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Abstract. We investigate two mechanisms for the formation of the Roper resonance: the
excitation of a valence quark to the 2s state versus the dynamically generation of a quasi-
bound meson-nucleon state. We use a coupled channel approach including the πN, π∆
and σN channels, fixing the pion-baryon vertices in the underlying quark model and us-
ing a phenomenological form for the s-wave sigma-baryon interaction. The Lippmann-
Schwinger equation for the K matrix with a separable kernel is solved to all orders which
results in the emergence of a quasi-bound state at around 1.4 GeV. Analysing the poles in
the complex energy plane using the Laurent-Pietarinen expansion we conclude that the
mass of the resonance is determined by the dynamically generated state, but an admix-
ture of the (1s)2(2s)1 component is crucial to reproduce the experimental width and the
modulus of the resonance pole.

This work has been done in collaboration with Simon Širca from Ljubljana, Hedim
Osmanović from Tuzla and Alfred Švarc from Zagreb.

The recent results of lattice QCD simulation in the P11 partial wave by the
Graz-Ljubljana group [1] including besides 3q interpolating fields also operators
for πN in relative p-wave and σN in s-wave, has revived the interest in the na-
ture of the Roper resonance. Their calculation and a similar calculation by the
Adelaide group [2] show no evidence for a dominant 3q configuration below
1.65 GeV and 2.0 GeV, respectively, that could be interpreted as a three-quark
Roper state, and therefore support the dynamical origin of the Roper resonance.

In our work [3] we study the interplay of the dynamically generated state
and the three-quark resonant state in a simplified model incorporating the πN,
π∆ and σN channels. The choice of the channels as well as of the parameters of
the model is based on our previous calculations of the scattering and the meson
photo- and electro-production amplitudes for several partial waves in which all
relevant channels as well as most of the nucleon and ∆ resonances in the inter-
mediate energy regime have been included [5–9]. The bare octet-meson–baryon
vertices are calculated in the Cloudy Bag Model while the parameters of the σ-
baryon interaction are left free: apart of its strength, the Breit-Wigner mass and
the width of the σ are varied. We have been able to consistently reproduce the
results in the S and P partial waves; only the D waves typically require an in-
crease in the strength of the meson-quark couplings compared to those predicted
by the underlying quark model. The results presented here are obtained with the
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σ mass and width both equal to 600 MeV, and only the σNN coupling is varied.
Very similar results have been obtained for the mass and width of 500 MeV.

The central quantity in our approach is the half-on-shell K matrix1 that con-
sists of the resonant (pole) terms and the background (non-pole) term D:

χαγ(k, kγ) =
VγN(kγ)VαN(k)

mN −W
+
VγR(kγ)VαR(k)

mR −W
+Dαγ(k, kγ) . (1)

Indices α, β, γ . . . denote the three channels, the first term corresponds to the
nucleon pole, the second term is optional and generates an explicit resonance
with the K-matrix pole atW = mR. The Lippmann-Schwinger equation (LSE) for
the Kmatrix splits into the equation for the dressed N→ α vertex,

VαN(k) = V(0)
αN(k) +

∑
β

∫
dk ′

Kαβ(k, k ′)VβN(k ′)
ωβ(k ′) + Eβ(k ′) −W

, (2)

and the equation for the background,

Dαδ(k, kδ) = Kαδ(k, kδ) +
∑
β

∫
dk ′
Kαβ(k, k ′)Dβδ(k ′, kδ)
ωβ(k ′) + Eβ(k ′) −W

. (3)

If the resonant state is included, an equation analogous to (2) holds for the R→ α

vertex. Let us note that the splitting of the K matrix is similar to the splitting
used in approaches computing directly the T matrix, but is not equivalent. In
the K-matrix approach the T matrix is obtained by solving the Heitler equation,
T = K+ iKT , which necessarily mixes the pole and the non-pole terms.

Our approximation consists of assuming a separable form for the kernelKαβ:

Kαβ(k, k ′) =
∑
i

ϕαβi(k) ξ
β
αi(k

′) , (4)

ϕαβi(k) =
mi

Eβ
(ωβ + εβiα)

Vαiβ(k)

ωα(k) + εαiβ
fiαβ ,

ξβαi(k
′) =

Vβiα(k
′)

ωβ(k ′) + ε
β
iα

, εβiα =
m2i −m

2
α − µ2β

2Eα
,

where i runs over intermediate N and ∆, f are the corresponding spin-isospin
factors, Vαiβ corresponds to the decay of the baryon in channel β into the inter-
mediate baryon and the meson in channel α, and m (E) and µ (ω) stand for the
baryon and the meson mass (energy), respectively. Kαβ(k, k ′) reduces to the u-
channel exchange potential when either k or k ′ takes its on-shell value. This type
of approximation has been used in our previous calculations and has lead to con-
sistent results. Let us mention that neglecting the integral terms in (2) and (3)
corresponds to the so called K-matrix approximation.

1 χ is proportional to the Kmatrix (satisfying S = (1+ iK)/(1− iK)) by a kinematical factor
which is not relevant for the present discussion.
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Equation (2) and (3) can be solved exactly by the ansatz:

VαN(k) = V(0)
αN(k) +

∑
βi

xαβiϕ
α
βi(k) , (5)

Dαδ(k) = Kαδ(k, kδ) +
∑
βi

zαδβi ϕ
α
βi(k) , (6)

with coefficients x and z satisfying sets of algebraic equations of the form∑
γj

Aβαi,γj x
β
γj = b

β
αi ,

∑
γj

Aβαi,γj z
βδ
γj = cβδαi .

Note that both equations involve the same matrix A = I+M, M = [M]βαi,γj where

Mβ
αi,γj = −

∫
dk

ξβαi(k)ϕ
β
γj(k)

ωβ(k) + Eβ(k) −W
. (7)

For sufficiently strong interaction, the matrix A becomes singular and one or more
poles appear in the background part of the Kmatrix which signals the emergence
of a dynamically generated state. In fact, poles at the same energies appear also
in the corresponding resonant terms of the K matrix, in addition to the nucleon
pole and the (optional) pole atmR. The mechanism of this process can be studied
by performing the singular value decomposition A = UWVT where W is a diagonal
matrix containing the singular values wi. The singular values remain close to
unity with exception of one which approaches zero as the interaction increases
(Fig. 1 a) and eventually becomes negative for sufficiently strong gσNN (Fig. 2 a).
We claim that it is this value, wmin, and the corresponding singular vector Umin,
that determine the properties of the quasi-bound molecular state. This state is
dominated by the σN component. For the invariant energiesW for whichwmin is
close to zero, the solutions (5) and (6), in the absence of the resonant state R, can
be cast in the form

VαN(kα) ≈ V(0)
αN(kα) +

aα

wmin
, Dαδ(kα, kδ) ≈ Kαδ(kα, kδ) +

dαδ

wmin
. (8)

Similarly, the nucleon self energy acquires the form

ΣN(W) =
∑
β

∫
dk

VβN(k)V(0)
βN(k)

ωβ(k) + Eβ(k) −W
≈ (mN −W)

(
Σ′N(W) +

b

wmin

)
. (9)

Just above the πN threshold, the D term is dominated by the u-channel N ex-
change processes which is reflected in a large peak in ImT (the non-pole term in
Fig. 1 b). This term has the opposite sign with respect to the nucleon-pole term;
these two terms almost cancel each other. In the energy region wherewmin reaches
its minimum the second terms in (8) and (9) dominate and the leading contribu-
tion to the Kmatrix reads

Kαδ ≈
aαaδ

b

1

(mN −W)wmin
+
dαδ

wmin
.
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The two terms generate a resonance peak at the minimum ofwmin (dashed-dotted
line in Fig. 1 b); the real part, ReWp, of the corresponding S-matrix pole in Table 1
appears slightly belowW of the minimum ofwmin. Increasing gσNN,wmin crosses
zero twice and two poles of the S-matrix appear with ReWp close to the intersec-
tions (see Fig. 1 a and Table 1 for gσNN = 2.05).

If we include the resonant state by imposing a fixed value for mR in the
second term of (1), the position of the peak almost does not change for a value of
mR as low as 1530 MeV (solid line in Fig. 1 b). The effect of the resonant state is
reflected in the increased width of the resonance rather than in the change of its
position. This general scenario does not change if we decrease gπNN in order to
reproduce the experimental values of ReT and ImT (Fig. 2 b). While the peak in
ImT moves to somewhat higher W, the position of the minimum of wmin as well
as of the real part of the S-matrix pole stay almost at the same value (see Table 1).
Also, varying the value of mR between 1520 MeV and 2000 MeV has almost no
influence on the behaviour of the amplitudes and the position of the S-matrix
pole.
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Fig. 1. (Color online) a) The six lowest singular eigenvalues of the A matrix for gσNN = 2.0.
b) The real and imaginary parts of the T matrix calculated from the background (non-pole)
term alone (dashed lines), from the background plus the nucleon pole term (dash-dotted
lines), and from including the resonant state either at mR = 1530 MeV (solid lines), or at
mR = 2000MeV (short-dashed lines) for gσNN = 2.0.

We can summarize the results obtained in our simplified model as follows:

• The main mechanism for the Roper resonance formation is the dynamical
generation through a quasi-bound meson-baryon state aroundW ≈ 1400MeV
dominated by the σN component. Its mass is rather insensitive to variations
of the gπNN coupling.
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Fig. 2. (Color online) a) The lowest singular value of the W matrix, wmin, for four values of
gσNN. b) Same as Fig. 1 b, except for gσNN = 1.55.

Table 1. S-matrix pole position and modulus for the model without the resonant state
(mR = ∞), and the model with the resonant state for two values of the K-matrix pole
mass. The PDG values are taken from [10].

gσNN mR ReWp −2ImWp |r| ϑ

[MeV] [MeV] [MeV]

PDG 1370 180 46 −90◦

1.80 ∞ 1397 157 11.2 −78◦

2.00 ∞ 1358 111 20.6 −81◦

2.05 ∞ 1331 44 7.3 −62◦

1438 147 18.6 −17◦

2.00 ∞ 1342 285 18.8 −11◦

gπN∆ = 0

1.55 2000 1368 180 48.0 −87◦

1.55 1530 1367 180 47.5 −86◦

• The real part of the S-matrix pole, ReWp, remains close to or slightly below
the mass of the quasi-bound state and is almost insensitive to the presence
of a three-quark resonant state, while the PDG value of the imaginary part,
ImWp, is reproduced only if the three-quark resonant state is included.

• The S-matrix pole emerges with ReWp close to the minimum of wmin even if
(positive) wmin stays relatively far from zero; in this case the corresponding
pole is not present in the Kmatrix.
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• The mass of the quasi-bound molecular state is most strongly influenced by
the σN component and lies ∼ 100 MeV below the nominal σN threshold; re-
moving the π∆ component has little influence on the mass (see gπN∆ = 0

entry in Table 1).
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4. P. Alberto, L. Amoreira, M. Fiolhais, B. Golli, and S. Širca, Eur. Phys. J. A 26, 99 (2005).
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