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Sestavi kovine in elastomerov so pomembno orodje za zmanj�anje mehanskih nihanj. Pri upogibu
nihajoèi sestav lahko du�imo z dodatkom primerne plasti du�ilnega materiala, na primer elastomera, kjer
je plast izpostavljena ciklièni deformaciji in na ta naèin tudi izgubi energije. Vendar pa prisotnost elastomera
pomeni, da je sestav odvisen od frekvence, zaradi tega te�ko natanèno napovedujemo, saj je te�ko izraèunati
re�itev ustreznega problema lastnih vrednosti. V prispevku je predstavljena metodologija za modeliranje
sestavov kovine in elastomerov z uporabo metode konènih elementov. V nadaljevanju je obravnavana
raèunska metoda doloèitve pribli�ne re�itve frekvenèno odvisnega problema lastnih vrednosti. �tevilène
rezultate vztrajnosti smo primerjali z rezultati preizkusa obièajnega �sendviè� sestava grede. Metodo smo
raz�irili na model in tako optimirali Stockbridgove du�ilnike, ki so uporabljeni za du�enje zraènih nihanj
dejanskega elektriènega daljnovoda. Namesto uglasitve du�ilnika na neko doloèeno frekvenco, smo z
uporabo genetskih algoritmov doloèili ciljno fukcijo in optimirali fizikalne izmere du�ilnika. S takim
postopkom smo analizirali celoten problem brez uporabe modalnega pristopa napetost-energija, kar pomeni,
da ta tako modeliranje zadosti naèelu vzorènosti. Metoda je uporabna kot orodje za naèrtovanje in
modeliranje sestavov kovine in elastomerov.
© 2007 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: kompoziti kovine - elastomeri, modeliranje strukture, metode konènih elementov, du�ilniki
vibracij)

Metal-elastomer composite structures are an important tool for the reduction of mechanical vibra-
tions. A structure that vibrates in flexure can be damped by the appropriate addition of a layer of damping
material, for example, an elastomer, where the layer undergoes cyclic strain and thereby dissipates energy.
However, the presence of the elastomer means that the structure is frequency dependent, which is a difficult
case for obtaining accurate predictions since the solution of the corresponding eigenvalue problem is hard
to compute. In this paper a methodology for modelling metal-elastomer composite structures using a finite-
element approach is presented. In addition, a calculation scheme to approximate the solution of the fre-
quency-dependent eigenvalue problem is discussed. The numerical results for the inertness were compared
with the experimental results for a classic composite sandwich beam. The method is extended to model and
optimise Stockbridge absorbers used to suppress the aeolian vibrations of an actual electrical transmis-
sion line. Instead of tuning the absorber to some particular frequency, an objective function is defined and
the physical dimensions of the absorber are optimised by means of a genetic algorithm. In this approach, the
complete problem is analysed without using the modal strain-energy approach, implying that this model-
ling satisfies the causality principle. The method appears to be useful as a tool for designing and modelling
metal-elastomer composite structures.
© 2007 Journal of Mechanical Engineering. All rights reserved.
(Keywords: metal elastomer composite, structure modelling, finite element methods, Stockbridge dumpers)
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0 INTRODUCTION

Metal-elastomer composite structures are an
important tool for the reduction of mechanical vibra-

tions. A structure that vibrates in flexure can be
damped by the appropriate addition of a layer of
damping material. As the whole system vibrates, the
layer undergoes cyclic strain and thereby dissipates
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energy. Since the first successful modelling of a
metal-elastomer composite presented by Ross et al.
[1], considerable attention has been paid to the pre-
diction of the dynamic behaviour of such structures.
For many years, the finite element method has been
used for modelling structures, and several of its ap-
plications have been shown to be quite accurate.
Soni [2] has presented a finite element analysis of
viscoelastically damped sandwich beams, which
uses a combination of shell elements and three di-
mensional solids for the viscoelastic part. Another
approach is to use shell elements with spring ele-
ments to model the elastomer [3]. This methodology
has been shown to increase the speed of the calcu-
lations of the stiffness and mass matrices. Lumsdaine
et al. [4] have reported a method using multi-layer
elements, which has been proven to be very accu-
rate. Although the modelling using three dimensional
solid elements is the most complete alternative to
solve this kind of problem, sometimes the computa-
tional cost of formulating and solving the equations
can become prohibitive.

The viscoelastic materials of greatest practi-
cal interest for damping applications are plastics and
elastomers. An elastomer is a soft substance that
exhibits thermo-viscoelastic behaviour. Viscoelastic
materials possess both elastic and viscous proper-
ties. For a purely elastic material, all the energy stored
in a sample during loading is returned when the load
is removed. Furthermore, the displacement of the
sample responds immediately, and in-phase, to the
cyclic load. Conversely, for a purely viscous mate-
rial, no energy is returned after the load is removed.
The input stress is lost to pure damping as the vi-
bration energy is transferred to internal heat energy.
All the materials that do not fall into one of the above
extreme classifications are called viscoelastic mate-
rials. Some of the energy stored in a viscoelastic
system is recovered upon removal of the load, and
the remaining energy is dissipated by the material in
the form of heat.

In a metal-viscoelastic-metal structure, the
bending of the composite produces not only bend-
ing and extensional strains in all three layers, but also
shears, primarily of the middle (viscoelastic) layer. The
shear-strain energy storage tends to dominate the
damping action of the constrained viscoelastic lay-
ers. Many practical applications operate on the prin-
ciple of constrained layer damping. The shear forces
in the constrained viscoelastic layer cause the en-
ergy of the vibration to be converted into heat.

Undamped metal structures normally have a
very low loss factor, typically in the range 0.001 to
0.01. Using a viscoelastic layer can increase this loss
factor. This means that the amplitude of the reso-
nant vibration when the structure is subjected to
structure-borne sound or vibration will be much lower
than for an undamped structure. A reduced ampli-
tude of vibration means less radiation of sound, and
also a reduced risk of fatigue failure [5].

A characteristic of viscoelastic materials is
that their Young�s modulus is a complex quantity,
having both a real and imaginary component. Fur-
thermore, this complex modulus varies as a function
of many parameters, the most important of which are
the frequency and temperature of a given applica-
tion. Consequently, this results in a corresponding
eigenvalue problem in which the stiffness matrix
depends on both the frequency and the tempera-
ture. The moduli typically take on relatively high
values at low temperatures and/or high frequencies
but take on comparatively small values at high tem-
peratures and/or low frequencies.  It is therefore
necessary to establish an accurate understanding
of the influence of these parameters in order to de-
sign effective damping treatments.

In general, the vibration analysis of a system
that is frequency independent can be accurately
achieved by classical techniques. It is much more dif-
ficult to obtain accurate predictions when the equa-
tions of motion are frequency dependent. This is be-
cause the solution of the corresponding eigenvalue
problem is difficult to compute. Methods based on
the modal strain energy have been used to approxi-
mate the solution of the problem [2]. However, they
are not accurate when the frequency and temperature
ranges are increased, and when they include the tran-
sition region, where the variations of the dissipation
and the stiffness of the viscoelastic material are quite
pronounced. The greatest loss factors occur in the
transition region at intermediate frequencies and tem-
peratures. On the other hand, some of the assump-
tions used by these methods do not fit the principle
of causality for physical systems [6].

The final aim of this paper is to present a
methodology to model metal-elastomer composite
structures by using a finite-element approach. The
method was experimentally tested for a classic com-
posite sandwich beam. Then, an application to model
and optimise a Stockbridge absorber used to sup-
press the aeolian vibrations of an electrical trans-
mission line is presented.
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1 THEORY

The theory of finite element methods has
been clearly presented by several authors ([7] to
[9]), so it will not be repeated here. However, a
method to avoid inverting matrices of a large size
will be discussed in this section, since it is quite
useful to speed up the numerical solution.

As a result of the modelling using finite ele-
ments of a metal-elastomer structure, a frequency-
dependent equation of motion is obtained. The equa-
tions of motion as a function of frequency for a
forced multi-degree-of-freedom system and its as-
sociated eigenvalue problem can be written as:

                                   
(1),

and
                        

  (2),

where W is the angular frequency, T is a fixed tem-
perature, M is the mass matrix, K(W,T) is the stiff-
ness matrix, q(W,T) is the modal displacement vector,
f(W) is the vector of external forces, j( W,T) is an
eigenvector associated with the vibration modes,
and s(W,T) is an eigenvalue associated with a natu-
ral frequency.

In general, a direct solution of Eq. (2) will in-
volve an expensive and inefficient method because of
the large size of the matrices. Therefore, a proposed
algorithm to simplify the task can be summarized as:
1) Solve the eigenvalue problem of order n for an
arbitrary fixed frequency W0, and for a value of tem-
perature T, given by:

                             
 (3).

Now, the modal matrix F
0
 has the following

properties:

                                               
 (4),

and

                                              
(5),

where the superscript T denotes the transpose, I
n
 is

the n´n identity matrix, and S
0
=diag(s

0
) is a diago-

nal matrix of eigenvalues.
2) Let 

0
�Ö  be an n´ �n  truncated matrix of the �n

eigenvectors associated with the minor eigenvalues
( �n  < n). For a frequency W ¹ W

0
, the following prod-

uct is calculated:

                                             
 (6),

where the matrix S(W,T) is not necessarily diagonal,
but it is an �n ´ �n  matrix. Then, the new eigenvalue
problem can be stated as:

                                       (7),

                                               (8),

and

                                  
   (9),

where l(W,T) and y(W,T) are the eigenvalue and
eigenvector, respectively, �nI  is the �n ´ �n  identity
matrix, Y(W,T) is a modal matrix, and
L(W,T)=tr(l

i
(W,T)) is a trace matrix of eigenvalues.

The new eigenvalue problem is still frequency de-
pendent, but it is a problem of smaller size and con-
sequently requires less computation time.
3) Consider the following transformation of coordi-
nates:

                                          
  (10),

and

                                   
   (11).

Substituting Eq. (10) and (11) into Eq. (1),
and pre-multiplying by ( )0

� ,
T

Té ùWë ûÖ Ø  gives

                  (12).

Thus, the nodal displacement vector is given by:

                   
(13).

Therefore, the receptance matrix is obtained from
Eq. (13) as:

  
 (14).

Defining the matrix product ( ) ( )0
�, ,T TW = WS Ö Ø , Eq.

(14) can be re-written as:
                 

(15),

where S(W,T) = L(W,T) for all W and T. Consequently,
the inertness matrix is:

                   
 (16).

Then, the corresponding elements of the
receptance matrix a(W,T) are:

                                  (17),
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where s is an element of the matrix S(W,T), and l
k
(W,T)

@ s
k
(W,T).

Therefore, the �n ´ �n  matrix S(W,T) can be as-
sumed to be a projection of  the stiffness matrix into
an approximated subspace of the space formed by
the real eigenvectors. So the quality of the approxi-
mation depends on the subspace, or span{j

01
... j

0h
}.

An important detail for stating the problem
of Eq. (1) is the construction of the stiffness matrix
K(W,T). This construction can be done by using the
finite element method for each frequency. If K(W,T)
is a matrix of large size, it can be computed for sev-
eral frequencies by means of a Taylor series expan-
sion in the neighbourhood of a transition frequency
W

t
 as:

                                  (18),

where

                                            (19).

It is then relatively easy to compute the de-
rivatives K(m)(W

t
,T) since only the elementary stiff-

ness matrices of the viscoelastic part are frequency
dependent, while the derivatives of the stiffness
matrices of the metal part are not. The use of M=3 for
the series expansions shows that the results are quite
exact for a narrow frequency band in the neighbour-
hood of a transition frequency.

2 RESULTS

2.1 Composite Sandwich-Beam

The first example of the application of the
theory presented above is a simple clamped-free
composite sandwich beam. This kind of structure is
commonly used as a study object. The sandwich
beam is made of two metal layers of steel 1020 and a
viscoelastic core made of DYAD 601 material
(Soundcoat Co.). The viscoelastic core was attached
in between the metal layers by means of an epoxic-

structural adhesive. The properties of this
viscoelastic material were presented in reference [10].
The beam was 211.85 mm long and 11.97 mm wide.
The thickness of each metal layer was 2.14 mm and
the thickness of the viscoelastic core was 0.5 mm.
All the dimensions of the sandwich composite beam
are in accordance to the requirements of the ASTM
E 756-98 standard [11].

The composite sandwich beam was divided
into 114 two-dimensional Lagrangian solid elements
on a plane state of stress. Along the beam 19 ele-
ments were selected at equal intervals and each layer
was divided into two elements, resulting in a total of
507 nodes, having two degrees of freedom at each
node, so n=1014 for this application. The above pa-
rameters of the structure were selected because they
assured the determination of the first four modes
and the modal damping produced by the shear de-
formation of the core.

An experimental set-up was devised to per-
form a dynamic test to measure the frequency re-
sponse of the beam. The beam was excited using a
magnetic actuator (B&K MM0002). The signal fed
to the actuator was a chirp excitation between 0 to
1600 Hz, i.e., a sine wave of linearly increasing fre-
quency, and amplified by a power amplifier (B&K
2706). The response of the beam was measured by a
small accelerometer (B&K 4375). The signals were
analysed using a two-channel FFT analyser (HP
3567A). The experimental set-up was placed inside a
chamber in which the temperature could be control-
led in the range between �30 and 60ºC. The preci-
sion of the chamber was ±1ºC. The excitation was
applied at 59.64 mm from the clamped edge, which
corresponds to node 143 in the finite element mesh,
and the response was measured at 37.95 mm from
the clamped edge, which corresponds to node 91 in
the finite element mesh (see Fig. 1).

Computation of the inertness was developed
for different temperatures ranging between �30 and
60ºC, and they were compared with the results ob-
tained experimentally. In the computation �n =50 was
used for the theory presented in Section 1. Figures 2
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Fig. 1. Finite element model for the clamped-free sandwich composite beam
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to 4 show the results of the inertness for three differ-
ent temperatures.

From the results the effect on the natural fre-
quencies caused by the increase in stiffness of the
elastomer in the transition region (-100C < T < 200C) can
be seen. In fact, in this region, the value of the fourth
natural frequency increased so much that it fell out of
the frequency range of the measurement. There is rea-
sonable agreement between the numerical and experi-
mental results for the inertness frequency responses
presented in Figures 2 to 4, although it is observed that
the numerical results seem to underpredict the natural
frequencies when compared with those obtained from
the experimental set-up. The differences are on aver-
age about 6%. Nevertheless, the differences between
the numerical and experimental approaches can be due
to imperfections in the experimental fixture, the small
size of the structure under test, the contribution of the
off-resonant modes, and the measurement uncertainty
produced by the environment inside the chamber. The
effect of the chamber should be more pronounced in
the transition region, where small variations of tem-
perature will cause large variations on the elastic prop-
erties of the elastomer. The value of the humidity inside
the chamber was not accurately controlled during the
experiment. This fact was reflected as noise in the meas-
ured inertness frequency-response curves, as seen in
Figures 2 to 4.

2.2 Stockbridge Dynamic Vibration Absorber

In this section the theory will be applied to a
more complicated case, i.e., a Stockbridge dynamic

vibration absorber. The vibration absorber will be
viscoelastically modified in order to increase the
dissipation of vibrational energy.

A dynamic vibration absorber, also called a
vibration neutralizer, is a device or structure
(secondary system) that is attached to another
device (primary system) to reduce vibration levels.
It acts on the primary system by applying reaction
forces and dissipating vibration energy. Vortex-
induced or aeolian vibrations of overhead electrical
transmission lines, also referred to as conductors,
are very common and can lead to fatigue damage.
These vibrations are usually caused by winds
ranging in velocity from 1 to 7 m/s and can occur at
frequencies from 3 to 150 Hz with peak-to-peak
displacement amplitudes of up to one conductor
diameter. In conventional transmission line systems,
one or more Stockbridge absorbers may be attached
to a conductor in an effort to suppress the aeolian
vibrations ([12] and [13]).

The classic theory introduced by den Hartog
[14] for a viscous vibration absorber, called MCK,
and their extensions to a viscoelastic absorber,
presented by Snowdon [15], are difficult to apply.
This is because for complex mechanical systems
many modes can contribute to the total response of
the primary system. Interesting methods to optimise
dynamic vibration absorbers have been presented
by Brennan and co-workers ([16] to [19]). Kidner
and Brennan [17] used a multi-degree-of-freedom
beam neutralizer with piezoceramic patches as active
elements, and they analysed the improvement on
the performance of the absorber considering the rigid

Fig. 2. Comparison of the experimental and numerical results for the inertance frequency  response
of the beam at -30 °C
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body mode and the first mode of the beam in their
analysis. Brennan and Dayou [18] used an equivalent
damper to represent the dynamic stiffness of the
absorber assuming a very low damping. Then, they
were able to model the problem without adding
degrees of freedom, but by using all the modes of
the primary structure. More recently, an experimen-
tal verification of the optimum tuning method has
been presented [19]. An interesting finding is that
the absorber can be as effective as active control in
reducing the global vibration of the structure. On
the other hand, Espíndola and Silva [20] introduced
the concept of generalized equivalent quantities. The
basic idea of their technique is to transform the
mechanical impedance of the absorber�s coupling
point to the primary system, into generalized

quantities of mass and damping that are frequency
dependent. Using the generalized quantities it is
possible to formulate the compound equations of
motion simply in terms of the generalized coordinates
of the primary system. After the equations are written
in the principal coordinates, and retaining those that
correspond to the frequency band of interest (where
the problem of high response residua), the
computations are made in a modal subspace, which
includes just a minimum number of equations.

2.3 Finite-Element Model for the Secondary
System

In simple terms a Stockbridge absorber is
composed of a mass at the centre, two attached

Fig. 3. Comparison of the experimental and numerical results for the inertness frequency response
of the beam at 10 °C

Fig. 4. Comparison of the experimental and numerical results for the inertness frequency response
of the beam at 60 °C
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sandwich (metal-elastomer-metal) beams, and two
attached tuning masses, as shown in Figure 5. The
mass at the centre is attached to the primary system.
The finite element method is used to model the
absorber�s behaviour. The corresponding eigenvalue
problem, which is frequency dependent, can be
solved using the technique presented in Section 1.
The finite element model of the absorber is shown in
Figure 5. Now, for a fixed temperature the equations
of motion for the secondary system are:

                                         
  (20).

After modification of the order of rows and
columns in order to appropriately place the control
node, as shown in Figure 5, we can define:

                                   (21),

                                 (22),

and then Eq. (20) can be written in partitioned matrix
form as:

                   (23),

where M
1
 is an n-1´n-1 mass submatrix, M

2
 is an n-

1´1 mass submatrix, M
3
 is an 1´n-1 mass submatrix,

M
4
 is an 1´1 mass submatrix, K

1
(W) is an n-1´n-1

stiffness submatrix, K
2
(W) is an n-1´1 stiffness

submatrix, K
3
(W) is an 1´n-1 stiffness submatrix,

K
4
(W) is an 1´1 stiffness submatrix, u is the total

displacement vector, q is the displacement vector
without considering the control node, y is the
displacement of the control node, and f(t) is the force
applied to the absorber by the primary system. Now,
in the frequency domain, Eq. (23) can be expressed
as the system of equations:

                   
  (24).

After solving Eq. (24), we obtain the dynamic
stiffness of the system as:

             (25),

where:

                         (26).

Now, the inverse of X
1
 can be computed

approximately by using Eq. (15), as:

(27).

From the dynamic stiffness we can obtain
the dynamic impedance

                                                    
    (28),

where j= 1- , and the apparent mass

Fig. 5. Finite element model for the Stockbridge dynamic vibration absorber
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  (29).

Consequently, the equivalent damping and
equivalent mass are

                                          (30)
,

and
                                                 (31),

respectively.
Then, the model of the absorber is replaced

by an equivalent mechanical system composed of
an equivalent mass connected to the primary system
and an equivalent damper connected to the ground,
where both are frequency dependent. In this way
there are new physical degrees of freedom in the
mechanical system, but there are no new degrees of
freedom in the model. This formulation is equivalent
to the simple model of a Stockbridge absorber, which
makes use of the Euler-Lagrange equations.

2.4 Optimisation of the Stockbridge Absorber

Now, the secondary system (Stockbridge
absorber) is attached to a primary system (electrical
transmission line) resulting in a compound system.
In order to optimise the physical dimensions of the
absorber, an objective function has to be proposed.
Here, the objective function will be defined from the
maximum absolute values of the principal coordinate
functions of the compound system. Assuming that
the primary system has a very low and almost
constant hysteretic damping, the equations of
motion for the primary system in the frequency
domain are:

                                
(32),

where M
pr

 is the mass matrix of the primary system,
K

pr
 is the complex stiffness matrix of the primary

system, q
pr

(W) is the displacement vector of
generalized coordinates, and f(W) is the force vector.
Using the theory of the equivalent generalized
quantities [20], the compound system can be
modelled as:

                 
(33),

where M
eq

(W) is the equivalent mass matrix and
C

eq
(W) is the equivalent damping matrix.

If p absorbers are attached to the primary
system, at the generalized physical coordinates q

k1
,

q
k2

, ... , q
kp

, the equivalent generalized mass and
damping matrices are:

      
(34),

and

      
  (35),

respectively.
Using the transformation:

                                       
  (36),

where F
pr
 is the matrix of the eigenvectors associated

with the eigenvalues of the primary system in the
frequency band of interest, and � prp  is the vector of
the principal coordinates of the primary system, Eq.
(33) can be written as:

 (37),
where M

A
(W)=F

pr
TM

eq
(W)F

pr
, C

A
(W)=F

pr
TC

eq
(W)F

pr
,

n(W)=F
pr

Tf(W), and S
pr

=F
pr

TK
pr

F
pr

=tr(s
i
) is a trace

matrix of eigenvalues of the primary system.
Consequently:

            
   (38),

and the receptance matrix can be calculated by:

(39).

Then, in order to solve the optimisation
problem it is possible to define an objective function
f  as the modulus of a vector formed by the maximum

absolute values of the generalized principal
coordinates of the primary system [20]. This can be
expressed by the equation:

(40),

where W
1
 and W

2
 are the lower and upper limits of

the frequency band of interest, respectively, x is a
design vector of project variables to optimise, and
i=1,..., N, where N is the total number of degrees of
freedom of the primary system.
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The project variables to optimise are the
physical dimensions of the absorber. Therefore, the
design vector is defined as:

                                       
 (41),

where the elements of x are the physical dimensions
shown in Fig. 6. The constraint functions are defined
for each element of x as:

                                            
  (42),

where x
i
L and x

i
U are the lower and upper limits for

each element, respectively.  For the force vector, a
unit force at each excitation point of the primary
system can be used, i.e., f=[1,1,�,1,1]T.

A numerical example was performed for a real
compound system. A total of four Stockbridge
absorbers were attached to the primary system. In
this example of a Stockbridge absorber the two
sandwich beams are designed from two metal layers
of steel 1020 and a viscoelastic core DYAD 601
(Soundcoat Co.). The finite element model of the
absorber is shown in Fig. 5. The beams were divided
into 114 elements. For the length and thickness of
the core, 19 and 2 elements were used, respectively.
This choice was found appropriate for both,
representing efficiently the internal shear and
determining the first four modes in the frequency
band used. The mass at the centre was divided into
32 elements and the tuning masses were divided into
24 elements each. This choice is because the
mechanical purposes of the masses do not require
high discretization. All the elements are two-dimen-

sional lagrangian and quadratic solids, of nine nodes,
and they are in a plane state of stress. This gives a
total of 308 elements, 1319 nodes, and a total of
n=2638 degrees of freedom. For simplicity, the
temperature is assumed to be a constant.

The primary system considered was an
ACRS partridge cable, 30.2 m long, clamped at both
extremes and subjected to a tension of 9000 N. The
cable was divided into 81 equally spaced elements.
The central masses of the absorbers were attached
at nodes 5, 35, 46, and 76 of the cable. These
positions were selected in order to be far from the
nodes of the cable, allowing the absorbers to control
a large number of modes of the primary structure.
Figure 7 shows the physical model of the compound
system and its corresponding generalized equivalent
quantities model.

Since the finite elements were in a plane state
of stress, t does not change a lot during the
optimisation process, so it was fixed at a value of 10
mm. The lower and upper limits for each x

i
 were

chosen such that: 1) the weight and size of the
absorbers should not be excessive, and 2) the
thickness of the elastomer should be small in order
to have shear deformation from the vibration of the
sandwich beams. The frequency range used to
optimise the Stockbridge absorber was 40 to 60 Hz.
The temperature was fixed at 10OC. Because of its
nature, the objective function has a large number of
local minima so a genetic algorithm was used to per-
form the optimisation. The theory and applications
of the genetic algorithms in optimisation problems

Fig. 6. Definitions of the physical dimensions to optimise for the Stockbridge absorber

[ ]1 2 3 1 2 3 4, , , , , , ,
T

l l l h h h h t=x

L U
i i ix x x£ £
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were explained in detail in the literature [21] to [23].
The numerical results of the optimisation process
are presented in Table 1.

Figure 8 shows the results of the receptance
at the mid point of the cable, when no absorber is
attached, and when the absorbers are attached to
the cable before and after the optimisation process.
It can be seen that after their dimensions were
optimised, the Stockbridge absorbers reduced the
vibration level of the cable in a very effective way.
Most of the peak values of the receptance frequency
response were attenuated and for the peak value at
around 60 Hz an attenuation of 30 dB was achieved
after the optimisation.

3 CONCLUSIONS

The modelling of a metal-elastomer compos-
ite structure based on a finite element method has
been presented. In addition, a methodology to re-
duce the computation time when dealing with fre-
quency dependent matrices has proven to give good
approximate results. It has to be noted that the pre-
cision of the approximation presented in Section 1

depends on the subspace. The factors that deter-
mine the behaviour of the algorithm are: a) the di-
mension �n  of the subspace (a larger value of the
dimension will produce a better approximation), and
b) the variation of the complex shear modulus of the
viscoelastic material with both frequency and tem-
perature. It can be expected that in the transition
zone the errors will be increased. As a result, the
distance between the subspace generated by the
truncated modal matrix 

0
�Ö  and the space generated

by the modal matrix F is increased. Obviously, this
implies that the initial frequency W

0
 plays an impor-

tant role in the computations since the difference
between K(W

0
,T) and K(W,T) increases with the

change of temperature. However, it can be concluded
that the method used in this work seems to be quite
efficient when compared to the subspace iteration
method [8] and the Lanczos method [25], since these
require the calculation of the inverse of the stiffness
matrix for each iteration. In addition, a theory to de-
termine the generalized equivalent quantities for a
Stockbridge dynamic absorber has been presented.
The use of these quantities does not add more de-
grees of freedom to the primary system and the

xi xi
L 

mm 
xi

U 
mm 

xi optimised 
mm 

l1 0 200 10.321 
l2 0 1000 210.002 
l3 0 200 30.024 
h1 0 100 10.096 
h2 0 10 2.013 
h3 0 5 2.000 
h4 0 400 30.102 
t - - 10.000 

Table 1. Results of the optimisation of the physical dimensions for the Stockbridge absorbers

Fig. 7. Diagram of the compound system (cable plus Stockbridge absorbers): a) the physical model and
b) its generalized equivalent quantities model
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theory could be extended to other kinds of absorb-
ers. Moreover, the use of generalized equivalent
quantities allows one to define an objective func-
tion of the maximum absolute values of the principal
coordinates of the primary structure. This objective
function is independent of the geometry of the pri-
mary system and it is dependent on its modal param-
eters. The application of the method to Stockbridge
absorbers used to suppress the aeolian vibrations
of a real electrical transmission line shows that the

Fig. 8. Comparison of receptance frequency responses at the mid point of the primary system, with and
without an optimised Stockbridge absorber

reduction in the response of up to eleven modes is
achieved after the dimensions of the absorbers are
optimised using a genetic algorithm. The
optimisation process can be quite slow when com-
pared to other techniques reported in the literature
[18] and [19]; however, the results presented in this
work seem to be encouraging. Further work will be
conducted regarding the computational costs and
detuning of the absorber due to the presence of tem-
perature changes in the elastomer layer.
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