
44 

FORMAL VERIFICATION OF DISTRIBUTED 
SVSTEMS 

INFORMATICA 4/89 

Keywords: distributed system, model, formal specif ication, 
verification 

Tatjana Kapus, Bogomir Horvat 
Tehniška fal<ulteta IVIaribor 

Distributed systenis are inherently concurrent, asynchronous, and 
nondeterministic. Formal methods and automated tools are needed for helping 
in describing them viithout causing a misinterpretation, and in reasoning 
about their correctness. Different approaches to modelling, formal 
specification and verification of distributed systems are discussed uith 
respect to their abilities. It is difficult to find a universal formal 
method. Any«ay, a formal approach does not have to be universal for belng 
useful in the design of distributed systems. 

Za porazdeljene sisteme je značilno hkratno in asinhrono izvajanje komponent 
ter nedeterministično obnašanje. Zato potrebujemo formalne metode in 
računalniško podprta orodja, ki bi nam pomagala popolno in nedvoumno opisati 
sisteme ter sklepati o njihovi pravilnosti. V članku govorimo o različnih 
pristopih k modeliranju, formalni specifikaciji in verifikaciji 
porazdeljenih sistemov glede na njihove zmožnosti. Težko je najti 
univerzalen formalni pristop. Seveda pa je lahko pristop koristen, čeprav ni 
vsestranski . 

0. lotroduction 

Informal software design techniques often rely 
on trial and error involving possibly several 
implementation and redesign loops. Formal 
methods and computer-alded tools are needed in 
the entire design process to avoid thls 
potentially expensive procedure. Thls is 
especially true for distributed systems, 
because they are inherently concurrent, 
asynchronous, and nondeterministic. 
Conceptually, they are thought of as belng 
composed of processes which interact by 
exchanglng messages. If the number of possible 
interactions is large, their behaviour is 
extremely difficult to reason informally 
about, and even to describe without causing a 
raisinterpretation. 

A variety of formal specification and 
verification approaches are being 
investigated. They are based on some model of 
computation. In thls paper we discuss 
different approaches to modelling, formal 
specification and verification of distributed 
systems by asking if they have some desirable 
abilities. We ask, for example, if they manage 
State explosion, if it is possible to speclfy 
and verlfy safety and liveness properties, if 
control and data related properties can be 
verified, if a proof system based on a model 
is compositional, which kind of communication 

can be dealt with, if an approach can be used 
for different applications, and also, if 
verification can be easily automated. 

Note that throughout the paper we talk about 
the classical system design approach. There, a 
requirement specification is stated first, 
uhich describes the behaviour of a system from 
its user's vie«, uithout talking about its 
internal structure. It serves as a contract 
between the user and the designer. A design 
specification is obtained by decomposing the 
system Into communicatlng processes. It is the 
designer's work to verify if It meets the 
requirement- specification. It is good if every 
process can be specifled separately. The 
possibility of modular specification and 
verification of a design agalnst a requirement 
specification in absence of the code reduces 
the design complexity of distributed systems. 

1. State machines 

State machines are widely used to model 
distributed systems. Component processes are 
represented by states and possible transitions 
between them. The transitions represent events 

transmissions and receptions of messages. 
The system's state space can be obtained, such 
that its States are determined by a state of 
every component, and its transitions are the. 



45 

components' ones. Verification can be 
generally vieued as requiring reasoning about 
the complete state space of a system /11/. 
But, as the number of states increases, it 
becomes a difficult task. We can say that the 
basic role of formal techniques is in helping 
the designer to manage the state explosion. 

The problem is being solved in two ways. The 
first one remains in the state-machine 
concept. After the component processes are 
formally specified, the system's s tate space 
is constructed and examined. Of course, 
computers are exploited to do it, This is so-
called exhaustive analysis. The state space is 
in fact a reachability graph, and the analysis 
is also called reachability analysis. The 
second . «ay is to use mathematical theories 
built on appropriate models which would not 
force us into construction of the state space. 

culture of an average computer scientlst /6/. 
And formal proofs can play its role best when 
a design is clear enough, while the designer 
needs tools for assisting him in the design 
process to achieve this stage by letting him 
precisely express his ideas, and in the first 
plače validate them rapidly by simulation. 

Exaroples of the tools are OVAL / 2 / , Veda /6/, 
RGA / U / , SARA /4/. The tools typically use 
standardized state-machine languages, such as 
CCITT's Specification and Description Language 
(SDL) 121, and ISO's Estelle /6/, many of them 
use Petri nets /11/ and related formalisms 
/4/, for description of systems, because a 
priraary concern here is to provide the 
designer «ith a precise and expressive formal 
language uhich is easy to learn and to use. 
This is not the čase with abstract 
mathematical formalisms. 

One of the problems «ith exhaustive analysis 
is that a representation of the complete state 
space of a system must be constructed. 
Usually, some transformations have to be 
performed to obtain a graph of a reasonable 
size, such as projections, reductions, and 
selections /11/. They should preserve the 
behaviour being analyzed. In most cases, 
transformations are focused on preserving 
control aspects, and ignoring data aspects of 
the systera. Unfortunately, only some general 
properties, such as absence of deadlock or 
livelock, can be proved in this vay, or 
ordering of communication events can be 
verified. That is why state raachines are 
typically used for verification of 
communication protbcols. Even when projections 
are used, construction of a reachability graph 
is time-consuming for large systems. Besides, 
finite graphs cannot be built sometimes. One 
solution to the problem, and to make it 
possible to analyze more system-specific 
properties, is the use of simulation as a 
compleraentary approach. It is In essence 
exploration of a selected portion of the state 
space. Hawever, it cannot "prove" properties 
about the complete state space, but it can 
increase confidence in the correctness of the 
system. A much exploited advantage of 
simulation is that statistical Information 
about the performance of the system may be 
calculated from the fesults of a simulated 
execution. It is said that "exhaustive 
analysis and simulation are both sides of the 
same coin" / 2 / . 

Some analysis procedures, such as searching 
for deadlocked states, can be built into a 
tool. A question arises, how to express 
specific requirements, to traverse the 
reachability graph interactively, and to 
verify if they are met. One way is to write 
them in the same formalism as the design being 
verified /14/. The RGA tool /11/ allows the 
user to specify first-order logic propositions 
and predicates about places and transitions of 
its Petri-net designs, and even to write an 
algorithm to perform more complex analysis of 
the design. Temporal logic specifications may 
be uritten in some tools. 

There is a similar problem with simula.tion. In 
Veda /6/, an observer can be defined to 
observe execution traces of a simulated system 
instead of the user, and to report errors «hen 
requirement specifications are not met. 
Another question arises concerning simulation. 
The development of simulation requires "test 
scenarios" of the system environment. They can 
be generated in a fully random or in an 
Interactive way. The authors of SARA /4/, for 
example, have decided to model the environment 
explicitly, like the system being designed. A 
well defined behavioural model of the 
environment then serves to stimulate the 
system, and to validate its behaviour. We see 
that simulation can be in general fully 
automated. 

2. Axiomatic approach 

Most currently existent computer-alded tools 
which can be used for design of real scale 
distributed systems use exhaustive analysis 
and simulation. One uould say that exhaustive 
analysis and simulation are used because of 
the lack of appropriate theories. It is true 
that for many of them only a conceptual 
frameuork is provided, mainly concerning 
communication and concurrency issues, and 
their use is only shovin for small scale 
problems. Besides, exhaustive analysis and 
simulation are certainly more easily 
automated. In the čase of finite number of 
states, algorithmic verification is possible. 
But there are other reasons. For instance, it 
is thought that simulation is nearer to the 

When talking about s tate-machine notations, we 
should also mention Milner's CCS (Calculus of 
Communicating Systems) /9/, and Hoare's CSP 
(Communicating Sequential Processes) /5/, 
although they do not model states explicitly. 
They rather describe processes in terms of 
observable events. Their advantage is that 
they provide a range of algebraic laws for 
comparing, and reasoning about distributed 
systems, so that formal specification and 
verification can be carried out in the same 
framevork. If component processes of a system 
are described in CCS or CSP, «e can stili 
construct the system's "state space". This is 
indeed convenient for "finite-state" cyclic 
systems, because the observable behaviour of 



46 

the system can be obtained and s'iniply compared 
viith the system specif icat ion for its 
correctness. But, to avoid a possibly 
threatening state explosion, other kinds of 
reasonine have to be einployed with state 
machines, induction on state transitions, for 
example. CSP offers besides compositional 
proof rules. 

Till now, we have been talkine about 
constructive descriptions of processes. In the 
constructive approach, also called operational 
approach, a process is specified as an 
abstract machine describing a computation. 
Such a specification is implementation 
oriented. We specify a program (i.e. a 
process) essentially by uriting another, 
presumably simpler, program / 7 / . For 
requirement specification and formal 
verification purposes, specifying processes by 
stating their properties, cons^raints that any 
implementation must satisfy, seems more 
convenient. This is so-called axiomatic 
approach. In general, there are two kinds of 
properties. Safety properties express what may 
happen, or that something bad must not happen. 
Examples of them are partial correctness, 
mutual exclusion, and deadlock-freedora. 
Liveness properties express «hat must 
eventually happen, or that a particular good 
thing must eventually happen. They are 
temporal properties. Termination and 
starvation-freedom are liveness properties. 

We can talk about the properties in the 
constructive approach, too. How could we 
specify a process, if not by describing «hat 
may, . or what must happen?! Liveness properties 
cannot be specified in every model. Only 
safety properties can be stated and verified 
vjithin the classical state-machine model. If 
it is not possible to specify what must 
happen, the second best way is to express what 
may happen. The difference between the 
constructive and the axiomatic approach is 
that in the former we specify a process 
executions step by step, and in the latter 
properties are written in form of logic 
assertions which hold for execution sequences 
we would get if the process unfolded over time 
following the constructive description. 
Unfortunately, algorithmic verification in the 
axiomatic approach is not possible in general. 
Proofs have to be designed by hand (if a 
theorem prover is not available) and a certain 
ingenuity often is required to find the pročf 
/13/. 

Coraposit iona 1 i ty of proof rules means that 
proof of the correctness of a compound process 
can be constructed from proofs of correctnes 
of its parts. Hence, the system's state space 
does not need to be constructed. With another 
word, to prove a property of a program, we do 
not have to know the complete program, but 
only requirement specifications of its parts. 

Hoare has achieved compositionality by 
introducing a trace model /5/. A trace of the 
behaviour of a process is a finite sequence of 
symbols recording the events in uhich the 
process has engaged up to some moment in tirne. 
A process in the model satisfies a 

specification if the specification expression 
is true for ali its possible traces. 
"Concatenation of sequences", "prefix of a 
sequence", and "the lenght of a sequence" are 
basic notations to the trace specifications. A 
similar approach is used in the compositional 
proof system for netuorks of processes of 
Misra and Chandy /10/. It has to be stressed 
that safety properties hold for complete 
execution sequences and their finite prefixes. 
Some liveness properties are not fulfilled by 
prefixes, but always hold for complete 
sequences. Because execution sequences may be 
infinite, liveness properties are difficult to 
specify in this model due to finiteness of 
traces . 

Temporal logics are most often used for 
specifying liveness properties. .The temporal 
operator 'eventually' is especially sultable 
for expressing progress properties, i.e. that 
an event will eventually happen. Temporal 
logic is also used in combination with state-
machine model in so-called model checking /13/ 
for verification of liveness properties, 
Unfortunately, we need here a finite system 
state space which we check against temporal 
logic formulae. Finding models that uould 
allo« modular verification of temporal 
properties, and not only of safety properties, 
i.e. a compositional proof system for both of 
them, is a tough problem. 

An example of such a model is one that has 
been found by Nguyen et al. /12/. One uould 
expect that Infinite sequences wlll be used in 
plače of finite traces to model process 
executions. Instead, a behaviour has been 
introduced for better modelling of progress 
and termination or deadlock. It Is an infinite 
sequence of observations. Every observation 
includes a trace of events that have happened 
up to the moment of the observation. Like in 
Hoare's traces, the trace may be at most one 
event longer in the next moment, i.e. in the 
next observation. It means that events are 
totally ordered, and that concurrency Is 
modelled with interleaving of concurrent 
events. The compositional proof systeffl based 
on the model ušes linear temporal logic / 8 / . 
With the introduction of infinite behavlours, 
i.e. infinite sequences of traces, it has been 
achieved that the previously mentioned trace 
notations are stili the basic ones, but 
temporal properties can be stated in terms of 
them by temporal operators. The model is also 
interesting because systems with synchronous 
and asynchronous communication can be 
specified and verified, uhich is not usual in 
other existent compositional proof systems. 
Communication is synchronous if a process 
cannot send anything until the receiving 
process is ready to accept it as input, and it 
is asynchronous if a process can send an 
output as soon as it is ready. To enable 
modular specification and verification of 
temporal properties for both kinds of 
communication, it has been necessary to 
represent the readiness of processes to 
coramunicate in the model. 

It is not necessary to use temporal logic to 
express temporal properties. It can be always 



47 

replaced by first-order. logic with certain 
relations introduced. The reason it is often 
used is because it is concise and elegant. 

Trace specifications are very suitable for 
data-flov computations, for exaniple, but seem 
awkward in expressin6 properties whose data 
structures are not well-defined sequences, 
such as properties in unreliable systems. 

Chen and Yeh /3/ have proposed EBS (Event 
Based Specification Language) which takcs the 
concept of events more fundamental than that 
of traces, so that unreliable systems can be 
more easily specified. Partial ordering on 
events is used, so that not ali possible 
interleavings of potentially concurrent events 
have to be considered as with total ordering. 
And it does not use temporal operators. To 
say that an event will eventually cause the 
occurrence of another event, it ušes a binary 
relation, Safety and liveness properties can 
be specified and verified separately like in 
Nguyen's system, so that verification is less 
complex. 

3. Conclusion 

Some approaches to modelling, formal 
specification and verification of distributed 
systems have been discussed. We have sho«n 
their main characteristics and problems that 
have to be overcome in searching for new 
methods. It seems hardly possible to find a 
universal formal approach. A much exploited 
solution is in building automated tools uhich 
integrate several useful approaches, and do-
not force their users into procedures 
unnatural to them. And perhaps it is true that 
theories' for specific applications should be 
established before going into generalization 
/1/. 

/6/ Jard, C , Monln, J.-F., and Groz, R. 
(1988), "Development of Veda, a Prototyping 
Tool for Distributed Algorithms", IEEE Trans. 
Softvare Eng., vol. 14, no. 3, pp. 339-352. 
/7/ Lamport, L. (1983), "What 'goDd is temporal 
logic?". Proč. IFIP 83, ed. R.E.A. Hason, 
North-Holland, pp. 657-668. 
/8/ Manna, Z., Pnueli, A. (1981), Verification 
of concurrent programs, Part 1: The temporal 
framework, Tech. Rep. STAN-CS-81-836, Stanford 
University, June 1981. 
/9/ Milner, R. (1980), A Calculus of 

Systeiiis, Sp r inge r Verlag, Comraunicatine 
Berlin. 
/10/ Misra, J. and Chandy, K.M. (1981), 
"Proofs of Netvjorks of Processes", IEEE Trans. 
Software Eng., vol. SE-7, no. 4, pp. 417-426. 
/11/ Morgan, E.T. and Razouk, R.R, (1987), 
"Interactive State-Space Analysis of 
Concurrent Systems", IEEE Trans. Softuare 
Eng., vol. SE-13, no. 10, pp. 1080-1091. 
/12/ Nsuyen, V., Denžrs, A., Gries, D., 
0wicki, S. (1986), "A model and temporal proof 
system for networks of processes", Distributed 
Coraputing, vol. 1, no. 1, pp. 7-25. 
/13/ Pehrson, B. (1989), "Formal Specification 
Methods", CompEuro 89, Tutorial Sessions, ed. 
W. Anacker and R. Beyer, Hamburg 1989. 
/14/ Rea, K, and Johnston, R.de B. (1987), 
"Automated Analysis of Discrete Communication 
Behaviour", IEEE Trans. Software Eng., vol. 
SE-13, no. 10, pp. 1115-1126. 

References 

/1/ Boute, R.T, (1988), "On the shortcomings 
of the axiomatic approach as presently used in 
Computer science", CompEuro 88, System design: 
Concepts, methods and tools, Brussels 1988, 
Washington 1988, pp. 184-193. 
/2/ Cavalli, A.R. and Paul, E. (1988), 
"Exhaustive analysis and simulation for 
distributed systems, both sides of the same 
coin", Distributed Computing, vol. 2, no. 4, 
pp. 213-225. 
/3/ Chen, B.-S. and Yeh, R.T. (1983), "Formal 
Specification and Verification of Distributed 
Systems", IEEE Trans. Softnare Eng., vol. SE-
9, no. 6, pp. 710-722. 
/4/ Estrin, C , Fenchel, R.S., Razouk, R.R., 
and Vernon, M.K. (1986), "SARA (System 
ARchitects Apprentice): Modelling, Analysis, 
and Simulation Support for Design of 
Concurrent Systems", IEEE Trans. Softvare 
Eng., vol. SE-12, no. 2, pp. 293-311. 
/5/ Hoare, C.A.R. (1985), Coramunicating 
Sequential Processes, Prentice-Hal1 
International, London. 

•Ms vnrk vos SLpported ly Eesearch OaminitiES of Slorana. 


