to the axes passing
through the vertices u0 and u6, and through the vertices u3 and u9.

All the automorphisms considered so far preserve the outer and inner rim as well as the
spokes. We conclude this section by considering the graphs we started the section with,
namely with the graphs GDGP2(n; 1, n − 3). As stated at the beginning of the section,
all of them are vertex-transitive and admit an automorphism mapping an outer vertex to an
inner vertex. Computational evidence collected in [12] suggests that the order of the full
automorphism group of an GDGP2(n; 1, n − 3) is n · 2n

2 , and it is easy to see that these
graphs are neither edge- nor arc-transitive. In what follows, we present automorphisms that
do not preserve the set of spokes.

Lemma 5.6. Let n ≥ 6. Then GDGP2(n; 1, n − 3) admits at least one automorphism
which does not fix its set of spokes.

Proof. The desired automorphism δ ∈ Aut(GDGP2(n; 1, n − 3)) consists of just two
2-cycles: δ = (u1v0)(u2v3). Since δ moves only four vertices, to show that it is indeed
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Figure 14: The voltage graphs forGDGP3(m; k1, k2, k3) and SI3(m; l1, l2, l3, k1, k2, k3).

a graph automorphism, it suffices to show that it maps edges incident with the vertices
u1, v0, u2, v3 to edges incident to the vertices u1, v0, u2, v3. This easy exercise is left to the
reader. It is also easy to see that (ui+1vi)(ui+2vi+3) belongs to Aut(GDGP2(n; 1, n−3))
for all positive integers i divisible by 4 and smaller than n− 3.

Lemma 5.3 together with Lemma 5.6 yield that the graphs GDGP2(n; 1, n − 3) are
indeed vertex-transitive for all n ≥ 6.

6 Vertex-transitive and Cayley GDGP2-graphs
We continue searching for vertex-transitive graphs. Lemma 5.3 asserts that
Aut(GDGP2(n; k0, k1)) acts transitively on the set of the outer and the set of the in-
ner vertices of every GDGP2(n; k0, k1). Thus, an GDGP2(n; k0, k1) graph is vertex-
transitive if and only if it admits a graph automorphism mapping at least one outer vertex
to an inner vertex. In this section, we present some sufficient conditions for this to happen.
Note that the graphs GDGP2(n; k0, k1), GDGP2(n; k1, k0), GDGP2(n;−k0,−k1) and
GDGP2(n;−k1,−k0) are all isomorphic.

Since we only seek sufficient conditions, we will focus on the special case of graphs that
admit automorphisms preserving the set of spokes and swapping the entire sets of outer and
inner vertices. Obviously, these must be those GDGP -graphs in which the graphs induced
by the inner vertices form a single cycle. As observed already in the discussion following
the definition of the GDGP -graphs, this is the case if and only if the order of the element
k0 + k1 in Zn is equal to n

2 . Thus, we shall assume from now on that on(k0 + k1) = n
2 .

Suppose γ ∈ Aut(GDGP2(n;K)) swaps the outer and the inner rim and preserves the
spokes. Because of Lemma 5.3, we may assume that γ maps u0 to v0. The outer rim can
be mapped onto the inner rim in either the clockwise or in the counterclockwise direction.
Hence, there might be two automorphisms which swap the outer and inner cycles and map
u0 to v0.

Let γ be an automorphism which maps the outer cycle to the inner cycle in the same
direction. Thus,

γ(u2i) = vi(k0+k1), γ(u2i+1) = vi(k0+k1)+k0 , (6.1)

for all i ∈ Zn
2

. Since γ is assumed to preserve the set of spokes, the image of a spoke must
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be a spoke again and thus it must be the case that

γ(v2i) = ui(k0+k1), γ(v2i+1) = ui(k0+k1)+k0 , (6.2)

for all i ∈ Zn
2

. On the other hand, γ must map the inner cycle to the outer cycle, and, in
particular, γ must map inner edges to outer edges. For any i ∈ {0, 1, . . . , n − 1}, because
of (6.2), the vertex v2i, which is adjacent to vertices v2i+k0 and v2i−k1 , is mapped to the
vertex ui(k0+k1), adjacent to the vertices ui(k0+k1)+1 and ui(k0+k1)−1. Thus, γ maps the
2-set {v2i+k0 , v2i−k1} onto the 2-set {ui(k0+k1)+1, ui(k0+k1)−1}. However, invoking (6.2)
again,

γ(v2i+k0) = u
(i+

k0−1
2 )(k0+k1)+k0

, while γ(v2i−k1) = u
(i− k1+1

2 )(k0+k1)+k0
.

This gives us the congruences:

(i+
k0 − 1

2
)(k0 + k1) + k1 ≡ i(k0 + k1)± 1 (mod n),

(i− k1 + 1

2
)(k0 + k1) + k1 ≡ i(k0 + k1)∓ 1 (mod n),

which are equivalent to the system of congruencies:
k0−1

2 (k0 + k1) + k1 ≡ ±1 (mod n),

−k1+1
2 (k0 + k1) + k1 ≡ ∓1 (mod n).

(6.3)

Moreover, applying the same ideas to the vertices v2i+1 yields conditions equivalent to the
conditions (6.3).

Similarly, one can define an automorphism γ̄ which maps the outer rim onto the inner
rim in the opposite direction. In this case:

γ̄(u2i) = v−i(k0+k1), γ̄(v2i) = u−i(k0+k1),
γ̄(u2i+1) = v−i(k0+k1)−k1 , γ̄(v2i+1) = u−i(k0+k1)−k1 ,

(6.4)

for all i ∈ Zn
2

. Inner edges are preserved if and only if the system of congruencies

1−k0
2 (k0 + k1) − k1 ≡ ±1 (mod n),

k1+1
2 (k0 + k1) − k1 ≡ ∓1 (mod n)

(6.5)

is satisfied.
Note that k0, k1 that satisfy the system (6.3) also necessarily satisfy the congruence

(k0 + k1)2 ≡ ±4 (mod n), (6.6)

and parameters k0, k1 that satisfy (6.5) also satisfy

(k0 + k1)2 ≡ ∓4 (mod n). (6.7)

Recall that a necessary and sufficient condition for a vertex-transitivity of the generalised
Petersen graphs GP (n, k) is k2 ≡ ±1 (mod n) (except for GP (10, 2))[9], which implies
the congruence (k + k)2 ≡ ±4 (mod n). In this sense, the conditions (6.6) and (6.7) are
generalisations of the well-known characterization of vertex-transitive generalised Petersen
graphs.

We have proved the following:
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Figure 15: Graph GDGP2(16; 3, 11) which admits the automorphism γ.

Lemma 6.1. The graphGDGP2(n; k0, k1) admits an automorphism that preserves the set
of spokes and swaps the outer and inner vertices if and only if the order on(k0 + k1) = n

2
in Zn and the parameters n, k0, k1 satisfy one of the systems of congruencies (6.3) or (6.5).

Proof. We have proved in detail that at least one of the conditions is necessary. Their suf-
ficiency follows from the fact that the vertex map of GDGP2(n; k0, k1) whose parameters
satisfy (6.3) and which is defined by equations (6.1) and (6.2) fixes the spokes and swaps
the outer and inner edges. The same holds true for the vertex map whose parameters satisfy
(6.5) and which is defined via (6.4).

It is easy to observe that the parameters of a fixed GDGP2(n; k0, k1) can satisfy at
most one of the systems (6.3) or (6.5). Therefore, graphs GDGP2(n; k0, k1) admit at most
one of the automorphisms γ or γ̄.

The following theorem provides the sufficient condition promised at the beginning of
the section. Its proof follows from Lemma 5.3 and Lemma 6.1.

Theorem 6.2. Let GDGP2(n; k0, k1) be a graph whose parameters satisfy on(k0 +k1) =
n
2 and one of the systems (6.3) or (6.5). Then GDGP2(n; k0, k1) is a vertex-transitive
graph.

Example 6.3. The parameters of the graphs GDGP2(n; a, n−a+ 2) satisfy the condition
on(a+ n− a+ 2) = on(2) = n

2 as well as the system of congruencies (6.3). Hence, they
all admit the automorphism γ defined by formulas (6.1) and (6.2).

Example 6.4. The parameters of the graphs GDGP2(n; 1, n − 3) satisfy neither of the
systems (6.3) or (6.5). They are nevertheless vertex-transitive and their inner edges form a
single cycle. Thus, conditions (6.3) or (6.5) are sufficient but not necessary.

Example 6.5. The thesis [11] contains yet another family of graphs whose parameters
do not satisfy (6.3) or (6.5), but nevertheless includes vertex-transitive graphs. These are
the graphs GDGP2(8a + 4; 1, 4a − 1), with a being a positive integer. The inner rim
of these graphs does not form a single cycle. The smallest graph in this family is the
graph GDGP2(12; 1, 3) isomorphic to the truncated octahedral graph. It is known that
the truncated octahedral graph is the Cayley graph Cay(G,X), where G = S4 and X =
{(1234), (1432), (12)}, and the group of automorphisms has order 48. Another member of
the family is the graph GDGP2(20; 1, 7).
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Figure 16: Graphs GDGP2(12; 1, 3) and GDGP2(20; 1, 7).

Example 6.6. Based on computational evidence, there are other families of vertex-transitive
GDGP2-graphs with parameters that do not satisfy (6.3) or (6.5). In the thesis [12], relying
on exhaustive search of all GDGP2(n; k0, k1) with n ≤ 300, six more graphs have been
found whose parameters do not satisfy (6.3) or (6.5) but are vertex-transitive. These are the
graphs

GDGP2(96, 21, 49), GDGP2(96, 27, 47), GDGP2(192, 45, 97),

GDGP2(192, 51, 95), GDGP2(288, 69, 145), GDGP2(288, 75, 143).

Since all their orders are multiples of 96, their existence suggests a possible infinite family.

Once again referring to the characterization of vertex-transitive generalised Petersen
graphs, we observe GP (n, k) is a Cayley graph if and only if k2 ≡ 1 (mod n), and
thus vertex-transitive generalised Petersen graphs whose parameters satisfy the congruence
relation k2 ≡ −1 (mod n) are not Cayley [9]. We show that this is not the case for the
graphs considered in this section. Namely, we show that all graphs GDGP2(n; k0, k1)
whose parameters satisfy (6.3) or (6.5) are Cayley graphs. We will somewhat abbreviate
our arguments. Detailed proofs of the claims made in this part can be found in [11].

Let GDGP2(n; k0, k1) be a graph admitting one of the automorphisms γ or γ̄, α be
the automorphism from Theorem 4.4, and β be the automorphism of GDGP2(n; k0, k1)
that maps ui to u1−i and vi to v1−i, 0 ≤ i ≤ n − 1. The groups GΣ = 〈α, β, γ〉 and
ḠΣ = 〈α, β, γ̄〉 are subgroups of Aut(GDGP2(n; k0, k1)) that preserve the set of spokes.
It is easy to verify that if (k0 + k1)2 ≡ 4 (mod n), then

GΣ = 〈α, β, γ |αn
2 = β2 = γ2 = 1, βαβ = α−1, γαγ = α

k0+k1
2 , βγ = γβα

k0−1
2 〉,

and

ḠΣ = 〈α, β, γ̄ |αn
2 = β2 = γ̄2 = 1, βαβ = α−1, γ̄αγ̄ = α−

k0+k1
2 , βγ̄ = γ̄βα−

k1+1
2 〉.

On the other hand, if (k0+k1)2 ≡ −4 (mod n), thenGDGP2(n; k0, k1) is isomorphic
to the generalised Petersen graph GP (n, k0).

Theorem 6.7. The following statements are true for all GDGP2(n; k0, k1):
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1. If γ is an automorphism of the graph GDGP2(n; k0, k1), then GDGP2(n; k0, k1) is
isomorphic to the Cayley graph Cay(GΣ, {β, αβ, γ}).

2. If γ̄ is an automorphism of the graph GDGP2(n; k0, k1), then GDGP2(n; k0, k1) is
isomorphic to the Cayley graph Cay(ḠΣ, {β, αβ, γ̄}).

Proof. Leaving out the technical details, we claim that the map

ϕ : GDGP2(n; k0, k1) −→ Cay(GΣ, {β, αβ, γ}),

defined on the vertices of GDGP2(n; k0, k1) via the formulas

u2i 7→ αi, u2i+1 7→ βαi,
v2i 7→ γαi, v2i+1 7→ γβαi,

is an isomorphism between GDGP2(n;K) and Cay(GΣ, {β, αβ, γ}).
Similarly, the map

ϕ̄ : GDGP2(n; k0, k1) −→ Cay(ḠΣ, {β, αβ, γ̄}),

defined via
u2i 7→ αi, u2i+1 7→ βαi,
v2i 7→ γ̄αi, v2i+1 7→ γ̄βαi,

is an isomorphism between the graphs GDGP2(n; k0, k1) and Cay(ḠΣ, {β, αβ, γ̄}).

7 Symmetric GDGP2-graphs
One of the main goals of our paper is to determine which of the GDGP -graphs are highly
symmetric. In the previous section, we have presented sufficient conditions for GDGP2-
graphs being vertex-transitive. For the rest of our paper, we are going to consider even a
higher level of symmetry, namely, we are going to address the question which GDGP2-
graphs are symmetric (arc-transitive), i.e., whichGDGP2-graphs possess enough automor-
phisms to map any arc of the graph to any other arc.

We have already established in Theorem 4.4 that all GDGP2(n; k0, k1) are tetracircu-
lants. Since all cubic symmetric tetracirculants have been classified by Frelih and Kutnar
in [8], in order to classify the symmetric GDGP2-graphs (which are cubic tetracirculants),
it is enough to determine which of the cubic symmetric tetracirculants listed in [8] are
GDGP2-graphs. Since the symmetric graphs in [8] are described in the form of the lifts,
we shall achieve this goal by viewing the GDGP2-graphs as lifts as well.

Recall that generalised Petersen graphs are the lifts of the dumbbell graphs from Fig-
ure 3. Note also that the dumbbell graph may be viewed as mono-gonal prism (which
makes the generalised Petersen graphs bicirculant). Since the GDGP2-graphs are tetracir-
culants, in order to view them as lifts, we need to consider base graphs of order 4. Consider
the voltage graph in Figure 17 which is a di-gonal prism. In both Figures 3 and 17, the
voltages along one basis cycle add up to 1. Since the voltages on the other edges must be
integers, both k0 and k1 in Figure 17 must be odd. If we recall that the definition of the
GDGP2(n; k0, k1)-graphs also requires that the parameters k0 and k1 be odd, it is not hard
to see that every GDGP2(n; k0, k1) is isomorphic to the lift described in Figure 17.

Furthermore, the voltage graph in Figure 17 is a rather special case of the more general
voltage graph of Figure 7. As is well-known, the voltages along any spanning tree of the
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Figure 17: Voltage graph for GDGP2(m; k0, k1).
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Figure 18: Voltage graph for the tetracirculant graph C1(m; a, b, c, d).

base graph may be chosen to be equal to 0, and still, after appropriate changes of the other
voltages, produce the same graph. Hence, c may always be chosen to be 0. Such graphs
have been studied before, for instance in [1], under the name of C-graphs. However, the
spanning tree used in [1] differs from our choice here. Nevertheless, each GDGP2 graph
is a C-graph, while the converse is not true.

Let us now continue with the task of classifying symmetric GDGP2-graphs. As men-
tioned above, the paper [8] contains a complete classification of cubic symmetric (i.e. arc-
transitive) tetracirculants.

Theorem 7.1 ([8, Theorem 1.1]). A connected cubic symmetric graph is a tetracirculant if
and only if it is isomorphic to one of the following graphs:

(i) F008A,F020A,F020B,F024A,F028A,F032A,F040A,

(ii) F016A,F048A,F056C,F060A,F080A,F096A,F112B,F120B,F224C,
F240C,

(iii) CQ(t,m) for 2 ≤ t ≤ m− 3 satisfying m|(t2 + t+ 1),
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Figure 19: The Dyck graph GDGP2(16; 3, 7).

(iv) CQ(2t− 1, 2m) for 2 ≤ t ≤ m− 1 satisfying m|(4t2 − 2t+ 1).

The notation FnA,FnB, etc., refers to the corresponding graphs in the Foster census
[2], [3]. The graphs CQ(t,m) are the lifts from Figures 8 and 9 introduced in [7].

Since all GDGP2-graphs are bipartite (Lemma 4.5), we can easily rule out the tetracir-
culants that are not bipartite, such as GP (5, 2) or GP (10, 2). Graphs F008A, F016A,
F020B, F024A, and F048A are the generalised Petersen graphs GP (4, 1), GP (8, 3),
GP (10, 3), GP (12, 5), and GP (24, 5), respectively. Therefore, these graphs are not iso-
morphic to a non-periodic GDGP2(n; k0, k1). Furthermore, we checked all the sporadic
cases in (i) and (ii) by our program in SAGE-math. That showed that the two graphs F040A
and F080A are also not isomorphic to any non-periodic GDGP2(n; k0, k1).

Finally, the graph F032A is isomorphic to GDGP2(16; 3, 7). It is also known under
the name of the Dyck graph; Figure 19.

Summing up the above observations yields the following.

Theorem 7.2. The only symmetric GDGP2(n; k0, k1) graph not isomorphic to a gen-
eralised Petersen graph GP (n, k) or one of the graphs CQ(t,m), 2 ≤ t ≤ m − 3,
m|(t2 + t + 1) or CQ(2t − 1, 2m), 2 ≤ t ≤ m − 1, m|(4t2 − 2t + 1), is the Dyck
graph GDGP2(16; 3, 7) = F032A.

Note that our computer program indicates that the only arc-transitive C-graph that is
not a GDGP2 graph is the graph F040A. It can alternately be described as an SI2-graph,
i.e., a further generalisation in which one allows for spans other than 1 in both rims; see
Figure 20.

Our computer experiments also indicate the following:

Conjecture 7.3.
1. The girth of CQ(t,m), m odd, gcd(t,m) = 1, is equal to 6. For m even, the girth

may be 6,8 or 10.

2. EveryCQ(t,m)-graph is aGDGP2 graph. Every graphCQ(t,m) with gcd(t,m) =
1 is vertex transitive.

We close our paper with two open questions:



K. Jasenčáková et al.: A new generalisation of generalised Petersen graphs 19

Figure 20: F040A as SI2(10; 2, 2, 1, 11).

1. Which of the graphs CQ(t,m), 2 ≤ t ≤ m−3,m|(t2 +t+1), and CQ(2t−1, 2m),
2 ≤ t ≤ m− 1, m|(4t2 − 2t+ 1), are isomorphic to a GDGP2(n; k0, k1)?

2. Which of the graphs GDGPm(n;K), m > 2, are symmetric?
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[4] M. D. E. Conder, I. Estélyi and T. Pisanski, Vertex-transitive Haar graphs that are not Cayley
graphs, in: Discrete geometry and symmetry, Springer, Cham, volume 234 of Springer Proc.
Math. Stat., pp. 61–70, 2018.
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