Vpliv impedance omrežja na vodenje trifaznega aktivnega pretvornika v orientaciji omrežne napetosti

Jaka Rober¹

¹Fakulteta za elektrotehniko, računalništvo in informatiko, Koroška cesta 46, 2000 Maribor E-pošta: jakarober1@gmail.com

Influence of grid impedance on grid voltage oriented control of an three-phase converter

Abstract. Electronic converters like rectifier or inverter are crucial part in everyday used appliances. Energy efficiency and reliability of converters is modern trend in applications that have large amount of electric energy flow. In electric car main purpose of converter is reliable power supply of motors, but with converter like active rectifier there is possibility of regaining electrical energy when car breaking is applied. This is possible due to active rectifier four quadrant trait. Active rectifiers are also used in applications like high voltage direct current transmission and integration of electricity storage units and renewable energy sources (photovoltaic, wind power...) into the grid.

This article describes grid voltage oriented control of three-phase converter and influence of grid parameters such as line resistance and inductivity on converter.

1 Uvod

Pretvorniki močnostne elektronike so danes razširjeni tako v industriji kot tudi v gospodinjstvu. S prehodom na obnovljive vire energije pa so dobili tudi vlogo pri integraciji razpršenih virov energije, kot so sončne in vetrne elektrarne. Zaradi omejitev prenosnega in distribucijskega omrežja so pomembno vlogo dobili tudi hranilniki energije. Kot hranilnik energije se danes najpogosteje uporabljajo baterijski hranilniki, ki potrebujejo pretvornik, da bo povezal hranilnik z omrežjem in hkrati omogočil, da se bo baterija polnila in praznila. Uporabljeni pretvornik mora biti zasnovan tako, da bo omogočal dvosmerni prenos energije. Tak pretvornik imenujemo aktivni pretvornik. Aktivni pretvorniki se na primer uporabljajo tudi v električnih avtomobilih, kjer zagotavljajo napajanje električnih motorjev in hkrati izkoriščajo energijo ob zaviranju.

Konvencionalni pretvornik, kot je na primer diodni usmernik, ne potrebuje vođenja in je preprost za izdelavo. Slabost teh pretvornikov je, da omogočajo prenos energije samo v eno smer in hkrati s svojim delovanjem močno onesnažujejo omrežje z višjimi harmonskimi komponentami [1]. Aktivni pretvornik, ki je v nadaljevanju poimenovan aktivni usmernik, v primerjavi z navadnim diodnim usmernikom omogoča tako dvosmerni prenos energije kot tudi kompenzacijo jalove moči. Aktivni usmernik sestavljajo tranzistorji, ki so vezani zaporedno po dva v več vej. Število vej je odvisno od tega koliko fazni je pretvornik. Za izvedbo analize smo v obravnavanem primeru uporabili trifazni pretvornik, ki je prikazan na sliki 1. Z ustreznim vodenjem tranzistorjev lahko bistveno zmanjšamo generirane višje harmonske komponente v omrežni napetosti.

Pulzno-širinska modulacija predstavlja temeljni pristop pri vodenju aktivnih pretvornikov [2]. Izvedba z vektorsko pulzno-širinsko modulacijo omogoča vodenje trifaznih pretvornikov, zato je bila ta uporabljena pri izvedbi vodenja. Z uporabo modulacije lahko spreminjamo napetost enosmernega vodila.

2 Izvedba vodenja pretvornika

V obravnavanem primeru je izvedeno in analizirano vodenje pretvornika v orientaciji omrežne napetosti (angl. voltage oriented control - VOC) in je ena od možnih izvedb vodenja pretvornika na osnovi vodenja Alternativna možnost je vodenje z napetosti. neposrednim vodenjem moči (angl. direct power control - DPC). Glavna razlika je, da je v primeru vodenja v orientaciji omrežne napetosti frekvenca preklapljanja tranzistorjev konstantna [3]. Na omrežni strani aktivnega usmernika je diskretna sinusna napetost, ki jo generira pulzno-širinska modulacija. Napetost na omrežju pa je zvezne sinusne oblike. Zaradi nastale potencialne razlike je potrebno vhodno sito. Na enosmernem vodilu je vzporedno vezan kondenzator, ki gladi nihanja enosmerne napetosti in hkrati omogoča ločeno vodenje dveh zaporedno vezanih pretvornikov, kar pa ni možno pri matričnem pretvorniku [4].

2.1 Osnovne predpostavke

Za obravnavan trifazni pretvornik predpostavimo, da je omrežje idealen izvor napetosti in so napetostne razmere opisane z (1).

$$u_{a} = U_{m} \sin(\omega t)$$

$$u_{b} = U_{m} \sin\left(\omega t - \frac{2\pi}{3}\right)$$

$$u_{c} = U_{m} \sin\left(\omega t - \frac{4\pi}{3}\right)$$
(1)

Pri tem so u_a, u_b in u_c trenutne vrednosti faznih napetosti, U_m je temenska vrednost fazne napetosti omrežja in ω je kotna frekvenca omrežne napetosti.

Podobno predpostavko naredimo za trenutne vrednosti linijskih tokov i_a, i_b in i_c , pri čemer upoštevamo še kot φ , ki je fazni zamik med tokom in napetostjo napajalnega omrežja. Poenostavljena shema aktivnega usmernika je prikazana na sliki 1.

Slika 1: Poenostavljena shema aktivnega usmernika.

Na vhodu usmernika je RL-sito, ki ima induktivnost L in upornost R. Aktivni usmernik vsebuje šest tranzistorjev z izoliranimi vrati, ki jih krmilimo s pulzi od S_1 do S_6 . Enosmerno vodilo sestavlja gladilni kondenzator C. Trenutni tok skozi kondenzator je označen z i_{cap} . Trenutni tok bremena je i_L in trenutni skupni tok, ki ga generira usmernik je i_{dc} . Trenutna napetost enosmernega vodila je označena z u_{dc} . Delovanje usmernika opišemo s prvim in drugim Kirchhoffovim zakonom (2), (3) [3].

$$i_{\rm cap} = i_{\rm dc} - i_{\rm L} \tag{2}$$

$$\begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = R \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + L \frac{d}{dt} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} u_{Sa} \\ u_{Sb} \\ u_{Sc} \end{bmatrix}$$
(3)

Pri tem so napetosti u_{sa} , u_{sb} in u_{sc} generirane napetosti pretvornik na vhodu, kot je prikazano na sliki 1.

2.2 Transformacije in fazno sklenjena zanka

Uporabljena struktura vodenja zahteva pretvorbo vhodnih napetosti in tokov v rotirajoči se koordinatni sistem dq. Veličine in model sprva pretvorimo v koordinatni sistem $\alpha\beta$ s Clarkino transformacijo. Uporabljena transformacija je invariantna na moč, kar pomeni, da se spremeni amplituda napetosti in tokov. Pretvorbo v koordinatni sistem dq izvedemo z rotacijsko transformacijo, ki potrebuje informacijo o trenutnem kotu omrežne napetosti θ_{om} [5]. Za pravilno orientacijo koordinatnega sistema dq je ključen izračun kota θ_{om} . Na osnovi transformiranih napetosti se vrši vodenje in tudi razklopitve med d in q osjo.

Za izračun kota θ_{om} se tipično uporabljajo strukture s fazno sklenjeno zanko [6]. Primer določitve kota θ_{om} , ki je bila uporabljena v obravnavanem primeru, je prikazana na sliki 2.

Slika 2: Blokovna shema fazno sklenjene zanke.

Napetost v osi q reguliramo na 0 V s PI regulatorjem. S tem dosežemo, da poravnamo vektor napetosti z osjo d, kot je prikazano na sliki 3 [3]. Izhodni vrednosti regulatorja prištejemo referenčno vrednost kotne frekvence ω_{ref} ki jo določa omrežna napetost. Vrednost ω_{ref} je potrebno predhodno določiti in se mora ujemati s trenutnim stanjem v omrežju.

Slika 3: Orientacija koordinatnega sistema dq glede na vektor omrežne napetosti.

Z uporabo transformacij zapišemo napetostno ravnovesje (3) posebej za os d (4) in posebej za os q (5).

$$u_{\rm d} = Ri_{\rm d} + L\frac{di_{\rm d}}{dt} + u_{\rm d,ref} - \omega Li_{\rm q} \tag{4}$$

$$u_{\rm q} = Ri_{\rm q} + L\frac{di_q}{dt} + u_{\rm q,ref} + \omega Li_{\rm d} \tag{5}$$

Iz obeh izrazov je razvidno, da sta osi medsebojno sklopljeni preko induktivnosti vhodnega filtra L in kotne frekvence omrežne napetosti ω .

2.3 Vodenje v orientaciji omrežene napetosti

Vodenja usmernika v orientaciji omrežne napetosti temelji na kaskadni zgradbi regulacijskega sistema, ki je prikazana na sliki 4 [3]. Za izvedbo vodenja je potrebno meriti vse tri fazne napetosti in vse tri linijske tokove. Za regulacijo napetosti enosmernega vodila je hkrati potrebno meriti napetost na enosmernem vodilu.

Slika 4: Blokovna shema vodenja usmernika v orientaciji omrežne napetosti.

Notranja regulacijska zanka predstavlja regulacijo toka, zunanja pa regulacijo enosmerne napetosti. Napetostna regulacijska zanka določa referenco toka v osi d, tok v osi q pa reguliramo na vrednost nič, s čimer dosežemo korekcijo faktorja moči. Tako s tokom v osi d neposredno vplivamo na delovno moč in s tokom v osi q na jalovo moč. To velja ob predpostavki, da so osi medsebojno razklopljene [3].

2.3.1 Regulacija toka

Pri sintezi regulacije toka izhajamo iz osnovnega zapisa za napetost v osi d (4) in osi q (5). Pri tem smo upoštevali, da smo izvedli razklopitev osi, saj se sistem brez razklopitev obnaša nelinearno. Blokovna shema regulacijske zanke je prikazana na sliki 5 [7].

Slika 5: Blokovna shema regulacijske zanke.

Regulacijska zanka poleg prenosne funkcije PI regulatorja in sistema vsebuje tudi prenosno funkcijo zakasnitve pretvornika. Zakasnitev pretvornika je določena s časovno konstanto $T_a = 1/(f_{PWM} \cdot 2)$. Pri čemer je f_{PWM} stikalna frekvenca pretvornika. Odprtozančno prenosno funkcijo regulacijske zanke zapišemo kot (6).

$$G_{i,oz}(s) = K_{p,i} \frac{1+s\tau_i}{s\tau_i} \cdot \frac{\frac{1}{R}}{1+s\tau_{RL}} \cdot \frac{1}{1+sT_a}$$
(6)

Odprtozančno prenosno funkcijo pretvorimo v zaprtozančno obliko in na osnovi kompenzacijske metode določimo parametre regulatorja. Časovna konstanta regulatorja $\tau_i = \tau_{RL} = L/R$, saj je zakasnitev pretvornika zanemarljivo majhna v primerjavi τ_{RL} . Ojačenje regulatorja $K_{p,i}$ je enako $L/2T_a$ [7].

2.3.2 Regulacija napetosti

Pri regulaciji napetosti predpostavimo, da je delovna moč na pretvorniku enaka (7). Če iz (7) izpostavimo tok i_{dc} in ga vstavimo v (2), dobimo nelinearno enačbo (8). Ob tem smo zapisali tok kondenzatorja i_{cap} v diferencialni obliki.

$$p = u_{\rm d} i_{\rm d} = u_{\rm dc} i_{\rm dc} \tag{7}$$

$$C\frac{du_{\rm dc}}{dt} = \frac{u_{\rm d}}{u_{\rm dc}}i_{\rm d} - i_{\rm L} \tag{8}$$

Za analizo stabilnosti je potrebno izraz (8) linearizirati v okolici delovne točke. Linearizacijo izvedemo na osnovi razvoja v Taylorjevo vrsto in ob tem upoštevamo samo vhodni tok i_d . Prenosno funkcijo napetostnega podsistema tako zapišemo z

$$\frac{\Delta u_{\rm dc}}{\Delta i_{\rm d}} = \frac{u_{\rm d,0}}{u_{\rm dc,ref}} \cdot \frac{1}{sC} \tag{9}$$

Pri tem je $u_{d,0}$ napetost v osi d v delovni točki in $u_{dc,ref}$ referenčna napetost enosmernega vodila. Blokovno shemo napetostne regulacijske zanke prikazuje slika 6 [7].

Slika 6: Blokovna shema napetostne regulacijske zanke.

V napetostni regulacijski zanki upoštevamo dinamiko tokovne regulacijske zanke s prenosno funkcijo člena prvega reda, ki ima časovno konstanto τ_{tz} (ta je enaka τ_{RL}). Odprtozančno prenosno funkcijo napetostnega regulacijskega sistema zapišemo z (10).

$$G_{u,oz}(s) = K_{p,u} \frac{1 + s\tau_u}{s\tau_u} \cdot \frac{1}{1 + s\tau_{tz}} \cdot \frac{u_d}{u_{dc,ref}} \cdot \frac{1}{sC}$$
(10)

Parametre PI regulatorja določimo po metodi simetričnega optimuma in sicer ojačenje določimo z (11) in časovno konstanto z (12) [8].

$$K_{\rm p,u} = \frac{C \cdot u_{\rm dc,ref}}{a \cdot u_{\rm s} \cdot \tau_{\rm s}} \tag{11}$$

$$\tau_{i,u} = a^2 \tau_{tz} \tag{12}$$

Pri tem koeficient *a* predstavlja faktor dušenja sistema. Vrednost faktorja *a* je med 1 in 3 in ga določimo empirično glede na željeno dinamiko odziva sistema [8].

3 Rezultati

V rezultatih je prikazana primerjava med simulacijskim in eksperimentalnim odzivom vodenja neobremenjenega aktivnega usmernika na spremembo reference enosmerne napetosti. Prikazana sta dva primera napajanja pretvornika in sicer napajanje iz omrežja preko avtotransformatorja in napajanje neposredno iz omrežja. Za analizo vodenja prikazana primerjava zajema napetosti za oba primera napajanja. Simulacije vodenja pretvornika so bile izvedene v programskem orodju Matlab/Simulink. Vodenje eksperimentalnega sistema pa je bilo izvedeno s krmilnim sistemom dSPACE 1103 na pretvorniku Semikron Semiteach. Obravnavan pretvornik deluje kot pretvornik navzgor. Deluje lahko na različnih napetostnih nivojih in pri različnih omrežnih frekvencah (omejitev predstavljajo nazivne vrednosti uporabljenih komponent močnostne elektronike). Parametri implementiranega sistema so zbrani tabeli 1.

Tabela 1: Vrednosti parametrov pri izvedbi vodenja

Parameter	Vrednost
Induktivnost RL sita	2,7 mH
Upornost RL sita	35 mΩ
Kapacitivnost kondenzatorja	1,1 mF
Fazna napetost (RMS)	42 V
Frekvenca omrežne napetosti	50 Hz
Stikalna frekvenca pretvornika	10 kHz

Na sliki 7 so prikazani simulacijski odzivi enosmerne napetosti na stopnično spremembo reference enosmerne napetosti za različne faktorje dušenja.

Slika 7: Simulacijski odziv enosmerne napetosti na stopnično spremembo napetosti za različne faktorje dušenja *a*.

Na sliki 8 pa je prikazana primerjava med simulacijskim in eksperimentalnim odzivom na spremembo reference enosmerne napetosti.

Slika 8: Primerjava simulacijskega in eksperimentalnega odziva enosmerne napetosti na spremembo reference.

Na sliki 9 je prikazana primerjava med zajemanjem napetosti za oba primera napajanja. V trenutku t = 0 s vključimo pretvornik.

Slika 9: Potek zajetih omrežnih napetosti v primeru napajanja preko avtotransformatorja in napajanju neposredno iz omrežja.

Iz primerjave odzivov na sliki 7 je razvidno, da pri večjem faktorju dušenja *a* dosežemo manjši prenihaj enosmerne napetosti, vendar se čas trajanja prehodnega pojava podaljša. Eksperimentalni odziv enosmerne napetosti ima manjši prenihaj ob spremembi reference in daljši čas trajanja prehodnega pojava, kot simulacijski odziv, kar je razvidno iz slike 8. Razlog za odstopanje je v impedanci avtotransformatorja na kateri pride do padca napetosti. Padec napetosti na impedanci povzroči, da je zaznana napetost nižja, kar je razvidno iz slike 9. Pri napajanju neposredno iz omrežja je impedanca zanemarljivo mala in tega problema ni. Pri obremenitvi pretvornika bi se enosmerna napetost znižala in nato preko prehodnega pojava vrnila na referenčno vrednost. Analogno temu bi bilo pri razbremenitvi pretvornika.

4 Sklep

V članku je prikazana laboratorijska analiza vodenja trifaznega pretvornika vodenega v orientaciji omrežne napetosti. Na osnovi analitične obravnave so izpeljani parametri regulatorjev tokovne in napetostne regulacijske zanke. Izvedena je implementacija vodenja na laboratorijskem sistemu in ta primerjana z simulacijski rezultati. Pri implementaciji je potrebno upoštevati vpliv napajalnega vira (omrežje), ki mora biti dovolj togo, da impedanca vira ne bo vplivala na vodenje pretvornika. S spreminjanjem faktorja dušenja, lahko nastavimo želeno dinamiko odziva. V nadaljnjem delu je možno implementirati strukturo fazno sklenjene zanke, ki ima večjo imunost glede na motnje v omrežju.

Literatura

- Zare, F., Soltani, H., Kumar, D., Davari, P., Delpino, H.A.M., Blaabjerg, F. Harmonic emissions of three-phase diode rectifiers in distribution networks. *IEEE Access*, 6, (2017), str. 2819–2833.
- [2] Saritha, A., Abhiram, T., Sumanth, K. Space Vector Pulse Width Modulation For Two Level Inverter. *International journal of professional engineering studies*, 6, (2016), 3, str. 8–14.
- [3] Kazmierkowski, M.P., Malinowski, M. Control of Three-Phase PWM Rectifiers. V: Kazmierkowski, M.P, Krishnan, R., Blaabjereg, F. (ur.). *Control in power electronics: Selected problems*. San Diego: Academic Press, 2002, str. 419–459.
- [4] Friedli, T., Kolar, J.W., Rodriguez, J., Wheeler, P.W. Comparative evaluation of three-phase AC–AC matrix converter and voltage DC-Link back-to-back converter systems. *IEEE transactions on industrial electronics*, 59, (2012), 12, str. 4487–4510.
- [5] Dolinar, D., Štumberger, G. Modeliranje in vodenje elektromehanskih sistemov, 2. Maribor: Fakulteta za elektrotehniko, računalništvo in informatiko Univerze v Mariboru, 2006.
- [6] Guo, X.Q., Wu, W.Y, Gu, H.R. Phase locked loop and synchronization methods for gridinterfaced: converters: a review, R. 87 NR. Qinhuangdao: Yanshan University, 2011.
- [7] Bajracharya, C. Control of VSC-HVDC for wind power. Norveška: Institutt for elkraftteknikk, 2008.
- [8] Setiawan, I., Peiyadi, A., Facta, M., Purnomo, M.H. Investigation of symmetrical optimum PI controller based on plant and feedback linearization in Grid-Tie inverter systems. *International journal of renewable energy research*, 7, (2017), 3, str. 1229–1234.