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This paper covers the evaluation and fine-tuning of different values of genetic operator’s parameters in 
the process of optimizing the designs of the integrated circuits. We investigated the interdependence of 
various values of these parameters in the use over the set of test-bench circuits, as well as their 
influence on the quality of the final solution and the convergence speed. Due to the increasing usage of 
the evolutionary optimization in the area of the integrated circuit design, there is a need to find a proper 
combination of genetic operators parameters’ value to make optimal solutions. Therefore, it is 
important to perform this kind of evaluation for each new problem to be solved. 

 

1 Introduction 
The area of evolutionary computation is very popular but 
there is always a problem of defining a proper value of 
parameters of genetic operators. A standard genetic 
algorithm uses four different parameters that have to be 
defined in advance, before the algorithm is actually used. 
These are: the number of generations, the size of the 
population, the probability of crossover, and the 
probability of mutation [1]. 
     There are some proposals for setting of these 
parameters according to the problem size and according 
to the area of the problem. But these proposals are not 
always applicable or are not suitable for all problems. 
Also, there are no proposals for any additional operators, 
used in some optimizations, which improve the 
performance of the algorithm. 
     To find some dependencies between the parameters 
and the problem that has to be solved, we made the 
evaluation, similar to that in [7]. We study an 
evolutionary approach that automatically generates 
circuit designs. We managed to point to some interesting 
dependencies between parameters themselves and to 
determine what values should be used in our 
optimizations when working with evolutionary-oriented 
algorithms. 

2 ECSA algorithm 
The facts presented in the introduction paragraphs 

and promising results of different evaluations [4, 9, 10] 
took us to the Evolutionary Concurrent Scheduling and 
Allocation (ECSA) design approach [8]. This approach 
considers scheduling and allocation constraints, allows 
short design time and can find globally optimal solutions. 

The input description of the integrated circuit (IC) is 
transformed into two basic (initial) schedules, obtained 
by As-Soon-As-Possible and As-Late-As-Possible 
algorithms. Functional units (FUs) used in first case are 
those fastest for each operation and in second case those 
slowest for each operation. These two schedules present 
some kind of boundary solutions, since all other solutions 
are executed in-between the time limits defined by these 
two schedules. Namely, no other solution can be faster or 
slower, considering different combinations of used units.  

Each solution has to be properly encoded (into the 
chromosome), i.e., each operation’s start time and FU 
have to exist in the chromosome. Initial population is 
built upon the two initial solutions, which are multiplied 
to form the population with so-called boundary solutions. 
The optimal solution has to be somewhere in-between 
the boundaries, therefore genetic operators (crossover, 
mutation, variation) transform those encoded solutions. 
With transformations their start times and allocated FUs 
are changed. The final solution obtained by genetic 
operators is also influenced by simulated annealing 
algorithm [6], which improves the solution if it stopped 
somewhere near the globally optimal point.   

2.1 Encoding 
The chromosome string consists of the numbers that 

represent the starting time of each operation and the 
allocated unit for each operation, where the position in 
the string depends on the order of the operations in the 
input IC description. This means that the chromosome 
consists of pairs of time/space information for each 
operation. And the genetic operators can influence both 
parts of that information, either together or separately. 
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The selected encoding type is chosen because of its 
convenience. When strings have to be further 
transformed, checked and analyzed, there is no need for 
any additional conversion of their values. In addition, the 
used implementation of genetic operators can check the 
changed values (their feasibility) instantly, without any 
transformation. The correctness of the transformation can 
therefore be checked within the function itself. 

2.2 Cost function 
One of the most important parts of the algorithm is 

its cost function. To obtain the cost (Eq. 1) of a certain 
circuit, the algorithm has to evaluate the required number 
of resources. In contrast to the other multi-objective 
functions that give more than one final solution, this one 
already includes the decision making part, which chooses 
one solution form all the solutions on the Pareto front. 
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The elements of the function above are calculated as 
follows. 

The number nfi is the highest number of the i-th 
functional unit needed in a separate control step. 

The number nr is the highest number of variables 
needed in a separate control step. We consider variables 
that are needed by the functional unit as input data, 
variables that are returned as output data, and variables 
that are not used at the moment but will be used in some 
of the later control steps or must be available until the 
end of the execution of all operations. 

The number nb is the highest number of data 
transmissions (into or from the functional units) in a 
separate moment. 

The execution time, T, is the time needed to execute 
all the operations of the schedule. 

The weights wfi, wr, wb, and wt are the weights of 
functional units, registers, buses and time, respectively, 
to be considered in the IC quality-evaluation cost 
function. The first three weights are proportional to their 
silicon area in the IC, while wt reflects our IC speed 
constraints. 

According to the different approaches of multi-
objective functions [3] and their efficiency we chose the 
presented distance function with the variable weight of 
separate criteria. With this approach it is possible to 
simplify the conditions or to expose some criteria. As 
mentioned before, the solution that is closest to the origin 
of the search space can be found. 

2.3 Genetic operators and parameters 
In each iteration, e.g., generation, of the algorithm 

there are four genetic operators that transform the 
chromosome. They consider data dependencies and the 

given library of available FUs. Each time after genetic 
operators transform the chromosome, the chromosome is 
checked to meet all constraints, considering data 
dependencies and unit types. 

2.3.1 Selection 
Upon the cost function values the worse solutions are 

aborted in the selection step and to ensure equally large 
population, these solutions are replaced with the best 
solutions. This ensures best solutions of the given 
generation to be surely involved in the next generation 
creation (elitism). 

2.3.2 Crossover 
In crossover task two approaches are used, each 

expressing the dominancy of the characteristics. After 
two crossover points are determined, in the first case the 
unit information is changed between the two 
chromosomes and start times are adapted, and in the 
second case the start times are changed and suitable unit 
is allocated. So the dominancy is expressed either in FUs 
or operations start times. 

2.3.3 Mutation 
Here, we also have two similar approaches to 

transform the chromosome. In both cases the starting 
time is changed. Either it is moved to later control steps 
with the use of faster FUs or it is moved to earlier control 
steps, if data dependencies allow that, with slower units. 

2.3.4 Variation 
After two operations are selected and when they are 

of the same type (e.g., additions), their FUs are switched. 
If needed also their start times are updated. 

3 Test-bench circuits 

3.1 Differential equation 
Relatively small circuit of differential equation [11] 

has only 11 operations, but 4 different operation types (6 
multiplications, 2 additions, 2 subtractions, 1 
comparison), see Figure 1. This circuit is useful when 
testing libraries with different implementations of the 
same operation types. 
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Figure 1: Differential equation 
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3.2 Elliptic filter 
This filter [5] consists of 34 operations, but only two 

operation types: 26 additions and 8 multiplications 
(Figure 2). The circuit is suitable for comparison due to 
its size and operation dependencies, since they form two 
independent similar critical paths both influencing the 
circuit delay. 
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Figure 2: Fifth-order elliptic filter 
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Figure 3: Bandpass filter 
 

3.3 Bandpass filter 
One of the implementations of the bandpass filter [5] 

is the circuit used for our evaluation. It consists of 29 
operations; 11 multiplications, 10 additions and 8 
subtractions (Figure 3). Due to data dependencies almost 
all operations influence the circuit delay. 

3.4 Least mean square filter 
This filter for signal adaptation (noise reduction) is 

based upon least mean square method [2]. It consists of 
47 operations; 24 multiplications and 23 additions 
(Figure 4). This test-bench circuit is useful due to its size 
and unique data dependencies. 
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Figure 4: Least mean square filter 

4 Evaluation 
Considering 18750 different schedules of each 

circuit and different combinations of parameters, we 
statistically compared the results according to their cost 
function (Eq. 1). For each of described four test-bench 
circuits we made a set of 3125 different combinations of 
parameters (generations, populations, crossover, 
mutation and variation). We repeated the optimization 
process with each combination five times to reduce the 
influence of statistical error and to get the average fitness 
of solutions obtained by each combination of parameters. 

The solutions with fitnesses of top 20% of all 
fitnesses for a certain circuit were defined as high quality 
solutions and solutions with bottom 20% of fitnesses 
were defined as low quality solutions  

To ensure most solutions being time-constrained 
(executed in shortest possible time) the weight wt was set 
to extremely high value. 
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 Figure 5: Differential equation 
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 Figure 6: Fifth-order elliptic filter 
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 Figure 7: Bandpass filter 
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 Figure 8: Least mean square filter 
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As presented in Figures 5, 6, 7, and 8, solutions with 
high quality are mostly obtained by the following values 
of parameters: probability of crossover is 0.7, probability 
of mutation is 0.04, and probability of variation is 0.03. 
Besides, considering the circuits sizes the number of 
generations and population size should be set to 3 times 
and 4 times of a circuit size, respectively. 

The values of parameters in this combination are 
named as optimal values. These optimal values are 
determined upon the percentage of solutions with certain 
parameters among high quality solutions. The parameter 
value, to be considered as optimal, should have at least 
25% share among high quality solutions, while it should 
have less than 10% share among low quality solutions. 
Of course, there are some minor deviations but in general 
we can define some average values of genetic operator’s 
parameters when working with high-level IC design. 

5 Conclusion 
As presented there is a lot of work to fine-tune the 

proper values of the genetic operators. To achieve 
compatible results in optimization of the used circuits it 
is appropriate to use the values obtained by our 
investigation. 

Generally, the quality of solution is always 
influenced by parameters and the problem itself. 
Therefore, it is important to perform this kind of 
evaluation each time we are in search of the optimal 
values of the genetic operators for some new problem to 
be solved. 
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