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Doloèitev tornega koliènika v brazdah z napetostno funkcijo

Determination of the Friction Coefficient of Groove Forms Using
the Stress-Function Method

C. Erdem Imrak - Ismail  Gerdemeli
(Istanbul Technical University, Turkey)

Najveèja sila trenja, ki lahko nastane v brazdah, je funkcija dejanskega tornega koliènika med vrvjo
in brazdo. Torni koliènik je predstavljen na razliène naèina za vsako vrsto oblike brazde. V prispevku je
prikazan obrazec za porazdelitev tlaka na stièni povr�ini okrogle in/ali brazde v obliki èrke U.  Z metodo
napetostne funkcije smo doloèili tudi torni koliènik brazd.
© 2007 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: �leb na obodu koluta, torni koliènik, napetostne funkcije)

The maximum traction that can be developed in sheave grooves is a function of the actual coefficient
of friction between the rope and the groove. The coefficient of friction is presented in different ways for every
type of groove form.  In this paper an expression for the pressure distribution on the contact surface of round
and/or U-shaped groves is obtained, and the friction coefficient of the groove forms is determined by the
stress-function method.
© 2007 Journal of Mechanical Engineering. All rights reserved.
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0 INTRODUCTION

Driving sheaves are widely employed to
transmit power to the ropes that drive elevators, cable
cars, funiculars, etc. The groove form favourably
increases the effective coefficient of friction between
the rope and the groove at the expense of increasing
the pressure and wear on the groove surface. The
trade off between the traction produced and the pres-
sure causing the abrasion of the groove may be best
explained by the concept of shape factors for the
coefficient of friction of U-shaped grooves. During
normal operations sheave and drum grooves are
under constant pressure.

The groove form affects the magnitude of
the tractive force on the driving sheaves for power
transmission. The contact area between the rope
and the groove is smaller with U-shaped grooves
than with round grooves since the rope loses con-
tact with the groove where the undercut is machined.
Thus an undercut groove provides a tighter grip-

ping action due to an increased groove pressure,
and its traction capability is greater than that of a
round groove. However, a round groove has a longer
rope life and a lower level of noise because of the
lower groove pressure at high speeds. When the
problem of insufficient traction arises with a round
groove it should be noted that it can be overcome
by increasing the angle of wrap, by changing the
groove form to a U-shaped groove with an appropri-
ate shape or by using a material with a higher coeffi-
cient of friction [1].

The U-shaped groove sheave, found
predominantly in older installations, is the sheave
of choice for optimum rope life. Its large size, when
compared with the drive sheave diameters in newer
installations, in combination with its supportive
grooves minimizes the amount of abrasion and fa-
tigue. The support given to the rope by the groove
is illustrated in Fig.1. The groove cradles the rope,
resulting in low groove pressures that allow the wires
and strands to move about freely while the rope is
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operating. Also important to the U-shaped groove�s
success in achieving excellent rope life is the rela-
tive diameter of the sheave required to maintain trac-
tion. In general, an undercut U groove, a modern
type of groove, increases the traction by increasing
the groove pressures. The beauty of these groove
types is that the diameter of the sheave utilizing this
modern groove design can be reduced.

The maximum traction that can be developed
in the sheave grooves is a function of the effective
coefficient of friction between the rope and the
groove and the angle of contact that the rope makes
with the circumference of the sheave (known as the
angle of wrap). The groove form can favourably
increase the effective coefficient of friction between
the rope and the groove since the radial force due to
the rope tension produces greater normal and
frictional forces acting along the area of contact given
by the shape of the groove [2].

Airy introduced his stress function as a
device for solving certain problems in linear
elastostatics for homogenous isotropic bodies. There
are many published studies on the Airy stress func-
tion applied to solid mechanics ([3] to [10]). In this
paper, to obtain the pressure distribution on the con-
tact surface of undercut groves, the Airy stress-func-
tion method was used. The effects of the groove
geometry and the angle of wrap on the traction were
investigated and tabulated with the ratio of the forces
for different angle values by Imrak and Ozkirim [1].

In this paper the application of the Airy
stress-function method for determining the shape
factors for the coefficient of friction for both round
and undercut grooves is presented. The effect of
the changes in the groove angle and the undercut-

ting angle on the coefficient of friction and the
traction are also studied.

1 BASIC EQUATIONS

Due to the existence of axial symmetry related
to the geometry and specific pressure distribution
along the boundary of a U-shaped groove it is
preferable to employ polar coordinates rather than
the Cartesian system and to assume that the stress
condition is one of plane stress. The geometry and
the loading of an undercut groove are illustrated in
Fig. 1. The angle of the outer normal lines of the
contact area d may have a maximum value 180°; the
angle of the undercutting b must not be greater than
105°, as shown in Fig. 1.

Due to the normal force and the symmetrical
loading in the traction drive, only the plane stress is
employed. In the plane-stress state the following
relations are valid as long as the mass forces are
negligible. By plugging in the equations associated
with Airy�s stress function into the equilibrium
condition we can illustrate that the functions do in-
deed satisfy the equilibrium.  The Airy function is
chosen so as to satisfy the equilibrium equations
automatically.  The equation of compatibility, which
means that the body must be physically pieced to-
gether in terms of Airy�s stress function, is [11]:

             
 (1)

where Ñ2 is the Laplace operator. The Airy stress
function is developed and used to solve classic two-
dimensional problems fundamental to stress analy-
sis. The Airy stress-function approach works best

Fig.1. The U-shaped groove form
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for problems where a solid is subjected to prescribed
tractions on its boundary, rather than prescribed
displacements [8]. 

Using symmetrical straining we obtain ¶/¶r

= d/dr. Therefore, Eq.(1) becomes:

                                                                                                            (2).

Thus, the solution reduces to finding a solu-
tion of the differential equation of compatibility that
satisfies the boundary conditions of the problem.

To obtain a solution of these two equations,
one can write an arbitrary function f = f (r,j). This
arbitrary function is called the Airy stress function [12].
In the case of plane stress and in the event that the
body forces are negligible the differential equations of
equilibrium in polar coordinates are as follows:

    (3)

and the boundary conditions are s
r
 = p, s

t
 = 0, and

t = 0. dt = r sin dj » r dj with respect to the radial
derivative. If the second derivative is evaluated in
the tangential direction, we advance in the r direc-
tion by dr, then the angular change is dj. In the case
of plane stress and in the event that the body forces
are negligible the differential equations of equilib-
rium in polar coordinates are as follows [11]:

        
  (4).

The usual method for solving these
equations is by introducing a single new function
f = f (r,j), commonly known as Airy�s stress function,
which satisfies Eqs. (4) and is related to the stresses
as follows:

    (5).

One can assume the stress function f(r,j) =
C F

r
 r j sin j, where F

r
 denotes the radial force, the

distribution C is a constant, r is the radius of the
rope and j is the angle. It can be easily verified that
the stress function satisfies the equation of
compatibility. Thus, it represents the true stress func-
tion. For equilibrium, the stress distribution obtained
from Eqs.(5) is:

(6).

The radial force distribution F
r
 per unit length

along the circumference of the sheave, induced by
the tangential rope tension S, is:

        (7),

where D is the pitch diameter of the sheave.  The
boundary conditions along the area of contact, for
r = d/2, in the radial plane at an angle of a are ex-
pressed by:

                   (8),

where dA represents an infinitesimal contact area
with the dimensions  (D/2)da along the arc of the
wrap of the rope on the sheave and (d/2)dj  in the
radial plane of the sheave, where d is the rope diam-
eter, hence dA = d D dj da/4.

Substituting dA and Eq.(6) into Eq. (8), we
obtain:

    (9),

and then Eq.(9) reduces to:

  (10).

The constant C can now be determined by
integrating Eq.(10) and solving it for C so as to fulfil
the last of the boundary conditions:

  (11).

By putting Eq.(11) and Eq. (6) into Eq. (7), the
field of stress existing in the radial plane within the
sheave at an angle of a becomes:

  (12),

where S is the rope tension at the point on the arc of
the rope with an angle a.

2 SHAPE FACTOR FOR THE FRICTION
COEFFICIENT

The drive traction force is initiated by the
friction between the ropes and the sheave grooves
in traction. The maximum traction that can be
developed in the sheave groove is a function of the
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coefficient of friction between the rope and the
groove and the angle of contact that the rope makes
with the circumference of the sheave.

The groove form favourably increases the
actual coefficient of friction between the rope and
the sheave. Considering the equilibrium condition
of an indefinitely small element of the rope shown in
Fig.2 when the rope is about to slide, the elementary
tangential friction force dF developed by the radial
force dN can be obtained as follows:

  (13).

Substituting dA, Eq. (12) and into Eq. (13),
we obtain:

           (14).

After the rearrangement and integration the
final expression becomes:

  (15).

The shape factor for the coefficient of friction
can be defined as:

  (16).

The shape factors for the coefficient of
friction are plotted in Fig. 3.  The figure shows how
it changes with the changes in the angle of the outer
normal lines of the contact area, d and the angle of
undercutting, b. The shape factor for the coefficient
of friction gets its maximum value, i.e., a = 4/p, when
the angle d becomes 180° and the groove is round.

3 CONCLUSIONS

The groove form favourably increases the
effective coefficient of friction between the rope and
the groove since the radial force due to the rope

Fig.2. The free body diagram of an indefinitely small element of the rope

Fig.3. The shape factor for the coefficient of friction
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tension produces greater normal and frictional forces
acting along the area of contact given by the shape
of the groove. Therefore, this work introduces the
concept of shape factors for the coefficient of fric-
tion for U-shaped grooves and also derives it by
means of the Airy stress-function method.

From a careful analysis it can easily be seen that
when the angle of the groove decreases the traction
improves, but also so does the specific pressure and
resultant wear of both the grooves and the ropes. The
round groove gives lower traction but a longer rope life,
lower specific pressure and lower degree of noise than
the undercut. When it is essential to use round grooves
the traction capability can still be improved by using
non-metallic groove liners with a high coefficient of
friction.   It is also advisable that the angle of the
undercutting should be under 90°, and must not be greater
than 105°  whenever undercut grooves are in use.

 4 SYMBOLS

a shape factor for the coefficient of friction
A contact area
d rope diameter
D pitch diameter of the sheave
F tangential friction force
F

r
radial force distribution

N radial force
S rope tension
a angle of wrap
b angle of undercutting
f Airy�s stress function
d angle of the outer normal lines of the contact

area
m

eff
effective coefficient of friction

m
a

coefficient of friction
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