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Abstract

The distinguishing index of a graphG, denoted byD′(G), is the least number of colours
in an edge colouring of G not preserved by any non-trivial automorphism. We characterize
all connected graphs G with D′(G) ≥ ∆(G). We show that D′(G) ≤ 2 if G is a traceable
graph of order at least seven, and D′(G) ≤ 3 if G is either claw-free or 3-connected and
planar. We also investigate the Nordhaus-Gaddum type relation: 2 ≤ D′(G) + D′(G) ≤
max{∆(G),∆(G)}+ 2 and we confirm it for some classes of graphs.

Keywords: Edge colouring, symmetry breaking in graph, distinguishing index, claw-free graph, pla-
nar graph.

Math. Subj. Class.: 05C05, 05C10, 05C15, 05C45

1 Introduction
We follow standard terminology and notation of graph theory (cf. [12]). In this paper, we
consider general, i.e. not necessarily proper, edge colourings of graphs. Such a colouring
f of a graph G breaks an automorphism ϕ ∈ Aut(G) if ϕ does not preserve colours of f .
The distinguishing index D′(G) of a graph G is the least number d such that G admits an
edge colouring with d colours that breaks all non-trivial automorphisms (such a colouring is
called a distinguishing edge d-colouring). Clearly, D′(K2) is not defined, so in this paper,
a graph G is called admissible if neither G nor G contains K2 as a connected component.

The definition of D′(G) introduced by Kalinowski and Pilśniak in [17] was inspired
by the distinguishing number D(G) which was defined for general vertex colourings by
Albertson and Collins [1]. Another concept is the distinguishing chromatic number χD(G)
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introduced by Collins and Trenk [7] for proper vertex colourings. Both numbers,D(G) and
χD(G), have been intensively investigated by many authors in recent years [4, 5, 6, 9, 16].

Our investigation was motivated by the renowned result of Nordhaus-Gaddum [18] who
proved in 1956 the following lower and upper bounds for the sum of the chromatic numbers
of a graph and its complement (actually, the upper bound was first proved by Zykov [22] in
1949).

Theorem 1.1 ([18]). If G is a graph of order n with the chromatic number χ(G), then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1.

Since then, Nordhaus-Gaddum type bounds were obtained for many graph invariants.
An exhaustive survey is given in [2]. Here, we adduce only those closely related to the
topic of our paper.

In 1964, Vizing [20] considered proper edge colourings and he proved Nordhaus-
Gaddum type bounds for the chromatic index of a graph.

Theorem 1.2 ([20]). If G is a graph of order n with the chromatic index χ′(G), then

n− 1 ≤ χ′(G) + χ′(G) ≤ 2(n− 1).

In 2013, Collins and Trenk [8] proved Nordhaus-Gaddum type inequalities for the dis-
tinguishing chromatic number.

Theorem 1.3 ([8]). For every graph of order n and distinguishing number D(G) the fol-
lowing inequalities are satisfied

2
√
n ≤ χD(G) + χD(G) ≤ n+D(G).

Kalinowski and Pilśniak [17] also introduced a distinguishing chromatic index χ′D(G)
of a graph G as the least number of colours in a proper edge colouring that breaks all
non-trivial automorphisms of G. They proved the following somewhat unexpected result.

Theorem 1.4 ([17]). If G is a connected graph of order n ≥ 3, then

χ′D(G) ≤ ∆(G) + 1

unless G ∈ {C4,K4, C6,K3,3} when χ′D(G) ≤ ∆(G) + 2.

The following Nordhaus-Gaddum type inequalities for the distinguishing chromatic
index are the same as in Theorem 1.2 but we have to be more careful in the proof.

Theorem 1.5. If G is an admissible graph of order n ≥ 3, then

n− 1 ≤ χ′D(G) + χ′D(G) ≤ 2(n− 1)

with the only exception K1,4.

Proof. Without loss of generality we may assume that G is connected. It can be eas-
ily checked that the conclusion holds if G ∈ {K4, C6, C6,K3,3}. Otherwise, χ′D(G) ≤
∆(G) + 1. Suppose first that G is also connected. By Theorem 1.4,

∆(G) + ∆(G) ≤ χ′D(G) + χ′D(G) ≤ ∆(G) + ∆(G) + 2.
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Clearly, n− 1 ≤ ∆(G) + ∆(G) ≤ 2(n− 2) since both G and G are connected.
Now, let G be disconnected (but admissible). If there are two nonisomorphic compo-

nents of G of orders k1 and k2 such that 3 ≤ k1 ≤ k2, then ∆(G) ≤ n− k1 − 1 ≤ n− 4,
so χ′D(G) ≤ n − 2. If G has t ≥ 2 components isomorphic to a graph H of order at least
three, then χ′D(H) ≤ n

t + 1 as ∆(H) ≤ n
t − 1. Even if we wastefully add an extra colour

for each additional copy of H , we get χ′D(tH) ≤ n
t + 1 + t− 1 = n

t + t ≤ n− 2 unless
G = K3,3 but this we already checked.

To complete the proof it is enough to settle the case whenG has only one componentH
of order at least three and some isolated vertices. Hence, ∆(H) ≤ n−2. It is easy to check
that χ′D(G) + χ′D(G) ≤ 2(n− 1) for H ∈ {K4, C6, C6,K3,3} except for H = K4 when
G = K1,4. Otherwise, χ′D(G) ≤ n − 1 and the conclusion holds unless |G| = |H| + 1
and ∆(H) = n − 2. But then G has a unique vertex x of degree n − 1 (hence, x is fixed
by every automorphism of G) with a pendant edge. The graph G − x has a distinguishing
colouring with n−1 colours by Theorem 1.4 since ∆(G−x) ≤ n−2. It suffices to colour
the pendant edge with a colour missing at x to see that χ′D(G) ≤ n− 1.

Collins and Trenk observed in [8] that the Nordhaus-Gaddum type relation is trivial
for the distinguishing number, as D(G) + D(G) = 2D(G) since Aut(G) = Aut(G) and
every colouring of V (G) breaking all non-trivial automorphisms of G also breaks those of
G.

In Section 4 we formulate and discuss the following conjecture.

Conjecture 1.6. Let G be an admissible graph of order n ≥ 7, and let ∆ = max{∆(G),
∆(G)}. Then

2 ≤ D′(G) +D′(G) ≤ ∆ + 2.

In Section 2 we characterize graphs G which need exactly ∆(G) colours to break all
non-trivial automorphisms. In Section 3 we give upper bounds for the distinguishing index
of traceable graphs, claw-free graphs, planar graphs and 2-connected graphs.

2 Improved general upper bound
In the sequel, we make use of some facts proved in [17].

Proposition 2.1 ([17]). D′(Pn) = 2 for every n ≥ 3.

Proposition 2.2 ([17]). D′(Cn) = 3 for n ≤ 5, and D′(Cn) = 2 for n ≥ 6.

Proposition 2.3 ([17]). D′(Kn) = 3 if 3 ≤ n ≤ 5, and D′(Kn) = 2 if n ≥ 6.

Proposition 2.4 ([17]). D′(K3,3) = 3, and D′(Kn,n) = 2 if n ≥ 4.

By the well-known theorem of Jordan (cf. [12]), every finite tree T has either a central
vertex or a central edge, which is fixed by every automorphism of T . In the proof of Theo-
rem 2.8, which is the main result of this section, we use Lemma 2.5, a simple generalization
of the theorem of Jordan. Recall that the eccentricity of a vertex v in a connected graph G
is the number

εG(v) = max{d(v, u) : u ∈ V (G)}.
The center of a graph G is the set Z(G) of vertices with minimum eccentricity. Clearly,
the center of G is setwise fixed by every automorphism ϕ ∈ Aut(G), i.e. ϕ(v) ∈ Z(G) if
v ∈ Z(G). A proper subgraph H of G is called pendant if it has only one vertex adjacent
to vertices outside H .
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Lemma 2.5. Let G be a connected graph such that every cycle is contained in a clique.
Then the center of G is either a single vertex or a maximal clique.

Proof. The claim is true if G is a clique Kk of order k ≥ 1. Otherwise, κ(G) = 1, and
each block of G is a clique of order at least two. We then modify the standard proof of the
theorem of Jordan for trees. Let G− be a graph obtained from G by deleting k− 1 vertices
of degree k − 1 in every pendant clique Kk with k ≥ 2. Clearly, εG−(v) = εG(v)− 1 for
each v ∈ V (G−). Consequently, Z(G−) = Z(G). We continue this process until only one
clique Kk is left for some k ≥ 1. This clique is maximal whenever k ≥ 2.

A symmetric tree, denoted by Th,d, is a tree with a central vertex v0, all leaves at
the same distance h from v0 and all vertices that are not leaves of equal degree d. A
bisymmetric tree, denoted by T ′′h,d, is a tree with a central edge e0, all leaves at the same
distance h from the edge e0 and all vertices which are not leaves of equal degree d.

Theorem 2.6 ([17]). If T is a tree of order n ≥ 3, thenD′(T ) ≤ ∆(T ). Moreover, equality
is achieved if and only if T is either a symmetric or a bisymmetric tree.

For connected graphs in general there is the following upper bound for D′(G).

Theorem 2.7 ([17]). If G is a connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

unless G is C3, C4 or C5.

It follows for connected graphs that D′(G) > ∆(G) if and only if D′(G) = ∆(G) + 1
and G is a cycle of length at most 5. The equality D′(G) = ∆(G) holds for cycles of
length at least 6, for K4, K3,3 and for all symmetric or bisymmetric trees. Now, we show
that D′(G) < ∆(G) for all other connected graphs. A palette of a vertex is the multiset of
colours of edges incident to it.

Theorem 2.8. Let G be a connected graph that is neither a symmetric nor a bisymmetric
tree. If the maximum degree of G is at least 3, then

D′(G) ≤ ∆(G)− 1

unless G is K4 or K3,3.

Proof. Denote ∆ = ∆(G). The conclusion holds for trees due to Theorem 2.6. Then
assume that G contains a cycle. The general idea of the proof is the following. If G does
not contain a cycle of length greater than three, then we define G′ as an empty graph.
Otherwise, we consecutively delete pendant trees and pendant triangles until we obtain a
subgraph G′. Then, we construct an edge colouring f with ∆ − 1 colours stabilizing all
vertices of G′ by every automorphism preserving f . Finally, we colour pendant subtrees
and pendant triangles to complete a distinguishing colouring with ∆ − 1 colours of the
whole graph G.

If ∆(G′) = 2, then G′ is a cycle Cp having a distinguishing colouring with ∆ − 1
colours unless p ∈ {4, 5} and ∆ = 3. In this case, it can be easily checked that the
graph G′+ induced by Cp and the independent edges of G incident to Cp can always be
coloured with two colours such that the vertices of Cp are fixed by every colour preserving
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automorphism. So we can assume that ∆(G′) ≥ 3. If G′ ∈ {K4,K3,3}, then G′ 6= G due
to the assumption, hence ∆ ≥ 4, so we can stabilize K4 or K3,3 with three colours.

LetNi(v) denote the i-th sphere in v, i.e. the set of vertices of distance i from the vertex
v. Let x be a vertex with maximum degree in G′. We colour with 1 all edges incident with
x. In our edge colouring f of the graph G′, the vertex x will be the unique vertex of
maximum degree with the monochromatic palette {1, . . . , 1}. Hence, x will be fixed by
every automorphism ϕ preserving f . Consequently, ϕ maps each sphere Ni(x) onto itself.

The first sphere N1(x) can be partitioned into subsets Mk, for k = 0, . . . ,∆ − 1,
defined as

Mk = {v ∈ N1(x) : |N1(v) ∩N2(x)| = k}.

Denote Mk = {v1, . . . , vlk}. Thus, l0 + l1 + . . .+ l∆−1 = ∆.
We want to find a colouring f of the edges of G′[N1(x) ∪ N2(x)] and, if necessary,

of some subsequent spheres, such that each vertex of N1(x) ∪ N2(x) is fixed by every
automorphism preserving this colouring. To do this, we proceed in a number of steps Mk,
for k = 0, . . . ,∆ − 1. In each step Mk, we find a colouring that fixes the vertices of Mk

and their neighbours in N2(x).
Step M0. First we consider the case when the subgraphG′[M0] induced by the vertices

ofM0 is connected. Observe that ∆(G′[M0]) ≤ ∆−1 and, by Theorem 2.7, we can colour
distinguishingly the edges of G′[M0] with ∆ − 1 colours, even if G′[M0] is a short cycle
Cp with 3 ≤ p ≤ 5. Indeed, if G′[M0] = C3 and ∆ = 3, then we would have G = K4,
but K4 is excluded. Otherwise, ∆ ≥ 4 and we can use a third colour in a short cycle Cp.
It may happen that there exists a vertex v ∈ M0 of degree ∆ in G′ (so |M0| = ∆) with a
monochromatic palette {1, . . . , 1} in a colouring of G′[M0] given by Theorem 2.7. In this
case, either G is a complete graph Kn with n ≥ 5 so D′(Kn) ≤ ∆ − 1 by Proposition
2.3, or it is not difficult to see that there exists a colour c such that there is no vertex with
all incident edges coloured with c; whence we can exchange c and 1 in this colouring of
G′[M0].

Now, let G′[M0] be disconnected. Let z1, . . . , zs be isolated vertices or end-vertices of
isolated edges in G′[M0]. Clearly, s ≤ ∆ − 1 by the definition of G′. If s = ∆ − 1, then
we colour with i every edge ziu, where u ∈ N1(x) \M0. Otherwise, we colour ziu with
i + 1 for i = 1, . . . , s. Thus, we avoid a monochromatic palette of {1, . . . , 1} at another
vertex of maximum degree in G′.

We also have to distinguish all isomorphic components of G′[M0] of order greater
than 2. Denote such a component by H and suppose that G′[M0] contains t components
isomorphic to H , for some t ≥ 2. Hence t ≤ ∆

3 and ∆(H) ≤ ∆
t − 1. Therefore, we can

choose distinct sets of ∆
t colours for every component since(

∆− 1
∆
t

)
≥
(

∆− 1

3

)
≥ ∆

3
≥ t.

Thus each vertex of M0 is fixed.
Step M1. For every i = 1, . . . , l1, we colour the edge viu, where u ∈ N2(x), with a

distinct colour from {1, . . . ,∆ − 1}. This is impossible only if l1 = ∆, when we have to
have two vertices a, b ∈M1 with the same colour of edges aa′ and bb′, where a′ and b′ are
neighbours of a and b in N2(x), respectively. If G′[M1] contains an edge e, then we colour
it with 1, and all other edges of G′[M1] with 2. Then we choose exactly one of the vertices
a, b incident to e. We proceed analogously when G′[N2(x)] contains an edge. Then all
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vertices of M1 are fixed unless l1 = ∆ and neither G′[N1(x)] nor G′[N2(x)] contains an
edge.

If |N2(x)| = 1, thenG′ is isomorphic toK2,∆. It is easy to see thatD′(K2,∆) ≤ ∆−1
for ∆ ≥ 3 (for ∆ ≥ 4 this immediately follows from Lemma 3.1 and Corollary 3.8). If
2 ≤ |N2(x)| ≤ ∆ − 1, then choosing a and b such that a′ has at least two neighbours in
N1(x) and b′ 6= a′ yields a colouring fixing N1(x) ∪N2(x).

Suppose |N2(x)| = ∆. If there is a vertex v ∈ N2(x) with less than ∆− 1 neighbours
in N3(x), then we choose a such that a′ = v, and it suffices to reserve a unique set of
colours for the edges between a′ and N3(x).

Hence, assume that every vertex of N2(x) has ∆ − 1 neighbours in N3(x). We select
two vertices a, b ∈ M1 and assume that the colours of the edges aa′ and bb′ are the same.
Next, we implement the following Procedure SUBTREES (a, b), which we also use in
subsequent steps.

Procedure SUBTREES (a, b)
We are given two vertices a, b ∈ N1(x) such that each their neighbour in N2(x) is adjacent
to ∆− 1 vertices of N3(x).

Let Ta be a maximal subtree of the graph G′[{a} ∪
⋃

i≥2Ni(x)], rooted at a, such that
all leaves of Ta belong to the same sphere Nl−1(x) and each vertex of V (Ta) ∩ Ni−1(x)
has ∆− 1 neighbours in Ni(x) for i = 3, . . . , l. Thus l ≥ 3. Define a graph

T̃a = G′[
⋃

v∈V (Ta)\{a}

N(v)],

i.e. T̃a is a graph obtained from Ta by adding all edges incident with the leaves of Ta.
Analogously, we define a tree Tb and a graph T̃b. Observe that the trees Ta and Tb are
disjoint and non-empty.

The edges incident to the roots a and b are already coloured. For every other vertex
of Ta and Tb, we colour its incident edges going to the next sphere with distinct colours
from {1, . . . ,∆− 1}. Thus we obtain an edge colouring f . The only automorphism of Ta
(as well as of Tb) preserving f is the identity. The vertex x will be fixed by every colour
preserving automorphism ϕ. Consequently, ϕ maps T̃a onto T̃b whenever ϕ(a) = b. Thus,
if T̃a and T̃b are not isomorphic, then f distinguishes all vertices in V (Ta)∪V (Tb). Hence,
assume that the rooted graphs T̃a and T̃b are isomorphic. Observe that there exists exactly
one non-trivial isomorphism ψ0 : V (Ta) → V (Tb) preserving f since each vertex in Ta
has a distinct coloured path from the root a.

Denote Wl = (V (T̃a)∪ V (T̃b))∩Nl(x). By our choice of G′, all vertices in Wl are of
degree at least two in G′. It follows that one of the following three cases has to hold.

Case 1. There exist vertices in Wl adjacent to more than one vertex of Wl−1. Then we
modify f by colouring again all edges between such vertices and Wl−1 in order to break
any possible permutation of Wl. A permutation of a set L ⊆ Wl can be extended to an
automorphism of G′ that fixes all leaves of T̃a ∪ T̃b only if every vertex from L have the
same set of neighbours U = {u1, . . . , ud} in Wl−1. Such a set L contains at most ∆ − 1
leaves since the number of edges joining U to Wl equals d(∆ − 1). Every permutation of
L will be broken whenever for every vertex w ∈ L the multiset of colours of the edges
wu1, . . . , wud will be distinct. Clearly, d ≤ ∆. There are

(
∆+d−2

d

)
such possible multisets

of ∆− 1 colours. Clearly,
(

∆+d−2
d

)
− 1 ≥ ∆− 1 for ∆ ≥ 3 and d ≥ 2. We can exclude a
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a

Figure 1: An example of the subgraph T̃a for ∆ = 4 and l = 4. The edges of T̃a between
W3 and W4 that do not belong to the tree Ta are dashed.

rainbow multisetP = {1, . . . , d} (or an almost rainbow multisetP = {1, . . . ,∆−1,∆−1}
if d = ∆) and we still have enough multisets to colour the edges incident with vertices of
L. Moreover, for d = ∆ we can also exclude a monochromatic palette {1, . . . , 1} since(

2∆−2
∆

)
− 2 ≥ ∆− 1 for ∆ ≥ 3.

We partition the set Wl into maximal subsets L with the same set of neighbours and
assign suitable multisets of colours to each set L. We thus obtain a colouring fixing all
vertices fromWl unless ψ0 can be extended to an isomorphism ψ̃0 of T̃a onto T̃b preserving
this colouring. To break every such possible extension ψ̃0, it suffices to assign the excluded
multiset P to one vertex of one set L.

Case 2. Every vertex in Wl has only one neighbour in Wl−1 and the set of edges
F = E(G′[Wl]) is non-empty. Then we colour one edge of F with 1, and all other edges
in F with 2. This colouring fixes all vertices of T̃a and T̃a unless all edges in F are of the
form wψ̃0(w), where wψ̃0(w) is one of possible extensions of ψ0 to an isomorphism of T̃a
onto T̃b. In such a case, we choose one edge ww′ ∈ F and exchange colours of the edge
wu, where u ∈Wl−1, with another edge between u and Wl.

Case 3. Every vertex in Wl has only one neighbour in Wl−1 and no neighbours in
Wl. By the maximality of the trees Ta and Tb and the definition of G′, each vertex in
Wl has at least one neighbour in Nl+1(x) and there exists a vertex w0 ∈ Wl with s <
∆− 1 neighbours y1, . . . , ys ∈ Nl+1(x). We colour each edge w0yj with colour j + 1 for
j = 1, . . . , s. Next, for every vertex w ∈ Wl, we colour the set of edges between w and
Nl+1(x) with a set of ∆− 1 colours excluding the set {2, . . . , s+ 1}.

We thus obtained a colouring f of the edges of G′[V (T̃a) ∪ V (T̃b)], and the edges
incident to Wl in Case 3, fixing all vertices of T̃a and T̃b.

End of Procedure SUBTREES (a, b)

Step M2. For every i = 1, . . . , l2, we colour the edges viu1
i , viu2

i where {u1
i , u

2
i } ⊆

N2(x), with distinct sets of colours from among
(

∆−1
2

)
sets. This is impossible only in the

following three cases (in each case, we can assume that neither G′[N1(x)] nor G′[N2(x)]
contains an edge, otherwise we could construct a distinguishing colouring f ofG′[N1(x)∪
N2(x)] analogously as in step M1):
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a) l2 = ∆ = 4. If there exist two vertices a and b in M2 such that N(a) ∩ N(b) ∩
N2(x) 6= ∅, then we colour with 2 both edges incident with b, and for the remaining
vertices in M2 we have distinct sets of colours from among

(
3
2

)
sets. If for every two

vertices a, b ∈ M2, the set N(a) ∩N(b) ∩N2(x) is empty, then two vertices a and
b are assign the same pair of distinct colours, and we can distinguish them in next
spheres using the procedure SUBTREES (a, b).

b) l2 = ∆ − 1 and ∆ = 3. Let M2 = {a, b}. If N(a) ∩ N(b) ∩ N2(x) 6= ∅, then
we colour edges incident with a with colours 1 and 2, and both edges incident with
b with 2. If the set N(a) ∩ N(b) ∩ N2(x) is empty, then a and b get the same pair
of distinct colours and we can distinguish them in next spheres by the procedure
SUBTREES (a, b).

c) l2 = ∆ = 3. Let M2 = {a, b, c}. If for two vertices of M2, say a and b, the set
N(a) ∩N(b) ∩N2(x) is non-empty, then we can colour with 2 both edges incident
with b and we colour edges incident with the remaining vertices of M2 with a couple
{1, 2}. It is not difficult to verify that this way, for every configuration of neighbours
of M2, we can obtain colouring fixing the vertices of N1(x)∪N2(x) unless |N(a)∩
N(b) ∩N(c) ∩N2(x)| = 2. But then G′ = G = K3,3, contrary to the assumption.
If every vertex of N2(x) is adjacent only to one vertex of M2, then the pairs of edges
incident to a and b are assign the same pair of colours {1, 2}, and we distinguish
them using the procedure SUBTREES (a, b). Both edges cu1, cu2 incident with c
are coloured with 2, and to distinguish them, we split c into two vertices c1 and c2,
each joined by an edge coloured with 2 to u1 and u2, respectively, and apply the
procedure SUBTREES (c1, c2).

Step Mk, for k ≥ 3. For every i = 1, . . . , lk, we colour the edges between vi and
N2(x) with distinct sets of k colours from among

(
∆−1
k

)
sets. It is always possible when-

ever
(

∆−1
k

)
≥ lk. This inequality does not hold only in two cases:

a) k = ∆− 2 and lk = ∆. In this case we define a colouring with ∆− 1 colours like in
step M2 a). Namely, if either a vertex of Mk or its neighbour in N2(x) is adjacent to
a vertex in the same sphere, then we can define a colouring fixing all these vertices
analogously as in step M1 and step M2. Also, if there are two vertices a, b ∈M∆−2

with a common neighbour in N2(x), we can assign the same palette to a and b as in
the previous steps. Otherwise, two vertices a, b ∈M∆−2 are assign the same palette
of ∆− 2 colours and we distinguish them using Procedure SUBTREES (a, b).

b) k = ∆ − 1 and lk ≥ 2. Hence, ∆ ≥ 4. For every i = 1, . . . , lk, the set of edges
between vi ∈M∆−1 and N2(x) will be assign a distinct multiset P i of colours from
the set {1, . . . ,∆− 1}, where only colour i appears twice. Moreover, one vertex can
assign a rainbow palette {1, . . . ,∆ − 1}. Thus every vertex of M∆−1 will have a
distinct palette, and hence will be stabilized. To stabilize the two vertices of N2(x)
joined to vi by edges of colour i, we examine the vertices v1, . . . , v∆−1 of M∆−1 in
the following order.

First, we consider each vertex vi that have a neighbour wi ∈ N2(x) with at least one
but at most ∆− 2 neighbours in N3(x). We choose another neighbour w′i ∈ N2(x)
of vi and assign two distinct sets of colours for the edges going toN3(x) fromwi and
w′i, respectively. We colour the edges viwi and viw′i with the same colour i. Thus all
neighbours of vi are stabilized.
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In the next stage, we consider every vertex vi with every neighbour inN2(x) adjacent
to ∆ − 1 vertices of N3(x). We colour the set of edges between vi and N2(x) with
the palette P i, where two edges viu1, viu2 are coloured with i. Then we delete vi
and introduce two vertices v1

i , v
2
i and edges v1

i u1 and v2
i u2 coloured with i. Then we

use the procedure SUBTREES (v1
i , v

2
i ) to stabilize u1 and u2.

Further, we consider each vertex vi with a neighbour wi ∈ N2(x) incident to an
edge wiu, where u ∈ N2(x). First, we look for such an edge wiu, which is already
coloured. If there is no such edge, we take an uncoloured wiu and colour it with
colour 3. In both cases, we put colour i on the edge viwi and another edge viw with
w 6= u. After we examine each such vertex vi, we colour with 2 all remaining edges
contained in N2(x).

Finally, we are left with at most ∆ vertices vi such that every neighbour of vi is
adjacent only to (at least two) vertices of N1(x). We take a first such vertex vi and
assign colour i to two its incident edges viwi and viw′i. Thus all neighbours of vi are
stabilized unless common neighbours of wi and w′i were not considered yet. Then
we take such a neighbour vj and colour its incident edges with the palette P j such
that the edges vjwi and vjw′i have distinct colours. We repeat this procedure until
only one vertex of M∆−1 is left. We put a rainbow palette {1, . . . ,∆ − 1} on its
incident edges.

After we accomplish steps M0, . . . ,M∆−1, we colour all uncoloured edges in sub-
graphs G′[N1(x)] and G′[N2(x)] with 2. Each vertex of N1(x) ∪ N2(x) is now fixed by
every automorphism preserving our colouring f of edges of G′[{x}∪N1(x)∪N2(x)], and
of some edges between next spheres, if the procedure SUBTREES was used.

Then we recursively colour all yet uncoloured edges incident to consecutive spheres
Ni(x) as follows: for v ∈ Ni(x), i ≥ 2, we colour all edges vu, where u ∈ Ni+1(x),
with distinct colours from {1, . . . ,∆ − 1}. This is always possible since every vertex of
Ni(x) has at most ∆ − 1 neighbours in Ni+1(x). Finally, we colour all uncoloured edges
with end-vertices in the same sphere with 2. Hence, all vertices of G′ are fixed by any
automorphism preserving our colouring f . It is also easily seen that the already coloured
edges can save their colours. Moreover, it is not difficult to observe that x is the unique
vertex of maximum degree with a monochromatic palette {1, . . . , 1}. Thus, the whole
subgraph G′ (or G′+) is fixed.

To end the proof, we colour pendant trees and triangles deleted fromG at the beginning.
First assume that G′ is not empty. Let Ni(G

′), for i ≥ 0, be the set of vertices of distance
i from G′. Then we recursively colour the edges incident to consecutive spheres Ni(G

′) in
the following way: for v ∈ Ni(G

′), i ≥ 0, we colour all edges vu, where u ∈ Ni+1(G′),
with distinct colours from {1, . . . ,∆−1} and the remaining edges incident to v, contained
in Ni(x), with 2. Hence, all vertices of G will be fixed by any automorphism preserving
our colouring f .

If G′ is empty, then we start with the centre Z(G) that is setwise fixed by every auto-
morphism. It follows from Lemma 2.5 that Z(G) either induces K3, or K2 (not contained
in K3), or K1. Let first Z(G) induce a triangle K3. If ∆ = 3, then we stabilize Z(G)
by colouring with two colours all edges incident with vertices of Z(G). When ∆ ≥ 4, we
can colour the edges of the triangle Z(G) with three colours. Next, we recursively colour
edges incident to subsequent spheres Ni(Z(G)) with ∆− 1 colours.

If Z(G) is an edge e, then G − e has two components. We distinguish each of them
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by colouring subsequent spheres Ni(Z(G)) with ∆ − 1 colours. If the components are
isomorphic, then by assumption, each of them has a triangle. We colour two edges of these
triangles contained in a sphere Ni(Z(G)), for some i ≥ 2, with two distinct colours.

Finally, let Z(G) be a single vertex z. Hence,G−z has q ≥ 2 components, each joined
to z by one or two edges. If q < ∆, then we can easily colour distinguishingly the edges
incident with subsequent spheres Ni(z), i ≥ 0, with ∆ − 1 colours. If q = ∆, then we
choose two components of G− z, at least one of them with a triangle, and colour their two
edges incident with z with the same colour. Then we distinguish these two components by
an edge of the triangle.

3 Some classes of graphs
A graph G is called asymmetric if its automorphism group is trivial. Then obviously
D′(G) = 1.

We say that a graph G is almost spanned by a subgraph H (not necessarily connected)
ifG−v is spanned byH for some v ∈ V (G). The following observation will play a crucial
role in this section.

Lemma 3.1. If a graph G is spanned or almost spanned by a subgraph H , then

D′(G) ≤ D′(H) + 1.

Proof. We colour the edges of H with colours 1, . . . , D′(H), and all other edges of G
with an additional colour 0. If ϕ is an automorphism of G preserving this colouring, then
ϕ(x) = x, for each x ∈ V (H). Moreover, if H is a spanning subgraph of G− v, then also
ϕ(v) = v. Therefore, ϕ is the identity.

3.1 Traceable graphs

Recall that a graph is traceable if it contains a Hamiltonian path.

Theorem 3.2. If G is a traceable graph of order n ≥ 7, then D′(G) ≤ 2.

Proof. Let Pn = v1v2 . . . vn be a Hamiltonian path of G. If G = Pn, then the conclusion
follows from Proposition 2.1. IfG is isomorphic to Pn+v1v3, then we colour the edge v1v3

with 1, and all other edges with 2 breaking all non-trivial automorphisms of G. So suppose
that G contains an edge vivj distinct from v1v3 and vn−2vn with i < j − 1. Without
loss of generality we may assume that i − 1 ≤ n − j (otherwise we reverse the labeling).
It is easy to see that at least one of the graphs Pn + vivj − vj−1vj , Pn + vivj − vj−1 or
Pn+vivj−vn is an asymmetric spanning or almost spanning subgraph ofG for any n ≥ 7.
The conclusion follows from Lemma 3.1.

The assumption n ≥ 7 is substantial in Theorem 3.2 as D′(K3,3) = 3.

3.2 Claw-free graphs

A K1,3-free graph, called also a claw-free graph, is a graph containing no copy of K1,3

as an induced subgraph. Claw-free graphs have numerous applications, e.g., in operations
research and scheduling theory. For a survey of claw-free graphs and their applications
consult [10].

A k-tree of a connected graph is its spanning tree with maximum degree at most k.
Win [21] investigated spanning trees in 1-tough graphs and proved the following result.
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Theorem 3.3 ([21]). A 2-connected claw-free graph has a 3-tree.

We use this result to give an upper bound for the distinguishing number of claw-free
graphs.

Theorem 3.4. If G is a connected claw-free graph, then D′(G) ≤ 3.

Proof. Assume first that G is 2-connected. By Theorem 3.3, G contains a 3-tree T . By
Theorem 2.6, we have D′(T ) ≤ 2 if T is neither symmetric nor bisymmetric tree. In such
a case, D′(G) ≤ 3 by Lemma 3.1.

Let T be a symmetric tree Th,3. Denote a central vertex of T by x and its neighbours
by a, b, c. Since G is a claw-free graph, there exists in G at least one edge, say bc, in the
neighbourhood of x in T . Define a subgraph T̃ = T + bc. We colour bc, xa and xb with
1, and xc with 2. Thus all vertices a, b, c, x are fixed by every non-trivial automorphism of
T̃ . We now colour the remaining edges in T̃ starting from the edges incident to a, b, c in
such a way that two uncoloured adjacent edges obtain two different colours 1 and 2. This
2-colouring breaks all non-trivial automorphisms of T̃ . Hence, D′(G) ≤ 3 by Lemma 3.1.

Let T be a bisymmetric tree T ′′h,3. Denote a central edge by xy and its neighbours by
a, b adjacent to x, and c, d adjacent to y. We colour xy, xa and yc with 1, and xb and yd
with 2. Since G is claw-free, there exists in G either at least one of the edges by, cx (or
symmetrically dx or ay) or both ab and cd. We define a subgraph T̃ obtained from the tree
T by adding either one of the edges by, cx (or symmetrically, dx or ay) or both ab and
cd. In the first case we colour by or cx (or symmetrically, dx or ay) with 1, in the second
case we colour ab with 1 and cd with 2. Now all vertices a, b, c, d, x, y are fixed by every
non-trivial automorphism of T̃ . We then colour the remaining edges of T̃ as above, and we
obtain the claim.

If a graphG is not 2-connected, then its graph of blocks and cut-vertices is a path, since
G is claw-free. We colour every block according to the rules described above. Then to
break all non-trivial automorphisms of G, it is enough to break a possible automorphism
ψ ∈ Aut(G) that exchanges two terminal blocks. Let z be a cut-vertex that belongs to a
terminal block B0. It follows that z and its neighbours in B0 induce a clique K of order
k ≥ 2. We have three colours in our disposal, so it is easily seen that we can permute the
colours to obtain a nonisomorphic colouring of K, thus breaking ψ.

The theorem is sharp for graphs of order at most 5. We conjecture that the distinguish-
ing index of claw-free graphs of order big enough is 2.

3.3 Planar graphs

First, recall that by the famous Theorem of Tutte [19], every 4-connected planar graph G
is Hamiltonian. Hence, its distinguishing index is at most 2, by Theorem 3.2, whenever
|G| ≥ 7. A similar result as for claw-free graphs we obtain for 3-connected planar graphs.
In the proof, we use the following result of Barnette about spanning trees of such graphs.

Theorem 3.5 ([3]). Every 3-connected planar graph has a 3-tree.

Using a similar method as in the proof of Theorem 3.4, we obtain the following.

Theorem 3.6. If G is 3-connected planar graph, then D′(G) ≤ 3.
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Proof. Let T be a 3-tree of G. It follows from Theorem 2.6 that D′(T ) ≤ 2 and hence,
D′(G) ≤ 3 by Lemma 3.1, if T is neither a symmetric nor a bisymmetric tree.

Let then T be a symmetric tree Th,3. Denote the central vertex by x, and by Ta, Tb and
Tc the connected components of T − x which are trees rooted at the neighbours a, b, c of
a vertex x, respectively. Since G is 3-connected, there exist an edge e between Ta and Tb
in G. Consider a spanning subgraph T̃ = T + e. Then we colour xa and xc with 1, and
xb with 2, and extend this colouring as in the proof of Theorem 3.4 to a colouring of T̃
breaking all non-trivial automorphisms of T̃ (the colour of e is irrelevant). Consequently,
D′(G) ≤ 3 by Lemma 3.1.

If T is a bisymmetric tree T ′′h,3 with the central edge xy, then we can add to T one edge
in a subtree of T − xy rooted at x, and such a graph can be easily distinguished by two
colours. Again, our claim follows from Lemma 3.1.

3.4 2-connected graphs

For a 2-connected planar graph G, the distinguishing index may attain 1 +
⌈√

∆(G)
⌉

as it

is shown by the complete bipartite graph K2,q with q = r2 for a positive integer r. In this
case, D′(K2,q) = r + 1 as it follows from the result obtained independently by Fisher and
Isaak [11] and by Imrich, Jerebic and Klavžar [14]. They proved the following theorem.
Actually, they formulated it for the distinguishing number D(Kp2Kq) of the Cartesian
product of complete graphs, but D′(Kp,q) = D(Kp2Kq).

Theorem 3.7 ([11, 14]). Let p, q, d be integers such that d ≥ 2 and (d − 1)p < q ≤ dp .
Then

D′(Kp,q) =

{
d, if q ≤ dp − dlogd pe − 1,

d+ 1, if q ≥ dp − dlogd pe+ 1.

If q = dp − dlogd pe then the distinguishing index D′(Kp,q) is either d or d + 1 and can
be computed recursively in O(log∗(q)) time.

In the next section, we make use of the following immediate corollary.

Corollary 3.8. If p ≤ q, then D′(Kp,q) ≤ d p
√
qe+ 1.

In the proof of Proposition 3.10 we also make use of an earlier result of Imrich and
Klavžar [15] which is a slightly weaker version of Theorem 3.7 for d = 2.

Theorem 3.9 ([15]). If 2 ≤ p ≤ q ≤ 2p − p+ 1, then D′(Kp,q) = 2.

Proposition 3.10. If p ≤ q ≤ 2p − p+ 1 and p+ q ≥ 7, then there exists a distinguishing
edge 2-colouring ofKp,q such that the edges in one of colours induce a connected spanning
or almost spanning, asymmetric subgraph of Kp,q .

Proof. The assumptions imply that p ≥ 3, and D′(Kp,q) = 2 by Theorem 3.9. Let P and
Q be the two sets of bipartition of Kp,q with |P | = p and |Q| = q. If p = q, then p ≥ 4,
and there exists a spanning asymmetric tree of Kp,p (see [17]). If p < q ≤ 2p − p + 1,
then for the proof of Theorem 3.9, Imrich and Klavžar in [15] constructed a distinguishing
vertex 2-colouring of Kp2Kq that corresponds to a distinguishing edge 2-colouring f of
Kp,q , where a colouring of vertices in a Kq-layer can be represented by a sequence from
{1, 2}q and it corresponds to a colouring of edges incident to a vertex in P (the same is true
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for Kp-layers and vertices in Q). We wish to show that this colouring yields a connected
asymmetric subgraph of Kp,q which is spanning or almost spanning.

First assume that q = 2p − p + 1. In the coloring f , every vertex in P has distinct
positive number of edges coloured with 1, and there exists a vertex v1 with all incident
edges coloured with 1. Moreover, distinct vertices from Q have distinct sets of neighbours
joined by edges coloured with 1, and there exists a vertex, say v2, with all incident edges
coloured with 2. Let S be a subgraph induced by edges coloured with 1. Then S is an
almost spanning subgraph since v2 is the only vertex outside S. The graph S is connected
because v1 is adjacent to every vertex in Q, and every vertex in P is joined to a vertex in Q
by an edge coloured with 1. Moreover, S is also asymmetric since f breaks all non-trivial
automorphisms of Kp,q and any automorphism interchanging some parts of the sets P and
Q does not preserve distances in S.

Following [15] for p < q < 2p − p+ 1, we exclude a relevant number of such pairs of
sequences of colours that the sum of them is a sequence (3, . . . , 3). Additionally, if both q
and p are odd, we exclude the sequence (0, . . . , 0). Again, we obtain a connected spanning
(or almost spanning) asymmetric subgraph S ofKp,q induced by the edges coloured with 1.

Proposition 3.10 and Lemma 3.1 immediately imply the following.

Corollary 3.11. If a graphG of order at least 7 is spanned byKp,q and p ≤ q ≤ 2p−p+1,
then D′(G) ≤ 2.

In general, for 2-connected graphs we conjecture that the complete bipartite graph
K2,r2 is the worst case, i.e. attains the highest value of the distinguishing index.

Conjecture 3.12. If G is a 2-connected graph, then

D′(G) ≤ 1 +
⌈√

∆(G)
⌉
.

4 Nordhaus-Gaddum inequalities for D′

In this section, we discuss Conjecture 1.6, formulated at the end of Introduction, stating
that

2 ≤ D′(G) +D′(G) ≤ ∆ + 2

for every admissible graph G of order n ≥ 7, where ∆ = max{∆(G),∆(G)}.
The left-hand inequality is obvious. Indeed, if a graph G is asymmetric, then so is G.

Thus we are only interested in the right-hand inequality D′(G) + D′(G) ≤ ∆ + 2. Note
also that at least one of the graphs G and G is connected.

The bound ∆ + 2 cannot be improved. To see this, consider a star K1,n−1 of any
order n ≥ 7. As K1,n−1 is a disjoint union of a complete graph Kn−1 and an isolated
vertex, it follows from Proposition 2.3 that D′(K1,n−1) = 2. Therefore, D′(K1,n−1) +
D′(K1,n−1) = n− 1 + 2 = ∆ + 2.

If T is a tree, then ∆(T ) can be much smaller than ∆ = ∆(T ) = n− 1. However, the
following holds.

Proposition 4.1. If T is a tree of order n ≥ 7, then

D′(T ) +D′(T ) ≤ ∆(T ) + 2.
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Proof. As it was shown above, the conclusion holds for stars. If T is not a star, then
D′(T ) ≤ 2 by Lemma 3.1. Indeed, as it was proved by Hedetniemi et al. in [13], a
complete graph Kn contains edge disjoint copies of any two trees of order n distinct from
a star K1,n−1. Thus, the complement T contains a spanning asymmetric tree. By Theorem
2.6, we have the inequality D′(T ) +D′(T ) ≤ ∆(T ) + 2.

This fact emboldened us to formulate the following stronger conjecture.

Conjecture 4.2. Every connected admissible graphG of order n ≥ 7 satisfies the inequal-
ity

D′(G) +D′(G) ≤ ∆(G) + 2.

Now we show that Conjecture 1.6 holds not only for trees, but also for some other
classes of graphs. To do this we use the following fact.

Theorem 4.3. Let G be a connected admissible graph of order n ≥ 7. If either G or every
connected component of G has the distinguishing index at most 3, then

D′(G) +D′(G) ≤ ∆ + 2,

where ∆ = max{∆(G),∆(G)}.

Proof. Our claim is true for trees by Proposition 4.1. Observe also, that it is true if G is
a path or a cycle of order at least 7 since its complement G is Hamiltonian, and D′(G) +
D′(G) ≤ 4. So, now we can assume that ∆(G) ≥ 3 and neither G nor G is a tree. We
consider two cases.

Case A. Every component H of G satisfies D′(H) ≤ 3.
Then D′(G) ≤ ∆(G) − 1 by Theorem 2.8, and if G is connected, then our claim holds.
Assume now that G is disconnected. Then G is spanned by Kp,q with p ≤ q and ∆ ≥ q,
where p + q = |V (G)|. Suppose that the graph G has t isomorphic components. If we
had a distinct set of three colours for every component, then D′(G) ≤ d 3

√
6te. We then

consider two cases:

a) If q ≤ 2p − p + 1, then D′(G) = 2 by Corollary 3.11. Moreover, we then have at
most n

3 components of G, so D′(G) ≤ d 3
√

2ne. And we can easily see that

d 3
√

2ne+ 2 ≤ n

2
+ 2

for every n ≥ 4.

b) If q ≥ 2p − p + 1, then there exists a big component (of order q) in G and we
can assume that t ≤ p

3 remaining components are isomorphic. In this case, by
assumptions we have p ≤ dlog2(q + p− 1)e, therefore

D′(G) ≤ d 3
√

6te ≤ 3
√

2dlog2(q + p− 1)e.

On the other hand, D′(G) ≤ d p
√
qe + 2 by Corollary 3.8 and Theorem 3.1. Then it

is not difficult to check that for q ≥ 2p − p+ 1

3
√

2dlog2(q + p− 1)e+ d p
√
qe+ 2 ≤ q + 2

what finishes the proof in Case A.
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Case B. D′(G) ≤ 3.
If graph G is connected, then the claim follows immediately from Theorem 2.7 whenever
D′(G) = 2 or D′(G) = 2, and it follows from Theorem 2.8 if D′(G) = 3. Assume now
that G has t ≥ 2 components. Then ∆ ≥ n

2 and, in the worst case, all components of G
are isomorphic. Observe that maximal degree of every component is at most n

t − 1. If we
assign one extra colour to every component, then we need at most n

t − 1 + (t− 1) colours
to distinguish G. Hence, if

n

t
+ t ≤ n

2
− 1,

then D′(G) ≤ ∆− 1, and our claim is true. The above inequality holds unless t = 2.
If there exist two isomorphic components in G, then D′(G) ≤ 2 due to Corollary 3.11

since G is spanned by Kn
2 ,n2

. Then D′(G) ≤ n
2 , and finally D′(G) +D′(G) ≤ n

2 + 2.

Now we can formulate some consequences of Theorem 4.3 and suitable results proved
in Section 3.

Corollary 4.4. Let G be an admissible graph of order n ≥ 7. If G satisfies at least one of
the following conditions:

i) G is a traceable graph, or

ii) G is a claw-free graph, or

iii) G is a triangle-free graph, or

iv) G is a 3-connected planar graph,

then
D′(G) +D′(G) ≤ ∆ + 2,

where ∆ = max{∆(G),∆(G)}.

Proof. It suffices to apply Theorem 4.3 together with Theorem 3.2, Theorem 3.4 and The-
orem 3.6, respectively. Observe also that if the girth of a graph G is at least 4, i.e., G is
triangle-free, then its complement G is claw-free.

Finally, it has to be noted that there exist graphs of order less than 7 such that the right-
hand inequality in Conjecture 1.6 is not satisfied. For example, for the graph K3,3 we have
D′(K3,3) = 3, D′(K3,3) = D′(2K3) = 4 and ∆ = 3, hence D′(K3,3) + D′(K3,3) =
∆ + 4. Also, D′(C5) +D′(C5) = 3 + 3 = ∆ + 4, and D′(K1,i) +D′(K1,i) = ∆ + 3 for
i = 3, 4, 5.
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