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Two Stage Adaptive Cluster Sampling based on
Ordered Statistics
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Abstract

The estimation problem on sparsely distributed populations using adaptive clus-
ter sampling (ACS) is discussed. In the first phase of ACS, two stage sampling is
used in which primary and secondary sampling units are selected using simple ran-
dom sampling without replacement. The idea of Thompson (1996) is introduced in
order to choose an appropriate fixed value of pre-specified condition, which might
represent the number of rare species, before conducting the survey by the use of or-
der statistics. Different estimators of the population mean under the two possible
schemes (open and closed boundaries of primary sampling units) are studied and the
Rao-Blackwell theorem for improving these estimators is also used. Numerical illus-
trations, one on real life data and the other based on simulation study, are discussed
for these two schemes. This design may be quite useful in environmental, forestry
and other areas of research dealing with rare, endangered or threatened species.

1 Introduction
Thompson (1990) introduced Adaptive Cluster Sampling (ACS), as an efficient sampling
procedure for estimating totals/means of rare and clustered populations based upon the
observation that when rare species are found in nature, the presence of such species is
likely to reveal in neighbouring sites also. Under this procedure, for example, to estimate
the total number of rare plant species in a forest, the forest could be partitioned into even-
sized units (quadrats). Select some quadrats by an appropriate sampling scheme, say
by simple random sampling (SRS), and count the number of rare plants, say y, therein.
Whenever a quadrat satisfies a previously specified condition C, say at least one plant
is recorded, i.e., C = y : y ≥ 1, neighbouring quadrats are added to the sample. If, at
least one plant is again found in one of the added quadrats, then all the neighbourhoods
of that quadrat are added to the sample, and so on. Commonly, the condition C consists
of a fixed or pre-specified value but in many studies it is difficult to pick this value before
conducting the survey.

1Division of Forest Statistics, Indian Council of Forestry Research and Education, Dehradun, India;
gchandra23@yahoo.com

2Department of Statistics, Kumaun University, Almora, India; kumarn amo@yahoo.com
3Division of Forest Statistics, Indian Council of Forestry Research and Education, Dehradun, India;

nautiyalr@icfre.org

mailto:gchandra23@yahoo.com
mailto:kumarn_amo@yahoo.com
mailto:nautiyalr@icfre.org


44 Chandra et al.

Inappropriate selection of C may result in under or over sampling, leading to the
possibility of imprecise estimation of the population parameters. In order to overcome
this problem, Thompson (1996) proposed the idea of using order statistics to choose C.
Christman and Lan (2001) suggested that C may be chosen based upon the proportion
of rare species found in the initial sample. Another related problem is of deciding the
final sample size. Brown (1994) used sequential sampling in which the sample is selected
sequentially until the final sample size attains its pre-specified value. Another important
design to control the final sample size was suggested by Salehi and Seber (1997). It is
based on primary and secondary units in which the subsamples are not allowed to cross
the boundary of primary units even though the unit satisfying the condition C were found
beyond the boundary of primary units.

The procedure for selecting the initial sample plays an important role in increasing
the precision of the estimates of mean and variance. Most of the researchers used SRS.
Other designs are systematic sampling (Acharya et al., 2000), stratified sampling (Thomp-
son, 1991), inverse sampling (Christman and Lan, 2001), double sampling (Félix-Medina
and Thompson, 2004), cluster sampling with or without replacement of clusters (Dryver,
1999; Salehi and Seber, 1997) and ranked set sampling (Chandra et al., 2011). For sur-
vey situations in which the population consists of primary sampling units (PSUs) and
each PSU consists of secondary sampling units (SSUs), the two stage sampling scheme
proposed by Mahalanobis (1944) may be appropriate.

This paper deals with survey situations in which two-stage sampling methods for se-
lecting the initial sample is found to be appropriate and it is difficult to pick a requisite
value of C before the survey. SRS without replacement (SRSWOR) is used to select
PSUs and SSUs. The idea of Thompson (1996) is used in which C is chosen relative to
the observed sample values based on the sample order statistics. For example, in forest
surveys, the number of rare plant species is measured at each quadrat in an initial sample
of 50 quadrats. Additional neighbourhood quadrats are then added to the sample of the
top 10 quadrats, i.e., those quadrats with the 10 largest order statistics in terms of counts
of rare plants. If any of the added quadrats also have large values, still more sites may be
added to the sample and so on.

The proposed design along with the notations used is described in Section 2. Section 3
deals with the various estimators of the population mean. Improvement of the estimators
using Rao-Blackwell theorem is discussed in Section 4. In Section 5, the utility of the pro-
posed design is demonstrated with the help of examples. The conclusions of the present
study are discussed in Section 6.

2 The Design used and Notations
In what follows, the population is partitioned into PSUs (layout at Figure 1) so as to
maintain as much as possible the homogeneity between and heterogeneity within these
units, with respect to the y-values. Operational convenience may also be a criterion for
PSU construction. Notations and structure of the neighbourhood used in this paper are
given in Table 1 and Figure 2, respectively. The neighbourhoods do not depend on the
y-values and are symmetric in relation.

The proposed design for estimating population mean µ or equivalently population
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PSU 1 PSU 2 · · · PSU i · · · PSU M
SSU 1 y11 y21 · · · yi1 · · · yM1

SSU 2 y12 y22 · · · yi2 · · · yM2

· · · · · · · · · · · · · · · · · · · · ·
SSU j y1j y2j · · · yij · · · yMj

· · · · · · · · · · · · · · · · · · · · ·
SSU Mi y1M1 y2M2 · · · yiMi

· · · yMMM

Figure 1: Population layout showing y-values of SSUs for two stage sampling

Figure 2: Neighborhood of i-th SSU for the proposed design

total Y is explained as under:

1. Select an initial sample of m PSUs using SRSWOR.

2. Select mi SSUs from the selected i-th PSU (i = 1, 2, . . . ,m) using SRSWOR.

3. Add neighbourhoods of those selected SSUs satisfying C = {y : y ≥ y(r)}, where
y(r) is the r-th sample order statistics, such that y(1) ≤ y(2) ≤ · · · y(r) · · · ≤ y(n). If
ties occur between two order statistics, the first value in the serial number of PSUs
and SSUs therein would be considered as the lower order statistic.

4. If any of added SSUs satisfies C, their neighbourhoods are also added. This process
is continued until a cluster that has a boundary comprising of SSUs that do not
satisfy C (also called edge SSUs) is obtained.

The final sample then consists of n (not necessarily distinct) clusters generated by each
SSU selected in the initial sampling stage.

A network Ai for i-th SSU is defined to be the cluster generated by i but excluding
edge SSUs. If i is the only SSU in a cluster satisfying C, then Ai consists of just i-th
SSU, i.e., network of size one. If initially selected i-th SSU does not satisfy C, then Ai is
a network of size one, as its selection does not lead to the inclusion of any other SSUs.

N population units are partitioned into disjoint networks, such that selection in the
initial sample of any SSU in a network will result in inclusion in the final sample of
all units in that network. As the final sample depends on y(r), it follows that y(r) or
equivalently C depend on the initially selected sample of SSUs. This implies that the
network structure for the population induced by C is not fixed. Suppose, k-th network
of the population is denoted by Ak (k = 1, 2, . . . , Kir) having bk units based upon C =
{y : y ≥ y(r)}.
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Table 1: Notations used for the design

M Total number of
PSUs in the
population

Ȳ ∗i = 1
Mi

∑Mj

j=1 yij Mean per SSUs in
i-th PSU

Mi Size of i-th PSU Ȳ ∗ib = 1
M

∑M
i=1 Ȳ

∗
i Mean between the

PSU means

m Sample size of
PSUs

y∗i =
∑mi

j=1 yij Total y-values of
the initial sampled
SSUs of i-th PSU

mi Initial sample size
from i-th PSU

ȳ∗i = 1
mi

∑mi

j=1 yij Initial sample mean
per SSU of i-th
PSU

N =
∑M

i=1Mi Total number of
SSUs in the
population

Y =
∑M

i=1 Y
∗
i Total y values of

SSUs of the
population

n =
∑m

i=1mi Initial sample size
of SSUs

µ = Y
N

=
1
N

∑M
i=1MiȲ

∗
i

Population mean
per SSU

yij y-value of the j-th
SSU in i-th PSU

s′ = NCn Number of possible
initial samples

Y ∗i =
∑Mi

j=1 yij Total y-values of
the i-th PSU

3 Estimators of Population Mean

3.1 Estimators without use of Adaptive Scheme
Two estimators of µ which do not make use of the observations added adaptively to the
sample have been considered. The first estimator is the mean of the initial sample means
per SSU i.e.

t0 =
1

m

m∑
i=1

ȳ∗i

This estimator is biased as

E(t0) = E1 E2(t0) = E1

(
1

m

m∑
i=1

E2 ȳ
∗
i

)
,

where E2 denotes the averaging over all possible units of a fixed PSU and E1 is the av-
eraging over all selected PSUs. As all SSUs of a fixed PSU have equal probability of
selection, then

E(t0) = E1

(
1

m

m∑
i=1

Ȳ ∗i

)
= Ȳ ∗ib 6= µ;
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t0 is unbiased only when all Mi’s are equal.
The variance of the above estimator, is given by

Var(t0) = Var1 (E2(t0)) + E1 (Var2(t0)) ,

where Var2 and Var1 represent the variances over all selected SSUs of a given PSU and
the variance over all selected PSUs, respectively.

Since E2(t0) = 1
m

∑m
i=1 Ȳ

∗
i and Var1

(
1
m

∑m
i=1 Ȳ

∗
i

)
is the variance of the sample mean

per PSU for one stage simple random sample of m SSUs, hence by analogy to SRSWOR

Var1

(
1

m

m∑
i=1

Ȳ ∗i

)
=
M −m
Mm

S2
1 ,

where

S2
1 =

1

M − 1

M∑
i=1

(Ȳ ∗i − Ȳ ∗ib)2.

Furthermore, as all contributions from cross-product term vanish, therefore,

Var2(t0) =
1

m2

m∑
i=1

Var2(ȳ
∗
i ) =

1

m2

m∑
i=1

Mi −mi

Mimi

S2
2i.

Here,

S2
2i =

1

Mi − 1

Mi∑
j=1

(yij − Ȳ ∗i )2

is the variance among SSUs of i-th PSU. Now,

E1(Var2(t0)) =
1

m2

m∑
i=1

E1

(
Mi −mi

Mimi

S2
2i

)
=

1

mM

M∑
i=1

(
Mi −mi

Mimi

S2
2i

)
therefore

Var(t0) =
M −m
Mm

S2
1 +

1

mM

M∑
i=1

(
Mi −mi

Mimi

S2
2i

)
.

To find an unbiased estimator of Var(t0), theorem 11.2 of Cochran (1977, p. 301) is
used. It is given by

V̂ar(t0) =
M −m
Mm

s21 +
m∑
i=1

(
Mi −mi

Mimi

s22i

)
,

where

s21 =
1

m− 1

m∑
i=1

(ȳ∗i − ȳ∗ib)2, ȳ∗ib =
1

m

m∑
i=1

ȳ∗i , s22i =
1

mi − 1

mi∑
j=1

(yij − ȳ∗i )2

Another, sample mean estimator can be obtained for the two stage sampling scheme
as

t1 =
1

m

m∑
i=1

t1i,
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where

t1i =
MMi

N
ȳ∗i .

This estimator is unbiased as

E(t1i) = E1 E2

(
MMi

N
ȳ∗i

)
=
M

N
E1(Y

∗
i ) =

1

N

M∑
i=1

Y ∗i = µ

Furthermore,

Var(t1) = Var1(E2(t1)) + E1(Var2(t1))

= Var1

(
M

Nm

m∑
i=1

Y ∗i

)
+

M2

N2m2
E1

(
m∑
i=1

M2
i Var2(ȳ

∗
i )

)

=
M2

N2
Var1

(
1

m

m∑
i=1

Y ∗i

)
+

M2

N2m2
E1

(
m∑
i=1

Mi
Mi −mi

mi

S2
2i

)
.

Or

Var(t1) =
M(M −m)

N2m

1

M − 1

M∑
i=1

(
Y ∗i −

Y

M

)2

+
M

N2m

M∑
i=1

Mi(Mi −mi)

mi

S2
2i

3.2 Estimators under Open Boundary

An open boundary means, the boundaries of PSUs are ignored while including the neigh-
bourhoods of those SSUs whose y-values exceed y(r), for some r. Thus the cluster gener-
ated by a SSU may contain the SSUs from two or more PSUs. Suppose the final sample
is the unordered set s = {s1, s2}, where s1 is the set of n unordered labels from the initial
sample, and s2 is the set of distinct unordered labels from the remainder of the sample s.
It is clear that all SSUs from s are distinct as the initial sampling procedure is SRSWOR.

3.2.1 Modified Type of Horvitz-Thompson (HT) Estimator

Using the idea introduced in Thompson (1990), a modified type of HT estimator of µ in
terms of networks can be written as

t2(OB) =
1

s′

s′∑
i=1

t2(OB)i,

where
s′ = NCn

and

t2(OB)i =
1

N

Kir∑
k=1

y∗∗k Jk
πk

.
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πk = Partial inclusion prabability that the SSU belonging to Ak is included in s =
Probability that s1 intersect Ak

= 1−

((
N−bk

n

)(
N
n

) )

Indicator variable

Jk =

{
1 if s1 intersects Ak

0 otherwise

and y∗∗k is the sum of the y-values for Ak.
Practically, it is not possible to calculate t2(OB)i for each possible initial sample.

Therefore, the estimator t2(OB) cannot be unbiased based upon a particular initial sam-
ple. It is unbiased provided all Kir’s are equal, however, t2(OB) = t2(OB)i|i-th initial
sample may be considered as an estimator of µ. Now

E
(
t2(OB) = t2(OB)i|i-th initial sample

)
= µ as E(Jk) = πk.

To calculate the variance of t2(OB) = t2(OB)i|i-th initial sample, we applied the idea
of Thompson (1990) and get

Var
(
t2(OB) = t2(OB)i|i-th initial sample

)
=

1

N2

(
Kir∑
j=1

Kir∑
k=1

y∗∗j y
∗∗
k

(
πjk − πjπk
πjπk

))
,

where πjk = P (Jj = 1, Jk = 1), the partial inclusion probability that both Aj and Ak

intersect s1

= P (Jj = 1) + P (Jk = 1)− P (Jj = 1 or Jk = 1)

= πj + πk − (1− P (Jj 6= 1, Jk 6= 1))

= 1−
((

N−bj
n

)
+
(
N−bk

n

)
−
(
N−bj−bk

n

))(
N
n

)
with πjj = πj as P (Jj 6= 1, Jk 6= 1) = P (j-th and k-th network do not intersect) =(
N−bj−bk

n

)
/
(
N
n

).
An unbiased estimator of the variance of t2(OB) = t2(OB)i|i-th initial sample is

V̂ar
(
t2(OB) = t2(OB)i|i-th initial sample

)
=

1

N2

(
Kir∑
j=1

Kir∑
k=1

y∗∗j y
∗∗
k

(
πjk − πjπk
πjkπjπk

))

provided that none of the joint probabilities are zero.
Just as the HT estimator has lower variance when the y-values are approximately

proportional to the inclusion probabilities, the estimator t2(OB) should have low variance
when the network totals y∗∗k ’s are proportional to πk.
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3.2.2 Modified Type of Hansen-Hurwitz (HH) Estimator

Another type of estimator, as suggested by Thompson (1990), which is a modified HH
type estimator, was used under this design. As we know the selection probability may
not be known for every SSU in the sample. An unbiased estimator can be formed by
modifying the HH estimator by making use of observations having y-values even less
than or equal to y(r). This estimator depends upon the total of n networks (which may
not be distinct) generated by each SSU of the initial sample. The modified HH type of
estimator in terms of SSUs of s1 can be written as

t3(OB) =
1

n

n∑
k=1

ȳ∗∗k =
1

n

n∑
k=1

∑
j∈Ak

y(j)
bj
.

Here it should be noted that the number of networks is taken to be n instead the
number of distinct networks Kir as taken in t2(OB). The network size, however, may vary
from sample (initial) to sample.

As this estimator does not depend on the network structure of the population induced
by C for additional sampling as well as the number of networks (which are not fixed in
this design) in the population, it does not require the computations of estimators, their
mean square errors (MSEs) etc. on each possible initial samples for unbiasedness, as in
the case of t2(OB). This estimator is unbiased using Chen, Bai and Sinha (2004, theorem
6.1, p. 165) and due to the fact that the initial sampling is SRSWOR.

The variance of t3(OB) is

Var(t3(OB)) =
N − 1

Nn
S2
0

where

S2
o =

1

N − 1

N∑
i=1

(ȳ∗∗i − µ)2 .

An unbiased estimator of Var(t3(OB)) is

V̂ar
(
t3(OB)

)
=

N − n
Nn(n− 1)

n∑
k=1

(
ȳ∗∗k − t3(OB)

)2

3.3 Estimators under Closed Boundary

In the closed boundary case we do not allow the additional SSUs to cross the boundaries
of the PSUs during the final sample selection. Hence, the networks do not always consist
of the SSUs from two or more PSUs. The order statistics based on the y-values of the
SSUs for each PSU are independent and made under similar guidelines as for the open
boundary case. Without any loss of generality, we assume that the first m PSUs are
selected and first mi SSUs are selected from the selected PSUs.
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3.3.1 Modified Type of HT Estimator

The modified HT type of estimator under this case is

t2(CB) =
M

N

m∑
i=1

ηi
m
,

where ηi is sum of y-values of networks intersected by initial sample of i-th PSU divided
by the corresponding intersection probabilities.

If we denote by Ki, y∗∗ik , and πik, the number of distinct networks in the i-th PSU, sum
of y-values associated with network k, and the probability that the initial sample of i-th
PSU intersect network k, respectively, then,

ηi =

Ki∑
k=1

y∗∗ik

(
Jik
πik

)

where

Jik =

{
1 if s1 intersects network k of i-th PSU
0 otherwise.

We note that E(ηi) = Y ∗i and E(Jik) = πik. Therefore t2(CB) is an unbiased estimator
of µ. We have

Var(t2(CB)) =
M2

N2m2

m∑
i=1

Var(ηi) =
M2

N2m2

m∑
i=1

Vi

where

Vi =

(
Ki∑
j=1

Ki∑
k=1

y∗∗ij y
∗∗
ik

(
πijk − πijπik
πijkπijπik

))

and

πijk = P (Jij = 1, Jik = 1)

= 1−
(
Mi−bij

mi

)
+
(
Mi−bik

mi

)
−
(
Mi−bij−bik

mi

)(
Mi

mi

) ,

the probability that the initial sample intersects the networks j and k both of the i-th PSU.
Here, πijk = πik and Vi = 0, if Ki = 0. The unbiased estimator of variance of t2(CB) is

V̂ar(t2(CB)) =
M2

N2m2

m∑
i=1

 K′i∑
j=1

K′i∑
k=1

y∗∗ij y
∗∗
ik

(
πijk − πijπik
πijkπijπik

)
where K ′i is the number of distinct networks intersected by initial sample in the i-th PSU
and none of the joint probabilities πijk is zero.
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3.3.2 Modified Type of HH Estimator

The modified HH estimator (t3(CB)) can also be obtained by averaging

t3(CB)i =
1

mi

mi∑
k=1

ȳ∗∗k .

That is

t3(CB) =
1

m

m∑
i=1

t3(CB)i.

The variance of t3(CB)i is

Var
(
t3(CB)i

)
=
Mi −mi

Mimi

S2
3i

where

S2
3i =

1

Mi − 1

Mi∑
j=1

(
yij − Ȳ ∗∗i

)2
.

As t3(CB)i are independent, we have

Var
(
t3(CB)

)
=

1

m

m∑
i=1

Var
(
t3(CB)i.

)
An unbiased estimator of Var

(
t3(CB)i

)
is

V̂ar
(
t3(CB)i

)
=
Mi −mi

Mimi

mi∑
j=1

(yij − ȳ∗∗i )2 .

Hence, unbiased estimator of Var
(
t3(CB)

)
is

V̂ar
(
t3(CB)

)
=

1

m2

m∑
i=1

V̂ar
(
t3(CB)i

)
.

4 Improvement of the Estimators using Rao-Blackwell
Method

Unbiased estimators t1, t2(OB), t3(OB), t2(CB), and t3(CB) are not functions of the mini-
mal sufficient statistic, say D. They may be improved by using the Rao-Blackwell the-
orem which involves taking conditional expectations given D. Here, we can use D =
{(k, yk) : k ∈ s}, the unordered set of distinct, labelled observations, as suggested by
Basu (1969) for a finite population.

Starting with any unbiased estimator t = t1, t2(OB), t3(OB), t2(CB), t3(CB), we take
tRB = E (t|D). Let n′ denote the number of distinct units in the final sample s. As
the initial sample s1 is selected without replacement there is a total of G =

(
n′

n

)
possible
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combinations of n distinct units from the n′ in the sample. Suppose that these combina-
tions are labelled in an arbitrary way by g = 1, 2, . . . , G. Let tg denote the value of twhen
s1 consists of combination g and let V̂arg(t) denote the value of the unbiased estimator
V̂ar(t), when computed using the g-th combination.

An initial sample that gives rise through the design to a given value D of the minimal
sufficient statistic is called compatible with D. Let the g-th indicator variable (Ig) take
the value 1 if the g-th combination can give rise to D (i.e., compatible with D), and 0
otherwise. The number of compatible combinations is

ξ =
G∑

g=1

Ig.

The estimator t may be improved using the Rao-Blackwell theorem and is the average
of the values of t obtained over all those initial samples that are compatible with D. This
improved estimator tRB is

tRB = E (t|D) =
1

ξ

G∑
g=1

tgIg

and its variance is given by

Var(tRB) = Var(t)− E (Var (t|D)) .

An unbiased estimator of the variance of tRB due to Thompson (1990) is given by

V̂ar (tRB) =
1

ξ

G∑
g=1

(
V̂ar(tg)− (tg − tRB)2

)
Ig.

From the above, the steps to improve t using Rao-Blackwell theorem can be summa-
rized as:

1. List all possible combinations of initial samples of the same size taken from final
sample swhich are compatible withD. Let Ψ denote the set of such initial samples.

2. Calculate t for all the samples generated from above initial sample Ψ.

3. The values of the Rao-Blackwell version of any t are obtained by averaging the
value of the corresponding estimator over the samples generated under step (2)
which give tRB.

For D = {(k, yk) : k ∈ s} and initial sample s1, the improved estimator can be
obtained by averaging t for all those initial samples which give rise to exactly the same
final sample s. For large samples the calculation of tRB are difficult due to large number
of such initial samples. In Section 5.2, we consider a simulation study in which the tRB’s
are calculated.
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0 2 2 2 0 1 0 0 0 2
1 1 3 1 0 0 0 0 0 0
0 0 1 1 0 0 2 0 1 3
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 2 0 2 1
3 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
2 0 0 1 2 3 1 0 2 2
1 0 0 1 1 0 0 0 0 0
0 0 0 3 3 0 0 0 1 3

Figure 3: Occurrence of R. Edgeworthii in eastern Himalaya with 10 PSUs and 10 SSUs in
each PSU

0 2* 2* 2* 0 1 0 0 0 0
1 1 3* 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 2 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 2* 3* 1 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 3** 3** 0 0 0 1 0

Figure 4: Final sample selection based on y(n) and y(n−1) under open boundary

5 Numerical Comparisons

5.1 Based upon Empirical Study

An example is illustrated in Figure 3, giving the occurrence data (Menon et al., 2012) of
Rhododendron species (R. Edgeworthii), in which the aim was to estimate its occurrence
in Indian Eastern Himalaya. The study area was divided into 10 × 10 square quadrats
(SSUs). Ten columns represent PSUs and the y-value of i-th SSU represents the counts
of this species in each cell. Two values of C, y(n) (largest order statistics) and y(n−1), are
taken for the purpose of demonstration and computations. Three PSUs (“bold” outline)
and five SSUs from selected PSUs (with “underlined” outline) were selected as per the
procedure. It is considered that the boundaries of PSUs are open for the selection of
SSUs under adaptive scheme of the design. The final sample (networks plus edge SSUs)
based on y(n) = y(15) = 3 (shown by “**”) and y(n−1) = y(14) = 2 (shown by “*” and
“**”) are shown in Figure 4. SSUs having black background represent the edge SSUs.
There are total 1 network based on y(15) and total 3 networks based on y(14). In the closed
boundary case, the final sample based on y(n) and y(n−1) is shown in Figure 5 with the
same representations of the networks based upon y(n) and y(n−1) and edge SSUs, as shown
in open boundary case.
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0 2* 2 2 0 1 0 0 0 0
1 1 3 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 2 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 2* 3 1 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 3 3** 0 0 0 1 0

Figure 5: Final sample based on y(n) and y(n−1) under closed boundary

In our notations, we have N = 100, M = Mj = 10 (j = 1, 2, . . . , 10), m = 3,
mi = 5 (i = 1, 2, 3) and use of neighbourhood leads to Figure 2, but for the case of
closed boundaries it consists only of north and south SSUs. In this example we have
carried out additional sampling in the vicinity of the largest (y(15)) and the second largest
(y(14)) order statistics of the initial sample. The population mean and variance are 0.630
and 0.882 respectively. Calculations for open and closed boundaries using Figure 4 and
Figure 5 are given in the Table 2.

Table 2: Result of performance

Open boundaries

Condition t2(OB) Var(t2(OB)) t3(OB) Var(t2(OB))

C = {y : y ≥
y(n) = 3}

0.615 0.055 0.600 0.055

C = {y : y ≥
y(n−1) = 2}

0.714 0.093 0.650 0.065

Closed boundaries

Condition t2(CB) Var(t2(CB)) t3(CB) Var(t2(CB))

C = {y : y ≥
y(n) = 3}

0.605 0.030 0.605 0.130

C = {y : y ≥
y(n−1) = 2}

0.605 0.030 0.605 0.130

Initial estimators

t0 Var(t0) t1 Var(t1)

0.600 0.046 0.600 0.046

From Table 2, it is seen that both the initial estimators producing the equal mean
estimates due to the equal sizes of each PSU. The HT type estimators are producing more
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than or equal yield than that of the HH type estimators. The main reason might be that
in the calculation of HT type estimators, two overlapping networks are considered only
once which does not reduce the values while averaging as in the HH type of estimators.
In this example, it is seen that some of the networks generated by the initial sample are
overlapped. The networks which are overlapped have smaller y-values than the non-
overlapped networks. However, it may not true in general. Considering that there is not
much difference in these two types of estimators.

5.2 Based upon Simulation
A simulation to see the performance of the improved estimators using Rao-Blackwell
theorem was conducted. The three columns each of size three were generated using the
R software from the Pareto distribution with the shape and scale parameters of 3 and 5,
respectively. The R code for the simulation is given in the Appendix.

Table 3 shows the population consisting N = 9, M = Mi = 3 (i = 1, 2, 3). Here, we
used m = 2, mi = 1 (i = 1, 2) and the additional sampling carried out in the vicinity of
C : y = y(1) ≥ 6.0000. With the proposed design, there are 27 possible initial samples
(Table 4) with the y-values of SSU from selected first PSU (SSU 1) and SSU from se-
lected second PSU (SSU 2). The population mean and variance are 9.6570 and 31.3200
respectively.

Table 3: 3 × 3 populations from the Pareto (3, 5) distribution

A1 A2 A3

5.0296 16.7234 6.6590
22.0306 10.8277 7.7327
5.5818 5.0781 7.2504

Table 4 provides all possible initial Samples (SSU 1, SSU 2) with the value of esti-
mates, bias and MSE. The values of t0 and t1 for all the initial samples results to the same
values and therefore only t1 is mentioned. Consider our fourth initial sample with y-
values (22.0306, 16.7234) and y(1) = 16.7234 ≥ 6.0000. Since both SSUs are satisfying
C, the final sample under open boundary case consists of the whole population consist-
ing of a network containing the SSUs (22.0306, 16.7234, 10.8277, 6.6590, 7.7327 and
7.2504). The computations of the estimators give t2(OB) = (71.2238/0.9259)/9 = 8.55
in which network total is 71.2238 and π1 = π2 = 0.9259 and t3(OB) = 1/2(71.2238/6 +
71.2238/6) = 11.87. The Rao-Blackwell version of any of the estimators for this partic-
ular sample are obtained by averaging the value of the corresponding estimator over all
samples except the 3-rd and the 9-th sample that are not compatible with D. For the case
of closed boundary case t2(CB) = 1/6(66.0918 + 41.3266) = 17.90 in which η1 = 0.33
and η2 = 0.67 and t3(CB) = 1/2 (22.0306 + (16.7234 + 10.8277)/2) = 17.90.

All the estimators are unbiased in this example. The implementation of Rao-Black-
wellization in the open boundary case substantially reduces the MSEs of both the esti-
mators of adaptive scheme. However, the implementation of Rao-Blackwellization does
not affect the case of closed boundary as far as the MSE is concerned. It is predicted that
MSE may reduce for the large population.
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Table 4: All possible initial samples (SSU1, SSU 2) and values of different estimators

SN SSU 1 SSU 2 t1 t2(OB) t2(CB) t3(OB) t3(CB) t2(OB)RB t2(CB)RB t3(OB)RB t3(CB)RB

1 5.0296 16.7234 10.88 11.06 8.45 9.40 9.40 10.01 10.01 9.40 9.40
2 5.0296 10.8277 7.93 11.06 8.45 9.40 9.40 10.01 10.01 9.40 9.40
3 5.0296 5.0781 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05
4 22.0306 16.7234 19.38 8.55 11.87 17.90 17.90 10.01 10.01 17.90 17.90
5 22.0306 10.8277 16.43 8.55 11.87 17.90 17.90 10.01 10.01 17.90 17.90
6 22.0306 5.0781 13.55 11.09 8.47 13.55 13.55 10.01 10.01 13.55 13.55
7 5.5818 16.7234 11.15 11.34 8.73 9.68 9.68 10.01 10.01 9.68 9.68
8 5.5818 10.8277 8.20 11.34 8.73 9.68 9.68 10.01 10.01 9.68 9.68
9 5.5818 5.0781 5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.33

10 5.0296 6.6590 5.84 11.06 8.45 6.12 6.12 10.01 10.01 6.12 6.12
11 5.0296 7.7327 6.38 11.06 8.45 6.12 6.12 10.01 10.01 6.12 6.12
12 5.0296 7.2504 6.14 11.06 8.45 6.12 6.12 10.01 10.01 6.12 6.12
13 22.0306 6.6590 14.34 8.55 11.87 14.62 14.62 10.01 10.01 14.62 14.62
14 22.0306 7.7327 14.88 8.55 11.87 14.62 14.62 10.01 10.01 14.62 14.62
15 22.0306 7.2504 14.64 8.55 11.87 14.62 14.62 10.01 10.01 14.62 14.62
16 5.5818 6.6590 6.12 11.34 8.73 6.40 6.40 10.01 10.01 6.40 6.40
17 5.5818 7.7327 6.66 11.34 8.73 6.40 6.40 10.01 10.01 6.40 6.40
18 5.5818 7.2504 6.42 11.34 8.73 6.40 6.40 10.01 10.01 6.40 6.40
19 16.7234 6.6590 11.69 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
20 16.7234 7.7327 12.23 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
21 16.7234 7.2504 11.99 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
22 10.8277 6.6590 8.74 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
23 10.8277 7.7327 9.28 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
24 10.8277 7.2504 9.04 8.55 11.87 10.49 10.49 10.01 10.01 10.49 10.49
25 5.0781 6.6590 5.87 11.09 8.47 6.15 6.15 10.01 10.01 6.15 6.15

continued . . .
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. . . continued

SN SSU 1 SSU 2 t1 t2(OB) t2(CB) t3(OB) t3(CB) t2(OB)RB t2(CB)RB t3(OB)RB t3(CB)RB

26 5.0781 7.7327 6.41 11.09 8.47 6.15 6.15 10.01 10.01 6.15 6.15
27 5.0781 7.2504 6.16 11.09 8.47 6.15 6.15 10.01 10.01 6.15 6.15

Mean 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE 14.91 3.17 4.11 13.92 13.92 1.60 1.60 13.92 13.92
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6 Conclusions
The sampling design presented in this paper provides the distribution patterns with den-
sity of rare species for the PSUs under interest. The final sample size may be large or
small in some cases; it can be adjusted through the ‘condition of interest’. The design ef-
ficiency of open and closed boundary cases is not compared due to different sample sizes.
Where cost is not an issue, estimators under open boundary case may be preferred over
the closed boundary case. The calculation of variances of modified Horvitz-Thompson
estimators may be more complicated than that of Hansen-Hurwitz estimators for large
sample size. Hansen-Hurwitz type of estimators for such cases may be preferred. The
Horvitz-Thompson estimator has smaller variance when y-values are approximately pro-
portional to the inclusion probabilities. Similarly, Horvitz-Thompson estimator of open
and closed boundary cases should have low variance when the network totals are propor-
tional to the corresponding partial inclusion probability. Example 1 demonstrates that the
estimators under adaptive designs are closer to the population mean in comparison to the
classical estimators. In the simulation study, we see that the MSE of Rao-Blackwell ver-
sion does not exceed that of the original estimator and the Horvitz-Thompson estimator
gives smaller or equal MSE than the Hansen-Hurwitz estimators. Further, all the adaptive
strategies are more efficient than classical sampling.
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