

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 22 (2022) #P2.09 / 317–326 https://doi.org/10.26493/1855-3974.2577.25d (Also available at http://amc-journal.eu)

Linkedness of Cartesian products of complete graphs*

Leif K. Jørgensen D

Department of Mathematical Sciences, Aalborg University, Denmark

Guillermo Pineda-Villavicencio † 🕩, Julien Ugon ‡ 🕩

Federation University, Ballarat, Australia and School of Information Technology, Deakin University, Geelong, Australia

Received 9 March 2021, accepted 26 August 2021, published online 27 May 2022

Abstract

This paper is concerned with the linkedness of Cartesian products of complete graphs. A graph with at least 2k vertices is *k*-linked if, for every set of 2k distinct vertices organised in arbitrary k pairs of vertices, there are k vertex-disjoint paths joining the vertices in the pairs.

We show that the Cartesian product $K^{d_1+1} \times K^{d_2+1}$ of complete graphs K^{d_1+1} and K^{d_2+1} is $\lfloor (d_1 + d_2)/2 \rfloor$ -linked for $d_1, d_2 \ge 2$, and this is best possible.

This result is connected to graphs of simple polytopes. The Cartesian product $K^{d_1+1} \times K^{d_2+1}$ is the graph of the Cartesian product $T(d_1) \times T(d_2)$ of a d_1 -dimensional simplex $T(d_1)$ and a d_2 -dimensional simplex $T(d_2)$. And the polytope $T(d_1) \times T(d_2)$ is a *simple polytope*, a $(d_1 + d_2)$ -dimensional polytope in which every vertex is incident to exactly $d_1 + d_2$ edges.

While not every *d*-polytope is $\lfloor d/2 \rfloor$ -linked, it may be conjectured that every simple *d*-polytope is. Our result implies the veracity of the revised conjecture for Cartesian products of two simplices.

Keywords: k-linked, cyclic polytope, connectivity, dual polytope, linkedness, Cartesian product. Math. Subj. Class. (2020): 05C40, 52B05

^{*}The authors want to thank the referee for his/her comments, which have certainly helped to improve the presentation of the paper.

[†]Corresponding author. Guillermo would like to thank the hospitality of Leif Jørgensen, and the Department of Mathematical Sciences at Aalborg University, where this research started.

[‡]Julien Ugon's research was supported by the ARC discovery project DP180100602.

E-mail addresses: leifkjorgensen@gmail.com (Leif K. Jørgensen), work@guillermo.com.au (Guillermo Pineda-Villavicencio), julien.ugon@deakin.edu.au (Julien Ugon)

1 Introduction

Denote by V(X) the vertex set of a graph. Given sets A, B of vertices in a graph, a path from A to B, called an A - B path, is a (vertex-edge) path $L := u_0 \dots u_n$ in the graph such that $V(L) \cap A = \{u_0\}$ and $V(L) \cap B = \{u_n\}$. We write a - B path instead of $\{a\} - B$ path, and likewise, write A - b path instead of $A - \{b\}$.

Let G be a graph and X a subset of 2k distinct vertices of G. The elements of X are called *terminals*. Let $Y := \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ be an arbitrary labelling and (unordered) pairing of all the vertices in X. We say that Y is *linked* in G if we can find disjoint $s_i - t_i$ paths for $i \in [1, k]$, the interval $1, \ldots, k$. The set X is *linked* in G if every such pairing of its vertices is linked in G. Throughout this paper, by a set of disjoint paths, we mean a set of vertex-disjoint paths. If G has at least 2k vertices and every set of exactly 2k vertices is linked in G, we say that G is k-linked.

This paper studies the linkedness of Cartesian products of complete graphs. Linkedness of Cartesian products has been studied in the past [4]. The *Cartesian product* $G_1 \times G_2$ of two graphs G_1 and G_2 is the graph defined on the pairs (v_1, v_2) with $v_i \in G_i$ and with two pairs (u_1, u_2) and (v_1, v_2) being adjacent if, for some $\ell \in \{1, 2\}$, $u_\ell v_\ell \in E(G_\ell)$ and $u_i = v_i$ for $i \neq \ell$. We prove that the Cartesian product $K^{d_1+1} \times K^{d_2+1}$ of complete graphs K^{d_1+1} and K^{d_2+1} is $\lfloor (d_1 + d_2)/2 \rfloor$ -linked for $d_1, d_2 \ge 0$, and that there are products that are not $\lfloor (d_1 + d_2 + 1)/2 \rfloor$ -linked; hence this result is best possible. Here K^t denotes the complete graph on t vertices.

Our result is connected to questions on the linkedness of a polytope. A (convex) polytope is the convex hull of a finite set X of points in \mathbb{R}^d ; the *convex hull* of X is the smallest convex set containing X. The *dimension* of a polytope in \mathbb{R}^d is one less than the maximum number of affinely independent points in the polytope; a set of points $\vec{p_1}, \ldots, \vec{p_k}$ in \mathbb{R}^d is *affinely independent* if the k - 1 vectors $\vec{p_1} - \vec{p_k}, \ldots, \vec{p_{k-1}} - \vec{p_k}$ are linearly independent. A polytope of dimension d is referred to as a *d-polytope*.

The Cartesian product $P \times P'$ of a *d*-polytope $P \subset \mathbb{R}^d$ and a *d'*-polytope $P' \subset \mathbb{R}^{d'}$ is the Cartesian product of the sets P and P':

$$P \times P' = \left\{ \begin{pmatrix} p \\ p' \end{pmatrix} \in \mathbb{R}^{d+d'} \mid p \in P, \, p' \in P \right\}.$$

The resulting polytope is (d + d')-dimensional. The graph G(P) of a polytope P is the undirected graph formed by the vertices and edges of the polytope. It follows that the graph $G(P \times P')$ of the Cartesian product $P \times P'$ is the Cartesian product $G(P) \times G(P')$ of the graphs G(P) and G(P').

A d-simplex T(d) is the convex hull of d + 1 affinely independent points in \mathbb{R}^d . The graph of T(d) is the complete graph K^{d+1} . As a consequence, our result implies that the graph of the Cartesian product $T(d_1) \times T(d_2)$ is $\lfloor (d_1 + d_2)/2 \rfloor$ -linked for $d_1, d_2 \ge 0$. Henceforth, if the graph of a polytope is k-linked we say that the polytope is also k-linked.

The first edition of the Handbook of Discrete and Computational Geometry [3, Problem 17.2.6] posed the question of whether or not every *d*-polytope is $\lfloor d/2 \rfloor$ -linked. This question was answered in the negative by [2]. None of the known counterexamples are *simple d-polytopes*, *d*-polytopes in which every vertex is incident to exactly *d* edges. Hence, it may be hypothesised that the conjecture holds for such polytopes.

Conjecture 1.1. *Every simple d-polytope is* |d/2|*-linked for* $d \ge 2$ *.*

Cartesian products of simplices are simple polytopes, and so our result supports this revised conjecture. Furthermore, Cartesian products of simplices and duals of cyclic polytopes are related; the dual of a cyclic *d*-polytope with d+2 vertices is the Cartesian product of a $\lfloor d/2 \rfloor$ -simplex and a $\lceil d/2 \rceil$ -simplex [6, Example 0.6]. Hence we obtain that the dual of a cyclic *d*-polytope on d+2 vertices is also $\lfloor d/2 \rfloor$ -linked for $d \ge 2$.

Unless otherwise stated, the graph theoretical notation and terminology follows from [1] and the polytope theoretical notation and terminology from [6]. Moreover, when referring to graph-theoretical properties of a polytope such as linkedness and connectivity, we mean properties of its graph.

2 Linkedness of Cartesian products of complex graphs

The contribution of this section is a sharp theorem (Theorem 2.1) that tells the story of the linkedness of Cartesian product of two complete graphs.

 s_1 o t3 o s1 \circ \circ \circ t_1 \circ s_2 \circ \circ \circ \circ \circ \circ \circ t_1 o t2 o s3 0 0 о to (a) (b) o t_2 o s_4 o s_1 o 0 \circ $\circ t_2 \circ$ $\circ s_4 \circ s_1$ 0 о 0 0 \circ o t_4 o t_3 o s_2 o o o o o o t_4 o t_3 o s_5 o s_2 0 0 o o*t*1 o*s*3 $\circ \circ \circ t_5 \circ t_1 \circ s_3$ 0 0 0 0 0 0 (c) (d) \circ \circ \circ \circ t_6 \circ t_5 \circ s_4 \circ s_1 0 \circ \circ \circ \circ \circ t_3 \circ t_4 \circ s_5 \circ s_2 \circ \circ \circ \circ \circ t_2 \circ t_1 \circ \circ s_6 \circ s_3 0 0 (e)

Figure 1: No feasible linkage problems for $K^{d_1+1} \times K^{d_2+1}$, $k = \lfloor (d_1 + d_2 + 1)/2 \rfloor$, $d_1 \leq 2$ and $d_2 > d_1$. (a) The case $d_1 = 1$ and even d_2 with $d_2 > d_1$. (b) The case $d_1 = 2$ and $d_2 = 3$. (c) The case $d_1 = 2$ and $d_2 = 5$. (d) The case $d_1 = 2$ and $d_2 = 7$. (e) The case $d_1 = 2$ and $d_2 = 9$. Each row of each part (a)-(e) is a complete graph whose edges have not been drawn.

Theorem 2.1. The Cartesian product of two complete graphs K^{d_1+1} and K^{d_2+1} is $\lfloor (d_1 + d_2)/2 \rfloor$ -linked for every $d_1, d_2 \ge 0$.

Remark 2.2. Theorem 2.1 is best possible. There are products $K^{d_1+1} \times K^{d_2+1}$ that are not $|(d_1 + d_2 + 1)/2|$ -linked:

1. $K^2 \times K^{d_2+1}$ for even $d_2 \ge 1$, and

2. $K^3 \times K^{d_2+1}$ for $d_2 = 1, 3, 5, 7, 9$.

For each of these cases, Figure 1 provides a pairing of terminals that cannot be $|(d_1 + d_2 + 1)/2|$ -linked. We conjecture these are the only such cases.

An immediate corollary of Theorem 2.1 is the following.

Corollary 2.3. The Cartesian product of two simplices $T(d_1)$ and $T(d_2)$ is $\lfloor (d_1 + d_2)/2 \rfloor$ -linked for every $d_1, d_2 \ge 0$.

The notions of linkage, linkage problem, and valid path will simplify our arguments. A *linkage* in a graph is a subgraph in which every component is a path. Let X be a set of vertices in a graph and let $Y := \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ be a pairing of all the vertices of X. A Y-linkage $\{L_1, \ldots, L_k\}$ is a set of disjoint paths with the path L_i joining the pair $\{s_i, t_i\}$ for $i = 1, \ldots, k$. We may also say that Y represents our *linkage problem*, and if Y is linked in G then our linkage problem is *feasible* and *infeasible* otherwise. A path in the graph is called X-valid if no inner vertex of the path is in X. Let X be a set of vertices in a graph G. Denote by G[X] the subgraph of G induced by X, the subgraph of G that contains all the edges of G with vertices in X. Write G - X for $G[V(G) \setminus X]$.

Consider a linkage problem $Y := \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ on a set X of 2k vertices in a graph G. Consider a linkage \mathcal{L} from a subset Z of X to some set Z' disjoint from X and label the vertices of Z' such that the path in \mathcal{L} with end $z_i \in Z$ has its other end $z'_i \in Z'$. Then the linkage \mathcal{L} in G *induces* a linkage problem Y' in $(G - V(\mathcal{L})) \cup Z'$ where the vertices of $X \setminus Z$ remain and the vertices of Z have been replaced by the vertices of Z'. Slightly abusing terminology, we also call terminals the vertices of Z'. If the problem Y' is feasible in $(G - V(\mathcal{L})) \cup Z'$, so is the problem Y in G.

Since we make heavy use of Menger's theorem [1, Theorem. 3.3.1], we next remind the reader of one of its consequences.

Theorem 2.4 (Menger's theorem). Let G be a k-connected graph, and let A and B be two subsets of its vertices, each of cardinality at least k. Then there are k disjoint A - B paths in G.

We fix some notation and terminology for the remaining of the section. Let G denote the graph $K^{d_1+1} \times K^{d_2+1}$. We think of $G = K^{d_1+1} \times K^{d_2+1}$ as a grid with $d_1 + 1$ rows and $d_2 + 1$ columns. In this way, the entry in Row i and Column j can be referred to as G[i, j].

When we write about a row r of subgraph G' of G, we think of r as a subgraph of G'and as the number r so that we can write about the rth row of G' or G; this ambiguity should cause no confusion. An entry in the grid $K^{d_1+1} \times K^{d_2+1}$ with no terminal is said to be *free*, as is a row or a column of a subgraph of G with no terminal. A row or a column of a subgraph of G with every entry being occupied by a terminal is said to be *full*.

We need the following induced subgraphs of G:

 $C_{ab...z}$, the subgraph formed by the union of Columns a, b, ..., z;

 $\bar{C}_{ab...z}$, the subgraph obtained by removing Columns a, b, \ldots, z ;

 $R_{ab...z}$, the subgraph formed by the union of Rows a, b, ..., z;

 $\bar{R}_{ab...z}$, the subgraph obtained by removing Rows a, b, \ldots, z ;

 A_{α} , the induced subgraph of \overline{C}_{12} obtained by removing its first α rows; and

 B_{α} , the subgraph of C_{12} obtained by removing its first α rows.

For instance, \bar{C}_1 denotes the subgraph of G obtained by removing the first column, C_{12} the subgraph formed by the first two columns of G, and \bar{C}_{12} denotes the subgraph obtained by removing the first two columns of G; observe \bar{C}_{12} is isomorphic to $K^{d_1+1} \times K^{d_2-1}$. Figure 2 depicts some of the aforementioned subgraphs of $K^{d_1+1} \times K^{d_2+1}$.

0	0	0	0)
Ĭ	5	Ű	5	Ŭ	
• •	°.		÷	:	α rows
ò	ò	o	ο	0	J
0	0	0	0	0	
B_{α}	÷	A_{α}	÷	:	$d_1 + 1 - \alpha$ rows
0	0	0	0	0	J
$\overbrace{C_{12}}$		$\overline{\bar{C}_{12}}$			

Figure 2: Depiction of the subgraphs B_{α} , A_{α} , C_{12} , and \overline{C}_{12} of $K^{d_1+1} \times K^{d_2+1}$.

The connectivity of $K^{d_1+1} \times K^{d_2+1}$ is stated below.

Lemma 2.5 (Špacapan [5, Theorem 1]). The (vertex)connectivity of $K^{d_1+1} \times K^{d_2+1}$ is precisely $d_1 + d_2$.

We continue fixing further notation. Henceforth let $k := \lfloor (d_1 + d_2)/2 \rfloor$. And let X be a subset of 2k vertices of G and let $Y := \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ be a pairing of all the vertices in X.

We first settle the simple cases of $(0, d_2)$ and $(1, d_2)$ for $d_2 \ge 0$.

Proposition 2.6 (Base cases). For $d_2 \ge 0$ the Cartesian products $K^1 \times K^{d_2+1}$ and $K^2 \times K^{d_2+1}$ are both $\lfloor (1+d_2)/2 \rfloor$ -linked. This statement is best possible.

Proof. The lemma is true for the pair $(0, d_2)$ for each $d_2 \ge 0$, since $K^1 \times K^{d_2+1} = K^{d_2+1}$ and K^{d_2+1} is $\lfloor (1+d_2)/2 \rfloor$ -linked. This is best possible.

The graph $K^2 \times K^{d_2+1}$ is $(1 + d_2)$ -connected by Lemma 2.5. Use Menger's theorem (Theorem 2.4) to bring the $1 + d_2$ terminals to the subgraph \bar{R}_1 through a linkage $\{S_1, \ldots, S_k, T_1, \ldots, T_k\}$ with $S_i := s_i - \bar{R}_1$ and $T_i := t_i - \bar{R}_1$ for $i \in [1, k]$. Letting $\{\bar{s}_i\} := V(S_i) \cap V(\bar{R}_1)$ and $\{\bar{t}_i\} := V(T_i) \cap V(\bar{R}_1)$, we produce a new linkage problem $Y' := \{\{\bar{s}_1, \bar{t}_1\}, \ldots, \{\bar{s}_k, \bar{t}_k\}\}$ in \bar{R}_1 whose feasibility implies that of Y in G. To solve Y' link the pairs of Y' in the subgraph \bar{R}_1 , which is isomorphic to K^{d_2+1} , using the $\lfloor (1 + d_2)/2 \rfloor$ -linkedness of K^{d_2+1} . For even even d_2 , Figure 1(a) shows an infeasible linkage problem with $\lfloor (2 + d_2)/2 \rfloor$ pairs in the graph $K^2 \times K^{d_2+1}$.

In what follows we aim to find a Y-linkage $\{L_1, \ldots, L_k\}$ in G with L_i joining the pair $\{s_i, t_i\}$ of Y for $i \in [1, k]$. Our proof is by induction on (d_1, d_2) with the base cases settled in Proposition 2.6. If there is a pair of Y, say $\{s_1, t_1\}$, lying in some column or row of G, say in Column 1, we send every terminal $s_i \in C_1$ that is different from s_1 and t_1 and that is not adjacent to t_i to the subgraph \overline{C}_1 , and apply the induction hypothesis on \overline{C}_1 . Otherwise, we may assume every pair of Y lies in two distinct columns or rows, say the pair $\{s_1, t_1\}$ lies in C_{12} ; then we send every terminal $s_i \in C_{12}$ that is different from s_1 and

 t_1 and that is not adjacent to t_i to the subgraph \bar{C}_{12} , and apply the induction hypothesis to \bar{C}_{12} . We develop these ideas below.

The definition of k-linkedness gives the following lemma at once; we will use it implicitly hereafter.

Lemma 2.7. Let $\ell \leq k$. Let X be a set of 2ℓ distinct vertices of a k-linked graph K, let Y be a labelling and pairing of the vertices in X, and let Z be a set of $2k - 2\ell$ vertices in K such that $X \cap Z = \emptyset$. Then there exists a Y-linkage in K that avoids every vertex in Z.

Besides, basic algebraic manipulation yields the following inequality.

Lemma 2.8. If $x \ge 2$ and $y \ge 2$ then x(y-1) > x + y - 3.

Proof. The inequality simplifies to (x - 1)(y - 2) > -1.

We are now ready to put together all the elements of the proof of Theorem 2.1.

Proof of Theorem 2.1. Let $k := \lfloor (d_1 + d_2)/2 \rfloor$. Then $d_1 + d_2 \ge 2k$.

Proposition 2.6 gives the result for the pairs $(d_1, 0)$, $(0, d_2)$, $(d_1, 1)$, and $(1, d_2)$ for each $d_1, d_2 \ge 0$. Hence, our bidimensional induction on (d_1, d_2) can start with the assumption of $d_1, d_2 \ge 2$.

We first deal with the case where a pair in Y, say $\{s_1, t_1\}$, lies in some column or some row of G, say in Column 1.

Case 1. A pair in Y, say $\{s_1, t_1\}$, lies in Column 1.

The induction hypothesis ensures that the subgraph \bar{C}_1 is (k-1)-linked. Hence it suffices to show that all the terminals in C_1 other than s_1, t_1 can be moved to \bar{C}_1 via a linkage; Menger's theorem (Theorem 2.4) guarantees this.

Let U be the set of terminals in C_1 other than s_1 and t_1 , and let W be the set of terminals in \overline{C}_1 . Then $|U|+|W| \le d_1+d_2-2$, as |U|+|W| = 2k-2 and $2k \le d_1+d_2$. Besides, the subgraph $G - (W \cup \{s_1, t_1\})$ is |U|-connected, as G is $(d_1 + d_2)$ -connected (Lemma 2.5). In the case of $d_1, d_2 \ge 2$, Lemma 2.8 yields that \overline{C}_1 has more than $|U \cup W|$ vertices:

 $|\bar{C}_1| = (d_1 + 1)d_2 > d_1 + 1 + d_2 + 1 - 3 > d_1 + d_2 - 2 = |U| + |W|.$

Use Menger's theorem (Theorem 2.4) to bring the |U| terminals in C_1 to the subgraph \overline{C}_1 through a linkage Y_U . For every path L in Y_U , if $s_i \in L$, let $\{\overline{s}_i\} := V(L) \cap V(\overline{C}_1)$ and if $t_i \in L$ let $\{\overline{t}_i\} := V(L) \cap V(\overline{C}_1)$. For $s_i \in W$ (respectively $t_i \in W$) let $\overline{s}_i = s_i$ (respectively $\overline{t}_i = t_i$). This produces a new linkage problem $Y' := \{\{\overline{s}_2, \overline{t}_2\}, \ldots, \{\overline{s}_k, \overline{t}_k\}\}$ in \overline{C}_1 whose feasibility implies that of Y in G, since s_1 and t_1 are adjacent in C_1 . The (k-1)-linkedness of \overline{C}_1 now settles the case.

By symmetry, we can assume that every pair $\{s_i, t_i\}$ in Y lies in two different columns or rows and that s_i, t_i are not adjacent. Without loss of generality, assume that

$$s_1$$
 is in Column 1 and t_1 is in Column 2 of C_{12} . (*)

The induction hypothesis also ensures that both \bar{C}_{12} and \bar{R}_{12} are (k-1)-linked. We consider two further cases based on the number of terminals in C_{12} or R_{12} .

Case 2. The subgraph C_{12} contains precisely $d_1 + 2 - \alpha$ terminals, including $\{s_1, t_1\}$, where $0 \le \alpha \le d_1$.

Excluding $\{s_1, t_1\}$, there are at most d_1 terminals in C_{12} , and there are d_1+1 internallydisjoint $s_1 - t_1$ paths in C_{12} of length at most three: two length-two paths and $d_1 - 1$ length-three paths. One of these $s_1 - t_1$ paths, say L_1 , avoids every other terminal in C_{12} .

Without loss of generality, assume that Row 1 in C_{12} is part of the path L_1 ; that is,

$$\{G[1,1], G[1,2]\} \subseteq V(L_1). \tag{**}$$

In the subcase $\alpha = d_1$, every pair in $Y \setminus \{s_1, t_1\}$ is in \overline{C}_{12} , and the induction hypothesis on \overline{C}_{12} settles the subcase.

Suppose that $\alpha = d_1 - 1$, say C_{12} contains $\{s_1, t_1, s_2\}$. Then $s_2 \in B_1$ and $t_2 \in \overline{C}_{12}$. We may assume s_1, s_2 are in Column 1 and t_1 is in Column 2. We show there is an X-valid $s_2 - A_1$ path L'_2 such that the vertex $\overline{s_2} \in V(L'_2) \cap V(A_1)$ is either t_2 or a nonterminal.

Through each entry of Column 1 of B_1 , there are $d_2 - 1$ paths form s_2 to A_1 of length at most two (one for each column in A_1). Moreover, there are at least $d_1 - 1$ free entries in Column 1 of B_1 . Therefore, to ensure the existence of L'_2 , we need to show that at least one of these $(d_1 - 1)(d_2 - 1)$ paths from s_2 to A_1 either contains t_2 or a nonterminal in A_1 . Indeed, according to Lemma 2.8, the inequality

$$(d_1 - 1)(d_2 - 1) > d_1 - 1 + d_2 - 3 \ge |X \setminus \{s_1, t_1, s_2, t_2\}|$$

holds for $d_1, d_2 \ge 2$. Hence we get the existence of L'_2 . As a result, the solution of the new problem $Y' := \{\{\bar{s}_2, t_2\}, \{s_3, t_3\}, \ldots, \{s_k, t_k\}\}$ in \bar{C}_{12} induces a solution of the problem Y in G. And the solution of Y' follows from the (k-1)-linkedness of \bar{C}_{12} .

Henceforth assume that $\alpha \leq d_1 - 2$. To finalise Case 2, we require a couple of claims.

Claim 2.9. Suppose that there are at most $d_1 + 2 - \alpha$ terminals in $B_{\alpha+1} = K^{d_1-\alpha} \times K^2$. Then there is an injection from the set of rows of $B_{\alpha+1}$ that contain two terminals x_1, x_2 such that $\{x_1, x_2\} \cap \{s_1, t_1\} = \emptyset$ to the set of rows of $B_{\alpha+1}$ that contain no terminal other than possibly s_1 and t_1 .

Proof. This follows from a simple counting argument. The number of rows in $B_{\alpha+1}$ is $d_1 - \alpha$. Let m denote the number of rows of $B_{\alpha+1}$ that contain two terminals x_1, x_2 such that $\{x_1, x_2\} \cap \{s_1, t_1\} = \emptyset$ and let $n := |(X \cap V(B_{\alpha+1})) \setminus \{s_1, t_1\}|$; that is, n counts the total number of terminals in $B_{\alpha+1}$ other than s_1 and t_1 . It follows that the number of rows of $B_{\alpha+1}$ that contain precisely one terminal $x \notin \{s_1, t_1\}$ is n - 2m; either s_1 or t_1 may be in these rows. As a result, the number of rows of $B_{\alpha+1}$ that contain no terminal other than $\{s_1, t_1\}$ is $d_1 - \alpha - m - (n - 2m)$. Combining $n \leq d_1 - \alpha$ with all these numbers, we get that

$$d_1 - \alpha - m - (n - 2m) = d_1 - \alpha - n + m \ge d_1 - \alpha - (d_1 - \alpha) + m = m.$$

The claim is proved.

Claim 2.10. Suppose that there are at most $d_1 + 2 - \alpha$ terminals in $B_{\alpha+1} = K^{d_1-\alpha} \times K^2$. If every row in the subgraph $A_{\alpha+1} = K^{d_1-\alpha} \times K^{d_2-1}$ of \bar{C}_{12} has a free entry, then, for every terminal $x \notin \{s_1, t_1\}$ in $B_{\alpha+1}$, there is an X-valid $x - A_{\alpha+1}$ path L to a free entry in $A_{\alpha+1}$; and all these X-valid paths are disjoint.

Proof. If a row of $B_{\alpha+1}$ contains exactly one terminal $x \notin \{s_1, t_1\}$, then send x to a free entry in the same row of $A_{\alpha+1}$. Let x_1 and x_2 be two terminals in $B_{\alpha+1}$ that satisfy

 $\{x_1, x_2\} \cap \{s_1, t_1\} = \emptyset$ and occupy a row r_f of $B_{\alpha+1}$. From Claim 2.9 ensues the existence of a row r_e of $B_{\alpha+1}$ that contain no terminal other than possibly s_1 and t_1 ; in short, there is at least a free entry in r_e .

Consider a pair (r_f, r_e) of rows granted by Claim 2.9. Send either x_1 or x_2 , say x_1 , to the free entry in the row r_e of $A_{\alpha+1}$ passing through the corresponding free entry in the row r_e of $B_{\alpha+1}$, and send x_2 to a free entry in the row r_f of $A_{\alpha+1}$. The proof of the claim is now complete.

Now suppose that $\alpha = 0$ or $2 \leq \alpha \leq d_1 - 2$. In this subcase, the subgraph \bar{C}_{12} contains at most α full rows: if $\alpha + 1$ rows were full in \bar{C}_{12} then there would be at least $(\alpha+1)(d_2-1)$ terminals in \bar{C}_{12} but $(\alpha+1)(d_2-1) > d_2-2+\alpha$ (Lemma 2.8). Even when the path L_1 uses the first row of C_{12} by (**), there is no loss of generality by assuming that the full rows of \bar{C}_{12} are among the *first* $\alpha + 1$ *rows* of \bar{C}_{12} . It follows that every row of $A_{\alpha+1}$ has a free entry.

Figure 3: Auxiliary figure for Case 2 (a) This shows a scenario where $d_1 = 5$, $d_2 = 3$, and $\alpha = 2$. (b) The path $L_1 = s_1 - t_1$ in dashed line, the paths that send the terminals in $B_1 \setminus B_3$ other than s_1 and t_1 to B_3 , and the resulting new linkage $Y' = \{\{s'_2, t'_2\}, \{s'_3, t'_3\}, \{s'_4, t'_4\}\}$ in $\overline{C}_{12} \cup B_{\alpha+1}$. (c) The paths that send the terminals in B_3 to A_3 , and the resulting new linkage $Y'' = \{\{\overline{s}_2, \overline{t}_2\}, \{\overline{s}_3, \overline{t}_3\}, \{\overline{s}_4, \overline{t}_4\}\}$ in \overline{C}_{12} .

Next we show how to send to $B_{\alpha+1}$ the terminals other than s_1 and t_1 that are in the rows 2 to $\alpha + 1$ of C_{12} ; that is, the terminals other than s_1 and t_1 that are in $B_1 \setminus B_{\alpha+1}$. For $\alpha = 0$, $B_1 \setminus B_{\alpha+1} = \emptyset$ and there is nothing to do. We now focus on the subcase $2 \le \alpha \le d_1 - 2$. Let n_1 and n_2 denote the number of terminals in $B_1 \setminus B_{\alpha+1}$ and $B_{\alpha+1}$, respectively. Then the following inequalities hold

$$\begin{split} n_1 + n_2 &\leq d_1 + 2 - \alpha \leq d_1 \quad (\text{since } 2 \leq \alpha), \\ n_1 + n_2 &\leq d_1 + 2 - \alpha \leq 2d_1 - 2\alpha = |V(B_{\alpha+1})| \quad (\text{since } \alpha \leq d_1 - 2). \end{split}$$

From the second inequality, it follows that there are at least n_1 free vertices in $B_{\alpha+1}$. Since B_1 is d_1 -connected by Lemma 2.5, Menger's theorem gives n_1 disjoint paths in B_1 from the terminals in $B_1 \setminus B_{\alpha+1}$ to n_1 free entries in $B_{\alpha+1}$, avoiding the n_2 terminals in $B_{\alpha+1}$. For a terminal s_i in $B_1 \setminus B_{\alpha+1}$, let L'_i be the path from s_i to $B_{\alpha+1}$ and let $s'_i := V(L'_i) \cap B_{\alpha+1}$. Define t'_i similarly for a terminal t_i in $B_1 \setminus B_{\alpha+1}$. Furthermore, for s_i (respectively, t_i) in

 $B_{\alpha+1} \cup \overline{C}_{12}$, let $s'_i := s_i$ (respectively, $t'_i := t_i$). This produces a new linkage problem $Y' := \{\{s'_2, t'_2\}, \ldots, \{s'_k, t'_k\}\}$ in $\overline{C}_{12} \cup B_{\alpha+1}$. See Figure 3(b).

There are at most $d_1 + 2 - \alpha$ terminals in $B_{\alpha+1} = K^{d_1-\alpha} \times K^2$, and every row in $A_{\alpha+1} = K^{d_1-\alpha} \times K^{d_2-1}$ has a free entry. Hence, Claim 2.10 applies, and there is a linkage formed by X-valid paths from the terminals in $B_{\alpha+1}$, other than s_1 and t_1 , to free entries in $A_{\alpha+1}$. For every such path L''_i , if $s'_i \in V(L''_i) \cap V(B_{\alpha+1})$, let $\{\bar{s}_i\} := V(L''_i) \cap V(A_{\alpha+1})$, and if $t'_i \in V(L''_i) \cap V(B_{\alpha+1})$, let $\{\bar{t}_i\} := V(L''_i) \cap V(A_{\alpha+1})$. Besides, for $s'_i \in \bar{C}_{12}$ (respectively $t'_i \in \bar{C}_{12}$), let $\bar{s}_i = s'_i$ (respectively, $\bar{t}_i = t'_i$). This produces a new linkage problem $Y'' := \{\{\bar{s}_2, \bar{t}_2\}, \dots, \{\bar{s}_k, \bar{t}_k\}\}$ in \bar{C}_{12} whose feasibility implies that of Y', and therefore that of Y in G, by completing each linkage problem with the path L_1 . See Figure 3(c).

Now we have a new linkage problem Y'' in \bar{C}_{12} with (k-1) pairs. The solution of Y'' in \bar{C}_{12} implies a solution of the linkage problem Y in G. To link the pairs of Y'' use the (k-1)-linkedness of \bar{C}_{12} .

Finally assume that $\alpha = 1$. Then there are exactly $d_1 + 1$ terminals in C_{12} and at most $d_2 - 1$ terminals in \overline{C}_{12} . In a first scenario suppose that either both entries in $B_1 \setminus B_2$ are nonterminals or each terminal other than s_1 and t_1 in $B_1 \setminus B_2$ is adjacent to a nonterminal in B_2 . Then we can send these terminals in $B_1 \setminus B_2$ to B_2 . In the second scenario, suppose that there is a terminal s_i ($i \neq 1$) in $B_1 \setminus B_2$ whose neighbours in B_2 are all terminals. Then the column of s_i in B_1 would contain exactly d_1 terminals, including s_i . We send s_i to a free entry in A_1 , in the same row as s_i (the first row of A_1): if this free entry didn't exist, then s_i would be adjacent to the $d_2 - 1$ terminals in A_1 and the $d_1 - 1$ terminals in B_2 . Since there are $d_1 + d_2$ terminals in total, it would follow that s_i is adjacent to t_i . This contradiction shows that we can send s_i to a free entry in A_1 .

In both scenarios, it remains to send the terminals other than s_1 and t_1 in $B_2 = K^{d_1-1} \times K^2$ to $A_2 = K^{d_1-1} \times K^{d_2-1}$. To do so, we reason as in the subcase $2 \le \alpha \le d_1 - 2$. It follows that there are at most $d_1 + 2 - 1$ terminals in B_2 , and that every row in A_2 has a free entry. Claim 2.10 applies again and gives a linkage formed by X-valid paths from the terminals in B_2 , other than s_1, t_1 , to free entries in A_2 .

With all the terminals other than s_1 and t_1 in \bar{C}_{12} , therein we have a new linkage problem Y' with k-1 pairs whose solution in \bar{C}_{12} implies a solution of the linkage problem Y in G. To solve Y' in \bar{C}_{12} use the (k-1)-linkedness of \bar{C}_{12} .

By symmetry, we also have the result if there are at most $d_2 + 2$ terminals in R_{12} , including $\{s_1, t_1\}$.

Case 1. The subgraph C_{12} contains at least $d_1 + 3$ terminals, including $\{s_1, t_1\}$.

This case reduces to the previous case. If C_{12} contains at least $d_1 + 3$ terminals then R_{12} contains at most $d_2 - 3 + 4 = d_2 + 1$ terminals, since there are four entries shared by C_{12} and R_{12} . Because we make no distinction between columns and rows, this case is already covered. This completes the proof of the theorem.

3 Duals of cyclic polytopes

There is a close connection between duals of cyclic *d*-polytopes with d + 2 vertices and Cartesian products of complete graphs.

The moment curve in \mathbb{R}^d is defined by $x(t) := (t, t^2, ..., t^d)$ for $t \in \mathbb{R}$, and the convex hull of any n > d points on it gives a cyclic polytope C(n, d). The combinatorics of a cyclic

polytope, the face lattice of the polytope faces partially ordered by inclusion, is independent of the points chosen on the moment curve. Hence we talk of the cyclic d-polytope on n vertices [6, Example 0.6].

For a polytope P that contains the origin in its interior, the *dual polytope* P^* is defined as

$$P^* = \{ y \in \mathbb{R}^d \mid x \cdot y \le 1 \text{ for all } x \text{ in } P \}.$$

If P does not contain the origin, we translate the polytope so that it does. Translating the polytope P changes the geometry of P^* but not its face lattice. The face lattice of P^* is the inclusion reversed face lattice of P. In particular, the vertices of P^* correspond to the facets of P, and the edges of P^* correspond to the (d-2)-faces of P. The *dual graph* of a polytope P is the graph of the dual polytope, or equivalently, the graph on the set of facets of P where two facets are adjacent in the dual graph if they share a (d-2)-face.

Duals of cyclic *d*-polytopes are simple *d*-polytopes. It is also the case that the dual of a cyclic *d*-polytope with d + 2 vertices can be expressed as $T(\lfloor d/2 \rfloor) \times T(\lceil d/2 \rceil)$ ([6, Example 0.6]). From this observation and Theorem 2.1 the next corollary follows at once.

Corollary 3.1. Duals of cyclic polytopes with d + 2 vertices are $\lfloor d/2 \rfloor$ -linked for every $d \ge 2$.

ORCID iDs

Leif K. Jørgensen D https://orcid.org/0000-0003-4922-3937 Guillermo Pineda-Villavicencio D https://orcid.org/0000-0002-2904-6657 Julien Ugon D https://orcid.org/0000-0001-5290-8051

References

- R. Diestel, *Graph Theory*, volume 173 of *Graduate Texts in Mathematics*, Springer-Verlag, Berlin, 5th edition, 2017, doi:10.1007/978-3-662-53622-3.
- [2] S. Gallivan, Disjoint edge paths between given vertices of a convex polytope, J. Comb. Theory Ser. A 39 (1985), 112–115, doi:10.1016/0097-3165(85)90086-x.
- [3] J. E. Goodman and J. O'Rourke (eds.), *Handbook of Discrete and Computational Geometry*, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 1997, http://www.csun.edu/~ctoth/Handbook/HDCG3.html.
- [4] G. Mészáros, On linkedness in the Cartesian product of graphs, *Period. Math. Hungar.* 72 (2016), 130–138, doi:10.1007/s10998-016-0113-8.
- [5] S. Špacapan, Connectivity of Cartesian products of graphs, *Appl. Math. Lett.* 21 (2008), 682–685, doi:10.1016/j.aml.2007.06.010.
- [6] G. M. Ziegler, *Lectures on Polytopes*, volume 152 of *Graduate Texts in Mathematics*, Springer-Verlag, New York, 1995, doi:10.1007/978-1-4613-8431-1.