© Author(s) 2023. CC Atribution 4.0 License Prospalax priscus jaw from the site of Węże 2 (southern Poland, Pliocene) Čeljust vrste Prospalax priscus iz najdišča Węże 2 (južna Poljska, pliocen) Michał CZERNIELEWSKI Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; e-mail: m.czernielewski@twarda.pan.pl, m.czernielewski@int.pl Prejeto / Received 6. 9. 2023; Sprejeto / Accepted 15. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Key words: Pliocene, Rodentia, Muroidea, Anomalomyidae, Węże, paleontology Ključne besede: pliocen, Rodentia, Muroidea, Anomalomyidae, Węże, paleontologija Abstract The ecology and adaptations of the Anomalomyidae (Muroidea) have been long debated in the scientific literature. A jaw belonging to Prospalax priscus (Anomalomyidae) was found at the Late Pliocene site of Węże 2 in southern Poland. The presence of this species at the site agrees with the interpretation of P. priscus and the Anomalomyidae in general as adapted to forest environments. Izvleček V znanstveni literaturi se že dolgo razpravlja o ekologiji in prilagoditvah družine Anomalomyidae (Muroidea). Čeljust, ki pripada vrsti Prospalax priscus (Anomalomyidae), je bila najdena na najdišču Węże 2 iz zgornjega pliocena na južnem Poljskem. Prisotnost te vrste na tem najdišču se ujema z interpretacijo, da sta bili vrsta P. priscus in družina Anomalomyidae na splošno kot prilagojeni gozdnemu okolju. GEOLOGIJA 66/2, 247-255, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.011 cupying many different ecological niches (Lindsay, 1977; Flynn et al, 1985; D’Elía et al., 2003; Musser & Carleton, 2005; Jansa et al., 2009; Schenk et al., 2013; Li et al., 2016). The Anomalomyidae is an ex - ample of a muroid clade of which ecology has been long debated and apparently not well understood (Kalthoff, 2000; Hordijk & de Bruijn, 2009; Nesin & Kovalchuk, 2020). Thus, each newly described discovery may bring about important information clarifying the mode of life of this enigmatic family. The purpose of this paper is to present part of the anomalomyid fossil material (a fragmentary left lower jawbone of Prospalax priscus) collected at the Late Pliocene site of Węże 2, and subsequently to argue that the presence of this species in the Węże 2 assemblage further supports the interpre - tation of the Anomalomyidae as adapted to forest environments. Introduction The Muroidea (mouse-like rodents) is a highly diverse superfamily of rodents (Rodentia) encom - passing around 1750 species, which amounts to circa 75 % of all rodent species. Six main extant clades may be distinguished among the Muroidea, namely the Muridae, the Cricetidae, the Spalaci- dae, the Platacanthomyidae, the Calomyscidae and the Nesomyidae (Michaux et al., 2001; D’Elía et al., 2003; Jansa & Weksler, 2004; Steppan et al., 2004; Musser & Carleton, 2005; Jansa et al., 2009; Schenk et al., 2013). Moreover, the extinct family Anomalomyidae has been recognized, which cla- distically should be supposedly included in the Cricetidae (Bolliger, 1999; López-Guerrero et al., 2017; Nesin & Kovalchuk, 2020). The Muroidea, having probably originated in Eurasia during the Eocene, now inhabit every continent except Ant - arctica, thriving in a wide range of habitats and oc- 248 Michał CZERNIELEWSKI Geological and stratigraphical settings The Węże 2 site is situated on the NW slope of the Zelce Hill (51°05´52˝N 18°47´30˝E; 228 m a.s.l.), near the village of Węże, in the vicinity of the town of Działoszyn (Pajęczno County), in the Wieluń Upland, southern Poland. The site com - prises a vertical crevice etched in the Upper Ju- rassic (Oxfordian) limestone by karst processes, originally infilled with late Pliocene fossiliferous sediment of the terra rossa type. The crevice itself is a part of a larger karst cave system of the hill and is located about 150–200 m north from the better known Węże 1 site, which has been dated at MN 15 (Sulimski, 1962; Stefaniak et al., 2020; Szynkiewicz, 2015 A and B). The locality of Węże 2 was discovered and preliminary explored between 1958 and 1961 by Sulimski. The terra rossa deposits (~3.5 t in total) were collected during field work organized by the Department of Paleozoology of the Polish Acad- emy of Sciences in Warsaw (currently the Insti - tute of Paleobiology PAS) and the Department of Paleozoology of the Wrocław University. Three to four clayey fossiliferous strata of slightly differing lithology were distinguished. These were initially named D1, D2 and D3 by Sulimski (1962) and then renamed D (= upper D1), E (= lower D1), F, and G. Additionaly, there was a stratum of quartz sand at the bottom in which some specimens were also found (this stratum was initially named D4 and then renamed as H). However, only part of the fos - sil material collected has been attributed to a par- ticular stratum and the faunal lists are generally given for the site as a whole, which is also the case for the nearby and better known site of Węże 1. The faunal composition of the Węże 2 fossil assem- blage is currently dated at the late Pliocene (Early Villafranchian) and is considered to belong to the MN 16b zone in the European Land Mammal Age chronology, i.e. 2.9–2.6 mya (Sulimski, 1962; Na - dachowski et al., 2015; Szynkiewicz, 2015 A and B; Stefaniak et al., 2020; Marciszak et al., 2023). The rodents thus far described from Węże 2 include the previously unknown species of a fly- ing squirrel, Pliopetaurista dehneli (originally named Pliosciuropterus dehneli) (Sulimski, 1964; Hordijk & de Bruijn, 2009), the dormice Glis mi- nor and G. sackdillingensis (Czernielewski, 2021), the beavers Trogontherium minus and Dipoides ex gr. problematicus-sigmodus (Czernielewski, 2022) and the porcupine Hystrix refossa (Czernielewski, 2023), see Table 1. Several non-rodent mammalian taxa have also been recognized. These include the lagomorph Hypolagus beremendensis (Fostow- icz-Frelik, 2007), the cervids Croizetoceros ramo- sus and Metacervocerus pardinensis, (Stefaniak, 1995; Stefaniak et al., 2020), the talpid Rzebikia skoczeni, defined based on material from Węże 2 (Rzebik-Kowalska, 1990, 2014; Skoczeń, 1976, 1993; Zijlstra, 2010; Sansalone et al., 2016), a pro - boscidean ?Anancus sp. (Stefaniak et al., 2020), as well as the chiropterans Rhinolopus sp. and Myo- tis s p . ( K o w a l s k i , 1 9 9 0 ) . M o r e o v e r , t h e p r e s e n c e of several carnivorans was attested, including the canids Nyctereutes donnezani and Canis etruscus (Marciszak et al., 2023). In addition to mammals, some other vertebrate remains have been found in Węże 2. Reptiles were represented by the turtle Emys orbicularis an- tiqua, the serpents Elaphe paralongissima and Natrix cf. longivertebrata, as well as the lizards Ophisaurus pannonicus, Anguis cf. fragilis, Lac- erta cf. viridis and Lacerta sp. (Młynarski et al., 1984). The amphibian fauna included a new spe - cies of salamander named Mioproteus wezei and the anurans Palaeobatrachus sp., Pliobatrachus cf. langhae, Pelobates fuscus, Pelobates sp., Bufo bufo, Rana dalmatina, Rana sp. and Pelophylax kl. esculentus (Młynarski et al. , 1 984 ; Młynarski & Szyndlar, 1989). Moreover, remains of unidenti - fied birds were uncovered (Bocheński et al., 2012) as well as isolated vertebrae of salmonid fishes (Nadachowski et al., 2015). In general, the fauna of Węże 2 is considered to be suggestive of a for - est environment, which is supported by the pres- ence of genera strongly associated with woodland habitats, such as Glis, Sciurus, Pliopetaurusta, Blackia, Trogontherium and Dipoides (Sulimski, 1964; Szynkiewicz, 2015 A; Stefaniak et al., 2020; Czernielewski, 2021, 2022). Material and methods The Prospalax specimen here described (Fig. 1) wa s d i sc overe d a nd ha ndpic ke d at t he site of Wę ż e 2 in the late 1950’s / early 1960’s during excavations conducted by Andrzej Sulimski, the Department of Paleozoology of the Polish Academy of Sciences in Warsaw, and the Department of Paleozoology of the Wrocław University. The exact provenance of the mandible (the stratum in which it was found) is not known. In addition, each of the strata con- tained several dozens of isolated teeth morpho- logically and morphometrically identical to the P. priscus specimens from Węże 1 (Sulimski 1964). This material is part of the collection of the Insti- tute of Paleobiology, Polish Academy of Sciences (abbreviated as ZPAL). The described specimen was examined, measured and photographed with Keyence VHX 900-F Digital Microscope System. 249 Prospalax priscus jaw from the site of Węże 2 (southern Poland, Pliocene) Material A fragmentary left mandible of Prospalax priscus with m1-m2 preserved in situ (ZPAL M. VIII/b/P1/1), Fig. 1. Systematic palaeontology Superfamily Muroidea Illiger, 1811 Family Anomalomyidae Schaub, 1925 Genus Prospalax Méhely, 1908 Prospalax priscus (Nehring, 1897) Fig. 1. Left mandible of Prospalax priscus (ZPAL M. VIII/b/P1/1) in labial (A), occlusal (B) and lingual (C) views. 250 Michał CZERNIELEWSKI Description The specimen exhibits the sigmoid pattern of the occlusal dental surfaces typical for the genus Prospalax. It is an adult specimen (cf. Sulimski 1964) and corresponds with other mandibles at - tributed to P. priscus a n d i l l u s t r a t e d b y M é h e l y (1908), Sulimski (1964) and Topachevskii (1976) by its relatively robust appearance compared to the P. petteri specimens (including the holotype) illustrated by Bachmayer and Wilson (1970). In the Węże 2 specimen the height of the horizontal branch at the level of the posterior edge of the al- veolus of m1 is ca. 5.00 mm measured at the labial side. The shape of the angular process is typical Stratigraphic unit Rodent taxa present D Glis ex gr. sackdillingensis-minor (Gliridae) Muscardinus pliocaenicus (Gliridae) Pliopetaurista dehneli (Sciuridae) Blackia miocaenica (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. E Glis ex gr. sackdillingensis-minor (Gliridae) Muscardinus pliocaenicus (Gliridae) Pliopetaurista dehneli (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Hystrix refossa (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. F Glis ex gr. sackdillingensis-minor (Gliridae) cf. Pliopetaurista dehneli (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Hystrix sp. (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. G Glis ex gr. sackdillingensis-minor (Gliridae) Blackia miocaenica (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Dipoides ex gr. problematicus-sigmodus (Castoridae) Hystrix sp. (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. Table 1. Rodent material from Węże 2 present in the collection of the Institute of Paleobiology PAS according to taxa and stratigraphic units. 251 Prospalax priscus jaw from the site of Węże 2 (southern Poland, Pliocene) for P. priscus, while in the holotype of P. rumanus it exceeds the length of m1–m2 which is a diag - nostic trait for this species (Simionescu 1930; To - pachevskii 1976). The dimensions of the preserved teeth in the Węże 2 specimen are 2.07/1.54 mm (m1) and 2.02/1.88 mm (m2). The alveolar m1– m3 length is 6.43 mm which corresponds to the lower end of the range typical for P. priscus, i.e. 6.0–9.0 mm (Jánossy 1972; Topachevskii 1976). Topachevskii (1976) points out to the smaller size of P. rumanus as defined by the length of the man- dibular tooth row which in the described speci- mens of P. rumanus eq u als 6 . 0 an d 6 .2 mm , b u t as the dimensions of the measured specimens of P. rumanus overlap with the measurements of the smaller mandibles of P. priscus, it would appar- ently not be possible to distinguish between the species based on morphometric traits alone. How- ever, the dimensions of m2 (2.02/1.88 mm) and the alveolar length of the Węże 2 specimen are also much smaller than in the holotype specimen of P. kretzoii ( 2 .8 / 2 . 4 mm, an d 1 0 .2 mm ) , a spe - cies that has been diagnosed as being significantly larger than P. priscus (Jánossy 1972). Discussion Prospalax priscus is now recognized as a rep- resentative of the Anomalomyidae. Apparently restricted to the Old World, this family is known to have lasted since the Early Miocene till the be- ginning of MN 18 (Marković & Milivojević, 2010; López-Guerrero et al. 2017; Nesin and Kovalchuk 2020). The family includes three genera ( Anom- alomys, Anomalospalax, Prospalax), all of which were previously assigned to the Cricetidae (i.e. the family that comprises hamsters, voles, lemmings, muskrats and the so called New World rats and mice) or the Spalacidae (i.e. the family that in - cludes mole-rats, bamboo rats and zokors) (Bach - mayer & Wilson 1978; Kordos 1985; Hugueney & Mein 1993; Bolliger 1999; Jansa & Weksler, 2004; Musser & Carleton, 2005; Nesin & Kovalchuk 2020). It is hypothesized that the Anomalomyidae originated within the Cricetidae, with Argyromys aralensis from the Oligocene of Kazakhstan be- ing the immediate ancestor, even though the old- est anomalomyids have been attested in southern Europe (López-Guerrero et al. 2017; Nesin and Kovalchuk 2020). Another hypothesis holds that the origins of the Anomalomyidae are associated with the primitive cricetid Eumyarion intercen- tralis from western Asia (de Bruijn 2009). Among anomalomyids the eponymous genus Anomalomys is the most species-rich and is also considered to be the most primitive, while Prospalax and Anom- alospalax are described as being more derived (Kordos 1985, 2005; Nesin & Kovalchuk 2020). The evolutionary lineage Anomalomys – Prospal- ax has been inferred from the fossil record (Bach- mayer & Wilson 1970; Nesin & Kovalchuk 2020). P. priscus is known from several sites in Central Europe and Greece, dated from the Upper Miocene (Daxner-Höck 1970; Temper 2005) till the begin - ning of MN 18 (Marković & Milivojević, 2010). In Poland it was attested at the MN 15 sites of Draby 1, Mokra 1, Raciszyn 1 (Nadachowski 1989; Nad - achowski et al. 1989) and Węże 1 (Sulimski, 1964), as well as the MN 16 site of Rębielice Królewskie 1A (Kowalski, 1960). In Hungary P. priscus was reported from the Late Pliocene / Early Pleistocene sites of Csarnóta (Kretzoi 1956; Jánossy 1986; Sz - entesi et al. 2015) and Beremend (Méhely 1908; Kretzoi 1956; Jánossy 1986; Hordijk & de Brui - jn 2009; Pazonyi et al. 2019), the Early/Middle Pleistocene site of Nagyharsány (Nehring 1897; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2021), the MN 16? sites of Osztramos 7 and Villány 3 (Kretzoi 1956; Jánossy 1986; Kessler 2019), the Late Villanyian site of Dunaalmás IV, as well as from Kisláng, supposedly also of the Late Villany- ian age (Jánossy, 1986). Romanian localities of P. priscus in cl ude th e P liocene sites o f Măl uşteni and Barault Capeni (= Barót-Köpec) (Simionesciu, 1930; Kormos, 1932). Moreover, the species was attested at the MN 15? site of Notio 1 in Greece (Hordijk & de Bruijn, 2009), MN 16 of Hajnáčka I in Slovakia (Sabol, 2003), and MN 18 of Riđake in Serbia (Marković & Milivojević, 2010). It was also reported from the Upper Miocene of Eichkogel in Austria (Daxner-Höck, 1970; Temper, 2005). The localities are summed up in Table 2. Supposedly by analogy to the extant Eurasian blind mole rats (the genus Spalax), to which it was once considered closely related (Méhely, 1908; To - pachevskii, 1976), Prospalax has been described as a burrowing animal of the steppe and open grasslands, similar in their behavior and adapta- tions to the modern spalacids (Kowalski, 1964; Sulimski, 1964; Bachmayer and Wilson, 1970; Sabol, 2003) which was also considered true for the Anomalomyidae in general (Bachmayer & Wil - son, 1970; Kowalski, 1994; Bolliger, 1999). How - ever, the interpretation of anomalomyid ecology has been shifting towards understanding them as animals dwelling in forest environments, behavio- rally similar to the extant burrowing shrews, and not well adapted to strictly underground lifestyle (Kalthoff, 2000; Hordijk & de Bruijn, 2009; Nesin & Kovalchuk, 2020). Such a shift has been caused by findings of anomalomyid remains within faunal 252 Michał CZERNIELEWSKI No. Locality Age References 1. Eichkogel (Austria) Upper Miocene Daxner-Höck 1970; Temper 2005 2. Măluşteni (Romania) Pliocene Simionesciu 1930; Kormos 1932 3. Barault Capeni (Romania) Pliocene Simionesciu 1930; Kormos 1932 4. Beremend (Hungary) Late Pliocene / Early Pleistocene Méhely 1908; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2019 5. Csarnóta (Hungary) Late Pliocene / Early Pleistocene Kretzoi 1956; Jánossy 1986; Szentesi et al. 2015 6. Draby 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 7. Mokra 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 8. Raciszyn 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 9. Węże 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989; Sulimski 1964 10. Notio 1 (Greece) MN 15? Hordijk and de Bruijn 2009 11. Hajnáčka I (Slovakia) MN 16 Sabol 2003 12. Osztramos 7 (Hungary) MN 16? Kretzoi 1956; Jánossy 1986; Kessler 2019 13. Rębielice Królewskie 1A (Poland) MN 16 Kowalski 1960 14. Villány 3 (Hungary) MN 16? Kretzoi 1956; Jánossy 1986; Kessler 2019 15. Węże 2 (Poland) MN 16 Sulimski 1962; Stefaniak 1995; Stefaniak et al. 2020 16. Dunaalmás IV (Hungary) Late Villanyian Jánossy 1986 17. Kisláng (Hungary) Late Villanyian? Jánossy 1986 18. Nagyharsány (Hungary) Early/Middle Pleistocene Nehring 1897; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2021 19. Riđake (Serbia) MN 18 Marković and Milivojević 2010 Table 2. Anomalomyid occurrences unequivocally referred to as Prospalax priscus. rowing adaptations in these two clades is now de- scribed as a result of an evolutionary convergence (Nowakowski et al., 2018; Nesin & Kovalchuk, 2020). It is noteworthy that P. priscus itself has not infrequently been found in association with species suggestive for arboreal environments, i.e. flying squirrels (Sciuridae: Petauristini) and dormice (Sulimski, 1964; Daxner-Höck, 1970; assemblages otherwise typical for forest habi- tats (Hordijk & de Bruijn, 2009; Nesin & Koval - chuk, 2020) as well as by the reinterpretation of the anomalomyid incisors as not being proficient digging tools (Kalthoff, 2000; Nesin & Kovalchuk, 2020). Also the relationships between Anomalo - myidae and Spalacidae seem to be more distant than previously thought and the presence of bur- 253 Prospalax priscus jaw from the site of Węże 2 (southern Poland, Pliocene) Jánossy, 1986; Nadachowski, 1989; Sabol, 2003; Hordijk & de Bruijn, 2009; Marković & Milivoje - vić, 2010). Attributing the Węże 2 specimen to P. priscus seems well supported due to the robust appear- ance of the jaw, the shape of the angular process, and the smaller dimensions than the holotype of P. kretzoii. Moreover, it can be inferred that the iso- lated Prospalax teeth found at Węże 2 also belong to P. priscus, although this cannot be proved by the occlusal morphology as it does not seem to dif- fer significantly between the species and possible interspecific differences were never cited as diag- nostic while defining new species within Prospal- ax (Nehring, 1897; Simionescu, 1930; Bachmayer and Wilson, 1970; Jánossy 1972). The presence of P. priscus at the site of Węże 2 agrees with the interpretation of this species as adapted to forest rather than steppe environments. Acknowledgements I thank the anonymous Reviewers for their remarks and suggestions. References Bachmayer, F. & Wilson, R.W. 1970: Die Fauna der altpliozänen Höhlen- und Spaltenfüllungen bei Kohfidisch, Burgenland (Österreich) / Small Mammals (Insectivora, Chiroptera, Lagomor- pha, Rodentia) from the Kohfidisch Fissures of Burgenland, Austria. Annalen des Naturhis- torischen Museums in Wien, 74: 533–587. Bachmayer, F. & Wilson, R.W. 1978: A second Contribution to the Small Mammal Fauna of Kohfidisch, Austria / Zweiter Beitrag zur Kleinsäugerfauna von Kohfidisch (Burgenland, Österreich). Annalen des Naturhistorischen Museums in Wien, 81: 129–161. Bocheński, Z., Bocheński, Z.M. & Tomek, T. 2012: A history of Polish birds. Institute of Systemat- ics and Evolution of Animals, Polish Academy of Sciences, Kraków: 226 pp. Bolliger, T. 1999: Family Anomalomyidae. In: Rössner, G. E. & Heissig, K. (eds.): The Mio - cene Land Mammals of Europe. Verlag Dr. Friedrich, Pfeil: 389–394. Czernielewski, M. 2021: Gliridae (Rodentia) from the Villafranchian site of Węże 2 in southern Poland. Geological Quarterly, 65: 49. ht t p s:// doi.org/10.7306/gq.1618 Czernielewski, M. 2022: Castoridae (Roden - tia) from the Villafranchian site of Węże 2 in southern Poland. Geological Quarterly, 66: 18. https:/ /doi.org/10.7306/gq.1650 Czernielewski, M. 2023: A new species of Hystrix (Rodentia: Hystricidae) from the Pliocene site of Węże 1 in southern Poland. Acta Geologica Polonica, 73: 73–83. Daxner-Höck, G. 1970: Die Wirbeltierfauna aus dem Alt-Pliozän (O-Pannon) vom Eichkogel bei Mödling (NÖ.). Annalen des Naturhistor- ischen Museums in Wien, 74: 597–605. de Bruijn, H. 2009: The Eumyarion (Mamma- lia, Rodentia, Muridae) assemblage from Sandelzhausen (Miocene, Southern Germa- ny): a test on homogeneity. Paläontologische Zeitschrift, 83: 77–83. D’Elía, G., González, E.M. & Pardiñas, U.F.J. 2003: Phylogenetic analysis of sigmodontine rodents (Muroidea), with special reference to the akodont genus Deltamys. Mammalian Biol- ogy, 68: 351–364. Flynn, L.J., Jacobs, L.L. & Lindsay, E.H. 1985: Problems in Muroid Phylogeny: Relationship to Other Rodents and Origin of Major Groups. In: Luckett, W.P. & Hartenberger, J.-L. (eds.): Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Springer Science + Business Media, New York: 589–616. Fostowicz-Frelik, Ł. 2007: Revision of Hypolagus (Mammalia: Lagomorpha) from the Plio-Pleis - tocene of Poland: Qualitative and quantitative study. Annales Zoologici, 57: 541–590. Hordijk, K. & de Bruijn, H. 2009: The succession of rodent faunas from the Mio/Pliocene lacus- trine deposits of the Florina-Ptolemais-Servia Basin (Greece). Hellenic Journal of Geoscienc - es, 44: 21–103. Hugueney, M. & Mein, P. 1993: A Comment on the Earliest Spalacinae (Rodentia, Muroidea). Journal of Mammal Evolution, 1: 215–223. Jánossy, D. 1972: Middle Pliocene Microvertebrate Fauna from the Osztramos Loc. 1. (Northern Hungary). Annales Historico-Naturales Musei Nationalis Hungarici, 64: 27–52. Jánossy, D. 1986: Pleistocene vertebrate faunas of Hungary. Developments in Palaeontology and Stratigraphy, 8: 206. Jansa, S.A., Giarla, T.C. & Lim, B.K. 2009: The phylogenetic position of the rodent genus Typh- lomys and the geographic origin of Muroidea. Journal of Mammalogy, 90: 1083–1094. Jansa, S.A. & Weksler, M. 2004: Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31: 256–276. Kalthoff, D.C. 2000: Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere 254 Michał CZERNIELEWSKI und anderer Myomorpha (Rodentia, Mamma- lia). Palaeontographica A, 259: 1–193. Kessler, J.E. 2019: Evolution of Galliformes and their presence in the Carpathian Basin. Or- nis Hungarica, 27: 142–174. ht t p s://doi . org/10.2478/orhu-2019-0021 Kordos, L. 1985: Late Turolian (Neogene) Anom- alospalax gen. n. from Hungary and its phy- logenetic position. Fragmenta Mineralogica et Palaeontologica, 12: 27–42. Kordos, L. 2005: Anomalomys (Rodentia, Mam- malia) from Rudabánya, Hungary (Miocene, MN9): terminology of molars, age categories and phylogenetic interpretations. Fragmenta Palaeontologica Hungarica, 23: 20–28. Kormos, T. 1932: Neue pliozäne Nagetiere aus der Moldau. Palaeontologische Zeitschrift, 14: 193–199. Kowalski, K. 1960: Pliocene Insectivores and Ro - dents from Rębielice Królewskie (Poland). Acta Zoologica Cracoviensia, 5: 155–202. Kowalski, K. 1964: Palaeoecology of Mammals from the Pliocene and Early Pleistocene of Po- land (in Polish). Acta Theriologica, 8: 73–88. Kowalski, K. 1990: Stratigraphy of Neogene mam - mals in Poland. In: Lindsay, E. H., Fahlbusch, V. & Mein, P. (eds.): European Neogene Mam - mal Chronology. Plenum Press, New York: 193–209. Kowalski, K. 1994: Evolution of Anomalomys Gail- lard, 1900 (Rodentia, Mammalia) in the Mio - cene of Poland. Acta Zoologica Cracoviensia, 37: 163–176. Kretzoi, K. 1956: Die altpleistozänen Wirbeltier - faunen des Villányer Gebirges. Geologia Hun- garica, Series Palaeontologia, 27: 1–274. Li, Q., Meng, J. & Wang, Y. 2016: New Cricetid Ro - dents from Strata near the Eocene-Oligocene Boundary in Erden Obo Section (Nei Mongol, China). PLoS One, 11/5: e0156233. ht t p s:// doi.org/10.1371/journal.pone.0156233 Lindsay, E.H. 1977: Simimys and origin of the Cricetidae (Rodentia: Muroidea). Geobios, 10: 597–623. López-Guerrero, P., Maridet, O., Zhang, Z. & Daxner-Höck, G. 2017: A new species of Ar- gyromys (Rodentia, Mammalia) from the Ol - igocene of the Valley of Lakes (Mongolia): Its importance for palaeobiogeographical homo- geneity across Mongolia, China and Kazakh- stan. PLoS One, 12. https://doi.org/10.1371/ journal.pone.0172733 Marciszak, A., Kropczyk, A., Gornig, W., Kot, M., Nadachowski, A. & Lipecki, G. 2023: History of Polish Canidae (Carnivora, Mammalia) and Their Biochronological Implications on the Eurasian Background. Genes, 14: 539. ht t p s:// doi.org/10.3390/genes14030539 Marković, Z. & Milivojević, M. 2010: The Neogene small mammals from Serbia – collection meth- ods and results. Bulletin of the Natural History Museum, 3: 105–114. Méhely von, L. 1908: Prospalax priscus (NHRG), die pliocäne Stammform der heutigen Spal- ax-Arten. Annales Musei Nationali Hungarici, 6: 306–316 + plates. Michaux, J., Reyes, A. & Catzeflis, F. 2001: Evolu- tionary history of the most speciose mammals: Molecular phylogeny of muroid rodents. Mo- lecular Biology and Evolution, 18/11: 2017– 2031. https://doi.org/10.1093/oxfordjournals. molbev.a003743 Młynarski, M., Szyndlar, Z., Estes, R. & Sanchíz, B. 1984: Amphibians and reptiles from the Pliocene locality of Węże II near Działoszyn (Poland). Acta Palaeontologica Polonica, 29: 209–226. Młynarski, M. & Szyndlar, Z. 1989: Płazy i gady – Amphibia et Reptilia (in Polish). Folia Quater - naria, 59–60: 69–88. Musser, G.G. & Car l e t o n , M . D . 2 00 5 : S u p e rf ami - ly Muroidea. In: Wilson, D.E. & Reeder, D.M. (eds.): Mammal Species of the World: A Tax - onomic and Geographic Reference, 3rd ed. Johns Hopkins University Press: 894–1531. Nadachowski, A. 1989: Gryzonie – Rodentia (in Polish). Folia Quaternaria, 59–60: 151–176. Nadachowski, A., Marciszak, A., Rzebik-Kowal- ska, B., Ratajczak, U. & Gornig, W. 2015: Fossil fauna – Węże 2 (WE2) (in Polish). Materiały 49. Sympozjum Speleologicznego. Sekcja Spe - leologiczna Polskiego Towarzystwa Przyrod- ników im. Kopernika: 31–34. Nadachowski, A., Pawłowski, J. & Stworzewicz, E. 1989: The characteristics of the sites and their stratigraphic correlation (in Polish). Folia Qua- ternaria, 59–60: 5–19. Nehring, A. 1897: Mehrere neue Spalax-Arten. Sitsungs-Berichte der Gesellschaft Naturfor- schender Freunde zu Berlin: 163–183. Nesin, V. & Kovalchuk, O. 2020: A new late Mi - ocene Anomalomys species from western Ukraine with implications for the diversity and evolution of anomalomyid rodents in Eastern Europe. Historical Biology. https://doi.org/10 .1080/08912963.2020.1742711 Nowakowski, D., Rekovets, L., Kovalchuk, O., Pawlina, E. & Demeshkant, V. 2018: Enam - el ultrastructure of molars in †Anomalomys gaillardi and some spalacid taxa (Rodentia, 255 Prospalax priscus jaw from the site of Węże 2 (southern Poland, Pliocene) Mammalia). Palaeontologia Electronica, 21.2.18A: 1–15. https://doi.org/10.26879/846 Pazonyi, P., Szentesi, Z., Trembeczki, M., Hír, J. & Mészáros, L. 2021: A new middle Pleistocene small vertebrate fauna from the Nagyharsány Crystal Cave (Villány Hills, Southern Hunga- ry). Fragmenta Palaeontologica Hungarica, 37: 101–126. http://doi.org/10.17111/FragmPal- Hung.2021.37 .101 Pazonyi, P., Trembeczki, M., Mészáros, L. & Sze - ntesi, Z. 2019: Preliminary report on the Ear - ly Pleistocene vertebrate sites of Beremend Crystal Cave (Beremend 16, South Hungary) and on their palaeoecological importance. Fragmenta Palaeontologica Hungarica, 36: 115–140. https://doi.org/10.17111/FragmPal- Hung.2019.36.115 Rzebik-Kowalska, B. 1990: Pliocene and Pleisto - cene Insectivora (Mammalia) of Poland. VII. Soricidae: Mafia Reumer, 1984, Sulimskia Reumer, 1984 and Paenelimnoecus Baudelot, 1972. Acta Zoologica Cracoviensia, 33: 303– 327. Rzebik-Kowalska, B. 2014: Revision of the Plio - cene and Pleistocene Talpidae (Soricomorpha, Mammalia) of Poland. Palaeontologia Elec - tronica, 17: 1–26. Sabol, M. 2003: New findings of Late Pliocene ver - tebrates from Hajnácka I site (southern Slova- kia). Coloquios de Paleontología, Vol. Ext. 1: 595–602. Sansalone, G., Kotsakis, T. & Piras, P. 2016: New systematic insights about Plio-Pleistocene moles from Poland. Acta Palaeontologica Po- lonica, 61/1: 221–229. Schenk, J.J., Rowe, K.C. & Steppan, S.J. 2013: Ecological Opportunity and Incumbency in the Diversification of Repeated Continental Colonizations by Muroid Rodents. Systematic Biology, 62: 837–864. Simionescu, I. 1930: Vertebratele Pliocene de la Măluşteni (Covurlui). Publicaţiunile Fondului Vasile Adamachi, 9: 83–151. Skoczeń, S. 1976: Condylurini Dobson 1883 (Insec- tivora, Mammalia) in the Pliocene of Poland. Acta Zoologica Cracoviensia, 21: 291–313. Skoczeń, S. 1993: New records of Parascalops, Neurotrichus and Condylura (Talpinae, Insec- tivora) from the Pliocene of Poland. Acta The - riologica, 38: 125–137. Stefaniak, K. 1995: Late Pliocene cervids from Węże 2 in southern Poland. Acta Palaeontolog - ica Polonica, 40: 327–340. S te f a n i a k , K ., R at aj c z a k , U., K otow s k i , A ., K o z ł ow s - ka, M. & Mackiewicz, P. 2020: Polish Pliocene and Quaternary deer and their biochronolog- ical implications. Quaternary Internation- al, 546: 64–83. https://doi.org/10.1016/j. quaint.2019.09.048 Steppan, S., Adkins, R. & Anderson, J. 2004: Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. System- atic Biology, 53/4: 533–553. ht t p s://doi . org/10.1080/10635150490468701 Sulimski, A. 1962: On a new finding of fossil ver - tebrate fauna near Działoszyn (in Polish with English summary). Przegląd Geologiczny, 10: 219–223. Sulimski, A. 1964: Pliocene Lagomorpha and Ro - dentia from Węże 1 (Poland). Acta Paleonto - logica Polonica, 9: 149–244 + plates. Szentesi, Z., Pazonyi, P. & Mészáros, L. 2015: Al - banerpetontidae from the late Pliocene (MN 16A) Csarnóta 3 locality (Villány Hills, South Hungary) in the collection of the Hungarian Natural History Museum. Fragmenta Palaeon- tologica Hungarica, 32: 49–66. Szynkiewicz, A. 2015A: Karst phenomena – Węże 2 (WE2) (in Polish). Materiały 49. Sympozjum Speleologicznego. Sekcja Speleologiczna Polsk- iego Towarzystwa Przyrodników im. Koperni- ka: 29–30. Szynkiewicz, A. 2015B: Samsonowicz’s Cave, Węże 1 (WE1) (in Polish). Materiały 49. Sym - pozjum Speleologicznego. Sekcja Speleologicz- na Polskiego Towarzystwa Przyrodników im. Kopernika: 19–21. Temper, P.M. 2005: The Herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the Upper Miocene Locality Kohfidisch (Burgen- land, Austria). Beiträge zur Paläontologie, 29: 145–253. Topachevskii, V.A. 1976: Fauna of the USSR: Mammals. Mole Rats, Spalacidae. Amerind Publishing Co. Pvt. Ltd., 308 pp. Zijlstra, J.S. 2010: Neurotrichus skoczeni, new name for Neurotrichus minor Skoczen 1993, preoccupied. Journal of Vertebrate Paleontolo- gy, 30/6: 1903. https://doi.org/10.1080/02724 634.2010.521606