
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 18 (2020) 149–162
https://doi.org/10.26493/1855-3974.1936.8c6

(Also available at http://amc-journal.eu)

An algorithm for constructing all supercharacter
theories of a finite group∗

Ali Reza Ashrafi
Department of Pure Mathematics, Faculty of Mathematical Sciences,

University of Kashan, Kashan 87317–53153, I. R. Iran

Leila Ghanbari-Maman
Department of Computer Science, Faculty of Mathematical Sciences,

University of Kashan, Kashan 87317–53153, I. R. Iran, and
Department of Bioinformatics, Institute of Biochemistry and Biophysics,

University of Tehran, Tehran, Iran

Kaveh Kavousi
Department of Bioinformatics, Institute of Biochemistry and Biophysics,

University of Tehran, Tehran, Iran

Fatemeh Koorepazan-Moftakhar
Department of Pure Mathematics, Faculty of Mathematical Sciences,

University of Kashan, Kashan 87317–53153, I. R. Iran, and
Department of Mathematical Sciences, Sharif University of Technology,

Azadi Street, P.O. Box 11155-9415, Tehran, Iran

Received 14 February 2019, accepted 22 December 2019, published online 15 October 2020

Abstract

In 2008, Diaconis and Isaacs introduced the notion of a supercharacter theory of a finite
group in which supercharacters replace with irreducible characters and superclasses by
conjugacy classes. In this paper, we introduce an algorithm for constructing supercharacter
theories of a finite group by which all supercharacter theories of groups containing up to
14 conjugacy classes are calculated.

Keywords: Supercharacter theory, superclass, conjugacy class, irreducible character.

Math. Subj. Class. (2020): 20C15, 20D15

∗The authors are indebted to an anonymous referee for his/her useful comments and suggestions that leaded us
to rearrange this paper. We are also indebted to professor Thomas Breuer for some critical discussion on primitive
groups and the method he has suggested for introducing them in GAP.

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2858-0663
https://orcid.org/0000-0002-1906-3912
https://orcid.org/0000-0003-3531-5355

150 Ars Math. Contemp. 18 (2020) 149–162

1 Introduction
Suppose UTn(q) denotes the set of all n × n unipotent upper-triangular matrices over
the finite field GF(q). While working on the complex characters of this group, André
constructed something nowadays called a supercharacter theory [1, 2, 3]. Diaconis and
Isaacs in their seminal paper [9], axiomatized the notion of supercharacter theories of finite
groups. To define, we assume that G is a finite group, Irr(G) denotes the set of all ordinary
irreducible characters of G and Con(G) is the set of all conjugacy classes of G. A pair
(X ,K) is a supercharacter theory of G if the following conditions hold:

1. X and K are set partitions of Irr(G) and Con(G), respectively;

2. K contains {e}, where e denotes the identity element of G;

3. |X | = |K|;

4. For every X ∈ X , characters σX =
∑
χ∈X χ(e)χ are constant on each K ∈ K.

Characters σX are called supercharacters, and the members of K are superclasses of
G [9]. Throughout this paper, Sup(G) denotes the set of all supercharacter theories of
G. Assume X = {{1G}, Irr(G) \ {1G}} and K = {{e},Con(G) \ {e}}. Then m(G) =
(Irr(G),Con(G)) and M(G) = (X ,K) are the trivial supercharacter theories of G.

We now review some constructive results on supercharacter theories of finite groups.
Hendrickson [13] provided several constructions which are used to classify all supercharac-
ter theories of cyclic groups and obtained an exact formula for the number of supercharacter
theories of a finite cyclic p-group. By studying partitions of the set of irreducible charac-
ters, Clifford theory and some well-known results regarding the structure of simple rational
groups, Burkett et al. [6] proved that there are only three groups with exactly two super-
character theories: the cyclic group Z3, the symmetric group S3 which is solvable, and the
non-abelian simple group Sp(6, 2). Furthermore, Wynn [22] described all supercharacter
theories of extraspecial and Frobenius groups. The number of supercharacter theories of
dihedral groups of order 2p, p is a Mersenne prime, was also calculated. In particular,
he proved that if G is a Frobenius group of order pq, where p, q are primes and p > q,
then G has exactly 1 + τ(p−1q)τ(q − 1) supercharacter theories in which τ(n) denotes the
number of positive divisors of n. In [5] the authors continued these works by providing
some constructive methods in order to find new supercharacter theories. Then, they ap-
plied these methods towards a classification of finite simple groups with exactly three or
four supercharacter theories.

The aim of this paper is to present an algorithm for constructing all supercharacter the-
ories of finite groups. To explain and then evaluate our algorithm, we need some concepts
in computer science. The time complexity of a program with a given input data of size n is
defined as the number of elementary instructions that this program executes as a function of
n. Moreover, the space complexity of a program with a given input data of size n is defined
as the number of elementary objects that this program needs to store during its execution
with respect to n. For two matrices A and B with the same number of rows, the augmented
matrix C = [A|B] is formed by appending the columns of B to A.

E-mail addresses: ashrafi@kashanu.ac.ir (Ali Reza Ashrafi), leila.ghanbari@ut.ac.ir (Leila
Ghanbari-Maman), kkavousi@ut.ac.ir (Kaveh Kavousi), f.moftakhar@sharif.edu (Fatemeh
Koorepazan-Moftakhar)

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 151

Throughout this paper, our calculations are done with the aid of GAP [12]. Our group
theory notations and terminologies can be found in [14, 18]. Moreover, we refer the inter-
ested readers to the book [8] for more information on algorithms.

2 Algorithm
Set [n] = {1, 2, . . . , n}, G is a finite group, Irr(G) = {χ1, . . . , χn} and Con(G) =
{K1, . . . ,Kn}. Choose A ⊆ [n]. Define AI(G) = {χi | i ∈ A} and AC(G) = {Ki |
i ∈ A}. Then the mappings ξ1 : P([n]) −→ P(Irr(G)) and ξ2 : P([n]) −→ P(Con(G))
are given by ξ1(A) = AI(G) and ξ2(A) = AC(G), where P(Y) denotes the power set of
a given set Y . Conversely, we assume that B ⊆ Irr(G), C ⊆ Con(G) and define [n]B =
{i | χi ∈ B} and [n]C = {j | Kj ∈ C}. We now define γ1 : P(Irr(G)) −→ P([n]) and
γ2 : P(Con(G)) −→ P([n]) by γ1(B) = [n]B and γ2(C) = [n]C . Then the mapping ξt
and γt, t = 1, 2, are mutually inverse and so we can use P([n]) instead of both P(Con(G))
and P(Irr(G)) in our algorithms.

Let X = {χ1, . . . , χu} and K = {K1, . . . ,Ks} be parts of set partitions X of Irr(G)
and K of Con(G), respectively. If σX(K1) = · · · = σX(Ks), then we say that X and
K are consistent. If all parts of X are mutually consistent with all parts of K, then the set
partitions X and K are said to be consistent. In a part of the proof of [9, Theorem 2.2(c)],
the following equivalence relation on G is given.

u ∼ v ⇐⇒ ∀ X ∈ X , σX(u) = σX(v).

Note that if u and v are conjugate inG, then u ∼ v. As a result, it is enough to compute
σX on all conjugacy classes of G. Suppose I = {X1, . . . , Xr} is a set partition of Irr(G)
and define σi = σXi , 1 ≤ i ≤ r. Set Kx = {y | ∀i, 1 ≤ i ≤ r;σi(x) = σi(y)}, x ∈ G,
and let J be the set of all such subsets. If all members of J are non-empty, then J is a
set partition of Con(G) consistent with I and so (I, J) ∈ Sup(G). It is far from true that
for each set partition X of the irreducible characters of G there exists a set partition K of
G-conjugacy classes such that X and K are consistent. Hence the problem of computing
supercharacter theories of G is reduced to the problem of computing all consistent pairs
for G.

For the sake of completeness, we introduce here some notations in order to work with
supercharacter theories of a group G in GAP. The notation σX(i) denotes the image of σX
in the i-th conjugacy class of G. We also use the notation [n, i] = SmallGroup(n, i) to
denote the i-th group of order n in the small group library of GAP.

The aim of this section is to present an algorithm for constructing all supercharacter
theories of a finite group G. We partition this algorithm into three sub-algorithms. These
sub-algorithms are presented in three sub-sections. In the first sub-section, a sub-algorithm
for finding the set of all bad parts is provided. The second sub-section devotes to calculating
all set partitions of an n-element set such that these set partitions do not have any bad
part. In the last sub-section, a sub-algorithm for computing a consistent set partition of the
conjugacy classes of a group G with respect to a set partition of Irr(G) is given.

2.1 Bad parts and bad set partitions

A part X of a set partition X of Irr(G) is said to be bad if X is consistent with only
singleton subsets of Con(G). A set partition containing a bad part is called a bad set

152 Ars Math. Contemp. 18 (2020) 149–162

partition. It is easy to see that a bad set partition X of Irr(G) does not have a mate K such
that (X ,K) ∈ Sup(G).

We recall that in computing supercharacter theories of a finite group G, {e} and {1G}
are always parts of K and X , respectively. As a result, it is enough to work with the set
partitions of [n]? = {2, . . . , n}.

Lemma 2.1. Suppose X ∈ P([n]?) is a bad part. Then all values of σX(i), 2 ≤ i ≤ n,
are distinct.

Proof. Choose 2 ≤ j 6= k ≤ n such that σX(j) = σX(k). Then the part X is consistent
with {j}, {k} and {j, k}. This is a contradiction to the definition of a bad part.

By Lemma 2.1, to check whether a part X ∈ P([n]?) is bad or not, it is enough to
compute σX(i) for i ∈ [n]?. If all values are different, then X is a bad part.

2.2 Create set partitions

The computer algebra system GAP does not have the potential to construct set partitions
for large enough [n]. In literature, there are two algorithms by Semba [17] and Er [11] for
computing set partitions of [n]. The Semba’s algorithm is based on the backtrack technique
[17, Theorem 1] and has the time complexity Θ(4B(n)), where the Bell number B(n) is
defined as the number of set partitions of an n-element set. The Er’s algorithm is recursive.
He claimed (without proof) that

∑n
i=1B(i) < 1.6B(n). This is while Nayak and Stojmen-

ović [16, p. 12] proved that
∑n
i=2B(i) < 2B(n). In an exact phrase, Er claimed that the

time complexity of his algorithm for generating all set partitions of [n] is Θ(1.6B(n)).
There exists a limitation in the Er’s algorithm: Each set partition is determined at the

end step and so we cannot identify whether a given set partition is bad or not, unless it is
done completely. As a consequence, we design an algorithm which generates set partitions
part by part. When a bad part occurs, calculations of all set partitions containing that part
are pruned.

To explain our algorithm, we set S = {s1, s2, . . . , sn}. The 2n − 1 non-empty subsets
of S are used as the parts of the set partitions of S. Note that when n is enough large, it
is not possible to save all set partitions on the memory. In order to reduce memory usage,
we use the integers of the closed interval I = I(S) = [1, 2|S| − 1]. In fact, we define
a one-to-one correspondence αS : I −→ P(S) \ {∅} by αS(k) = {si | an+1−i = 1},
where a1a2 . . . an is the n-bit binary form of k. For example, if S = {s1, s2, s3, s4, s5}
and k = 13 then (13)2 = 1101 and since |S| = 5, the 5-bit binary form of 13 is 01101.
Thus, αS(13) = {s1, s3, s4}. Let IO = IO(S) be the set of all odd integers in the closed
interval I . Then αS(IO) is the set of all subsets of S containing s1. On the other hand,
if F is a non-empty subset of S, then we conclude that α−1S (F) =

∑
i∈F 2Position(S,i)−1,

where Position(S, i), i ∈ F , is the position of i in S. In this example, if F = {s1, s3, s4}
then α−1S (F) = 21−1 + 23−1 + 24−1 = 13.

Now, we are ready to present our algorithm for constructing all set partitions with no
bad part. We use two lists SPs and RE in order to keep the set partitions and remaining
elements, respectively. At the first step, we have SPs = ∅ and RE = [n]?. We fill SPs by
parts constructed from the elements of RE which are not bad. Thus, RE := RE \αRE (k)
and SPs := SPs ∪{αRE (k)}, where k ∈ IO and σRE (k) is not a bad part. This algorithm
will be returned to the previous step, when RE = ∅. Since our algorithm is recursive, its
generating tree is constructed by DFS strategy. In Sub-algorithm 2, all set partitions of [n]?

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 153

that do not contain any bad part are generated. In Figure 1, an example of a generating tree
for set partitions of [4]? is presented.

T = α{3,4}(1) = {3}
RE = RE\T = {4}
SPs = {{2}, {3}}

T = α{3,4}(3) = {3, 4}
RE = RE\T = { }
SPs = {{2},{3, 4}}

T = α{2,3,4}(3) = {2, 3}
RE = RE\T = {4}
SPs={{2,3}}

T = α{2,3,4}(5) = {2, 4}
RE = RE\T = {3}
SPs = {{2,4}}

T = α{2,3,4}(7) = {2, 3,4}
RE = RE\T = { }
SPs = {{2, 3, 4}}

T = α{4}(1) = {4}
RE = RE\T = { }
SPs = {{2},{3},{4}}

T = α{3}(1) = {3}
RE = RE\T = { }
SPs = {{2,4},{3}}

RE = {2, 3, 4}
SPs = { }

T = α{4}(1) = {4}
RE = RE\T = { }
SPs = {{2,3},{4}}

T = α{2,3,4}(1) = {2}
RE = RE\T = {3, 4}
SPs = {{2}}

1

1

1 3

7

1

3 51

Figure 1: A schematic diagram of Sub-algorithm 2 for the case that RE = [4]? and badparts
= {{2, 3}, {2, 4}, {3}, {4}}. The red and blue arrows represent forward and backward
directions in the generating tree traversal, respectively. The number on each edge is an odd
integer in IO(RE) of the parent node of the edge. The gray part of the tree is pruned due
to the occurrence of a bad part in the process of creating corresponding set partition.

Note that after creating a set partition for Irr(G), we invoke the Sub-algorithm 3 for it,
to check whether there exists a consistent set partition of Con(G) or not. This function is
explained in details in the next subsection.

2.3 Create the consistent set partition K with respect to a given set partition of
Irr(G)

We recall that finding all supercharacter theories of a group G with n conjugacy classes is
equivalent to constructing all consistent pairs of set partitions. Suppose Irrp is a given set
partition of the irreducible characters of G. To find a consistent set partition of Irrp, we
first define the matrix A as follows, see Table 1.

• The rows of A are the parts of Irrp and so A has exactly |Irrp| rows.

• The columns of A are the conjugacy classes of G.

• If A = (aij), then aij = σXi(Kj) where 1 ≤ i ≤ |Irrp|, 1 ≤ j ≤ n and Kj are the
conjugacy classes of G.

154 Ars Math. Contemp. 18 (2020) 149–162

Suppose C1, C2, . . . , Cn are all columns of A. We construct a matrix ST and a list
Kappa as follows. Since {e} is a part of each consistent set partition with Irrp, we con-
clude that {1} ∈ Kappa . We start our algorithm by defining Kappa = {{1}, {2}} and the
submatrix ST = [C1, C2]. For each j, 3 ≤ j ≤ n, we compare Cj with all constructed
columns of ST other than its first column. If Cj is different from such columns of ST ,
then we add Cj to ST as a new column and add j to Kappa as a singleton part. Hence
Kappa := Kappa ∪ {{j}} and ST := [ST |Cj]. If Cj is equal to the r-th column of ST ,
then we add j to the r-th part of Kappa , i.e.

Kappa = {{1}, . . . , {. . . , j︸ ︷︷ ︸
part r

}, . . . , {. . .}}.

Table 1: Matrix A.

K1 K2 K3 · · · Kn

χ1 1 1 1 · · · 1
... * * * · · · *

Xi

χi1
...
χit

σXi(K1) σXi(K2) σXi(K3) · · · σXi(Kn)

... * * * · · · *

If in the process of constructing Kappa and ST the inequality |Kappa| > |Irrp| occurs,
then we stop calculations without any result. It is because there is no consistent set partition
with the same size as Irrp. If at the end of our calculations, |Kappa| = |Irrp|, then we
conclude that (Irrp,Kappa) is a supercharacter theory and ST is the supercharacter table
of G.

To construct all supercharacter theories of a group G, it is possible to combine the Er’s
algorithm which creates all set partitions of Irr(G) with the algorithm based on the proof
of Theorem 2.2(c) in [9]. This is our first algorithm. Our main algorithm is a combination
of the Sub-algorithms 1, 2 and 3. In [4], Sub-algorithm 3 for computing bad parts of the
cyclic group Z13 is analyzed.

We end this section by noticing that:

1. The result of our main algorithm is supercharacter theories of a given group G. In
fact, conditions of being a supercharacter theory are checked by the main algorithm
in each case.

2. All supercharacter theories are generated by our algorithm. This is guaranteed by the
proof of [9, Theorem 2.2(c)].

3 Analysis of algorithms
In Section 2, three sub-algorithms for computing bad parts, set partitions and supercharacter
theories were presented. The aim of this section is to calculate the running time and the
space complexity of these sub-algorithms and also our main algorithm.

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 155

Theorem 3.1. Let T1(n), S1(n) and BP be the time complexity function, the space com-
plexity function and the list of bad parts for a given group, respectively. Then, T1(n) ∈
O((n2 − n) · 2n−1) and S1(n) ∈ O(n) +O(|BP |), where n = |Con(G)|.

Proof. To compute the running time of the Sub-algorithm 2, we should know the values
of σX(j), 2 ≤ j ≤ n, where X = {x1, . . . , xi} ∈ P([n]?). For this purpose, i(n − 1)

multiplications and (i − 1)(n − 1) additions are needed. Therefore, we have (n−1)(n−2)
2

comparisons for investigating the property that σX ’s are distinct. Since there are
(
n−1
i

)
i-subsets, the complexity of this sub-algorithm can be computed by the following formula:

T1(n) =

n−1∑
i=1

[
(n− 1)(2i− 1)

(
n− 1

i

)
+

(n− 1)(n− 2)

2

]
.

Therefore,

T1(n) =

n−1∑
i=1

[
(n− 1)(2i− 1)

(
n− 1

i

)
+

(n− 1)(n− 2)

2

]

= (n− 1)

n−1∑
i=1

(2i− 1)

(
n− 1

i

)
+

(n− 1)2(n− 2)

2

< n ·
n−1∑
i=1

2i ·
(
n− 1

i

)
+ n3 = 2n ·

n−1∑
i=1

i ·
(
n− 1

i

)
+ n3

= 2n · (n− 1) · 2n−2 + n3 = (n2 − n) · 2n−1 + n3.

Hence T1(n) ∈ O((n2 − n) · 2n−1).
To compute the space complexity of this sub-algorithm, we note that all parts are gen-

erated one by one. If a generated part is bad, then we add it to BP . To keep each part, our
calculations need an array of size n − 1. Moreover, an (n − 1)-length array is needed in
order to save the values σX(i). Therefore, this sub-algorithm needs a memory of sizeO(n)
to keep each part. For saving all bad parts, we need another array such that its size depends
only on the number of bad parts of irreducible characters of a given group. Consequently,
S1(n) ∈ O(n) +O(|BP |).

Theorem 3.2. Suppose T2(n) and S2(n) are the time and space complexity functions of
the Sub-algorithm 2, respectively. Then,

(1) T2(n) ∈ O(2B(n));

(2) The space complexity S2(n) belongs to Θ(n).

Proof. To prove (1), let T2(n) denote the number of calculations needed to obtain all set
partitions which do not contain bad parts and are from the (n − 1)-element set RE . For
computing the time complexity in the worst case |BP | = 0, we have to count the number
of edges in the generating tree of this sub-algorithm in general, see Figure 1. Then,

T2(n) =

n−1∑
i=0

(
n− 1

i

)
(T2(i) + 1).

156 Ars Math. Contemp. 18 (2020) 149–162

In OEIS [10], the sequence {a(n)}n≥0 with code A060719 exists which is defined as
follows.

a(n+ 1) = a(n) +

n∑
i=0

(
n

i

)
(a(i) + 1); a(0) = 1

By [15], a(n) = 2B(n + 1) − 1 and since T2(n) = a(n − 1), we conclude that T2(n) =
2B(n)− 1. Hence, the time complexity of this algorithm is O(2B(n)).

The space complexity depends on the sizes of SPs and RE . Since the union of RE
with the members of SPs is [n], S2(n) ∈ Θ(n) which proves (2).

In the next theorem, we calculate the complexity of our Sub-algorithm 3 which com-
putes the supercharacter theories of G.

Theorem 3.3. Suppose G has exactly n conjugacy classes. For a given set partition Irrp,
the time and space complexities of the Sub-algorithm 3 are O(n3) and O(n2), respectively.

Proof. Suppose Irrp is a set partition for the set of all irreducible characters of a group G
and |Irrp| = k. To calculate the matrix A, we first obtain all values χi(1)χi, 1 ≤ i ≤ n.
Since χi has n values, there are n2 different products χi(1)χi. To compute σX and in the
worst case X = {χ1, . . . , χn}, we need n(n − 2) products. As a result, the calculations
for obtaining the matrix A is of the time complexity O(n2).

Now, we count all the operations that we need to construct ST and the list Kappa .
The first and second columns of ST are the same as the first and second columns of A,
respectively. Therefore, we have nothing to count for these columns. For the third column
of ST , we have to compare the third column of A with the second column of ST and so
there are k comparisons. For the fourth column of ST , the fourth column of A should be
compared with the second and third columns of ST , and so there are at most 2k compar-
isons, and so on. Suppose that from the column Cj to the next, |Kappa| = |Irrp|. In this
case, the remaining conjugacy classes of the group should be distributed among the other
parts of Kappa and hence we do not have a new part in Kappa . Thus from Cj to Cn, the
number of comparisons is equal to k(k − 1). Therefore, the total number of comparisons
for constructing ST and Kappa is:

T3(n) := k(1) + k(2) + · · ·+ k(k − 1) + k(k − 1) + · · ·+ k(k − 1)︸ ︷︷ ︸
n−j+1

.

Since j ≥ 3, n − j + 1 ≤ n − 2. Thus T3(n) ≤ k(n
2−5n+6

2) ≤ n(n
2−5n+6

2), and so,
T3(n) ∈ O(n3).

Suppose S3(n) is the space complexity of the Sub-algorithm 3. We have two matrices
A and ST of sizes k × n and k × k, respectively. Since in the worst case k = n, we
conclude that S3(n) ∈ O(n2).

We are now ready to compute the time and space complexity of the first and main
algorithms. In the first algorithm, the generated set partitions are used as an input to
compute all supercharacter theories of a finite group. In what follows, we assume that
our group has exactly n conjugacy classes. The running time of our first algorithm is
TEr (n) = O(n3) ·Θ(2B(n)) and so TEr (n) ∈ O(n3B(n)).

In the main algorithm, we do not need to create consistent set partition Kappa for bad
set partitions. As a result, the Sub-algorithm 3 should be calledB(n)−|BPs| times, where

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 157

|BPs| is the number of bad set partitions. Therefore, the time complexity of the main
algorithm is O((n2 − n)2n−1 + (B(n)− |BPs|)n3) = O(n3(B(n)− |BPs|)) and so the
following result holds.

Theorem 3.4. The time complexity of our first and main algorithms are O(n3B(n)) and
O(n3(B(n)− |BPs|)), respectively.

4 Performance evaluation
To evaluate the performance of the main algorithm and then compare it with the first one,
both algorithms have been implemented in the computer algebra system GAP under Win-
dows 10 Home Single Language. The average running times for both algorithms after
three runs on a computer with processor Intel(R) Core(TM) m7-6Y75 CPU @ 1.20 GHz
1.51 GHz, installed memory (RAM) 8.00 GB (7.90 GB usable), system type 64-bit oper-
ating system and x64-based processor are summarized in Table 2. In this table, we have
chosen groups which have the maximum or the minimum number of supercharacter theo-
ries with different number of conjugacy classes. Let BP(G) be the set of all bad parts in a
group G and α(G) = |BP (G)|

2κ(G)−1−1 in which κ(G) denotes the number of distinct conjugacy
classes of G. We have the following two cases in general.

1. There is not any bad part in P(Irr(G)). In this case, the algorithm for computing
supercharacter theories based on the Er’s algorithm has a faster running time. Note
that we have a pre-process for finding bad parts but such an overhead is very small
with respect to the total running time.

2. There are some bad parts in P(Irr(G)). In this case, by removing these parts
from our calculations, the main algorithm will have a faster running time. For exam-
ple, in the cyclic group Z13 in which %98.17 of all parts are bad, our main algorithm
takes less than one second to run while the other algorithm takes more than 548 sec-
onds. In rare cases such as the Mathieu group M22 in which a few percentage of
existence of parts are bad, the running time of the first algorithm is a bit faster.

To compare the first algorithm with the main one, we use Figure 2 in which the running
time of the groups with exactly 13 conjugacy classes with respect to these algorithms are
shown. As it can bee seen, groups numbered 29–53 have faster running times with the main
algorithm. The result shows that the main algorithm is better for some classes of groups.

5 Concluding remarks
In this paper, two algorithms for computing all supercharacter theories of a finite group
G have been presented. The first algorithm is based on the Er’s algorithm. In the main
algorithm, we have introduced the new feature “bad part” for the parts of Irr(G). Since
none of the supercharacter theories contains these bad parts, by filtering and detecting the
set partitions of Irr(G) which have at least one bad part, the running time of this algorithm
decreases significantly.

Suppose BP(G) denotes the set of all bad parts in a group G. Let α(G) = |BP(G)|
2κ(G)−1−1

and assume |Sup(G)| is the number of all supercharacter theories of G. In Table 4, the
percentage of existence of bad parts for some cyclic and dihedral groups are given.

158 Ars Math. Contemp. 18 (2020) 149–162

Table 2: Comparing the running times for some groups.

Main algorithm First algorithm
κ(G) G |Sup(G)| |BP(G)| α(G) (MA)(second) (FA)(second) FA/MA

10 [100, 11] 623 0 0 1.4 1.1 0.8

11 [32, 43] 376 0 0 7.6 6.7 0.9

11 [32, 44] 376 0 0 8.1 7.5 0.9

12 [1296, 3523] 1058 0 0 70.1 62 0.9

13 [64, 32] 325 0 0 464.6 429.8 0.9

12 D36 51 168 8.2 65.4 68.2 1.04

12 M22 5 288 14.1 65.8 61.8 0.9

10 M11 5 112 21.9 0.8 1.1 1.4

10 D28 23 144 28.9 0.8 1.7 2.1

10 [120, 35] 10 152 29.7 0.6 1.1 1.8

13 [93, 1] 9 1980 48.4 169.7 662.3 3.9

13 [253, 1] 9 1980 48.4 127.8 521.3 4.08

10 Z10 10 376 73.6 0.06 1.2 20

10 D34 5 480 93.9 0.04 1.3 32.5

11 Z11 4 990 96.8 0.1 7.9 79

13 Z13 6 4020 98.1 1.2 548.2 456.8

11 D38 4 1008 98.5 0.1 8.5 85

13 D46 3 4092 99.9 1.2 610.6 508.8

Table 3: The GAP id of all groups with exactly 13 conjugacy classes.

1 [162, 21] 12 [162, 20] 23 [960, 11359] 34 [100, 10] 45 [328, 12]

2 [96, 191] 13 [1944, 2290] 24 [64, 33] 35 [162, 15] 46 [148, 3]

3 [400, 206] 14 [64, 37] 25 [1000, 86] 36 [40, 6] 47 [333, 3]

4 [162, 22] 15 [64, 32] 26 [720, 409] 37 [1053, 51] 48 [156, 7]

5 [192, 1494] 16 [96, 190] 27 [576, 8652] 38 [120, 38] 49 [301, 1]

6 [96, 193] 17 [192, 1491] 28 [40, 4] 39 [600, 148] 50 [205, 1]

7 [1944, 2289] 18 [64, 36] 29 [162,11] 40 [216, 86] 51 [150, 5]

8 [192, 1493] 19 [192, 1492] 30 [160, 199] 41 [258, 1] 52 [13, 1]

9 [1440, 5841] 20 [64, 35] 31 [324, 160] 42 [310, 1] 53 [46, 1]

10 [40, 8] 21 [162, 19] 32 [162, 13] 43 [253, 1]

11 [64, 34] 22 [216, 87] 33 [1320, 133] 44 [93, 1]

Our calculations given in Table 4 suggests the following conjecture.

Conjecture 5.1. If βn = α(Zpn) and γn = α(D2pn), then

lim
n→∞

βn = lim
n→∞

γn = 1,

where pn is the n-th prime number.

In Table 5, the percentage of existence of bad parts in some groups of order 3p, 3 | p−1
is presented. The calculations given in this table show that the Conjecture 5.1 is not valid
for groups of order 3p. Suppose p and q are primes such that q < p and q | p − 1. Let

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 159

0 10 20 30 40 50 60

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

400

600

R
un

ni
ng

 ti
m

e
(s

)

Groups

Ru
nn

in
g

Ti
m

e (
s)

Groups

 Main Algorithm
 First Algorithm

Figure 2: A diagram for the running time of all 53 groups which are listed in Table 3.

Table 4: Percentage of existence of bad parts for some cyclic and dihedral groups.

κ(G) Group α(G) |Sup(G)| κ(G) Group α(G) |Sup(G)|
4 D4 % 0 5 2 Z2 % 100 1

3 D6 % 66.67 2 3 Z3 % 66.67 2

4 D10 % 57.14 3 5 Z5 % 80 3

5 D14 % 80 3 7 Z7 % 85.7 4

7 D22 % 95 3 11 Z11 % 96.77 4

8 D26 % 84.3 5 13 Z13 % 98.16 6

10 D34 % 93.75 5 17 Z17 % 99.6 5

11 D38 % 98.53 4 19 Z19 % 99.78 6

13 D46 % 99.92 3

16 D58 % 99.2 5

17 D62 % 99.88 5

Tp,q denote the non-abelian group of order pq and qn denote the n-th prime number with
the property 3 | qn − 1.

160 Ars Math. Contemp. 18 (2020) 149–162

Table 5: Percentage of existence of bad parts in Tp,3.

p α(G) p α(G) p α(G)

7 % 26 13 % 38 19 % 42

31 % 48 37 % 49 43 % 49.6

By the results of Table 5, we offer the following conjecture:

Conjecture 5.2. If δn = α(Tqn,3), then limn→∞ δn = 0.5.

Table 6: Supercharacter theory form of groups with κ ≤ 14 conjugacy classes.

κ Supercharacter Theory Form

3 22

4 33 51

5 33 53 92

6 41 51 71 81 91 (15)1 (18)1 (20)1

7 31 41 51 73 82 (11)1 (20)3

8 52 71 (10)1 (11)1 (12)3 (13)1 (14)1 (15)1 (16)1 (18)1 (19)1 (22)1 (23)1 (25)1

(28)1 (54)1 (100)1 (110)1

9 31 73 91 (10)1 (12)1 (13)1 (15)1 (18)1 (19)1 (21)1 (22)2 (32)2 (36)1 (43)1 (40)1

(45)3 (49)1 (65)1 (128)2

10 52 (10)2 (11)1 (13)1 (14)1 (15)1 (16)1 (23)1 (25)2 (23)1 (24)1 (28)1 (32)2 (34)1

(35)2 (44)1 (51)1 (52)1 (57)2 (58)3 (64)2 (80)1 (83)2 (165)1 (215)2 (623)1

11 42 82 (11)4 (13)4 (15)1 (17)1 (18)2 (25)1 (26)1 (31)1 (47)3 (53)2 (55)1 (81)1

(89)2 (124)1 (144)3 (232)1 (376)2

12 51 71 (13)2 (16)1 (18)2 (19)2 (22)3 (23)2 (32)2 (34)1 (35)1 (36)1 (46)1 (49)1

(51)1 (65)1 (68)1 (69)1 (76)3 (81)2 (88)2 (94)1 (99)2 (100)1 (105)1 (133)4

(144)1 (152)1 (197)1 (205)1 (212)1 (233)1 (255)1 (360)1 (484)1 (1058)1

13 31 61 92 (11)1 (13)2 (17)1 (18)1 (24)2 (25)2 (35)1 (38)2 (40)2 (42)1 (43)1 (46)2

(50)1 (53)2 (71)3 (72)2 (81)2 (89)1 (102)1 (110)4 (129)4 (132)3 (138)1 (175)1

(313)3 (325)3

14 52 91 (10)1 (12)1 (13)1 (14)1 (15)2 (21)1 (22)2 (23)1 (29)1 (35)2 (38)1 (39)1

(41)1 (43)1 (45)3 (47)1 (49)1 (51)1 (53)1 (57)1 (63)2 (71)1 (76)1 (78)2 (79)1

(81)2 (85)1 (105)1 (110)2 (119)1 (123)1 (125)1 (130)1 (138)1 (139)1 (140)2

(145)1 (157)1 (172)2 (186)2 (206)1 (213)3 (222)1 (244)2 (270)1 (272)2 (304)2

(308)2 (320)1 (482)1 (601)2 (613)2 (620)3 (627)1 (645)3 (904)1 (940)3 (1048)2

(1324)3 (2093)1 (29016)1

Suppose Irr(Z7) = {1Z7
, χ2, . . . , χ7} and Con(Z7) = {e, xZ7

2 , . . . , xZ7
7 }. The cyclic

group Z7 has exactly four supercharacter theories m(Z7), M(Z7), C1 = (X1,K1) and

A. R. Ashrafi et al.: An algorithm for constructing all supercharacter theories of a finite group 161

C2 = (X2,K2) such that

X1 := {{1Z7
}, {χ2, χ3, χ5}, {χ4, χ6, χ7}},

K1 := {{e}, {x2Z7 , x3
Z7 , x5

Z7}, {x4Z7 , x6
Z7 , x7

Z7}},
X2 := {{1Z7

}, {χ2, χ7}, {χ3, χ6}, {χ4, χ5}},
K2 := {{e}, {x2Z7 , x7

Z7}, {x3Z7 , x6
Z7}, {x4Z7 , x5

Z7}}.

This shows that each part in X and K in a supercharacter theory (X ,K) has size 1, 2, 3
or 6. On the other hand, if p is prime and d is the number of divisors of p − 1, then by
[13, Table 1], the cyclic group Zp has exactly d supercharacter theories. As a result, the
following conjecture is suggested.

Conjecture 5.3. For each divisor r of p − 1, there exists only one supercharacter theory
(X ,K) ofZp such that the sizes of all non-trivial parts ofX andK are equal to r. Moreover,
if we sort the conjugacy classes and irreducible characters of Zp by ATLAS notations [7],
then γ1(X) = γ2(K).

It is a well-known result in group theory that for any positive integer k, there are
finitely many number of non-isomorphic finite groups with exactly k conjugacy classes.
This number is denoted by f(k). The supercharacter theory form of f(k) is defined as
nα1
1 nα2

2 · · ·nαss where αi, 1 ≤ i ≤ s, denote the number of groups with exactly k con-
jugacy classes containing ni supercharacter theories and note that f(k) =

∑s
i=1 αi. The

supercharacter theory form of groups with at most 14 conjugacy classes are recorded in
Table 6 and the following conjecture has been suggested based on this table.

Conjecture 5.4. The number of supercharacter theories of all members of Γ(k) are distinct
if and only if k = 6. In this case, all groups are Z5, D14, A5, Z5 : Z4, Z7 : Z3, S4, D8

and Q8.

Vera-López and his co-authors [19, 20, 21] classified all finite groups containing up to
14 conjugacy classes. We apply these classification theorems and our main algorithm to
find all supercharacter theories of groups containing up to 14 conjugacy classes. These
calculations are presented in [4].

ORCID iDs
Ali Reza Ashrafi https://orcid.org/0000-0002-2858-0663
Kaveh Kavousi https://orcid.org/0000-0002-1906-3912
Fatemeh Koorepazan-Moftakhar https://orcid.org/0000-0003-3531-5355

References
[1] C. A. M. André, Basic characters of the unitriangular group, J. Algebra 175 (1995), 287–319,

doi:10.1006/jabr.1995.1187.

[2] C. A. M. André, Irreducible characters of finite algebra groups, in: Matrices and Group Rep-
resentations, Universidade de Coimbra, Coimbra, volume 19 of Texts in Mathematics, Series
B, pp. 65–80, 1999, papers from the workshop held in honor of Graciano N. de Oliveira on the
occasion of his 60th birthday at the University of Coimbra, Coimbra, May 6 – 8, 1998.

[3] C. A. M. André, Basic characters of the unitriangular group (for arbitrary primes), Proc. Amer.
Math. Soc. 130 (2002), 1943–1954, doi:10.1090/s0002-9939-02-06287-1.

https://orcid.org/0000-0002-2858-0663
https://orcid.org/0000-0002-1906-3912
https://orcid.org/0000-0003-3531-5355

162 Ars Math. Contemp. 18 (2020) 149–162

[4] A. R. Ashrafi, L. Ghanbari Maman, K. Kavousi and F. Koorepazan Moftakhar, An algorithm for
constructing all supercharacter theories of a finite group, arXiv:1911.12232 [math.GR].

[5] A. R. Ashrafi and F. Koorepazan-Moftakhar, Towards the classification of finite simple groups
with exactly three or four supercharacter theories, Asian-Eur. J. Math. 11 (2018), 1850096 (21
pages), doi:10.1142/s1793557118500961.

[6] S. Burkett, J. Lamar, M. L. Lewis and C. Wynn, Groups with exactly two supercharacter theo-
ries, Comm. Algebra 45 (2017), 977–982, doi:10.1080/00927872.2016.1172622.

[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups,
Oxford University Press, Eynsham, 1985.

[8] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, The MIT Electrical
Engineering and Computer Science Series, MIT Press, Cambridge, MA, 1990.

[9] P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer.
Math. Soc. 360 (2008), 2359–2392, doi:10.1090/s0002-9947-07-04365-6.

[10] F. Ellermann, Sequence A060719 in The On-Line Encyclopedia of Integer Sequences, pub-
lished electronically at https://oeis.org.

[11] M. C. Er, A fast algorithm for generating set partitions, Comput. J. 31 (1988), 283–284, doi:
10.1093/comjnl/31.3.283.

[12] The GAP Group, GAP – Groups, Algorithms, and Programming, https://www.
gap-system.org.

[13] A. O. F. Hendrickson, Supercharacter theories of cyclic p-groups, Ph.D. thesis, The University
of Wisconsin–Madison, 2008, https://www.proquest.com/docview/304449301.

[14] I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, New York, 1994.

[15] G. Kilibarda and V. Jovović, Antichains of multisets, J. Integer Seq. 7 (2004),
Article 04.1.5 (15 pages), https://cs.uwaterloo.ca/journals/JIS/VOL7/
Kilibarda/kili2.html.

[16] A. Nayak and I. Stojmenović (eds.), Handbook of Applied Algorithms: Solving Scientific,
Engineering and Practical Problems, Wiley-Interscience, Hoboken, NJ, 2008, doi:10.1002/
9780470175668.

[17] I. Semba, An efficient algorithm for generating all partitions of the set {1, 2, . . . , n}, J. Inform.
Process. 7 (1984), 41–42.

[18] B. Steinberg, Representation Theory of Finite Groups: An Introductory Approach, Universitext,
Springer, New York, 2012, doi:10.1007/978-1-4614-0776-8.

[19] A. Vera-López and J. Sangroniz, The finite groups with thirteen and fourteen conjugacy classes,
Math. Nachr. 280 (2007), 676–694, doi:10.1002/mana.200410508.

[20] A. Vera López and J. Vera López, Classification of finite groups according to the number of
conjugacy classes, Israel J. Math. 51 (1985), 305–338, doi:10.1007/bf02764723.

[21] A. Vera López and J. Vera López, Classification of finite groups according to the number of
conjugacy classes. II, Israel J. Math. 56 (1986), 188–221, doi:10.1007/bf02766124.

[22] C. W. Wynn, Supercharacter theories of Camina pairs, Ph.D. thesis, Kent State University,
2017, https://www.proquest.com/docview/1896119212.

https://arxiv.org/abs/1911.12232
https://oeis.org
https://www.gap-system.org
https://www.gap-system.org
https://www.proquest.com/docview/304449301
https://cs.uwaterloo.ca/journals/JIS/VOL7/Kilibarda/kili2.html
https://cs.uwaterloo.ca/journals/JIS/VOL7/Kilibarda/kili2.html
https://www.proquest.com/docview/1896119212

	Introduction
	Algorithm
	Bad parts and bad set partitions
	Create set partitions
	Create the consistent set partition K with respect to a given set partition of Irr(G)

	Analysis of algorithms
	Performance evaluation
	Concluding remarks

